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The interaction between an atom moving in a model double-well potential and the conduction electrons is
treated using renormalization-group methods in next-to-leading logarithmic order. A large number of excited
states is taken into account and the Kondo temperdigrie computed as a function of barrier parameters. We
find that for special parametefs can be closea 1 K and it can be of the same order of magnitude as the
renormalized splitting\. However, in the perturbative regime we always find fhaEs A with Ty<1 K[I. L.
Aleineret al, Phys. Rev. Lett86, 2629(2001)]. We also find that\ remains unrenormalized at energies above
the Debye frequencyypepye.
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[. INTRODUCTION In the present paper we study a similar model but with
smaller or negligible barriers, far from the tunneling regime,

There is a great number of experimental anomalies oband keeping all excited states through our computations. We
served by point contact;® dephasindg;® and transpoft’  construct the perturbative scaling equations up to next-to-
measurements in metals at low temperature which have nd¢ading logarithmic order and show that the cancellation
been theoretically explained in a satisfactory way. Sensitivityffound in Ref. 13 also extends to the splitting of the TLS,
on annealing;®> sample preparatiohand electromigration  which remains unrenormalized down to the SCalgepye:
support that these anomalies may originate from some kingbo. This supports again the picture of an “adiabatic conduc-
of dynamical defect. tion band,” proposed in Ref. 15.

The concept of two-level systenf$LS’s), i.e., atoms or In the most interesting cases the second level is just above
groups of atoms moving between two positions resulting inor around the top of the barrier: In this regime we find a
two almost degenerate levels, has been introduced to explaiondo temperature in the range ©~0.1-1 K using re-
the low-temperature specific-heat anomalies in metalliGilistic parameters. For a special class of parameters the
glassed.In order to keep the level splitting very low, tunnel- renormalized energy splitting between the lowest two levels
ing between the two positions has been assumed. The TLg aroundTK |mp|y|ng that such dynamica| defects may give
model has later been generalized by incorporating dissipatiofise to some of the Kondo-like anomalies observ&80Our
effects' and noncommutative couplings between the TLS andtalculations also indicate that to obtain a measuraglene
conduction electrons such as screening and assisted tranfieedsresonant scatteringn the defect.
tion due to the metallic electror§," and a two-channel In the present work we only study the perturbative region,
Kondo-like behavior has been conjectufédhe estimated and there we do not find convincing evidence of an observ-
Kondo temperatur&y , however, turned out to be too small. aple two-channel Kondo behavior. However, one can show
Taking a few of the higher levels of the atom into accountpy performing analytical and numerical calculations using a
increasedTy considerably however, this approximation more detailed model that there exists a regiousidethe
has been shown recently to be incorrEct Most of the  range of perturbative calculations where the two-channel
terms cancel out at energies above that of the few lowestondo behavior appears.
levels if all excited states are included in the computation,
and thus electron-assisted tunneling results only in a negli-
gible T for TLS’s.** Similar results were obtained using Il MODEL
the adiabatic approximation for an atom moving in a metallic '
host!® Our model consists of a particler collective coordinate

