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Abstract. We investigate the Josephson effect between two coupled superconductors, coupled by the tun-
neling of pairs of electrons, in the regime that their energy level spacing is comparable to the bulk super-
conducting gap, but neglecting any charging effects. In this regime, BCS theory is not valid, and the notion
of a superconducting order parameter with a well-defined phase is inapplicable. Using the density matrix
renormalization group, we calculate the ground state of the two coupled superconductors and extract the
Josephson energy. The Josephson energy is found to display a reentrant behavior (decrease followed by
increase) as a function of increasing level spacing. For weak Josephson coupling, a tight-binding approxi-
mation is introduced, which illustrates the physical mechanism underlying this reentrance in a transparent
way. The DMRG method is also applied to two strongly coupled superconductors and allows a detailed

examination of the limits of validity of the tight-binding model.

PACS. 74.20.-z Theories and models of superconducting state — 74.78.-w Superconducting films and
low-dimensional structures — 74.50.4r Tunneling phenomena; point contacts, weak links, Josephson effects

1 Introduction

The Josephson effect, i.e. the flow of a zero-voltage cur-
rent between two weakly coupled superconductors, with
a sign and amplitude that depends on the difference of
the phases of their respective order parameter, can be re-
garded as one of the most striking illustrations of phase
coherent behaviour in a macroscopic system and as one of
the hallmarks of superconductivity. Although the Joseph-
son effect is in general well understood, there is still a
regime in which it has not yet been studied in detail: su-
perconductors that are so small that the discrete nature of
their energy levels becomes important. In this regime, the
theory of Bardeen, Cooper and Schrieffer (BCS), which
the quantitative understanding of the Josephson effect has
been based on, is not applicable. This is because BCS the-
ory relies on the assumption of a continuous energy band,
and is not consistent once the level spacing exceeds the
superconducting gap Apcs [1,2].

When it became possible to reach this regime ex-
perimentally by doing transport measurements on su-
perconducting grains with a diameter of only a few
nanometers [2,3], interest was spurred in a description of
the pair-correlated state that is also valid for d > Agcs.
The rediscovery of an exact solution of the BCS Hamilto-
nian with discrete levels, found in 1964 by Richardson [4],
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allowed to explore in detail the breakdown of BCS theory
as d increases. Several surprising insights were gained, one
of which being that BCS theory already becomes unreli-
able when d > A%CS /Whebye, il other words, long before
the criterion Agcg ~ d is met [5].

Another issue that arises for small superconductors is
that the superconducting phase ¢ is not well-defined:
When the mean number of electron pairs (V) is so small
that fluctuations around (N) in the grand canonical en-
semble are not negligible anymore, N has to be treated
as fixed. As a consequence, due to the uncertainty rela-
tion [N, ¢] = 4, the notion of an order parameter with a
well-defined phase loses its meaning.

Therefore, a very natural question arises: What is the
fate of the Josephson effect between two small super-
conducting grains, in a regime where BCS theory breaks
down, and where the notion of a superconducting phase
variable is no longer valid?

In this paper, we examine this question in detail by
studying two pair-correlated grains, coupled by a tunnel-
ing term that allows pairs of electrons to tunnel between
the grains. We study this system using the density-matrix
renormalization group (DMRG), a powerful numerical ap-
proach applicable to strongly correlated systems, which
has already proven to be useful for calculating the prop-
erties of single superconducting grains [7,18]. We here use
it to calculate the ground state of two coupled grains
and to extract the Josephson energy. For weak Josephson
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coupling, we also perform a tight-binding approximation
and compare its results to those of the DMRG calculation
for two coupled grains.

We identify two competing effects due to the dis-
creteness of the energy levels: Somewhat surprisingly, the
Josephson energy is found to be enhanced for large level
spacing due to the contribution of a single energy level.
At intermediate level spacing, a kinetic energy term dom-
inates, which suppresses the Josephson energy. The com-
petition of these effects leads to a surprising reentrant
behavior (decrease followed by increase) of the Josephson
energy as a function of increasing level spacing. In the limit
of vanishing level spacing, the BCS result is recovered.

At this point, we should mention an important re-
striction on our analysis: In the regime of small super-
conductors that we are interested in, the charging energy
for an electron pair to tunnel between the two supercon-
ductors can become huge, easily of the order of a few hun-
dred Kelvin in the experiments of [2]. As will be explained
in some detail in Section 2.4, the dominant effect of the
charging energy is to suppress tunneling events altogether
and thereby to destroy the Josephson effect. However, the
interest of the present paper is to study the effects due to
the discrete spacing of the energy levels rather than that
of charging effects, which have been thoroughly examined
already [11,12,15]. Therefore, we set the charging energy
to zero in this paper.

To experimentally realize the no-charging-energy
model studied here, one needs systems for which the mean
level spacing is larger than the charging energy. In princi-
ple, it is possible to reduce the charging energy of isolated
grains, e.g. by using a pancake-shaped grain geometry in
order to increase the inter-grain capacitance area, or by
embedding the grains in a strong dielectric medium. —
A more radical and at this point purely speculative way
of studying Josephson physics in the absence of charging
effects would be to use uncharged particles instead of elec-
trons, e.g. a degenerate Fermi gas of charge-neutral cold
atoms in a double-well trapping potential. As for now, low
enough tempertatures for observing a “superconducting”
phase of cold neutral fermionic atoms were not yet ob-
tained, but are predicted to be within reach [10]. Once
this has been achieved, a natural next step would be to
study the Josephson effect in this system, for which the
charging energy would indeed be zero, but the level spac-
ing finite due to the spatial confinement in the trapping
potential. Then, the present discussion of the Josephson
effect in the presence of finite level spacing should be very
relevant.

The outline of the paper is as follows: In Section 2, we
review the theory of the Josephson effect in a way that is
also applicable for small superconductors, for which stan-
dard BCS theory is not applicable, and we give a definition
of the Josephson energy independently of a superconduct-
ing phase variable. Section 3 contains a brief introduction
to the DMRG method and its application to the system
of two coupled superconductors. Finally, in Section 4 we
present and discuss the results of our calculation.
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2 Josephson effect for weakly coupled
superconductors: Theory

In this section, we review some standard results of the the-
ory of the Josephson effect and explain their relation to
the pair-tunneling models to be used below. Our discus-
sion of the Josephson effect is restricted to weak coupling
between superconductors, such that perturbation theory
in the coupling can be applied. We are careful, however, to
formulate the Josephson effect in such a way that a gen-
eralization beyond perturbation theory is possible; this is
done in the last Section 2.6.

The physical assumption underlying perturbation the-
ory is that the tunnel coupling between the superconduc-
tors is so weak that it is energetically not favorable to
create excited states with broken electron pairs in the in-
dividual grains. Therefore, the low-energy states of the
coupled system will not contain any of these excitations,
which will only be present as virtual states in perturba-
tion theory. In more quantitative terms, the weak-coupling
condition is B < Ay, where Ay, is the lowest energy of
a pair-breaking excitation, and the Josephson tunneling
matrix element EY is defined in equation (15) below.

We are also careful to formulate our discussion of the
Josephson effect independently of the notion of a super-
conducting phase variable, such that it remains valid in
the regime of small superconductors. The material in this
section is mostly not new and has been discussed in one
way or the other previously [6,8], but we feel it is worth
presenting it in a way that makes the ensuing application
to small grains evident.

