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We investigate a quasi-one-dimensional system of trapped cold bosonic atoms in an optical lattice by using
the density-matrix renormalization group to study the Bose-Hubbard modiel@for experimentally realistic
numbers of lattice sites. It is shown that a properly rescaled one-particle density matrix characterizes superfluid
versus insulating states just as in the homogeneous system. For typical parabolic traps we also confirm the
widely used local-density approach for describing correlations in the limit of weak interaction. Finally, we note
that the superfluid to Mott-insulating transition is seen most directly in the half-width of the interference peak.
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During the last years enormous progress was made in thever several orders of magnitude. To investigate the proper-
experimental manipulation of cold atoms in optical lattices.ties of the one-dimensiondlLD) Bose-Hubbard model, we
Recently, Greineet al. [1] succeeded in driving a transition apply the DMRG, a quasiexact numerical method, very well
between a superfluidSH and a Mott-insulatingMI) state in  suited to study strongly correlated quasi-1D quantum sys-
a system of ultracold bosonic atoms in an optical lattice asems with a large number of sites at zero temperdt8felt
predicted by Jakscht al. [2]. In contrast to solid-state real- has been successfully applied to spin, fermionic, and bosonic
izations the experimental setup involves the application of amuantum systems including the homogend@jsnd the dis-
additional parabolic trapping potential that causes a state inrdered[10] Bose-Hubbard model. We used the finite-size
which the two phases, though spatially separated, cogjist DMRG algorithm[8] which is better suited for an inhomo-
Due to the inhomogeneity the usual characterization of thgeneous system, since it gives the system the possibility to
SF to MI transition by the asymptotic behavior of the one-evolve further after the final length of the system is reached.
particle density matrix does not apply. Motivated by this, weAdditionally some tricks are applied to circumvent problems
use the density-matrix renormalization graMRG) [4]to  which arise due to the sparse filling at the boundaries. The
study how the parabolic confining potential influences thenumerical results were tested to be convergent in the cutoffs
one-particle density matrix and its Fourier transform, whichused for the length of the system, the number of states kept
is related to the interference pattern observed in the experfor the Hilbert space, and the number of states allowed per
ments[5]. We find that by a simple rescaling, the decay ofsite. Uncertainties given below are determined by comparing
the correlations can be used to characterize the occurrindata of different parameter sets.
states, just as in the homogeneous case. We further confirm (ii) State diagram.The confining trap of the experiment
the applicability of the standard local-density approximation[1] which consists of a magnetic trap and the confining com-
to the inhomogeneous systeld] for weak interactions by ponent of the laser which generates the optical lattice can be
comparing it to the DMRG results for the correlation func- modeled by setting,-:vf’ra[[a(j—jo)]2 in Eq. (1), wherea is
tions. Studying experimentally accessible quantities we findhe lattice constant. We choose the strength of the trap pro-

that the half-width of the interference peak contains the esportional to the on-site interaction, i.&/y,,=voU, since this

sential information about the state of the system. guarantees that when the optical lattice depth, corresponding
(i) Model. Ultracold bosonic atoms in an optical lattif  to the parameten in the Bose-Hubbard model, is changed,
can be described by a Bose-Hubbard model the size of the system does not vary much for a fixed particle

number. This is consistent with the experimental realization,
in which the total size of the condensate is essentially inde-
pendent of the lattice depth. In the presence of a parabolic
trap at average filling of approximately one-particle per site,
1) one can distinguish three states of the systeee Ref[2,3)):
(a) for u<ug, the particle occupancy is incommensurate

Ug . . .
H=-J> (b/bj.i+H.c)+ EE AR — 1) + X &,
] j j

whereb! andb; are the creation and annihilation operators : ;
o o . . | over the whole system(b) for uy<u<u,, regions with
on sitej andfy;=b'b; is the number operat¢7]. This Hamil- ystem(b) cl c2 r€g

; . i o incommensurate and commensurate occupancy coexist; and
tonian descnb_es the mterplay b_etween _the kinetic energy du&) for u> U, the main part of the system is locked to com-
to the next-neighbor hopping with amplitudeind the repul- ¢