The physical reason for the above cancellation is that the of the defect with massM (M ~50m,; m, is the proton
tunneling takes place on a typical time scate l/wp . mas$ moving in some bare potential weW,,,,{z). The po-
Therefore electrons that are farther from the Fermi surfacéential V. {z) can be thought of as the potential resulting
thanwp follow the motion of the defect instantaneously, andfrom the interaction with the neighboring ionic charges.
can be ignored when considering complicated correlationslowever, as we shall see lat®f,,is strongly renormalized
between the TLS and the conduction electrons. In othedue to the strong electron-defect interaction: In general, both
words, the effective bandwidth of the conduction electrons i8/,,{z) and the electron-defect interaction are of the order of
reduced from the Fermi enerdsr down to a value~ wp . the Fermi energy{ 10 eV), but theirsum the effective po-
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tential, is only of the order of the Debye frequency. There-this suppression is so strong that one is always in the weak-
fore Vo d 2) has very little physical meaning. coupling regime, and therefore one can never observe the
The noninteracting part of the Hamiltonian is given by two-channel Kondo behavior, while without the telyg one
can go beyond the Emery-Kivelson line and prove even ana-
Iytically the existence of a regime where a two-channel
HO:; snbxbﬁpz(, £pap, o, - () Kondo behavior appeat$.
' To resolve this problem, one has to go beyond approxi-
The first term describes the motion of the particle in themating the particle by a simple potential scatterer and take
potentialVy e andb; (n=1,2,... ;Enb;bnzl) denotes the into account the dynamics of the internal electronic degrees
creation operator corresponding to a state of the particle witlof freedom of the particlé® This analysis turns out to justify
energye, and wave functionp,(z). The second term de- our approximation of settinty,=0 in Eq. (2).
scribes the conduction electrons, WHE',G being the creation To handle the interaction part of the Hamiltonian we fol-
operator of an electron with momentum spin o, and en- low Ref. 11 and introduce spherical coordinates. Assuming
ergy e,. In the following we use a simple free-electron ap- that the motion of the defect is restricted in spasez(,
proximation to describe the conduction band, and assume 1, with ke the Fermi momentuiy the dominant electron
that the wave function corresponding &j , is a simple ~ Scattering occurs in thd £0m=0) and (=1m=0) angu-
plane wave~e'*". The density of states for the electrons is 1ar momentum channels, and we can neglect scattering chan-
0()~0o(1+ as/Dy), whereg, is the value at the Fermi nels with| >1.%* H;; then becomes
energye=0, Dy is a symmetric bandwidth cutoff of the

order of the Fermi energy, and|<1 accounts for possible _i j f ' nt T
electron-hole symmetry breaking due to band-structure Hi”t_27r nEn dk | dk'Vir by by ey (3)
effects. Lo
We use a simple local interaction between the particle and . )
the electrons as follows: where a,,, creates an electron with angular momentum

I (m=0), radial momentunk, and spino, and satisfies
B . . the anticommutation relation {a};, ,ay,}=2m8(k
Hint_; ded%(‘/’o(z)‘/’(r(z)q’ (2p)W(2p) —k')6,, 8, . We evaluated the dimensionless interaction
matrix eIemen'[s\/I”,’ln using spherical wave functions with
X{Uod(2) +U[8(z—2,) = 8(2)]}), @ momentumrk~k for the electrons and the exact wave func-
where,(z) is the electron field operator along the axisf tions n for_the defect. The dynamics of ths hef_;\vy.particle is
the defect motion X=y=0), and ¥ (z,)=,b,en(zp) is descrlbgd in tTerms of the pseudofermidnssatisfying the
the particle field operator at the position of the heavy parfonstraintz,byb,=1.
ticle, z,. U, describes a static scattering at the center while

U describes the change in the scattering potential when the Il. RENORMALIZATION-GROUP ANALYSIS
particle is displaced from the center. ) _
In the following we shall simply tak&J,=0. This sim- To determineT we constructed the leading and next-to-

plification needs some explanation: In principle, the value of€ading logarithmic renormalization-grodRG) equations?
U should be preciselyJ, in Eq. (2). One can, however, 10 t.hIS end one has to compute vertex and self-energy cor-
argue that the electronic wave functions corresponding to theections  to  the  pseudofermion  propagata@ny(7)
operatorsa] in Eq. (1) should be determined when the par- = —(T-bn(7)by/(0)) and the impurity-electron vertex func-
ticle is at the origin, and should therefore already incorporatéion Fﬂr,’ , and then apply the relatively standard machinery
the effect ofU,, which could therefore be ignored. of the multiplicative RG. The corresponding skeleton dia-
The previous argument is, however, not quite right. Thegrams are shown in Fig. 2 belo@Note that the first-order
consequences of the presencelgf would be quite impor-  self-energy diagraninot shown in Fig. 2 beloyonly gener-
tant. The term~U, can be treated exactly for a single ates a local nonlogarithmic and time-independent renormal-
impurity:*” Since U, describes a static potential it can be ization of the defect potential and can therefore be entirely
incorporated in the electronic wave functions, which cannoignored] In the RG procedure the bandwidth cutoff is re-
be approximated by plane waves any more. Its most imporduced,D—D+dD, and the couplings are simultaneously
tant effect is torenormalizethe local density of stateg, in ~ changed to keep physical quantities invariant. In the present
thes channel ap ,— cog(8,) 0, Whered, denotes the scat- case a matrix version of the multiplicative RG must be
tering phase shift induced by the scattering potentigl  employed®
=U. As we see below, experiments indicate that the value of In this work we take also into account the energy depen-
U is rather large, and corresponds to almost resonant scattatence of the local density of states. This may also depend on
ing. In other words, in this simple model with=U, at the angular momentum channel, ¢,(g)/0,(0)=1
resonant scattering,~ /2, and the local density of states is + « e/D, where the slope, and valueg,(0) of the density
strongly suppressed. As a result, the dimensionless couplingd states is usually different for different values lofThe
estimated below are reduced. This is a serious problem: Orenergy e is measured from the Fermi energy and only the
can show that for a potential scattering model witk- U linear term has been kept i .
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Let us first focus on the case @ _y=0,-1=07 and =0
ag= a1= «. Then the second-order self-energy correction of ;*5
the pseudofermion propagator, e.g., contains both logarith- "
mic and nonlogarithmic corrections, and is given by the fol-
lowing expression: 2apa
-
Sun(@)==2 3, {VIVIT Dof () (0 &) hva .
________________ o
a a
X|In |w_€ﬁ| +9(a) ] ) FIG. 1. The simple square-shaped double-well potential used:

