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Quantum phase transition in a two-channel-Kondo quantum dot device
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We develop a theory of electron transport in a double quantum dot device recently proposed in@Y. Oreg and
D. Goldhaber-Gordon, Phys. Rev. Lett.90, 136602~2003!# for the observation of the two-channel Kondo
effect. Our theory provides a strategy for tuning the device to the non-Fermi-liquid fixed point, which is a
quantum critical point in the space of device parameters. We explore the corresponding quantum phase tran-
sition, and make explicit predictions for behavior of the differential conductance in the vicinity of the quantum
critical point.
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I. INTRODUCTION

The magnetic screening of a localized spin by spins
itinerant electrons1 leads to the Kondo effect—an anomaly
low-temperature conduction properties. This screening
comes effective below some characteristic temperature,
Kondo temperatureTK . AboveTK electrons are weakly sca
tered by the magnetic impurity, but belowTK the scattering
becomes strong. In the simplest Kondo systems, only
electron mode~the s-wave mode, say! participates in the
screening of a localized spin withS51/2. In this case, the
low-temperature electronic properties are adequately
scribed by Fermi liquid theory,2 and the thermodynamic an
transport characteristics are analytical functions ofT/TK . In
more complicated systems~such as, e.g., paramagnetic me
als! many electron modes may participate in screening of
S51/2 localized moment.3 The peculiarities of such a ‘‘mul-
tichannel’’ Kondo model were long recognized.3,4 At the
same time it was understood that even a small deviation f
symmetry between channels leads at low temperatures to
Kondo screening by just one channel, the one for which
exchange integral with the impurity is the largest.4

The peculiarity of asymmetricmultichannel Kondo prob-
lem is in its non-Fermi-liquid ~NFL! behavior at low
temperatures.4 The low-temperature asymptotes of the th
modynamic and transport characteristics display power-
behavior with fractional values of the exponents. A compl
temperature dependence of the thermodynamic charact
tics ~such as the local spin susceptibility! is known now from
the exact Bethe-ansatz solution of the Kondo problem.5,6 De-
tails of the low-temperature electron scattering problem w
also understood in the framework of conformal fie
theory.7,8

Experimental observation of the non-Fermi-liquid beha
ior in a Kondo system, however, is difficult because t
channel symmetry is not ‘‘protected’’—in general, there a
no conservation laws prescribing such a symmetry. This
led to various propositions to observe such a behavio
systems where the role of spin is taken over by another
gree of freedom, while the ‘‘real’’ spin labels the channe
making the channel symmetry robust. One such idea d
0163-1829/2004/69~11!/115316~8!/$22.50 69 1153
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with an atomic defect which occupies two equivalent latt
sites, thus forming a pseudospin.9 However, the equivalence
of sites is not a protected symmetry; its violation,10 equiva-
lent to a ‘‘Zeeman splitting’’ of the pseudospin states, d
stroys the Kondo effect.

Another object which under certain conditions can be
scribed by the two-channel Kondo model~2CK! model, is a
large quantum dot, or a metallic island connected by
single-mode channel to a conducting electrode.11 If one ne-
glects the finite level spacing in the island, then a pseudos
labeling of the charge states of the island may be introduc
while real spin again plays the part of the channel index.
this setup the degeneracy with respect to the pseudospin
entation is easily achieved by tuning the gate voltage to
vicinity of the Coulomb blockade degeneracy point. At tem
peraturesT higher than the level spacingdE in the island, the
system is then described by the 2CK model.11 SinceTK for
this system can be of the order12 of the charging energyEC ,
while typically dE!EC , the NFL regime is easily realized
When an additional electrode is attached to the island,
can study the transport properties of the resulting device.
disadvantage of such realization of a 2CK system is t
there is no mapping between the conductance across
island13 and the electron scattering cross-section in the
neric two-channel Kondo model.7,8

Small quantum dots with large level spacing have prov
to be suitable for the observation of the Kondo effect.14 In
the usual geometry consisting of a dot with two attach
electrodes, however, only the conventional Fermi-liquid~FL!
behavior is observable at low temperatures. The reason
in the structure of the matrix of exchange constants t
couple the dot’s spin to the spins of itinerant electrons.15,16

Typically, the eigenvalues of this matrix are vast
different,15 and their ratio is not tunable by convention
means.