X o o) of th B ing the latti mensurate filling and only at the boundaries small incom-
sive on-site interactiot) of the atoms. By tuning the lattice o g rate regions exist. For small particle numbers, dbate
depth in the experiment, the parameterU/J can be varied

does not occur. A sketch of the state diagram is presented in
Fig. 1(A). The insets show the characteristic shape of the
particle distribution for the three states. For stdipthe ex-
*Present address: Institute for Theoretical Physics, University ofict locations of the interface between the commensurate and
Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. the incommensurate regions are difficult to determine. This
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FIG. 1. (A) Sketch of the state diagram fop=4/64. The in- 0.1 1,‘5:0_5?5,;1;0.005
sets sketch the shape of the density distribution in the sté@gs. 0.01 };g i
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Sketch of the phase diagram of the homogeneous system: chemici
potentialu vs 1/u. The different symbols iiB) mark the locations 0.001
of the chemical potential values in the local-density approximation

Cm . ) : 0.0001
that correspond to the locations in the density profiles marked in
A) 0.00001 | V0 = 1/1024 {
) : N =50
0.000001 "'=95 s
is due to the fact that these sites correspond in the homoge fistriss 7

neous system to the critical parameter regimes at the phase

transition, where strong fluctuations and extreme sensitivity FIG. 2. Scaled correlation€;(r) [Eqg. (2)] for different fixed

to boundary conditions make a numerical investigation verysitesj are plotted as a function offor different values oti. For the

difficult. coexistence regio(b) a shallower trapping potential is chosen, such
(i) Rescaled correlationsTo get a better understanding tha? the extents of both the incommengqratg and the commehsurate

of the three stateg)—(c), we study the properties of the re- regions are large e_nough to allow identification of the algebraic and

scaled one-particle density matrix, exponential behavior.

Ci(r) = (bijH,)/ \s"njnj+r, (2)  the density fluctuations around a smooth, spatially dependent
density profilen(x). An equivalent procedure was used for

in which the leading density dependence kpf \FJ is di- 1D Fermionic gases by Recatt al. [12]. The Hamiltonian
vided out. In the absence of density fluctuatiogr) is  becomes

just the pure phase correlation functi¢e®ie”'¢i+). At the

two-particle level, the equivalent step is going from the _n 2 _ 2

two-particle densityp?(x;,x,) to the dimensionless two- H= 2 f Ox{o; ((B)™+ onL30 =m0 TS,

particle distribution function g?(x,%,)=p? (X, %)/

pP(x)pP(x,). Remarkably, we find that by this simple precisely as in the homogeneous case, exceptnilxat and

rescaling, the signatures of the SF and M| phases in thEhereforev;(x)=mAn(x)/m anduvn(x) = (7h) ™ (9! IN)|n=nigs

homogeneous system, namely, an algebraic or exponentiabw depend orx. To account for the inhomogeneity, the

decay, C;(r) = Alr| %2 and =Be'¢, respectively, can be local-density approximationu [n(x)]+V(x)=u[n(0)] was

recovered approximately even in the presence of a parassed to obtain the mean density profile3]. Based on this

bolic confining potential. For weak interactions=<u,,  approximation Gangardt and Shlyapnikp&] have shown

[Fig. 2@@)] Ci(r) decays approximately algebraically with that the normalized matrix elements of the one-particle den-

r. In the intermediate regimey,; <u<u,, [Fig. 2(b)] the  Sity matrix are given by

decay in the regions where the density is incommensurate ~

is still algebraic, whereas in the regions where the density (b"(x)b(=x)) ( 2] ) K72

. . ’ . . ; C(x): = = , (3)

is locked, it shows an exponential behavior. Increasing the Vn(x)n(=x) [.(X)

interaction furtheru=ug, [Fig. 2(c)] the incommensurate

regions disappear and the correlations decay exponeiwvhereK is the exponent ant}. the longitudinal correlation

tially. length. Equatior(3) is derived assumin{@x|> .. Specializ-
(iv) Hydrodynamical approachit is instructive to com- ing to weak interaction, i.e.y=1/dn<1, the approxima-

pare the numerically exact DMRG results to a hydrodynamitions I(x) = \d/n(x) and K(x) = 1/[#\dn(x)] hold, where

cal treatment of the interacting 1D Bose ga4] combined d«I? /ag is the characteristic length of the interactiah.