Vg is the height of the barriea~0.1 A is the width of the wells,
where we introduced a matrix notatidnﬂr,]’—Nn”’ trf ...} and 2zpa~0.4—0.5 A is the barrier width. Inset: Effective scatter-

denotes the trace in the electronic angular momentum Indllng potential for the electrons. The shaded potential corresponds to
ces, and the constantéa) andg(«) are given by the defect sitting at the center. The white potential is due to the

displacement of the defect.

2
fla)= §012(|n 2-1)+2In2, (5 that bothV,,.and the corrections are usually of the order of
the Fermi energy, however, thesumis usually of the order
1 of the Debye energy only.
Z_In 2) ) (6) The interaction vertex also contains a nonlogarithmic part.
2 Up to second order iV the dimensionless vertex function

The factor 2 in Eq(4) is due to the spin degeneracy of the can be calculated as

electrons. The effect of the nonlogarithmic terms propor-
tional tof andg is to strongly renormalize the eigenstates and
eigenfunctions of the double-well potential by replacing the

g(a)=1-In2+a?

znm((v):!nm_ a 2 {Vnkvkm+ Vkmvnk}

<Dy — —
heavy particle Hamiltonian by k=Po
- > In [VK \km) (1)
> snbgbnaz Anmb;r]bm, (7) @b, |lo—el = "=
n n,m

The effect of the nonlogarithmic terms in Ed.1) can be

where the matriA ., is given b . o
nm 15 9 y taken into account by renormalizing the bare vertex as

A= 8nSum— 22 V™™ Dof (@)~ exg(a)]. (8) .
n . VM, M= \/nm_ 012 {Vnkam—l—Vkanhj. (12)
— — — K — — - —

The effect of the static ¢-independent nonlogarithmic
terms in Eq.(4) can be taken into account by diagonalizing This transformation must be constructed order by order, and

Anm through aunitary transformation it sums up systematically all higher-order nonlogarithmic
_ vertex contributions.
(UAUN"="¢.,8m, ) After performing the transformations above, the expres-
sions of G ! and y simplify considerably, and contain only
nm—>(UVUJ')'"”, (10)  logarithmic terms irDy:

where thee,’s denote the renormalized values of the heavy[g )
partlcle energies. The effective Hamiltonian corresponding to
A, generally contains nonlocal terms, too, but the largest

. . k{7k
terms actually turn out to be simple local corrections to =@~ Sament2 > tf{Vn A Ek)|n| o
Viare- Therefore, in the rest of the paper we drop these non- «=Do @ ek
logarithmic self-energy corrections, and assume instead that (13

we can model the entire effective Hamiltonian by a simple
local quasi-one-dimensional symmetrical square potential

with a barrier in the middle and infinite wallsee Fig. L Y"™(w)=V"m— 2 In [Vnn Vﬂm] (14)
We determine the corresponding wave functions by solving - — &b, |o—e |

simple transcendental equations and then use these wave

functions to compute the interaction matrix elemevits'. The remaining logarithmic terms in Eq4.3) and(14) can