A device that circumvents this problem was proposed
cently in Ref. 17, and involves several dots. A two-dot dev
is sufficient for the realization of the 2CK model. The ke
idea of Ref. 17 is to replace one of the electrodes in
standard configuration by a very large quantum dot 2,
Fig. 1, characterized by a level spacingdE2 and a charging
©2004 The American Physical Society16-1
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energyE2. At T@dE2, particle-hole excitations within this
dot are allowed, and electrons of dot 2 participate in
screening of the smaller dot’s spin. At the same time, as l
asT!E2, the number of electrons in the dot 2 is fixed. As
result, the electrons in dot 2 provide for a separate chan
which does not mix with the channels provided by the el
trodesL andR. In this case, the exchange constants for t
channels may be tuned to become equal:17 the asymmetry
between the channels is controlled by the ratio of the c
ductances of the dot leads and dot-dot junctions.

In principle, a setup having just one lead and two d
would allow one to study thermodynamic properties, such
magnetic susceptibility, in the 2CK regime. The existi
technology,14 however, enables one to measure transp
rather than thermodynamic properties. Therefore, two le
are needed to perform conductance measurements. In
paper, we assume that one of the electrodes is cou
weakly to the small dot and serves as a probe of the 2
system formed by the two dots and the remaining electro
We propose a detailed strategy for tuning the device to
NFL regime, and discuss various manifestations of NF
related physics in the transport properties of the system.

II. THE MODEL

According to the discussion above, the device we c
sider consists of two quantum dots coupled to two condu
ing leads via single-mode junctions. The model Hamilton
of such a device can be written as a sum of three parts

H5Hd1Hl1Ht . ~1!

The first term here,Hd , describes an isolated system of tw
quantum dots, 1 and 2, connected via a single mode junc

Hd5E1S (
s

ds
†ds2ND 2

1(
ks

jkc2ks
† c2ks

1E2S (
ks

c2ks
† c2ksD 2

1(
ks

~ t2c2ks
† ds1H.c.!. ~2!

The last two terms in Eq.~1! represent the free electrons wi
spins561 in leadsR andL, and the tunneling between th
leads and dot 1, see Fig. 1,

Hl5(
aks

jkcaks
† caks , a5R,L; ~3!

FIG. 1. Device proposed in Ref. 17. Level spacing in the lar
dot ~2! must be negligibly small to allow for the NFL behavior o
the device at low temperatures.
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Ht5(
aks

tacaks
† ds1H.c. ~4!

In Eq. ~2! the smaller dot~dot 1! is described by a single
level system equivalent to the Anderson impurity model. T
parameterE1 represents charging energy, while the para
eter N is adjustable by tuning the potential on the capa
tively coupled gate electrode. We neglect the finite le
spacingdE2 in the dot 2, but account for its finite chargin
energyE2 ~we do not write explicitly the gate potential ap
plied to the dot 2, as it corresponds to a trivial shift of t
chemical potential!.

Since the relevant energies (v&TK) for the Kondo effect
are negligibly small compared to the Fermi energy, the el
tronic dispersion relationjk in Eqs.~2!, ~3! can be linearized:
jk5vFk, wherek is measured from the Fermi momentu
kF . The linearization leads to an energy-independent den
of statesn, which will be assumed throughout this pape
Finally, we treat the tunneling amplitudest2 ,tR ,tL as real
numbers and neglect their dependences onk. This is well
justified for relevant values ofk, uku&T/vF .

Instead of working with the operatorscR,L , it is conve-
nient to introduce their linear combinationsc0,1,

S c1ks

c0ks
D 5S cosu0 sinu0

2sinu0 cosu0
D S cRks

cLks
D , ~5!

where the angleu0 is determined by the equation

tanu05tL /tR . ~6!

~So far there are no restrictions on the value oftL /tR .) The
Hamiltonian ~1!–~4! then assumes the ‘‘block-diagonal
form

H5H0$c0%1H1$c1 ,c2 ,d%, ~7!

H05(
ks

jkc0ks
† c0ks , ~8!