with a local-density approximation. In the hydrodynamical depends on the 3D scattering lengty and the amplitude

approach the low-energy fluctuations of the system are dd- of the transverse zero-point oscillation. The condition

scribed by two conjugate fields, the phase fluctuatiétg |2x|>1, breaks down at the boundaries, whewe) van-

and the density fluctuation&x). This approach can be gen- ishes causing a divergenceliix). Comparing Eq. (3)] to

eralized to the case of inhomogeneous syst@hby taking  the quasiexact results of DMRG, it turns out that the local-
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FIG. 3. Quasiexact DMRG results f@i(j) (symbolg are com-
pared to Eq.(3) obtained by the hydrodynamical approafi FIG. 4. Interference pattern for the system wi#t) open bound-
(lines). We usedn(x)=ng[1-(x/R)?], wheren, and R are deter- aries and with(B) parabolic trap for different values of Symbols
mined by fitting to the DMRG resultsee insets The uncertainties ~ are the results of the DMR@naximal uncertainty 0)land lines the
are obtained by varying the fit range in the sensible region awayesults of the approximations explained in the text. The insets en-
from the boundaries. large the scale of thg axis. For a homogeneous systegin=1)
=3.37 is the critical value in the thermodynamic limit according to

density approach describes very well the rescaled correld?®" [0

tions in the inhomogeneous systems fos 2. To this end ) )

we fitted the functionC(x) [Eq. (3)] to the corresponding creases smoothly. The half-width [Fig. 5(A)], however,
DMRG results, using only as a fitting parametefFig. shpws a cleqr upturn. This upturn S|_gn|f|es a phase tran-
3]. We find a very good agreement in the bulk of the SFSition, since it stems f(om the_behawor of the correlation
regions in both, the purely SF staf€ig. 3] and the 'ength&(=w™), which diverges in the SF phagg=L) and
coexistence stateFig. 3(b)]. The quality of the agreement becomes finite in the MI phasg<A™, whereA is the

is somewhat surprising, because the pure state0.6)  €nergy gap For the parabolic systeifiFig. 4B)], the in-
and the coexistence state=1.7) are in an intermediate terference pattern for small and largeis similar to the
regime between the Thomas-Fermi liniiz<1) and the !nterferer_lce pattern in the homogeneous system. In the
Tonks gas(y> 1), where the density profile is no longer INt€rmediate regime, however, it shows a more complex
parabolic[13]. behavior, whlc_h is most clearly ewdelnt im [Fig. 5(B)].

(v) Interference patternWe investigate how the informa- For small pqrt|cle nu_mberSN—40), w is very small for
tion contained in the interference pattern is influenced by th = Ucy and. rises continuously fan> ug. I_n contrast, for
confining potential. If the interaction between the atoms aftef'9€r particle numbereéN=50,60 three different regimes
switching off the confining potentials is weak, i.eEp corresponding to the three dlfferent states in Fig. 1 are
<E,,, the measured absorption images reflect the momerRPserved: (&) for u<ug, w is very small, (b) for

tum distribution obtained from the Fourier transform of the et <U<Uc;, W rises slowly, until atu~uc, it shows a
one-particle density matrifs] sudden jumplike increasé¢) for u>u,, it continues to

rise strongly. That means that in the & and the MIi(c)

M oLt states the behavior of resembles that of the homoge-
1K) = p(k) = 2 @977%blby), 4
=1 Lattice Depth Lattice Depth
1234 5 6 7 1 2 3 4

whereM is the number of sites in the chain aNdthe total (A) ,|--L=128,n=1 (B) ¥ |Nelpes= - /‘
number of particles. For the parameters studied here, the ar — Lpigs. 0=z 08 N=50 = / ;
proximation of a negligible contribution of the interaction 15| °L=64,n=2. I e ;-V
energy to the time of flight images is valid for all momenta g 061 (2 (b) /
in the second or in higher Brillouin zones. Indeed, these * 1 _ = o4
momenta are of orderizrs/L, wherese N ands> M. Thus ' \
Epot! Exin > [Nap(4fi%ag) Im/[ (whs/L)2/ (2m) ] = ag/acx 1072 82 o 02 B
for ngp<1.5/a% andag/a as in Ref.[1]. The functionp(k) " 0 :
has been studied for very small systems numeridal#j, 0 454 10 15 20 0 5, "
with the hydrodynamical approad¢t5] for a 1D homoge- S u

neous system and for the confined system in[3Dand

1D [16]. I,n Fig. 4 we plot the DMRG resultsymbol9 for neous(A) and the paraboli¢B) system. Arrows in(A) mark the