Note that it is only the renormalized Hamiltonian that canbe summed up using a generalized version of the multiplica-
be measured and has therefore physical meaning. Note alsive RG!8 leading to the following RG equations:
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k Kk’

dv
=== 2 [VKW]+ X 2(Vk'tr[vik\7‘i]

dx <D — — €x.€<D -

1. o1
- Ev"<tr[v'<'v'l]— Etr[V”‘V"']V" ) . (15

Herex=In(Dy/D) is the scaling variable, anD, denotes
the initial value of the cutoff. Since the Hamiltonian is diag-

onal in the spin, each closed electron loop results in a mul- ® v
tiplicative factor of 2 corresponding t&/;=2 conduction-
electron channels. FIG. 2. Diagrams used to construct the renormalization-group

The renormalization-group equations for the ene@ires equations. Dashed lines correspond to the defect atom, solid lines to
the electrons.

are somewhat more complicated. In particular, the RG gen-
erates off-diagonal terms to the heavy particle Hamiltonian:
enough so that the couplingé‘”’ corresponding to it are still
~ ~ ~ kKoK T e onkozkm in the perturbative regime: Restricting our discussiomto
Onmén— ”m6”+dx~2 {ka"[Y ! ] E“tr[y Y ] =1,2, the largest matrix elements are those where both the
electron and defect parities are changed and are apout
—tr[ V"V e ) (16) ~0.2. The reduction fromJg,~3 is due to a facton?
o T~ ~kedUpQg, with d=2a(1+ a;,)~0.4 A the width of the po-
wheree,,e,<D, and &k=In[D/D’]. Therefore, in each RG tential well, anck- *~1 A the Fermi momentum. Couplings
step we diagonalize the self-energy by constructing a new sgiith conserved parities such ag are even smaller, and are
of defect states with renormalized energy eigenvalues, anflirther reduced by the Gamow factor in the case of a large

e, <D

express all couplings in this new basig;=3 U mn®m- barrier in the tunneling regime.
Note that Eq(15) is invariant under this unitary transforma-
tion.

When the reduced cutoff reaches the renormalized energy IV. RESULTS

eigenvalue of some defect level, the dynamics of that level is |, this work we used the following procedure: We first

frozen out, and we therefore drop it in the following RG iaq0nalized the effective heavy particle Hamiltonian to ob-

steps. Usually only a few levels remain active in the regiont in th lized defect ~ d th |
where the relatively weak initial couplings become compa-_aln € renormalized detect energies an € renormal-

rable to the stronger ones. In many cases only one levdfed couplingsy numerically. Then we summed up logarith-

remains by this time, meaning that no Kondo effect occurs affic terms by performing the RG steps described in the
all. previous section.

In the original tunneling mod&! only the statesi=1,2 First, to determine the fixed-point structure of the flow
were kept, giving rise to two initial dimensionless coupling €guations and to determine the Kondo temperature we con-
constantsy* andv?, corresponding to the diagonal and off- tinued the RG even after reaching the first excited state
diagonal terms in indices andn’: (where the dynamics of the defect must be entirely frozen

due to the energy splittingand verified that then the cou-
L ol 12 12 plings indeed flow to the two-channel Kondo fixed point as
vi=7Vort+Vigt Vot Vi), (17 expected.
The leading logarithmic scaling equations for many levels
1 were investigated by Aleinegt al. in the tunneling regimé?
vxzz(vtlxl)— VIi—V32+ V39, (18)  They correspond to the first two diagrams in Fig. 2 and to the
second-order terms in Eq15). Aleiner et al. have shown
We identify Kondo temperatur&, with the energy scale at that in leading logarithmic order the logarithmic contribution
which the initially small dimensionless couplind reaches of the excited states cancels out due to a sum rule, related to
about half of its fixed-point valuey,~0.1,'° and we keep the approximate completeness of the defect wave functions.
the last two levels active even if their separation is largerThis reduces the effective cutoff to the order of the Debye
than the running cutofd. Below the Kondo temperature the temperature and thus the essential renormalization of the
perturbative RG breaks down and more efficient methods areouplings occurs in the region where only few excited states
needed. If only two levels are kept then Bethe-arfSale-  remain active.
sults for the two-channel Kondo problem could be applied. ~We find that this is also true for the renormalization of the