H15Hd$c2 ,d%1(
ks

jkc1ks
† c1ks1(

ks
~ t1c1ks

† ds1H.c.!,

~9!

whereHd$c2 ,d% is given by Eq.~2!, andt15AtL
21tR

2.
At low energies (T!E1,2) the HamiltonianH1 involving

the c1 andc2 operators, see Eq.~9!, can be simplified fur-
ther. Indeed, atN'1 the small dot is occupied by a sing
electron, and, therefore, carries a spinS51/2. The tunneling
terms in Eqs.~2! and~9! mix the states with a single electro
in dot 1 with states having 0 or 2 electrons in that dot. B
cause of the high energy cost (;E1), these transitions are
virtual, and, provided that the conductances of the co
sponding junctions are small, can be taken into account
turbatively in the second order in tunneling amplitudes.
new17 and important element here compared to the conv
tional treatment of the Anderson impurity model is that
T!E2 only those excitations that conserve the number
electrons in dot 2 are allowed. The resulting effective Ham

r
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QUANTUM PHASE TRANSITION IN A TWO-CHANNEL- . . . PHYSICAL REVIEW B 69, 115316 ~2004!
tonian which acts within the strip of energiesuvu
&min$E1,E2%, has the form of the 2CK model,4–9

H2CK5(
gks

jkcgks
† cgks1(

g
Jg~sg•S!1BSz. ~10!

Here the channel indexg51 andg52 represents the lead
and dot 2, respectively,S is the spin-1/2-operator describin
the doubly-degenerate ground state of dot 1,

sg5 (
kk8ss8

cgks
† sss8

2
cgk8s8

is the spin density in channelg, ands5(sx,sy,sz) are the
Pauli matrices. The exchange amplitudesJg in Eq. ~10! are
estimated as

nJg54ntg
2 /E1 . ~11!

In derivation of Eq.~10!, we assumed that the gate vo
age is tuned precisely toN51 ~which corresponds to a
particle-hole symmetric situation!. As we discuss in Sec. V
below, this assumption does not lead to qualitative chan
in the results. We also included in the Hamiltonian the eff
of an external magnetic field~hereinafter we omit the Boh
magnetonmB ; the field B is measured in the units of en
ergy!.

III. TUNNELING CONDUCTANCE

In order to study the out-of-equilibrium transport acro
the device we add to our Hamiltonian a term

HV5
eV

2
~N̂L2N̂R!, N̂a5(

ks
caks

† caks , ~12!

which describes a finite bias voltageV applied between the
left (a5L) and right (a5R) electrodes. The differentia
conductancedI/dV can be evaluated in a closed form f
arbitraryV when one of the leads, sayL, serves as a weakly
coupled probe,16 i.e., tL!tR . Under this condition the angle
u0 in Eqs.~5! and ~6! is small:

u0'tL /tR!1. ~13!

Application of the transformation Eq.~5! to Eq. ~12!, yields,
to the linear order inu0,

HV5
eV

2
~N̂02N̂1!1eVu0(

ks
~c0ks

† c1ks1H.c.!, ~14!

where

N̂05(
ks

c0ks
† c0ks , N̂15(

ks
c1ks

† c1ks .

The first term on the right-hand side of Eq.~14! can be
interpreted as a voltage bias between the reservoirs of 0
1 particles, cf. Eq.~12!, while the second term has an appe
ance of thek-conserving tunneling. Since the tunneling am
11531
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plitude is proportional to the small parameteru0!1, see Eq.
~13!, one can use perturbation theory to calculate the cur
across the device.16

Similar to the representation ofHV in the form of Eq.
~14!, the current operator

Î 5
d

dt

e

2
~N̂R2N̂L!

also splits naturally into two contributions,

Î 5 Î 01d Î . ~15!

Here

Î 05
d

dt

e

2
~N̂12N̂0!5 ie2Vu0(

ks
c0ks

† c1ks1H.c., ~16!

is a current between the reservoirs of 0 and 1 particles a

d Î 52eu0

d

dt (
ks

c0ks
† c1ks1H.c. ~17!

