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We establish a connection between the influence functional approach of Golubev and Zaikin
(GZ) and Keldysh diagrammatic perturbation theory for calculating the decoherence time τϕ of
interacting electrons in disordered metals; we show how the standard diagrams for the Cooperon

self energy can be recovered from GZ’s influence functional e−(iS̄R+S̄I ). This allows us to shed
light on GZ’s claim that S̄R is irrelevant for decoherence: S̄R generates as many important self
energy diagrams as S̄I ; GZ’s neglect of S̄R is permissible only at high temeratures (T � �/τel).
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1. Introduction

A few years ago, Golubev and Zaikin (GZ) developed
an influence functional approach for describing interact-
ing fermions in a disordered conductor. Their key idea
was as follows: to understand how the diffusive behav-
ior of a given electron is affected by its interactions with
other electrons in the system, which constitute its ef-
fective environment, the latter should be integrated out,
leading to an influence functional (denoted by e−(iS̄R+S̄I)

below) in the path integral
∫ D(RP ) describing its dy-

namics. To derive the effective action iS̄R + S̄I , GZ
devised a strategy which, when implemented with suf-
ficient care, properly incorporates the Pauli principle –
this is essential, since both the particle and its environ-
ment originate from the same system of indistinghuish-
able fermions, a feature which makes the present problem
interesting and sets it apart from all other applications
of the influence functional strategy that we are aware of.

GZ used their new approach to calculate the electron
decoherence time τϕ(T ), as extracted from the magneto-
conductance in the weak localization regime, and found
it to be finite at zero temperature:1–4) τϕ(T → 0) = τ0ϕ,

in apparent agreement with some experiments.5) How-
ever, this result contradicts the standard view, based
on the work of Altshuler, Aronov and Khmelnitskii6)

(AAK), that τϕ(T → 0) = ∞, and hence elicited a
considerable and ongoing controversy,7) with pertinent
critique coming, in particular, from Ref.8,9)

The fact that GZ’s final results for τϕ(T ) are contro-
versial, however, does not imply that their influence func-
tional approach, as such, is fundamentally flawed. To the
contrary, having repeated their calculations in detail, we
have come to the conclusion that their strategy is sound
in principle and that an influence functional of the form
e−(iS̄R+S̄I) which they found can indeed be derived with-
out making non-standard approximations. In fact, it can
be shown, and this is our main result, that the standard
Keldysh diagrammatic expressions for the self energy of
the Cooperon can be obtained from iS̄R + S̄I . However,
when applying this influence functional to the problem
of decoherence, GZ make a semiclassically-motivated ap-
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proximation according to which the the effects of S̄R

for decoherence can be neglected. We recount a sim-
ple back-of-the-envelope argument,10) due to F. Mar-
quardt, to suggest that neglecting S̄R is permissible only
for T � �/τel, where τel is the elastic mean free time. We
shall also show that in diagrammatic language, neglect-
ing S̄R corresponds to neglecting several important
diagrams contributing to the Cooperon self energy, as
first pointed out in Ref.9)

Equation numbers from GZ’s papers,1–4) will be pref-
aced, when cited below, by I, II, III or IV, respectively.

2. The model

We consider a disordered system of interacting
fermions, with Hamiltonian Ĥ = Ĥ0 + Ĥi, where

Ĥ0 =

∫
dx ψ̂†(x)h0(x)ψ̂(x) , (1)

Ĥi =
e2

2

∫
dx1 dx2 : ψ̂†(x1)ψ̂(x1) : Ṽ int12 : ψ̂†(x2)ψ̂(x2) :

Here
∫
dx =

∑
σ

∫
dr, and ψ̂(x) ≡ ψ̂(r, σ) is the electron

field operator for creating a spin-σ electron at position
r, with the following expansion in terms of the exact

eigenfunctions ψλ(x) of h0(x) = −�2
2m ∇2r + Vimp(r)− µ:

ψ̂(x) =
∑
λ

ψλ(x)ĉλ, [h0(x)− ξλ]ψλ(x) = 0. (2)

The interaction potential Ṽ int12 = Ṽ int(|r1 − r2|) acts be-
tween the normal-ordered densities at r1 and r2.

3. Influence functional for interacting electrons

GZ proposed a strategy (whose steps and approxima-
tions are recapitulated in the Appendix), that allows the
DC conductivity, σDC, to be expressed [see Eq. (A.3)] in
terms of path integrals of the following general form [cf.
(II.53), (IV.31)]:

C̃12′,2̄1′ =

∫ 1F ,1′B

2′F ,2̄B

D(RP )e−[iS̄R+S̄I ](t1,t2)/� . (3)
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Fig. 1. A pair of paths contributing to the weak localization cor-
rection, illustrating Eq. (A.3). The interaction lines, gener-

ated by expanding the influence functional e−(iS̄R+S̄I ) as in
Eq. (A.14), are labelled according to Eq. (A.13).