2.1 Josephson effect as a phase dependent
delocalization energy

In the grand canonical ensemble, the phase of a supercon-
ductor ¢ can be defined via the action of the pair annihi-
lation operator [21] b; = ¢;j¢;|, and the state |¢) is said
to have a phase ¢ if

(B|bi|p) ~ €', (1)

¢ being independent of the state ¢ (this is the case for the
ground state of a superconductor). A familiar example is
the well-known BCS ansatz wave function |¢) = [T, (u; +
Uiei¢bj)|0), where u; and v; are real. Equation (1) implies
that a state with definite phase ¢ must be a superposition
of many states |N ), each of which has a fixed number N
of electron pairs:

|6) =D Cne™?|N), (2)

N>0

subject to the condition that (N‘bi|N + 1) is real, and
with real coefficients Cy.

In the canonical ensemble, however, where the num-
ber of electron pairs N is fixed, the expectation value (1)
vanishes, and the notion of a superconducting phase ¢ is
obviously not valid. Nevertheless, the concept of a phase
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difference ¢ between two coupled superconductors (“left”
and “right”, say) is still applicable, because the number
of electron pairs on each individual superconductor need
not be definite as long as the total number on both su-
perconductors is fixed. In analogy to equation (1), ¢ can,
then, be defined as

(0|6, | ) ~ €. (3)

Here, the operators b; and b, refer to energy levels I, r
of the left and right superconductors, respectively. As in
equation (1), one has to assume that the phase in equa-
tion (3) is independent of the levels [ and r for ¢ to be
well-defined.

An example of a state with definite phase difference
is, in analogy to equation (2),

N/2

oy = > Cue™?|y). (4)

v=—N/2

with real coefficients C,,. Here, the states |1/) denotes ar-
bitrary states with N/2 — v pairs on the left and N/2 + v
pairs on the right superconductor, subject to the condition
that (V‘b,.b;r |v+ 1) is real.

We will be only interested in situations for which |v)
has the form

[v) = [N/2 = v)p @ [N/2+ v), (5)

where ‘n> L,r are the superconducting ground states of the
isolated L- (“left”) or R- (“right”) superconductors, each
containing a definite number of pairs, n. These states can
always be chosen to satisfy the above reality condition.

As was pointed out by Josephson, the presence of a
phase difference ¢ as in equation (3) has observable con-
sequences when two superconductors are coupled: In par-
ticular, for weak coupling the coherent tunneling of pairs
induces a zero-voltage current,

I =1I;siney, (6)

that explicitly depends on ¢. As is well known [6,19], the
Josephson current can, via the relation

I'=(2¢/h)OE/O(¢), (7)

also be interpreted as a dependence of the total energy F
on the phase difference ¢. For example, we expect equa-
tion (6) to follow from the energy-phase relation

E(p) = const. — Ejcosy, Ej=(h/2e)l; (8)

which we will derive explicitly in Section 2.4 in the limit
d — 0. A more general definition of E;, consistent with
equation (8), will be given in Section 2.6, where we as-
sociate E; with the energy gain in the ground state (i.e.
@ = 0) due to the coherent tunneling of electron pairs.

The Josephson energy F; sets the energy scale relevant
for the Josephson effect: It is a delocalization energy that
characterizes the coupling of two materials, their tendency
to have the same phase and the maximum supercurrent
I; = (2¢/h)E; that can flow between them.
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2.2 Pair tunneling Hamiltonian

Only processes that depend on the relative phase ¢ are
relevant for the Josephson effect, as is illustrated in equa-
tion (7). Because of equation (3), such processes require
the coherent tunneling of electron pairs; therefore, they
have to be treated at least in second order in the tunnel-
ing of single electrons. The main goal of this subsection
will be to derive an effective pair-tunneling Hamiltonian,
equation (13) below, that arises at this order.

Consider two superconductors L and R (left and right),
each having equally spaced energy levels with level spac-
ing d, and each with a reduced BCS interaction with (di-
mensionless) coupling constant A:

Hp = Z elc;rgclg - )\dz ClTlcercl/Tcl/w Hp, similarly,

lo w

9)
where ¢, = [ d is the bare energy of level [, ¢ =T, | is the
spin, and the sums are over all energy levels closer to the

Fermi surface than the Debye energy wpebye-
Let L and R be coupled by single electron tunneling
with constant tunneling matrix element ¢,
Hyi. = —td Z c}acm + h.c. (10)

lro

The coupling (10) lowers the total energy by generating
states such as (4), that superimpose different numbers of
electrons on each superconductor. For simplicity, we as-
sume the sum in equation (10) to be cut off at wpebye in
all numerical calculations below.

To second order in Hi., the tunneling processes can be
described by the effective tunneling Hamiltonian

Z Hle‘rlaw <7”ZO'V|H18

Hy = —
? Erll/ ’

(1)

rlov

acting on the space spanned by the states |1/>, defined
in equation (5). The sum in equation (11) runs over all
possible intermediate states ‘rlau> that can be reached
by removing a single (ro)-electron from state |[N/2 — v)g
and adding a single (lo)-electron to state [N/2+v) . Eny
is the corresponding excitation energy relative to the en-
ergy of the state |1/> We assume, however, that for given
r,l,0,v, all states except the one with the lowest energy
give a negligibly small contribution to the sum, because of
the following argument: In the BCS limit, which is valid for
large enough values of A, all excited states are described
by the quasiparticle operators [19]

V(Te)m' = uicl, T UiPTCi(—a)v V(Th)m' = u;Pel, ¥ ViCi( g
(12)
where P is an operator that creates an additional pair.
In this limit, it is easy to see that only the lowest energy
state ‘rlav) = V(Te)aﬂgh)(fg)r|l’> gives a contribution to
equation (11), whereas all other intermediate states have
a vanishing overlap with H 1e|1/>. This is also the case for

A = 0, where fyzre)glfygh)( = CLCM. For intermediate

—0
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values of A\, no simple argument can be made; we expect,
however, that still the state with the lowest energy will
give the dominant contribution.

The energy E,;, is given by the collective excitation
energies E, + Ej, arising from the fact that levels r and
[ are singly occupied. In general, it will also include a v
dependent contribution from charging energy due to the
electron tunneling, see [15], but we chose to consider only
situations in which these can be neglected.

In equation (11), two kinds of tunneling terms are

present: on the one hand, terms proportional to b;rbr or
to bibl that describe coherent pair tunneling, on the other

hand, single electron terms proportional to cm,cigclfaclﬂ7
that describe the tunneling of a single electron from [ to
r and back. When the former terms are applied to a state
‘(p>, defined in equation (4), they produce a phase depen-
dent energy shift. In contrast, the latter terms only lead to
a phase-independent energy shift, which is irrelevant for
the Josephson effect. For this reason, the single electron
terms can be omitted from the Hamiltonian (11), as long
as only phase dependent processes are of interest [8]. Then,

one finally arrives at the pair tunneling Hamiltonian

(13)

with 7 = 2. We shall use for the excitation energies their

BCS values, E,; = /A% g + e%’l.