It is easy to show16 that in the leading~second! order inu0

the operatord Î does not contribute to the average curre
across the device. The remaining contribution^ Î 0& corre-
sponds to thek-conserving tunneling between two bulk re
ervoirs containing 0 and 1 particles, see Eqs.~14! and ~16!.
Its evaluation yields16

dI

dV
5G0(

s

1

2E dv~2d f /dv!@2pn Im T1s~v1eV!#

~18!

for the differential conductance. Heref (v) is the Fermi
function (v is the energy measured from the Fermi level!,

G05
2e2

h
~2u0!2'

8e2

h

tL
2

tR
2

, ~19!

and T1s is the t-matrix for the particles of channelg51
@evaluated with the equilibrium Hamiltonians~9! or ~10!#.
The t-matrix is related to the exact retarded Green funct
Gks,k8s85dss8Gks,k8s of these particles according to

Gks,k8s5Gk
01Gk

0T1s
0 Gk8

0 , Gk
05~v2jk1 i0!21.

Here we took into account the conservation of the total sp
which implies thatGks,k8s8 is diagonal ins,s8. In our model
with t1 independent ofk ~and, consequently,J1 independent
of k andk8), the t-matrix is also independent ofk,k8. Note
that the linear response (V→0) counterpart of Eq.~18!, the
linear conductance

G5G0(
s

1

2E dv~2d f /dv!@2pn Im T1s~v!#, ~20!

remains valid16 for an arbitrary relation betweentL and tR ,
in which caseG05(2e2/h)sin2(2u0).
6-3
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IV. TRANSPORT AT FINITE TEMPERATURE AND BIAS

Equation~18! provides a direct link between the measu
able quantity, the differential conductancedI/dV, and the
properties of the 2CK model, Eq.~10!. In the channel-
symmetric caseJ15J25J the NFL behavior manifests itse
in a nonanalytic dependence of the t-matrix on energy
temperature,8 which leads to a rather unusual scaling of t
differential conductance at low bias and temperat
(ueVu,T!TK):

1

G0

dI

dV
5

1

2 F12ApT

TK
F2CKS ueVu

pT D G . ~21!

The functionF2CK(x) here is a universal~parameter-free!
scaling function8 with the asymptotes

F2CK~x!5H 11cx2, x!1,

3

Ap
Ax, x@1,

~22!

wherec is a numerical coefficient of the order of 1. The lim
eV/T→0 of Eq. ~21! yields

G5G0

1

2
~12ApT/TK! ~23!

for the linear conductance~this result is valid for arbitrary
value oftL /tR). The estimate18 of the Kondo temperatureTK
introduced in Eqs.~21! and ~23! reads9

TK;E0~nJ!e21/Jn, E05min$E1 ,E2%. ~24!

The validity of Eqs.~21! and ~23! is limited by the re-
quirements that both the Zeeman energyB and the level
spacingdE2 are small compared toT, and that the exchang
constants in Eq.~10! are equal to each other:J15J2. When
the system is tuned away from this special point, at a fin

D5nJ12nJ2 , ~25!

the conductance changes drastically. In the ideal caseT
50 anddE250, the conductance has a steplike depende
on D,

G~D!5G0u~D!. ~26!

The discontinuity in Eq.~26! reflects aquantum phase tran
sition between two different Fermi liquid~FL! states, in
which the spin of the dot 1 forms a singlet with either t
collective spin of the electrons in the leads~FL1, D.0) or
with that of the dot 2~FL2, D,0). At the critical pointD
50, the system exhibits NFL behavior down toT50. In
agreement with the general theory of quantum ph
transitions,19 theT→0 asymptotics atuDuÞ0 corresponds to
the FL, whereas the NFL behavior~23! is preserved at tem
peratures well above certainD-dependent crossover sca
TD , see Fig. 2. By the same token, the step in theD depen-
dence ofG(D), Eq. ~26!, is smeared at finite temperature

In order to estimate18 the energy scaleTD we consider the
renormalization group~RG! flow of the effective exchange
11531
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constants as the high-energy cutoffD is reduced from its
initial valueD0;E0. We are interested in the case when t
bare value ofD is small,

uDu!J,

where

J5n~J11J2!/2. ~27!

The evolution of the effective coupling constantsJ* ,D*
with the decrease ofD is then described by the Poor Man
scaling equations1

dJ *

dz
5~J * !2,

dD*

dz
52J * D* , z5 ln

D0

D
~28!

with the initial conditions

J * ~D0!5J, D* ~D0!5D.