The symbol
∫ D(RP ) is a shorthand for the following

coordinate-momementa double path integral,∫ 1F ,1′B

2′F ,2̄B

D(RP ) =

∫ RF (t1)=r1
RF (t2)=r2′

DRF (t3)

∫
DP F (t3)

×
∫ RB(t1)=r1′
RB(t2)=r2̄

DRB(t3)

∫
DPB(t3)e

i[S̄F0 −S̄B0 ](t1,t2)/�,

(4)

which, when taken by itself, gives the amplitude for a
free electron to propagate from r2′ at time t2 to r1 at
t1, times the amplitude for a free electron to propagate
from r1′ at time t1 to r2 at t2 [corresponding to the loop
parts of the paths in Fig. 1], in the absence of interactions
with other electrons. We shall call these the forward and
backward paths, respectively, and label them by an index

a = F,B. The corresponding free actions S̄a
0 = S̄

F/B
0 are

given in Eq. (A.4). The weak localization correction to
the conductivity, σWLDC , arises from contributions to σDC
for which the coordinates r1, r

′
1, r2 and r′2 all lie close

together. We henceforth consider only this case. Then
C̃12′,2̄1′ is just the Cooperon propagator, dominated by
contributions from those classical paths for which path
B is the time-reversed version of path F . The effect of
the other electrons on this propagation is encoded in the
influence functional e−(iS̄R+S̄I) occuring in Eq. (3). The
effective action iS̄R + S̄I turns out to have the form

S̄R/I(t1, t2) =
∑

a,a′=F,B

∫ t1

t2

dt3

∫ t3

t2

dt4 L̄
R/I
3a4a′

, (5)

where the L̄R
3a4a′ are functions of the coordinates and

momenta Ra(t3),P
a(t3) and Ra′(t4),P

a′(t4) that occur
in the path integral [cf. (II.54,55)]:

L̄R
3a4a′ =sa′R̃

(
t3 − t4,R

a(t3)−Ra′(t4)
)

× 12
[
1− 2ρ̄a0(R

a′(t4),P
a′(t4)

]
, (6a)

L̄I
3a4a′ =sasa′ Ĩ

(
t3 − t4,R

a(t3)−Ra′(t4)
)
, (6b)

Here sa stands for sF/B = ±1, ρ̄a0(R,P ) is the single-
particle density matrix in a mixed position-momentum
represenation [cf. Eq. (A.6)], while R̃(t,R) and Ĩ(t,R)
are real functions [given by Eq. (A.7)] that are, respec-
tively, proportional to retarded and Keldysh parts of the

interaction propatators (R̃ = LR, Ĩ = i12LK).
Via the influence functional, Eqs. (3) to (6) concisely

incorporate the effects of interactions into the path in-
tegral approach. S̄I describes the classical part of the
effective environment, and corresponds to the contribu-
tion calculated by AAK.6) With S̄R, GZ succeeded to
additionally also include the quantum part of the envi-
ronment, and in particular, via the occurence of the den-
sity matrix ρ̄a0(R,P ) in Eq. (6a), to properly account for
the Pauli principle. Note, though, that Eqs. (3) to (6) all
refer to a given impurity configuration; impurity averag-
ing still has to be performed, and in the path integral
formalism it is by no means easy to do this properly.

4. GZ’s strategy for determining τϕ

To calculate the decoherence time τϕ, GZ argue as fol-
lows: the effective action in Eq. (3) in general causes
the Cooperon to decay with increasing time, say as
C̃12′,2̄1′ ∼ C̃012′,2̄1′e−fd(t1−t2) [cf. (II.66), (IV.10)], where

fd(t) is an increasing function of time; τϕ is the time
scale characterizing this decay, set by fd(τϕ) � 1. To ob-
tain the function fd, GZ evoke a standard semiclassical
argument: since the path integral is dominated by the
saddle point paths of the free action S̄a

0 , i.e. by the set
of classical, time-reversed diffusive paths, they take fd
to be (i) the disorder average11) 〈 〉dis of the sum over
all classical paths 〈 〉cl of the effective action evaluated
along such a path (iS̄clR + S̄clI ), but (ii) without including
any non-classical paths:

fd(t1 − t2) ≡
〈〈

(iS̄clR + S̄clI )(t1, t2)
〉
cl

〉
dis

(7)

[cf. (III.22), (IV.11)]. Moreover, in the spirit of semiclas-
sical approximations, they (iii) take the limit12) � → 0
in the single-particle density matrix occuring in Eq. (6a)
for S̄R, i.e., they replace ρ̄a0(R,P ) of Eq. (A.6) by
the “occupation number” n0

(
h0(R,P )

)
, where n0(ξ) =

1/[eξ/T + 1] is the Fermi function [cf. (II.43), (II.68)].
Within the approximations (i), (ii) and (iii), GZ find
that S̄clR � 0 for any given pair of classical, time-reversed
paths, and hence conclude that S̄R is “irrelevant” for
decoherence, which is thus determined by S̄I alone [cf.
discussion before (III.22), or after (IV.31).] They thus
calculate fd purely from S̄clI [see, e.g., (IV.12)], and
from fd(τϕ) � 1 find, in 1 dimension for example, [cf.
(II.76,77)]

1

τϕ
=

e2
√

2D

σDC

∫ ωmax

1/τϕ

dω

2π

coth(ω/2T )√
ω

(8)