2.3 Tight-binding model

In the space spanned by all states without any pair-
breaking excitations, i.e. all states of the form |1/> defined
in equation (5), the Hamiltonian H = Hj+ Hg+ H ; looks
like a tight-binding Hamiltonian:

E(v) —E%/20
—EY%/2 E(v) —E%2 0
—EY/2
=" 7/ . (14
0
where
EY/2 = —(v|H;s|v +1), (15)
E(v) = (v|(HL + Hg)|v). (16)
The v dependence of the states ‘N/2 —v)r (and ‘N/2 +

v)r) occurring in equation (5) for ‘1/} is very simple: All
energy levels are shifted down (up) by an amount vd, as-
suming a constant level spacing d. Additionally, the v
empty levels closest to the upper cutoff are replaced by
full levels at the lower cutoff (or vice versa). It is safe to
assume that these levels do not influence the pairing corre-
lations, as long as there are not extremely many of them,

The European Physical Journal B

v < N, and as long as the coupling is not extremely large,
A<l

In this case, £ in equation (15) is independent of v,
and E(v) in equation (16) is given by

E(v) = const + 2d(v — 19)?, (17)

with vy depending on gate voltage, i.e. on the shift of the
single-particle energies ¢; and €, in equation (9) relative
to each other. Equation (17) has the form of an effective
charging energy term.

2.4 Discussion of the tight-binding model

In this subsection, we first discuss the above tight bind-
ing model (14) in the limit d — 0 and check that it is
consistent with the well-known result of Ambegaokar and
Baratoff [9]. Then, we draw attention to what changes will
occur as the superconductors become smaller.

In the bulk limit, d — 0, the BCS ansatz can be ap-
plied. Within this approximation, the diagonal elements
of Hy (17) are independent of v, and the off-diagonal ele-
ments (15) are given by

Z _ Ajest?d®
EE, El + E, )

In the left equality of equation (18), the BCS expres-
sion for the matrix elements <V|bz b;[‘y + 1) = vwvru, =
A2 s/(2E,E,) has been used. For the right equality, the

sum has been replaced by an integral, Zw = foo %
No harm is done extending the integral range beyond
Whebye to infinity, because it is naturally cut off at the scale
Apcs anyway, assumed to be much smaller than wpepye.

The energy eigenstates of (14) then have the form of
equation (4) with constant coefficients C,,. As anticipated
in equation (8), they correspond to an energy E(p) =
const. — EY cos ¢, and therefore we can identify

= ABcst27T2. (18)

ThABcs

_ ;0 _ 2,2 _

(19)
The last equality expresses F; in terms of the normal-
state conductance Ry' = (4me?/h)t?, and agrees with the
well-known Ambegaokar Baratoff formula [9] at zero tem-
perature.

Now we turn to the question what happens when the
superconductors enter the regime d > A3 q/wpebye, i
which the BCS Ansatz wavefunction becomes inappropri-
ate [5]. The transition to this regime is straightforward
now, because the tight-binding model itself remains valid:
The diagonal and off-diagonal matrix elements E(v) and
EY of the tight-binding Hamiltonian (14), defined in equa-
tions (17) and (15), will no longer be given by the BCS
expression, but will have to be evaluated using the ex-
act ground state wave function: The effect of the discrete
level spacing on the diagonal elements F(v), given by
equation (17), will be to lift the degeneracy among them,
thereby suppressing pair tunneling.
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The off-diagonal elements EY will change with respect
to their BCS value (18) due to several effects when the
superconductors become small: (i) The excitation energies
E,;, in equation (13) will include a term from the charg-
ing energy in the intermediate state, as studied in [15].
We neglect this effect, because we have chosen not to
study charging effects at all. Furthermore, the change in
superconducting correlations due to the finite level spac-
ing will affect both (ii) the excitation energies F, and E;
in equation (13) (which we, however, replace with their
BCS value) and (iii) the matrix elements (v|b;b}|v + 1)
that enter EY. Finally, (iv) the shift of the Fermi level
between the states |v) and |v + 1) will also change the
matrix elements EY, as is explained in Section 4.1 below.

As it turns out (see Sect. 4.1 below), EY increases with
increasing level spacing d, mainly due to the effect (iv).
Once EY becomes comparable to Ag,, the lowest pair
breaking (“single-particle”) excitation energy, the super-
conductors can no longer be considered as weakly coupled,
and the tight-binding model itself loses its validity.

2.5 The effect of charging energy

As mentioned in the introduction, the Coulomb charging
energy plays an important role in small superconductors.
Although we shall neglect it in the remainder of this paper,
here we present a brief qualitative discussion of its main
effects. The charging energy Ec = (2¢)?/C, C being the
inter-grain capacitance, is the energy cost for tunneling an
electron pair from one grain to the other. It introduces an
additional term in (14), E(v) = Ec(v — vp)%. Ec can be-
come huge in the small grain limit and essentially destroys
the Josephson effect, since it suppresses pair tunneling.

Even if a gate is used to make two states |v) and |v+1)
degenerate by a suitable choice of the gate voltage (i.e.
vo = 1/2 plus an integer), such that at least one pair
can still tunnel between the grains at no energy cost, the
charging energy might nevertheless destroy the Josephson
effect altogether: It may cause one electron pair to break
into two unpaired electrons, one on each grain, if the asso-
ciated lowering of the charging energy exceeds the energy
necessary to form a pair-breaking excitation.

An order-of-magnitude estimate shows that this actu-
ally happens in the regime that the level spacing is im-
portant, if no measures are taken to reduce the charg-
ing energy: (i) As explained above, the charging energy
must be smaller than the lowest energy of a pair breaking
excitation, Ec < Agp, such that no pair breaking exci-
tations occur. (ii) Ascs < /WbDebye d must be satisfied
if the grains are to be small enough so that deviations
from BCS become important (the ‘weak’ criterion in [5]).
(iii) For the present purpose of constructing an order-of-
magnitude estimate, we take Ay, ~ Apcs, although these
two energy scales may not be identical in the small-grain
limit [5]. (They differ, for example, by a factor of up to
two for the parameter range shown in Fig. 1 of [5].)
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Putting (i) to (iil) together, the inequality
EC < \/ WDebye da (20)

independent of A, has to be satisfied.

Let us now explore what this implies for real alu-
minium grains: If the inter-grain capacitance is modelled
by an aluminium oxide (¢ ~ 8) layer of thickness 15 A
and area 772, then Ec ~ 0.8 eV(r/nm)~2. (A smaller
thickness D in principle linearly decreases the charging
energy, but at the same time, the inter-grain coupling ¢
is exponentially increased [13], t2 oc exp[—D/(0.54 A)].
Since at a thickness of less than ~15 A, the grains are
so strongly coupled that thay can no longer be con-
sidered as distinct, this distance seems to be a realis-
tic order-of-magnitude lower bound for D.) Using the
Debye energy wpebye = 35 meV for aluminum, we obtain
\/@pebyed = 0.054 eV (r/nm)~3/2 and equation (20) im-
plies 7 > 250 nm. At such a large size, aluminum is well in
the BCS regime. According to criterion (ii) above, devia-
tions from the BCS approach for a grain of that size would
be observable only for a material with Agcg < 1072 eV,
an order of magnitude less than Al.

As an example, we consider the experiments of
Nakamura et al. [16], which use a superconducting island
with A =~ 230 peV and E¢ ~ 117 peV. These islands are
evidently so small that they are quite close (up to a factor
of 2) to the regime where the charging energy would begin
to suppress pair tunneling by favoring single-particle ex-
citations. Nevertheless, their islands are still large enough
to be well described by BCS theory.