Equations~28! are valid as long asD* !J * !1 and yield
the relationD* /D5(J * /J )2. By the timeJ * has grown to
be of the order of 1 atD;TK , the value ofD* characteriz-
ing the channel asymmetry reaches

D* ~TK!;D/J 2. ~29!

This can be viewed as the initial~at D;TK) value of the
coupling constant of the relevant4,20 channel-symmetry-
breaking perturbation. The perturbation will eventually dri
the system away from the 2CK fixed point atD→0. How-
ever, if D* (TK)!1, then one expects the behavior of th
system in a broad range of energies to be still governed
the vicinity of the 2CK fixed point. The channel anisotropy
a relevant operator with scaling dimension 1/2, see Ref.
Hence, the dependence of the corresponding coupling c
stantD* on D is described by

D* ~D !

D* ~TK!
}S TK

D D 1/2

. ~30!

The condition D* (TD);1, together with Eq.~29!, then
gives the estimate

TD;@D* ~TK!#2TK;~D2/J 4!TK . ~31!

The RG flow stops atD;max$T,ueVu%. Consequently, at
max$TD ,ueVu%!T!TK , the channel asymmetry yields a sma

FIG. 2. Quantum phase transition between two FL states.
NFL behavior is preserved atuDuÞ0, provided the temperature
exceeds the crossover scaleTD , see Eq.~31!. The widthDT of step
in the conductanceG(D) scales with temperature asAT, see Eq.
~34!.
6-4
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QUANTUM PHASE TRANSITION IN A TWO-CHANNEL- . . . PHYSICAL REVIEW B 69, 115316 ~2004!
correction to the conductance Eq.~23!. The correction is first
order in the corresponding perturbation, hence proportio
to D* (T);(TD /T)1/2, and its sign is determined by the sig
of D:

dG/G0}sgn~D!S TD

T D 1/2

. ~32!

On the other hand, forT,ueVu!TD the system is a Ferm
liquid, see Fig. 2. Substitution of the t-matrix in the form

2pn Im T1s5u~D!2sgn~D!
3v21p2T2

2TD
2

~cf. Ref. 8! into Eq. ~18! then yields

1

G0

dI

dV
5u~D!2sgn~D!S pT

TD
D 2F11

3

2 S eV

pTD 2G . ~33!

Again, the linear response (V→0) counterpart of Eq.~33! is
valid at any ratiotL /tR . The temperature dependence of t
linear conductance at fixed small values ofD is sketched in
Fig. 3.

According to Eq.~33!, corrections to the zero-temperatu
limit of the linear conductance, the step function~26!, are
quadratic in temperature—a typical Fermi-liquid result.2 At
a finite temperature, the step function is smeared, see Fi
The characteristic widthDT of the smeared step at temper
ture T is estimated by solving the equationTD;T for D,
which results in

DT;J 2AT/TK. ~34!

This ‘‘sharpening’’ of theD dependence of the linear con
ductance with decreasing temperatures~see Fig. 2! can be
regarded as a ‘‘smoking gun’’ for non-Fermi-liquid behavio
In fact, it might be easiest to first identify unambiguously t
steplike dependence of the conductance onD and then use it
to tune the device precisely to the symmetry point in orde
observe the distinctive scaling of the differential conducta
Eq. ~21!. Experimentally, the value ofD is controlled17 by
the asymmetry of the conductances of the corresponding
neling junctions, which in turn are controlled by the pote
tials Vg on the gates forming the junctions. In the vicinity
the symmetry point, the dependence ofG on Vg should have

FIG. 3. Sketch of the temperature dependence of the linear
ductance at fixed values ofD andTK . For D,0 the dependence i
nonmonotonic, with a maximum atT;ATDTK. At T@TK the con-
ductance scales asG/G0}@ ln(T/TK)#22, see, e.g., Ref. 16.
11531
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the form of a smeared step function, whose widthdVg

should scale with temperature asAT, see Fig. 2.