the fun(_:tlon p(k) for several values of the p"’_‘rameter critical value ofu. in the thermodynamic limi¢solid and dashed for
comparing the homogeneous systgm=0) with open  h-1 andn=2, respectively according to Ref[9]. Arrows in (B)
boundary conditiongA) to the parabolic systenB). In mark the three different regimes described in the text. To relate

the homogeneous system with commensurate filling, the corresponding lattice depitV,,/E,) of experiments, we as-
=N/M=1 [Fig. 4A)] we find a very sharp peak at small sumed that the depths in the two perpendicular dimensions were
momenta foru<u,. If uis increased, the peak height de- fixed to Vi, , /E,=50.

FIG. 5. Half-width of the interference peak for the homoge-
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neous system. This is as expected, since the rescaled camrrelation functions. Comparing the DMRG data to the ap-
relations show the same decay as in the correspondingroximation we see in Fig. 4 that this simple approximation
homogeneous phases. In the intermediate redbpehow-  works very well for small values dka; in particular, it re-
ever, it shows a new behavior, a slow increase, which iproduces the correct shape of the pgaken including the
due to the coexistence of the SF and the Ml states. The Sémall nonmonotonities which are due to the finite sum in Eq.
region determines mainly the height of the interference4)]. This underlines thap(k) is mainly determined by the
peak, while its broadening is due to the presence of the Mtlecay of thgun)scaled correlations. Clearly our calculations
region. In the crossover region between the totally incomin 1D cannot be compared quantitatively with the experi-
mensurate and the coexistence region, the interferenaments in a 3D lattic§l]. Recently, however, an array of truly
pattern shows additional oscillations with periodr/2, 1D Bose systems has been created. With an additional
wherel is the distance between the two outer SF regionslattice potential our predictions can then be tested quantita-
due to the appearance of relatively strong correlations betively [18]. In the experimental realization one typically has
tween the latter. Similar oscillations were seen in Ref.several 1D systems next to each other with different particle
[16]. In smaller systems such as in RgB] the effect is numbers, hence the location of the sharp upturn in the half-
more pronounced causing well-separated satellite peakswidth [Fig. 5B)] will be smeared out, since the critical value
Finally, let us investigate to what extent the properties ofu., depends on the particle number. Nevertheless, we expect
the interference patterns in Fig. 4 can be understood in termis particular the strong, jumplike increase between the coex-
of simple phenomenological approximations f(chrJTbj,> in  istence state and the MI state to remain observable.
the homogeneous and the rescaled correlat@is in the In conclusion, we have found that the correlation func-
inhomogeneous system. Once the characteristic quartities tions of a parabolically confined system, after a remarkably
and ¢ have been identifiedn this case by fitting to DMRG ~ Simple rescaling, show approximately the familiar algebraic
resulty, our simple rescaling procedure captures most of th@nd exponential behavior of the SF and MI phases in the
essential observable physics. To illustrate this we show iflomogeneous system. We investigated as well the applicabil-
Fig. 4A) in addition to the DMRG results resul@ines) ity of the local-density approximation in a parabolic system
obtained by approximatingoijj,> in Eq. (4) by Alj-j’| ™2 in the limit of weak interaction and find a good agreement
with the DMRG results. Moreover, if the experimental sys-
tem consists of 1D tubes with almost the same average fill-
ing, the half-width of the interference peak can be used to
distinguish the different types of states that occur experimen-
tally.

andBe li-i'V€ for small and largeu, respectively. The values
of K and£ are determined by fitting);rbj,> to DMRG results
(not shown herge The constanté andB are chosen such that
the value ak=0 agrees with the DMRG results. In FigB)
the approximationglines) are obtained analogously by tak-
ing the density scaling into account, i.e., replacibffs;) by We would like to thank M. Cazalilla, I. Bloch, M. Greiner,
the algebraically and the exponentially decaying functiond. Cirac, J. J. Garcia-Ripoll, and T. Giamarchi for fruitful
times the scaling factonm. We use the density distribu- discussions. C. K. was financially supported by the Hess-
tion njzno(l—(j—jo)lez) for u=1, andn;=1 foru=9. The  Preis and Project No. DE 730/3-1 of the DFG and the Stu-
parameterK and ¢ are determined by fitting the rescaled dienstiftung des deutschen Volkes.
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