However, as mentioned in the introduction, the interest
of this paper is to study the effects due to the discrete
spacing of the energy levels, since the charging effects have
already been discussed previously [11,12,15]. Therefore,
we henceforth set the charging energy to zero.

2.6 Generalization to strong coupling

In the weak coupling limit, we have defined the Joseph-
son energy via the part of the energy (8) that depends
on . However, equation (8) is only valid for weak cou-
pling (i.e. in second order in the single electron tunneling).
We may equivalently define the Josephson energy as the
maximally possible energy lowering due to coherent pair
tunneling, i.e. when single electron terms are neglected as
in the derivation of (13):

EJ = Ecoupled - Euncoupled~ (21)
This definition agrees with the usual one (8) in the weak-
coupling regime, because the maximally possible energy
lowering occurs at phase difference ¢ = 0. Equation (21)
allows an extrapolation to strong coupling as well, and
therefore we will use it henceforth.

Unfortunately, the pair tunneling Hamiltonian (13),
being only derived in second order perturbation theory,
loses its validity for strong coupling; in general, one would
have to use the single-electron tunneling Hamiltonian (10)
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in that case. For simplicity, however, we choose for our
strong coupling analysis a somewhat different coupling
term that only includes pair tunneling,

yd®
Apcs

HYy = - > " (b],b2 + hec),

rl

(22)

and that differs from the pair tunneling Hamiltonian (13)
in that the intermediate energy E,. + E; has been replaced
by the constant Apcs. Therefore, the Hamiltonian (22)
and (13) are not equivalent. It is nevertheless interesting
to study the Hamiltonian (22) for several reasons: Firstly,
it captures the essential physics of the Josephson effect in
a simple way: two superconductors coupled by a tunnel-
ing barrier that allows for pair tunneling. After all, it is
the pair tunneling and not the single electron tunneling
that is at the heart of the Josephson effect. Secondly, for
~vd/Apcs = A, the total Hamiltonian looks just like one
single superconductor, thus (22) is able to describe the
transition to the strong-coupling regime where two super-
conductors effectively become one. Thirdly, it is amenable
to a rather straightforward treatment by the DMRG ap-
proach (in contrast, H’; of Eq. (13) would require much
more numerical effort), which has the very significant ad-
vantage of yielding direct access to the regime of strong
coupling between the two superconductors.

At weak coupling, a tight-binding analysis for (22) sim-
ilar to the one that led to equation (18) can be performed.
In the large grain limit, one finds the Josephson energy

to be o A
o _ #7ABCS
Pr=—

independent of d. In other words, the Hamiltonian (22)
has a well-defined continuum limit when ~ is held contant
as d — 0, as it should.

(23)

3 DMRG approach

In the context of nuclear physics, Richardson found an ex-
act solution [4] of the Hamiltonian (9) for a single super-
conductor, that allows in principle to calculate all of its
eigenenergies and eigenstates. Because the tight-binding
calculation for weakly coupled superconductors, as out-
lined in Section 2.3, only needs the matrix elements (15)
between states of a single superconductor, Richardson’s
solution is, in principle, sufficient for that case.

However, while the eigenenergies of (9) can be calcu-
lated with only little numerical effort using Richardson’s
solution, the computation time needed for the eigenstates
and for matrix elements like the ones in (15) scales like n!
with the number of energy levels n in the system, making
it effectively impossible to go beyond, say, n = 12 levels
or so (more precisely, only the number n of energy levels
between Erermi —wWhDebye 81d ERermi +Whehye Matters). For
this reason, despite there being an exact solution available,
it is indispensable also for the tight-binding model to have
an alternative approach at hand that is approximate, but
manageable. Moreover, for the strong coupling analysis
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in Section 2.6, that invokes the pair tunneling term (22),
Richardson’s solution is not applicable at all, so that the
use of a different approach becomes unavoidable.

For these reasons, we have adopted an approach based
on the density matrix renormalization group (DMRG),
whose power and efficiency for dealing with pair-correlated
nanograins has been demonstrated recently [7,18]. We
will use two kinds of DMRG calculations: A single-grain
DMRG for calculating the matrix elements (Sect. 15) to
be used in the tight-binding model at weak coupling (cf.
Sect. 2.3), and a two-grain DMRG for the case of strong
coupling (cf. Sect. 2.6).

In this section, we first discuss some general aspects
of the DMRG algorithm in energy space in Section 3.1,
leaving some of the more technical issues for Appendix A.
In Section 3.2, we discuss the one-grain DMRG, and turn
to the discussion of the two-grain DMRG in Section 3.3.

3.1 The DMRG method in energy space

The DMRG in its usual implementation is a real-space
renormalization group method, and has been very suc-
cessful for describing one dimensional many-particle quan-
tum systems, such as spin chains [17]. Usually, the Hilbert
space for such systems is too large to be diagonalized ex-
actly on a computer. The DMRG algorithm allows to keep
only a reduced part of the Hilbert space that is small
enough to be tractable even on a desktop computer, but
still sufficient to describe one or several desired states, the
so-called target states (in our case, the ground state will
be the target state). This is achieved by progressively in-
creasing the chain size, adding sites one at a time, while
only a limited number of states is kept at each step, those
states being selected as the most relevant ones for describ-
ing the target state(s) in a density matrix analysis.

Although the DMRG is mostly limited to one dimen-
sional systems, it can be applied to three dimensional ones
by using the energy axis as the one dimensional “system”,
such that the bare energy levels play the role of sites on
a one dimensional chain. This is not always useful, be-
cause the interactions between these “sites” can be much
messier than between sites in real space, the latter being
generally local. Luckily, as will be seen, the BCS interac-
tion is, although nonlocal, simple enough for the DMRG
algorithm to be applicable.

The DMRG builds up the system, starting from the
low-lying energy states around the Fermi surface, which
are the physically most important ones, and successively
adds levels lying further and further away from the Fermi
energy. It should be noted that this is quite contrary to the
way usual RG calculations are performed, where high en-
ergy levels are integrated out, approaching the low energy
states from above. This allows these two complementary
approaches to be simultaneously applied: As long as not
all energy levels have yet been added to the system, only
the ones near the Fermi surface are explicitly included
in the DMRG calculation. The other ones, which will be
included only at later steps, are meanwhile taken into
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account using a renormalization of coupling constants (as
introduced in Eq. (43) of [18]).

For this purpose, the following scheme turns out to be
numerically very efficient for renormalizing the coupling
constants A and v: When the i levels closest to the Fermi
energy are included, choose the coupling constants, say \;
and ~;, such that the BCS band gap 4A; of the current
system equals the final value A,,, where n is the desired
final number of levels. In the DMRG for a single grain,
AW = id/(2sinh(1/);)). In the two-grain DMRG, the
band gap is given by AZ(-Q) = id/sinh(1/(\; + vid/Ay)).
The latter is the the solution of the BCS gap equation
with two different interaction matrix elements —\;d and
—’yid2/A511), as in (9) and (22). For large couplings, this
scheme turns out to be more efficient than a perturbative
renormalization of the coupling constants. At weak cou-
plings, for which perturbation theory is expected to work,
both approaches perform equally well.

Another drastic reduction of degrees of freedom occurs
because in the model we study, the energy levels that are
occupied by a single electron completely decouple from
all the interaction terms (9), (13) and (22). Because the
creation of a singly occupied level is associated with the
energy A, and therefore energetically unfavorable, there
will be no singly occupied levels in the low-energy sector
of a superconductor, if one assumes the total number of
electrons to be even. Due to these considerations, we can
omit these levels from the beginning, and consider only
the case of empty or doubly occupied energy levels [2].