V. LINEAR CONDUCTANCE AT A FINITE
MAGNETIC FIELD

The magnetic field dependence of the linear conducta
across the device also reveals the critical behavior. In
section we study the dependenceG(B) at T50 in the vicin-
ity of the quantum critical pointD50. We consider only the
Zeeman effect of the magnetic field, and dispense with
orbital effect ~this is an adequate approximation for a fie
applied in the plane of a lateral quantum dot device!.

Similar to the effect of a finite temperature, see Fig. 2,
application of a magnetic field at smallD results in a cross-
over from the limiting FL behavior atB→0 to NFL interme-
diate regime at higher fieldsB*BD . As before, the cross
over scaleBD can be estimated18 from RG arguments. The
scaling dimension20 of the operatorSz in Eq. ~10! at the 2CK
fixed point is 1/2. Accordingly, when the high energy cuto
D is lowered, the effective splitting of the impurity levelsB*
evolves according to

B* ~D !/D

B* ~TK!/TK
}S TK

D D 1/2

~35!

with the initial conditionB* (TK);B. The RG flow Eq.~35!
terminates onceB* has grown to become of the order ofD,
or when D reaches the valueTD , whichever occurs at a
higher value ofD. The first of the two conditions corre
sponds to the limitation on the NFL behavior set by the Z
man splitting, while the second one is due to the chan
anisotropy. Therefore, the crossover scaleBD can be esti-
mated as that fieldB;B* (TK) in Eq. ~35!, at which
B* (D);D andD;TD simultaneously. Using Eqs.~35! and
~31!, we find the relation between the crossover field,6 the
crossover temperatureTD , and the channel anisotropy pa
rameterD

BD;ATDTK;~ uDu/J 2!TK . ~36!

Note the difference between theD-dependence of the cross
over temperatureTD @Eq. ~31!# and the crossover fieldBD .

Having found the crossover scaleBD , next we investigate
the dependence of the conductanceG on the fieldB. First of
all, we note that atDÞ0 the low-energy properties of th
Hamiltonian Eq.~10! are those of a Fermi liquid.4 The effect
of any local perturbation, such as the exchange interact
with the spin of the dot 1 in Eq.~10!, on the ground state o
the Fermi liquid is completely characterized by the scatter
phase shiftsdgs at the Fermi level.~Recall thats561 for
spin-up/down andg51,2 labels the two channels.! The
t-matrix that enters Eq.~20! is then given by the standar
scattering theory expression

2pnTgs~0!5
1

2i
~e2idgs21!. ~37!

Obviously, the phase shifts are defined only modp ~that is,
dgs is equivalent todgs1p). The ambiguity is removed by

n-
6-5
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PUSTILNIK, BORDA, GLAZMAN, AND VON DELFT PHYSICAL REVIEW B 69, 115316 ~2004!
setting the values of the phase shifts corresponding toJg
50 in Eq. ~10! to zero. With this convention, the invarianc
of the Hamiltonian~10! with respect to the particle-hol
transformationcgks→cg,2k,2s

† translates into the relation

dgs1dg,2s50 ~38!

for the phase shifts, which suggests a representation

dgs5sdg . ~39!

Substitution of Eqs.~37! and ~39! into Eq. ~20! yields

G/G05
1

2 (
s

sin2 d1s5sin2 d1 ~40!

for the linear conductance atT50. In the limit B/TK→10
and atDÞ0, the ground state of the Hamiltonian~10! is a
singlet. Therefore, the total spin in a very large but fin
region of space surrounding the dot 1 is zero. By the Frie
sum rule, this implies relation(gssdgs5p. Taking, in addi-
tion, Eq. ~39! into account, one obtains relation

d11d25p/2, ~41!

valid at any value ofB/BD , as long asB!TK .
Below the crossover,B!BD , the values of the phas

shifts are determined by the vicinity of the stable Ferm
liquid fixed points,4 d15p/2, d250 at D.0 and d150,
d25p/2 at D,0. Substitution of these values into Eq.~40!
then yields Eq.~26! for the conductance. The corrections
the fixed point values of the phase shifts are linear inB/BD ,

d15p/22d25~p/2!u~D!2sgn~D!~B/BD!, ~42!

yielding

G/G05u~D!2sgn~D!~B/BD!2, B!BD ~43!