The bare values of? can be estimated from ultrasound tunneling rate. Figure 3 shows the renormalization of the
datd* and for alloys with stronger couplings they correspondcouplings,v,, and the tunneling rate;,=e€,—€;, com-
to v?*~0.2 and thusUg,~3 for typical parameters. This puted by solving leading and next-to-leading logarithmic
rather large value of) o, impliesresonant scatteringn the  scaling equations numerically. Though we could not find a
atom?! Nonetheless, evellg,~3 turns out to be small simple sum rule similar to that of Ref. 13, we found that both
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FIG. 3. (Color onling The RG flow of A, andv, in next-to- FIG. 4. (Color online The RG flow of the couplings in leading
leading logarithmic order for=0.4, d=0.5 A, andVz=100 K. logarithmic order and in next-to-leading logarithmic order. Inset:
Only curves corresponding ®@,U=<2.0 are shown, since for larger Kondo temperature as a function of the number of defect states, for
ooU the weak-coupling approximation is not valid. Upo=2.1,d=0.5 A, andVg=100 K.

v, andA;, remain unrenormalized throughout a large energywhere the scaling exponenys andy, of the dimensionless
region, down to an energy scale of the order of the Debydunneling (splitting) t=A,/D, and assisted tunnelingy
temperature~ wp . This is in agreement with the “adiabatic only depend on the coupling, in Eq. (17):
conduction band” picture of Kagan and Prokofvwho 5
argued that, since the tunneling takes place during a time 4 f

. . y;=1-8 , (21
scale~1l/wp , electrons with energies larger tha, follow T
the defect instantaneously and therefore do not contribute to

the logarithmic singularities summed up by the renormaliza- o 5\?
tion group. Therefore the drastic changes in the effective yx=4 - -8 ;) ' (22)
couplings appear only when a few levels remain.

For typical bare values of the splittil§=A,,=E,—E; S=artar{ mv?). (23)

=1 K, the renormalization ofA turned out to be less than
about 25%. Th|s must be Opposed to the case Where 0n|y tv\)é] the multiplicative RG scheme these nonperturbative eXpO-
levels are kept from the beginning, and therefore a strongi€nts are replaced by the following approximate exponents:
power-law renormalization occurs even at high enertfies. RG_ 5

Our results agree with those obtained by means of an adia- yg =1-8v, (24)
batic approximation where the renormalization occurs only RG )

when the cutoff is already in the range of the few lowest- Yx =4v,—8v;. (29
energy levels?

It is very instructive to see howWy depends on the num-
ber of defect stategsee Fig. 4. Such a calculation was per-
formed by Aleineret al®® The first few states result in a
strong increase g, but thenTx suddenly drops, and the
statesn=6 practically do not produce any further changes.
In the following only the “saturation values” of ¢ that we

These approximate exponents are compared to the exact ones
in Fig. 5. The exponeny, of the assisted tunneling is sur-
prisingly well approximated byR® in the rangev,<0.25,

and therefore we expect that the estimate of the Kondo tem-
perature is reliable in the range,<0.25-0.3. However,

1

obtained by eventually continuing the RG flows below the ; ' v,
first excited state if\,;> Ty are reported. 08t /
It is very important to determine the range of validity of /
the perturbative scaling analysis we use. Fortunately, there is 0.6 | Ao A 1
a few non-perturbative results available for the TLS model Yo o . .
that can be used to achieve this goal. In the limit of sma}l 04} //éﬁ:/ \
andv, the scaling equations take a simple foftn: /// Y
02} PG x
dt vl . .
ax Y (19) % 0.1 0.2 0.3
VZ
%_ 20 FIG. 5. (Color onling Comparison of the exact scaling expo-
ax =YxUx, (20)

nentsy, andy, with their approximate valueg;® andy=°.
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FIG. 6. (Color online The Kondo temperature as a function of ~ FIG. 7. (Color onling The Kondo temperature and the renor-
the height of the central barrier, far=0.4 andM=50m,,. The malized level splittings as a function of the total widthof the
renormalized level splittings are plotted as well. The shaded part opotential well fora=0.4 andM =50m,,. The shaded part of the
the figure indicates the region in which the estimate of the renorfigure indicates the region in which the estimate of the renormalized
malizedA ,, is unreliable. Ay, is unreliable.