Although the full Hilbert space is drastically reduced
by the DMRG algorithm, it produces excellent results.
In the case of the two-grain DMRG, the accuracy can
be checked by comparing the condensation energy from
DMRG to the Richardson solution, which is available for
two specific values of the inter-grain coupling ~ in (22),
namely for [14] vd/A = X (which effectively describes one
single, larger superconductor) and v = 0 (two independent
superconductors). The results for the two-grain DMRG
are shown in Figure 1 and show the following features:
(i) High precision at strong inter-grain coupling, with a
relative error in the condensation energies of only ~ 10~7
when m = 100 states are kept. (ii) Lower, but still suffi-
cient precision for decoupled grains (y = 0): ~ 1073 for
m = 300, for n = 100 energy levels. However, the algo-
rithm fails at weak coupling when the number of energy
levels n becomes large (N > 80 — 150), see Section 3.3.
In this case, a perturbative calculation (see Sect. 3.2) be-
COmes necessary.

With the one-grain DMRG, the accuracy of case (i)
is obtained. As always in DMRG, the precision can be
systematically improved by increasing m.

3.2 One-grain DMRG for tight-binding model

If the grains are weakly coupled, the tight-binding ap-
proach can be applied, based on the Hamiltonian (13).
Here, the microscopic model only enters via the tun-
neling matrix elements E9 (15) of the tight-binding
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Richardson’s solution and the two-grain DMRG at BCS cou-
pling A = 0.4, with n = 100 energy levels per grain. The inter-
grain coupling in the upper plot is vd/A = . In the lower plot,
v =0.

Hamiltonian (14). Although these can in principle be cal-
culated exactly using Richardson’s solution, in practice
the DMRG algorithm is much better suited for that task,
as explained above.

Assuming v < N and using equation (5), the only ma-
trix elements needed for Ef} are (N/2 + 1‘bHN/2> for all
values of i. We evaluate these matrix elements using the
DMRG algorithm for one single grain, as introduced in ref-
erences [7,18]. This requires the simultaneous knowledge
of two ground states with different pair occupation num-
bers, |N/2) and | N/241). These states are constructed in
a single run, as explained in Appendix A. Once these ma-
trix elements have been calculated, it is straightforward
to diagonalize the tight-binding Hamiltonian (14).

3.3 Two-grain DMRG

If the DMRG is directly applied to a system of two grains,
the regime of strong coupling can be explored, too. For
this purpose, we use the inter-grain coupling term (22),
introduced in Section 2.6. The exact Richardson solution
cannot be applied for this system (except for the particular
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value of v = Ad/Apcg, which has been used in Section 3.1
for checking the accuracy of the results).

Although the two-grain DMRG can cover the previ-
ously unaccessible parameter region of strong coupling, it
turns out to fail for too weak inter-grain coupling, if the
system is large (more than, say, 80—150 or so energy lev-
els, depending on the other parameters). The reason is
that the DMRG relies on correlations between the grains
for being able to effectively reduce the Hilbert space,
and these correlations vanish in the limit v — 0. This
can easily be seen in the limiting case v = 0, in which
the two grains L and R are completely uncorrelated and
can, each, be described by m; independent basis vectors
‘1>L, ey |m1) and ‘1>R7 ey |m1)R. This implies that the
m basis vectors retained are essentially product states of
the form ‘z> L ® | J)r, and only an accuracy correspond-
ing to m1 = v/m kept basis vectors per grain is attained.
If the inter-grain coupling + is increased, correlations be-
tween grains L and R quickly develop that allow to keep
only a few dominant ones of the product states, but for
v = 0, and also for very small values of ~, each of these
states is equally important, making the DMRG highly in-
efficient. That the DMRG still works even for v = 0 if only
a few (< 80—150) energy levels are considered, is due to
the fact that in this case, the necessary number of states
to be kept per grain seems to be so low (m; & 15) that the
ground state can still be reasonably well approximated.

To summarize, the two-grain DMRG works well for
strongly correlated systems, but produces unsatisfying re-
sults for the case of weak inter-grain coupling. However,
this is the regime in which perturbation theory can be
used, as described before: thus, the two-grain DMRG and
perturbation theory are two complementary approaches;
their regimes of usefulness are illustrated in Figure 5
below.

4 Results

4.1 From small to large grains: The effect of discrete
energy levels within the tight binding model

Figure 2 presents our results for the Josephson energy E;,
defined as the delocalization energy (21) due to pair tun-
neling, in the tight-binding approximation, calculated us-
ing the coupling Hamiltonian given by equation (14). E;
is plotted in units of the BCS result E;(BCS), given by
equation (19). The dashed line in Figure 2 displays the
Josephson energy as a function of decreasing level spac-
ing d, i.e. of increasing grain size, characterized by the
number of discrete energy levels n between €r & wpebye-

While the level spacing d is varied, the parameters A
and v in (13) are held fixed (at the values A = 0.3, v =
0.05), such that the BCS value in equation (18) of Ej;
is independent of the grain size, and a well-defined limit
d — 0 exists.

Within the tight-binding model, we observe two com-
peting effects, to be discussed in detail below, that influ-
ence the Josephson energy as the level spacing d increases
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Fig. 2. The Josephson energy E; in the tight-binding approx-
imation, based on equation (14), as a function of the grain size.
E; is defined via equation (21) as the additional energy gain
due to coherent pair tunneling and is normalized to the BCS
result EFS in equation (19). Compared to the off-diagonal
matrix element EY (dotted line), E; (dashed line) is reduced
by a factor of up to 2 due to the finite-size kinetic energy term
E(v) of equation (17). The logarithmic plot in the inset shows
how the BCS result of equation (19) is recovered as d — 0.

(i.e. moving toward the left side of Fig. 2): (i) On the one
hand, the finite-size kinetic energy term FE(v) of equa-
tion (17) increases, which tends to reduce the Josephson
energy E; (ii) on the other hand, the off-diagonal matrix
element EY in equation (14) increases (as shown in Fig. 2,
dotted line), which tends to increase E;. The combination
of these two tendencies leads to the reentrant behaviour
seen in Figure 2, particularly in the inset, with a remark-
able increase in E; when d becomes sufficiently large.

The kinetic term (i) was discussed in Section 2.3. We
chose v in equation (17) as vy = 1/2, such that the two
lowest-lying states are degenerate and at least one pair
can tunnel at no energy cost between these states no mat-
ter how large d is. For this case, the total reduction of
the Josephson energy due to the finite-size kinetic term
amounts to a factor of at most 2, even for very large level
spacing d. This is because for d — oo, all but the lowest
two states “freeze out”, so that the tight-binding Hamil-
tonian (14) effectively reduces to a two-level system for
the states ‘V = 0) and ‘1/ = 1), whose tunnel splitting
is £9/2 (hence the reduction by a factor of 2). Never-
theless, the reduction in Figure 2 is seen to be consid-
erable even for fairly large grains (still of order 20 % for
Apcs/d ~ 100, corresponding to n ~ 3000 levels), be-
cause it depends on the ratio d/EY, where EY typically
is a small number itself. For d < E;, the asymptotic be-
haviour E; = EY(1 — /2d/EY) (thin dashed line in the
inset of Fig. 2) is found in analogy to the treatment of
small charging energies in Section 7.3 of [19], by using an
Ansatz wave function given by equation (4) with ¢ = 0
and C,, of Gaussian form. This Ansatz wave function turns
out to be asymptotically correct for d < EY [19].