@cf. Eq. ~33!#.
Above the crossover, i.e., forBD!B!TK , the departure

of the phase shifts from the 2CK fixed point valuesd1,2
5p/4 is controlled by the properties of the fixed point. T
account for a finite value ofB/TK , we generalize Eq.~41!:

d11d25p@1/21M ~B!#.

The zero-temperature magnetizationM (B) here is known
exactly from the Bethe-ansatz solution.5,6,21 Using the
asymptote21 M (B)}(B/TK)ln(TK /B), we find

d15
p

4
1a sgn~D!

BD

B
2b

B

TK
ln

TK

B
. ~44!

Herea andb are positive numerical coefficients of the ord
of 1. The second term on the right-hand side of Eq.~42! is
the first-order correction in the channel-symmetry-break
perturbation. This correction is similar to Eq.~32! with tem-
peratureT replaced by the energy scaleD* (B);B2/TK at
which the RG flow defined by Eq.~35! terminates. Equations
~44! and ~40! yield the asymptote of the conductance atBD

!B!TK ,
11531
el

-

g

G

G0
5

1

2
1a sgn~D!

BD

B
2b

B

TK
ln

TK

B
. ~45!

The shape ofG(B) is qualitatively similar to that ofG(T),
see Eqs.~23!, ~32!, and~33!, although the precise functiona
form is rather different.

Interestingly, in the case of small channel anisotropy,TD

!TK , there is an approximate symmetry with respect to
change of sign ofD:

G~B,D!1G~B,2D!52G~B,D→0!. ~46!

Note that this relation is valid at anyB/TK , provided that
TD /TK!1.

Strictly speaking, the consideration of this section is a
plicable only at zero temperature. However, the results E
~43! and ~45! remain valid9 as long as

T!B2/TK . ~47!

At higher temperatures the conductance is described by
corresponding expressions of Sec. IV. As follows from E
~23! and~45!, the limiting value of the linear conductance
the 2CK fixed point,G5G0/2, is independent of the order i
which the limits B→0, T→0 are taken.22,23 Hence, the
crossover between the field-dominated regime, see Eqs.~43!
and ~45!, and the temperature-dominated one, see Eqs.~23!,
~32!, and~33!, is expected to be smooth and featureless.

For arbitrary values ofTD /TK , the detailed magnetic field
dependence of the phase shifts at the Fermi level can
studied using the numerical renormalization group~NRG!.24

In this approach one defines a sequence of discretized Ha
tonians and diagonalizes them iteratively to obtain the fin
size spectrum of the model. In the Fermi liquid caseD
Þ0) knowledge of the finite-size spectrum is sufficient
identify unambiguously the phase shifts.20

In Fig. 4, we plotted the phase shiftsd1,2 as a function of
B for different values of the parameterA5D/J 2.0 that
characterizes the asymmetry between the channels. We
mate the crossover scales18 TK andBD as the two values ofB
in Fig. 4 at which the phase shiftd2 equalsp/8. In order to

FIG. 4. The phase shifts for the 2CK model at different valu
of the channel asymmetry parameterA5D/J 2. The upper~lower!
curves representd1(d2).
6-6
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verify the relationBD /TK;A, see Eq.~36!, we plottedBD vs
A on the left panel in Fig. 5. The NRG data also allow us
estimate the scaleTD , see Eq.~31!, as the energy scale a
which the first excited state of the NRG spectrum h
reached the halfway mark of its crossover evolution betw
the corresponding two fixed point values, see Fig. 5, ri
panel. The NRG data are very well described byBD /TK
'0.5A, TD /TK'4A2, in agreement with Eqs.~36! and~31!
above.

Having extracted the phase shifts, we are able to calcu
the linear conductance from Eqs.~40! and ~46!, see Fig. 6.
As expected, the conductance develops a signature of a
teau at intermediate values of the fieldBD,B,TK . At very
high fields, B@TK , the conductance scales withB as
1/ln2(B/TK).

As usual in NRG calculations, we measured all energ
in units of the bandwidthD. In order to avoid the disturbing
finite bandwidth effects, we used two different coupling co
stants for the high- and low-field regimes: one set of da
that includes theB@BD regime, was obtained usingJ
50.075, while another set of data, which includes theB
!TK regime, was obtained usingJ50.15. The two sets
were combined by rescaling the magnetic field in units of
Kondo temperature, resulting in a set of continuous curv
as shown in the figures. The overlap of the two sets of dat

FIG. 5. Dependences of the crossover scalesBD andTD on the
asymmetry parameterA5D/J 2.