yr ¢ underestimates the value pf® and therefore overesti- increasingd since the bare value of, only slightly increases
mates the renormalization df,,, for which the RG results while the assisted tunneling, is exponentially suppressed in
should be trusted only in the range<0.22. Considering the tunneling regime.

that essentially no renormalization of the splitting takes place In Fig. 8 we show the dependence on the strength of the
above the energy scale of the third level, one comes to thdefect-electron interactiob). Again, T¢ increases continu-
conclusion that the renormalized splittiig® is underesti- ously with increasingdJ, since all couplings generating the

mated by a factor of Kondo effect increase. On the other hand, the renormalized
A decreases continuously since the scaling expongfit
A Wy~ 1y © also decreases with increasihig
(E_a) , (26) Finally, let us discuss the electron-hole asymmetry depen-

dence ofTix. ForUy=0, 0/-¢=0/=1, anda=ay=a; we
which is a factor of 3—10 for the most extreme cagels find no significanta dependence of the renormalized split-
course, in the tunneling regime this overestimate can b&ng andTy . In general, however, the local density of states
much larger for smaly,’s). is different for thel=0 andl=1 channels and thus botl,

Figure 6 shows the barrier height dependence of th@nda depend orl. A nonzero potential scattering terh
Kondo temperatureTy increases with increasing barrier #0 in Eqg.(2), e.g., would have a twofold effedt;) It would
height up to a certain value &g and then it drops suddenly,
while the splittingA,;, decreases continuously. Initially, in- . . :
creasing the barrier height concentrates the wave functions of L 0=0,=04 d=0.5A
the first two states more and more around the potential M=50 m, V,=100 K
minima and this results in an increase of the coupling
and thus a gradual increase Ty . This tendency is, how-
ever, suddenly reversed once the barrier reaches the first
level, and one enters the tunneling regimé# 150 K for
the parameters of Fig.)6There the assisted tunneling,
responsible for the generation of the Kondo effect, decreases
exponentially, and both ;, and T decrease dramatically.

Tk is also very sensitive to the width of the entire poten-
tial well d. In Fig. 7 we show thel dependence of ¢ for a
defect that has a relatively low barrier height and is not in the
tunneling regime. Asl is decreased from=0.5 A, the en-
ergy levels are shifted to higher values and also the initial
values of the coupling, decrease while, does not change
dramatically. Thus the width of the well is a fundamental  F|G. 8. (Color onling The Kondo temperature and renormalized
parameter and the Kondo effect can only occur if the roomevel splittings as a function of the scattering strength The
for the particle considered is anomalously large in one direcshaded part of the figure indicates the region in which the RG
tion. For defects in the tunneling rangg decreases with estimate of the renormalizesl;, is unreliable.

T [Kl Ay, [K]
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10' ; . : : the results of Ref. 13. The electron-defect couplings remain
unrenormalized down to an energy scale of the order of the
1 S Debye temperatur® ~ wpepye due to a cancellation pointed
100 L —=o T, 10° : out in Ref. 13.
< A, . ' In the leading logarithmic approach of Ref. 13 the energy
= <107 ¢ 7 levels of the impurity are unrenormalized, and the above
<107 | <107 b 1 next-to-leading logarithmic analysis is needed to compute
'Q'“ 10" . P the renormalization of the defect states. We found that, simi-
o -05 o?e 0.5 lar to the defect-electron coupling, the splitting of the first
= 107 ? _ two defect states remains unrenormalized dowaggy,ye. In
Uo.=1.25 . V.=100 K contrast to the expectations of Ref. 24, where the generation
pp=1.25, V= s -
of a large splitting has been predicted, we found that the
M=50m,, 0.,=0.0,d=0.5 A p N . .
10° ; ; ; ; renormalization of the defect states remains small if one
-0.5 -0.3 -0.1 0.1 0.3 0.5 takes into account all defect states.
o, Our results perfectly agree with the adiabatic picture of