Next, we discuss the increase of E9 in the small-grain
limit (ii). It is due to the fact that the matrix elements
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Fig. 3. Various approximations for the matrix element
(N|bi| N + 1) are compared. The product of the BCS coher-
ence factors u™o™ (BCS, thin dashed line) is compared to
uNo™M* (finite-d BCS, solid line) in a grain of n = 20 levels.
Because vV ! in the latter product is shifted to the right by
an amount of d with respect to v”, the finite-d curve must
obviously be larger than the BCS curve for all values of 7. Also
shown (filled dots) are the exact matrix elements (N|b;|N +1),
calculated using the DMRG approach. The inset compares the
BCS, the finite-d BCS and the DMRG results for a larger grain
with n = 200 levels. While the finite-d BCS result shows excel-
lent agreement with the DMRG result in this regime, the BCS
result still deviates from the exact result.

(NL|bl|NL + 1){(Ng + 1}bHNR> that contribute to E9 in
equation (15) have a different number of electron pairs
in the states acting from the left and on the right. This
fact is neglected in standard BCS theory, where the total
number of pairs is assumed to be macroscopically large
anyway. When the level spacing d becomes large, however,
this is the main reason for the increase of Ef}.

The increase of EY is easy to understand for the Fermi
state (A = 0) and in the BCS limit (A > 2/In N, see [5]).
In the Fermi state, the matrix element (N|b;|N) is zero
for all values of i, but (N|b;|N + 1) gives a contribu-
tion of 1 for the one level 7 = ¢y that is below the
Fermi surface of |N + 1) and above the Fermi surface
of |N> In the BCS case, the matrix element is given by
(N‘bi|N + 1) = ulYo¥N 1. The upper indices on u and v
indicate the total pair occupation numbers with respect to
which they are taken, with the effect that vV+! (dashed-
dotted line in Fig. 3) has the chemical potential shifted
upwards with respect to vV (dashed-double-dotted line)
by the level spacing d, and hence is shifted to the rji\%ht
in Figure 3 by this amount. Thus, the product uivfui +1
becomes larger as the level spacing d increases, as is illus-
trated in Figure 3. We shall call this modification of the
BCS calculation the “finite-d” BCS calculation.

In Figure 3, the finite-d BCS matrix elements (solid
line) are also compared to the exact values obtained us-
ing the DMRG (filled dots). The comparison shows that
for the levels close to the Fermi energy (i.e. the central
level i and the next, say, 2 levels), the finite-d BCS re-
sult overestimates the pairing correlations: the (quasi-)
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Fig. 4. EY is evaluated in the BCS, the finite-d BCS and
the DMRG method. Although BCS theory is not valid in the
regime of large level spacings d, the finite-d-BCS reproduces,
at least qualitatively, the correct behaviour seen in the DMRG
curve.

exact DMRG solution is seen to have a more pronounced
peak at the central level iy, whereas the contribution of
the neighbouring two levels is somewhat reduced, resem-
bling, for these levels, qualitatively more closely the A = 0
case discussed above. For the energy levels further away
from the Fermi energy than that, the finite-d BCS calcula-
tion is seen to slightly underestimate the matrix elements.
This is not unexpected, because BCS theory is known [5]
to underestimate the superconducting correlations of en-
ergy levels much farther away from the Fermi surface than
Apcs, which for the parameters of Figure 3 is Agcs &~ 0.7.

EY, however, being a weighted sum over all products
of these matrix elements, is nevertheless not so far off in
the finite-d BCS approach even for very small grains, as
can be seen in Figure 4. This is surprising and somewhat
fortituous, since the BCS theory does not self-consistently
describe the grains in the limit that they are small. The
reason that the finite-d BCS works so well seems to be
that the underestimation of the matrix elements for level
i and and their overestimation for the other levels cancel
each other to a large degree.

In conclusion, the main reason why EY increases as the
grains become small is very simple: the chemical potential
of the grains shifts due to the finite level spacing whenever
a pair tunnels from one grain to the other. Note that the
BCS ansatz without taking this effect into account is not
accurate near the Fermi energy even for fairly large grains
(see the inset in Fig. 3), for which the finite-d BCS theory
agrees perfectly with the DMRG result.

The competition between the finite-size kinetic term
on the one hand and the increase of Eg on the other
leads to the reentrant behaviour of E; as seen in Fig-
ure 2. This is one of our main results. Two regimes can
be distinguished as a function of Apcs/d: For very small
grains (Apcs/d < 1), superconducting correlations are
only weakly present, but the 1-level effect outlined above
leads to a strong enhancement of E9 and, therefore, of the
Josephson energy FE ;. Despite not being a well-justified
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approximation in this regime, the finite-d BCS result nev-
ertheless gives a surprisingly good estimate of the Joseph-
son energy. On the other hand, for larger values of Agcg/d
(>10, say), EY is almost constant and very close to the
BCS value. The kinetic energy term in equation (17), how-
ever, reduces the Josephson energy below the BCS value,
and vanishes only rather slowly. The reentrant behaviour
of E; occurs at the intermediate region 1 < Agcs/d < 10,
in which both effects are competing, and in which EY is
slowly approaching its BCS value from above.

In the above discussion, the Coulomb charging energy
E¢ was neglected (see Sect. 2.5). As long as Fj < E¢ <
Agp, Ec can actually be included in the tight-binding
model without much effort [12,19]; the only modification is
in the Hamiltonian of equation (17), where d has to be re-
placed by degg = d+ E¢ > E ;. Thus, the only consequence
of charging energy is that the description in terms of an
effective two-level model with states ‘1/) and ‘1/ +1), given
above for d — 0o, must now be applied for all values of d
(as long as one still restricts the discussion to the degen-
eracy point, where vy = 1/2). In particular, the estimate
E; = EY/2 holds for all values of d, with ES as shown
e.g. in Figure 2. Therefore, the increase of E; shown in
the small-grain limit (d — oo) of Figure 2 is present also
for Ec > 0. The reentrant behaviour as d — 0, however, is
no longer seen; instead, E'y saturates at the value E?CS /2.
On the other hand, if Ec > A, the tight-binding model
itself is no longer a good starting point. This case was
discussed in Section 2.5.

4.2 Limitations of the tight-binding approach

The tight-binding approximation, which neglects pair
breaking excitations of the individual grains, is valid only
for small couplings, such that EY lies well below the lowest
excitation energy Ag,. In Figure 2, however, EY is seen to
grow strongly with increasing level spacing d. Thus, for
sufficiently large d, the tight-binding approach invariably
becomes unreliable, and a different method is needed. In
order to complement the tight-binding approach and to
check its quality, we have thus used the two-grain DMRG
solution that does not rely on the inter-grain coupling be-
ing weak.

The DMRG, however, has its own limitations, as was
explained in Section 3.3: Firstly, it requires a pair tunnel-
ing Hamiltonian (22) that describes a somewhat different
model. This implies, of course, that it has to be compared
to a tight-binding model using the same pair tunneling
Hamiltonian as well. Secondly, the two-grain DMRG can
break down at small couplings if the number of energy lev-
els is large, for precisely the same reason that the tight-
binding model works well: The correlations between the
two grains, which the DMRG relies on, become very weak.