FIG. 6. Field dependence of the conductance at different va
of the asymmetry parameterA5D/J 2. The upper~lower! curves
correspond toA.0 (A,0).
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intermediate fields confirms that in this regime the accur
of our numerics is remarkably good. Based on the dep
dence on the finite system size, we estimate the relative e
of the calculated phase shifts to be of the order of 2%.~The
worst case is the low field part of theA50 curve, because o
the extremely fragile nature of the intermediate NFL fix
point.!

VI. EFFECT OF POTENTIAL SCATTERING

So far we concentrated on the particle-hole symme
model. In general, however, such symmetry is absent. I
violated by the presence of higher energy levels in dot 1,
also by deviations of the dimensionless gate voltageN from
an integer value. In the absence of particle-hole symme
the effective Hamiltonian~10! acquires additional terms
leading to potential scattering. Taking into account that
interchannel scattering is blocked at energies well be
E1,2, we can write this additional perturbation as

Hp5 (
g51,2

Vg (
kk8s

cgks
† cgk8s . ~48!

Including Hp into our considerations leads to a modificatio
of the limiting values of the conductance in the Fermi-liqu
and 2CK fixed points. The dependences ofdI/dV on D, V,
T and B, however, remain the same apart from acquiring
constant background contributionGel due to elastic cotunnel
ing. Here we illustrate this for a specific example of t
zero-temperature magnetoconductance.

The potential scattering yields finite spin-independe
phase shiftsdg

052arctan(pnVg) even if Jg in Eq. ~10! are
set to 0. This can be accounted for by a proper modificatio25

of Eq. ~39!,

dgs5dg
01sdg , ~49!

where the dependence ofdg on B andD is described by the
‘‘particle-hole symmetric’’ expressions~42! and~44!. Substi-
tution of the phase shifts in the form of Eq.~49! into Eq.~40!
results in15

G~B,D!5Gel1G̃0F@B/BD ,B/TK ,sgn~D!#, ~50!

whereGel5G0 sin2 d 1
0, the functionF is a universal function

with asymptotes given in Eqs.~43! and ~45!, and G̃05G0
22Gel . Note that the limiting value of the conductance
the 2CK fixed point,Gel1G̃0/2, lies preciselyhalfway be-
tween the two Fermi-liquid limits,Gel andGel1G̃0, and that
Eq. ~46! remains valid even in the presence of the poten
scattering Eq.~48!.

VII. DISCUSSION

The low-temperature properties of a quantum dot dev
normally are well described by Fermi liquid theory. The sp
cial two-dot structure proposed in Ref. 17 allows, howev
for NFL behavior at a special point in the space of para
eters of the device. In the context of the physics of quant
phase transitions, this point can be viewed as a critical p

es
6-7
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separating two Fermi liquid states. In this paper, we dev
oped a detailed theory of the transport properties near su
quantum critical point. Our theory offers a strategy for tuni
the device parameters to the critical point characterized
the two-channel Kondo effect physics, by monitoring t
temperature dependence of the linear conductance, see
IV. Further confirmation of the 2CK behavior may com
from the measurements of the differential conductan
which must display universal behavior, see Sec. IV. We a
investigated the effect of magnetic field and of potential sc
tering on the conductance in the vicinity of the quantu
critical point, see Secs. V and VI. The Zeeman splitting
lows one to investigate the finite-field crossover between
Fermi liquid and NFL behavior of the conductance. In t
vicinity of the NFL point, the linear conductance of the d
vice depends on the magnetic field and temperature only
two dimensionless parametersT/TD and B/BD ; the depen-
dence ofTD andBD on the channel asymmetryD is given in
Eqs. ~31! and ~36!. Note also that potential scattering do
cs

,

tt.

h-

u-
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not destroy the 2CK behavior, but merely renormalizes
magnitude of the Kondo contribution to the conductance
finite level spacing in the larger dotdE2, however, is a haz-
ard. At temperatures belowdE2 the two-dot device inevita-
bly enters into the conventional Fermi-liquid regime.
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