_ Kagan and Prokof’el? Electrons with excitation energies
FIG. 9. (Co_lo_r onling Electron-hole asymmetry depe_ndence of €l > wpenye fOllow the defect instantaneously, and therefore
Tk and the splittingd;,. Inset: The effect is more dramatic for very the role of the excited states is only to reduce the effective

small Ty’s. electronic cutoff from the order of the Fermi energy down to
' ' . the energy scal@pepye-
change the local density of states in the0 scattering chan-  we also analyzed the range of validity of our approach by

nel, and(ii) would generate a different electron-hole symme-ysing some analytical results in the strong-coupling regime.
try breaking for thd =0 andl=1 channels’ (Note thatin e found that the perturbative RG predicts the Kondo tem-
Ref. 23U, has not been set to zero and has been treategerature correctly for surprisingly large couplings, however,
inappropriately. Instead of incorporating it in the parameterst tends to overestimate the renormalization of the splitting
0o and ay we included it in the RG equations as a coupling A,
constant. Though the results obtained are qualitatively simi- We solved the RG equations for initial couplings obtained
lar to the ones we obtained below, this procedure is wrongoy changing various parameters of the double-well potential.
since mass terms such b have to be treated always dif- We always found a region whefB and the renormalized
ferently from the coupling constants in the multiplicative A, were comparable and therefore one should be able to
RG!) observe the Kondo anomaly in various measurements. Our

It is easy to generalize our previous calculations to thecalculations show that to havBc~A, in the measurable
casesag# @1 andQ —o# 0,=1. Thel-dependent densities of range one needs a defect thiathas anomalously large room
state can be treated by defining the fermion fields slightito move in one direction(ii) is close to but not yet in the
differently. However, foray# @, the electron-hole symmetry tunneling regime, andiii) has a large scattering strength,
breaking generates strong nonlogarithmic corrections to thgJp,=2.5, implying resonant scattering on the particle. The
bare coupling constants. In Fig. 9 we plotted the dependendgest candidates are therefore atoms with resotiant scat-
of T on ao while keepinga; zero ande,-o=0,-;. We find  tering at the Fermi energy or possibly small groups of
that for typical parameters we used earllgrcan change by atoms?® Thus dynamical local defects with special realistic
about an order of magnitude. This renormalization can havenodel parameters can explain the Kondo-like anomalies ob-
even more dramatic effects for very smay’s whereTy can  served in some experiments far>Ty.>® Note that in
change by several orders of magnitude due to changes in tkgnorphous materials the positions of the defestd orbitals
value of the electron-hole asymmetisee inset of Fig. P usually have a distribution, and therefore many of the defects

Let us conclude this section with a general observationmay have resonant scattering at the Fermi energy.
Increasing the masg@he M/m; ratio), the energies of the However, to explain the two-channel Kondo scaling re-
levels are scaled down. If the central barrier is similarly re-ported in Ref. 26, one would need a renormalizgd that is
duced therily becomes smaller by the same ratio and thudess thanTy at the energy scal®~ Ty . Unfortunately, our
A/Tg is not affected, since the dependence on the highealculations are only of logarithmic accuracy, and therefore
energy cutoffD is weak. we cannot decide if the ratid;,/T¢ is small enough to
display a clear two-channel Kondo scaling. In the perturba-
tive regime (i.e., the regime where our perturbative RG
works), our results seem to indicate thHBt can be compa-

In this paper we performed a thorough scaling analysis ofable to, but somewhat smaller thah,;,, and is thus too
a dynamical defect coupled to the conduction electrons, bgmall to result in an observable two-channel Kondo behavior.
taking into account all the excited states of the defect, andHowever, one can prove both analytically and with numeri-
constructing the next-to-leading logarithmic scaling equa-cal RG calculations the existence of a regimetside the
tions. We also discussed how to take into account large norrange of the perturbative RE whereTy can be larger than
logarithmic terms that renormalize the bare parameters of thA,,. This is also indicated by our perturbative results.
theory. In the perturbative regime our calculations confirmed We have to emphasize that for a defect with resonant

V. CONCLUSIONS
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scattering in a disordered environment many of our approxi—10 K can be reached, as required to explain the experi-
mations(free-electron model, simple delta scattering on thements for Refs. 1—-3.

defect, usage of a local effective potential, etge question-

able, and the estimates of the various couplings are therefore
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