The regimes of validity of the two complementary
approaches are schematically depicted in Figure 5. The
tight-binding method only works well at small coupling,
Asp. < Ej (region left of dashed line), whereas the
DMRG works well only at large coupling (region right of
solid line). A simple (analytical) condition for the validity
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Fig. 5. A rough sketch of the regimes of validity for the DMRG
and the tight-binding approach in parameter space (inter-grain
coupling ~ vs. the number n of energy levels). There is only a
small overlap (shaded region) at small v and small n, in which
both approaches simultaneously work well.

of the DMRG approach cannot be given, which is why the
axes in Figure 5 are drawn without units. However, the
quality of the DMRG approach is found to depend sensi-
tively on the number of energy levels n. In particular, the
DMRG turns out to be reasonably accurate for all values
of v down to 0, as long as n < 80—150 (depending on
other parameters), as is motivated in Section 3.3 and seen
in Figures 6 and 7.

In Figures 6 and 7, the tight-binding approximation for
the Josephson energy is compared to the two-grain DMRG
as a function of the grain size, for two different values
of the inter-grain coupling 7 (corresponding to moving
along vertical lines in Fig. 5). The Josephson energies are
again plotted in units of their BCS values, now given by
equation (23). In Figure 6, both methods are seen to agree
for small numbers of energy levels, n < 80—100. For larger
values of n, the two-grain DMRG breaks down, for the
reasons outlined in Section 3.3. The DMRG method itself
signals its own breakdown: Convergence as function of the
kept DMRG states m is no longer achieved, as can already
be seen when the two curves shown in Figure 6, which
correspond to m = 330 and m = 360, are compared.

Since both the two-grain DMRG and the tight-binding
approach are ultimately variational methods, the one that
produces the higher value of E; (i.e. the lower total con-
densation energy) must be the better approximation. Also
in this respect, the DMRG method is seen to be failing for
n > 80 — 100 in Figure 6, in agreement with Figure 5.

Figure 7 shows the result of a similar calculation as
Figure 6, at a higher value of the inter-grain coupling v =
0.01. Now, the two-grain DMRG is seen to be valid up
to somewhat larger values of n. For small n, n < 100,
the DMRG now produces a higher value of E;, indicating
that in this regime, it produces a better result than the
tight-binding method, as anticipated in Figure 5.

The results from Figures 6 and 7 are similar to the
ones in Figure 2, where only a tight-binding calculation
had been performed. In particular, the two-grain DMRG
reproduces the increase in E; for small values of n, cor-
responding to large level spacing d, and thereby confirms
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Fig. 6. The Josephson energy is calculated in the tight-

binding and in the DMRG approach. In agreement with Fig-
ure 5, both curves agree if the number of energy levels n is
small, but the DMRG fails for n > 80—100.
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Fig. 7. Same calculation as in Figure 6, but at larger inter-
grain coupling. Now, the DMRG has a somewhat larger range
of validity. For small grains, the DMRG curve lies higher (i.e.

the tight-binding approach is not as good as the DMRG any-
more).

the reentrant behaviour observed in the tight-binding ap-
proach (cf. Fig. 2).

In Figure 8, the tight-binding and the two-grain
DMRG results are plotted as a function of the inter-
grain coupling v (corresponding to moving horizontally
in Fig. 5). The plot is extended to very large values of
the inter-grain coupling v in order to show the point at
which the two-grain DMRG can be compared to the exact
result at (d/Apcs)y = A, which it reproduces nicely. We
emphasize that in the regime of large «y, some of the phys-
ical assumptions (e.g. the use of a tunneling Hamiltonian)
of our calculation are not justified anymore, and that the
plot in that regime has no other physical significance than
to provide an important cross check for the DMRG.

The exact result at (d/Apcs)y = A describes the two
grains as a single superconductor with half the level spac-
ing do = d/2 and with the interaction Hamiltonian

>

i€R,L, jER,L

Hy = —Xody blb,, (24)
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Fig. 8. The Josephson energy is plotted as a function of the
inter-grain coupling v in grains that are small enough so that
the DMRG approach works for all values of v down to zero.
Once the coupling is too large (y 2 0.06), the tight-binding
model fails as asserted in Figure 5. The inset shows an en-
largement for small values of ~, and illustrates the condition
E; <« Asp ~ Apcs for the tight-binding model to be valid,
which was motivated at the beginning of Section 2.

and with Ay = 2A. In the large-coupling regime, the
Josephson energy Ej; = Fcond,2 — 2Econd,1 is entirely
dominated by the condensation energy Econd,2 of the
large superconductor described by equation (24), which
is much larger than the condensation energies 2FEcqnd,1
of the isolated grains (i.e. for v = 0). In the BCS limit,
E; = Econda2 = wDebyensinhQ(l/)\g). In particular, E;
is seen to be an extensive quantity, i.e. E /wDebye xX n
for the particular choice v = (Apcg/d)A, for which the
two superconductors are described as one. In this case the
inter-grain coupling acts like a bulk term (and no longer as
a surface effect), which is manifest in the way that ~ scales
with the system size: v scales no longer as a constant, but
with the volume of the system.

As is evident from Figure 8, the tight-binding method,
which is only applicable at very small values of y, ceases to
be valid long before the point (d/Apcs)y = A is reached.
The inset of Figure 8 shows an enlargement of the main
figure for small 7. It is seen that for EY < Apcs, the re-
sults from the tight-binding method and from the DMRG
agree, as expected.
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Appendix A: The DMRG algorithm in energy
space

In this appendix, some technical aspects of the DMRG
procedure for approximating the ground state |1/)> are ex-
plained. There are excellent pedagogical reviews of the
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Fig. 9. Sketch of the procedure for projecting out the relevant
states in the case of the two-grain DMRG. The shading indi-
cates the part of the Hilbert space where only a limited number
of states are kept. First, a new level is added on grain 1 (left
part of figure). Then, the m most relevant states are projected
out and kept (right part). Then, a new level on grain 2 is added
(not shown).

DMRG algorithm to be found [17,20], as well as a descrip-
tion of its application to superconducting grains [7,18], so
we only highlight the key concepts of the DMRG algo-
rithm for reducing the Hilbert space. Then, the full DMRG
algorithm as applied in energy space is sketched. Finally, a
few peculiarities are mentioned that are of relevance when
the algorithm is applied to the problem of two coupled su-
perconductors.

First, we will give an account of the procedure that
projects out a reduced number of basis states. The Hilbert
space is divided into two blocks A of states below and
B of states above the Fermi surface, as depicted in Fig-
ure 9, each being represented by the respective basis state
‘z) A and ‘ J)B. A general many-body state is expressed as

> z/w‘z‘}A ® |7) 5. The goal is to find a reduced number

m of most relevant states ‘ua>,4 and |Ug)3, in the sense
that they allow for the best approximation of the state

|), such that the norm “g/}) =22 Yaplta)a ® |ug)s
minimized, when variation over both 1,z and the states
‘ua>A, |’uﬁ>B are allowed, but only m states per block are
to be kept. It turns out that the states with this property
are precisely those eigenstates of the reduced density ma-
trix of the respective block (A or B) that correspond to the
m largest eigenvalues [20]. Of course, the larger m is, the
more accurate the algorithm becomes, until convergence
is achieved. Typical values for m are m ~ 100—400.

The prescription for the DMRG algorithm is the fol-
lowing: (i) Start with only a few (2 or 3, say) energy levels,
few enough that the exact basis of the many-body system
can be kept explicitly. (ii) Add an additional energy level
to block A and B, as depicted in Figure 9 for the case of
the two-grain DMRG. Construct a basis ‘ua> 4 for block A,
using the basis states from the previous step and the exact
basis of the newly added energy level. Do the same with
block B. (iii) Calculate the target state |1, in our case the
ground state of the BCS Hamiltonian, within the present
Hilbert space. (iv) Calculate the reduced density matrix of
‘1&) for block A and B, say pa and pp, by tracing out the

is
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full density matrix ‘¢><¢| over the respective other block.

Find the m eigenvectors ‘ua>,4, ‘u3>3, a, 3 =1...m, corre-
sponding to the m largest eigenvalues of p 4 and pp. Those
are the states to be kept as basis states. (v) Transform all
operators to the new basis. If the blocks A and B are re-
lated by a symmetry, it may be sufficient to calculate only
one set of states ‘ua> Continue with step (ii) and iterate,
until the final number of energy levels is reached.

In step (iii), the ground state ‘¢> is found using the
Lanczos procedure, which is very efficient due to the sparse
nature of the Hamiltonian, but which requires many mul-
tiplications of a state with the Hamiltonian. Since the
Hamiltonian is a sparse but extremely large matrix (of
order m? x m?), it is essential not to store it as a whole,
but to reconstruct it from simple operators acting only on
the blocks A and B when the multiplication is performed.
For this to be numerically possible, it is necessary that
the interactions between the blocks factorize to a large
degree, such that they can be expressed as a sum of only
a few terms. In real-space DMRG, this is always the case
as long as the interactions are more or less local, but the
long-range interactions in energy space do not always fac-
torize. Luckily, the reduced BCS interaction does factor-
ize nicely: Hpes = —A(B\B, + BBy + A — B), where
Bap = ZieA"B ¢i1¢i| - A similar factorization is possible
for the inter-grain coupling (22) in the two-grain DMRG,
but not for (13).

It is also essential for numerical efficiency to make use
of conserved quantum numbers. In our case, due to par-
ticle number conservation, it is not necessary to keep all
the m?2 states |ua>A ® |Ug)B as a basis. In our algorithm,
we keep track of the number [, [ of particle or hole ex-
citations associated with each basis vector ‘ua)A, ‘uﬁ>3,

respectively. Then, only the states ‘ua) A |ug) B have to
be kept for which

Za - ZB = Zt0t7 (25)
where ;o is the deviation of the total electron pair number
from half filling.

In the tight-binding calculation, taking the matrix ele-
ment (n‘bZ |n+ 1) involves approximating two states simul-

taneously, namely the ground states |n> and ‘n + 1) that
correspond to the respective number of electron pairs n
and n + 1. This is simply done by calculating both states
in step (iii), and by taking the reduced density matrix of
the mixed state with equal weight in step (iv).

In the two-grain DMRG, the calculations are per-
formed in the regime that two states, ‘1/) and ‘V + 1),
as defined in equation (5), are degenerate. This is done by
setting the offset between the energy levels on the left and
the right grain to zero, and by including one more electron
pair than there would be at half filling, which amounts to
setting lior = 1 in equation (25). This extra pair can, then,
be on the left or the right grain at equal energy cost.

One complication arises away from half filling (i.e.
when liot # 0): When, in step (iv), the reduced basis of one
block (block A, say) is calculated by tracing over the states
in the other block, the part of the trace relevant for the
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states with quantum number [, is, due to equation (25),
performed over states which carry a different quantum
number /g. The dimensionality of the two subspaces H(l,)
and H(Ig) spanned by the part of the reduced density ma-
trix with the respective quantum numbers might be quite
different. However, the rank of the reduced density ma-
trix used in step (iv) is limited by the dimension of the
space over which the trace is performed, and therefore,
the DMRG only works well as long as the dimension of
H(lg) is larger than the number of states with quantum
number [, to be kept. This is not guaranteed away from
half filling, i.e. when [, # Ig.

The problem is solved by mixing a small part (20%)
into the reduced density matrix that corresponds to the
ground state at half filling (lt,t = 0). This state will have a
similar information content as the target state away from
half filling, as far as the relevant basis vectors are con-
cerned, and adds enough to the rank of the reduced den-
sity matrix for the DMRG to work well.

In the two-grain DMRG, the energy levels are added
one by one as depicted in Figure 9: First levels on grain 1,
and only afterwards levels on grain 2 are added. They are
added one by one in order to keep the Hilbert space as
small as possible. It is also possible and, in fact, would be
more symmetric, to add both levels at once, but only at
the cost of having the Hilbert space larger by a factor of 4.
As it turns out, it is numerically more efficient (yielding
higher accuracy at the same computation time) to add the
levels one by one.

References

1. P.W. Anderson, J. Phys. Chem. Solids 11, 28 (1959)
2. J. von Delft, D.C. Ralph, Phys. Rep. 345, 61 (2001)

10.

11.

12.
13.
14.
15.

16.
17.

18.
19.

20.

21.

513

C. Black, D. Ralph, M. Tinkham, Phys. Rev. Lett. 76,
688 (1996)

R. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)
M. Schechter, Y. Imry, Y. Levinson, J. von Delft, Phys.
Rev. B 63, 214518 (2001)

P.-G. de Gennes, Superconductivity of metals and alloys
(Perseus books, 1999)

J. Dukelsky, G. Sierra, Phys. Rev. Lett. 83, 172 (1999)
R. Ferrell, Phys. Rev. B 38, 4984 (1988)

V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486
(1963)

W. Hofstetter, J. Cirac, P. Zoller, E. Demler, M. Lukin,
Phys. Rev. Lett. 89, 220407 (2002)

D. Averin, K. Likharev, Single electronics: A correlated
transfer of single electrons and cooper pairs in systems of
small tunnel junctions, in Mesoscopic phenomena in solids,
edited by B. Altshuler, P. Lee, R. Webb (Elsevier, 1999)
M. Iansiti, M. Tinkham, A. Johnson, W. Smith, C. Lobb,
Phys. Rev. B 39, 6465 (1989)

K. Knorr, J. Leslie, Solid State Commun. 12, 615 (1973)
J. Links, K. Hibberd, Int. J. Mod. Phys. B 16, 2009 (2002)
K. Matveev, M. Gisselfalt, L. Glazman, M. Jonson,
R. Shekhter, Phys. Rev. Lett. 70, 2940 (1993)

Y. Nakamura, Y. Pashkin, J. Tsai, Nature 398, 786 (1999)
1. Peschel, Density matrixz renormalization: a new numer-
ical method in physics (Springer, 1999)

G. Sierra, J. Dukelsky, Phys. Rev. B 61, 12302 (2000)

M. Tinkham, Introduction to superconductivity (McGraw-
Hill, 1996)

S.R. White, R.M. Noack, Density matriz renormalization
group, in Density matriz renormalization: a new numerical
method in physics, edited by 1. Peschel (Springer, 1999)
In general, b; annihilates a pair of electrons c;j¢;; in time-
reversed states |i,T) and |4, |); for the present context of
nanograins in the absence of a magnetic field, however, we
may take i =1