=
e2
√

2D

πσDC
(2T
√
τϕ +

√
ωmax ) . (9)

Note that the frequency integral has an ultraviolet diver-
gence at large ω, and hence has to be cut off by hand.13)

GZ cut it off at ωGZmax = 1/τel, the inverse elastic mean
free scattering time, arguing13) that at higher ω (smaller
times) the “approximation of electron diffusion becomes
incorrect” [cf. paragraph before (II.76)]. This leads to a
finite decoherence time at zero temperature in Eq. (9),
1/τϕ(T → 0) �= 0. In contrast, according to the phi-
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losophy of AAK,6) one should take ωAAKmax = T/�, since
frequencies larger than T/� would correspond to virtual
excitations of the environment, which are believed not to
contribute to decoherence. This would yield the standard
result 1/τϕ(T → 0) = 0. Thus, the controversy centers
on the question whether the higher frequency modes do
contribute to low temperature decoherence or not.

5. On the importance of S̄R for decoherence

Although we agree with GZ’s influence functional (3)
to (6), we disagree with GZ’s central conclusion that S̄R

is irrelevant for decoherence. Firstly, influence function-
als have the general feature that deducing decoherence
properties from S̄I alone is reliable only for highly ex-
cited states: as emphasized in a very insightful recent
paper by F. Marquardt,14) neglecting S̄R would amount
to neglecting dissipative effects by which the quantum
system can give back to the environment some of the
energy which it picks up from the classical part of the
environment; this neglect of dissipation would thus cause
the system to heat up beyond what is allowed by detailed
balance (an effect which can be ignored for decoherence
only if the system is already highly excited).

Secondly, and more specifically: even if one puts aside
all reservations11,12) about approximations (i) and (iii)
[although these reservations are serious], and accepts
GZ’s result that S̄clR � 0 for classical paths, a question
remains about approximation (ii): what about fluctu-
ations, i.e. contributions from paths in the path inte-
gral that deviate slightly from the classical paths”? If
the “leading” contribution vanishes, the ”subleading”
one becomes of interest! Indeed, it is natural to ex-
pect that such close-to-classical paths can produce a sig-
nificant contribution missed by GZ’s semiclassics, say
δS̄R �= 0, due to the following intrinsic problem (IP):
S̄R depends on the density matrix ρ̄0(R,P ), which at
low termperatures is a very sharp function of R and P ,
and hence very sensitive to fluctuations of (or approx-
imations inside12)) its arguments. This intrinsic prob-
lem sets the present problem apart from other, exactly
solvable models such as the Caldeira-Leggett model, and
renders meaningless any attempts3) to justify neglecting
S̄R here by comparisons to such other models.

Let us estimate10) the importance of these fluctua-
tions, by estimating δS̄R for a segment of a diffusive path
in which an electron travels ballistically with velocity vF
(and energy � µ) for a time τel between two scatter-
ing events at two impurities. Now, the close-to-classical
paths that still contribute significantly to the path inte-
gral are those for which (S̄0− S̄cl0 ) � �. Considering only
the first term in Eq. (A.4) for S̄0, we thus use

� � (S̄0 − S̄cl0 ) �
∫ τel

0

dt δP · Ṙ � τel δP vF, (10)

or δP � �/τelvF (which is just the uncertainty princi-
ple), to estimate the typical magnitude of momentum
fluctuations around PF. It follows that

δn0
(
h0(R,P )

) � δh0(R,P )

T
=

PFδP

mT
=
�

τelT
. (11)

(b)
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Fig. 2. First order contributions to the irreducible self energy of
the Cooperon, illustrating (a) Eq. (A.15), and (b,c) Eqs. (A.16).
(d): typical path contributing to Σ̃RFF ; GZ neglect Σ̃

R and hence

such paths, as first pointed out in Ref.8)

Now, GZ neglect δS̄R relative to S̄
cl
I ; since this requires

δn0 � 1, it can be reliable only for T � �/τel. For smaller
T , the contributions of δS̄R should become important.15)

Having realized that δS̄R is important at low temper-
atures, the natural next question is: can δS̄R cancel the
ultraviolet divergence arising from S̄clI ? We believe it
does, but showing this will require a more accurate cal-
culation than GZ’s, that does not resort to semiclassical
arguments and avoids approximations (i) to (iii).

6. Obtaining diagrams from influence functional

As a first step in that direction, we have explored the
connection between GZ’s influence functional and stan-
dard diagrammatic perturbation theory. The connection
turns out to be remarkably simple: upon performing the
momentum integrals in

∫ D(RP ) and expanding the re-
sulting influence functional (some details are given in
App. A.2), one generates a Dyson-like equation for the
Cooperon [Eq. (A.14)], with a self energy whose lowest
order16) irreducible diagrams [given by Eq. (A.16)] are
depicted diagrammatically in Fig. 2. Remarkably, the
resulting diagrams coincide precisely with those obtained
by standard Keldysh diagrammatic perturbation theory,
as depicted, e.g., in Fig. 2 of Ref.9) (There, impurity lines
needed for impurity averaging are also depicted; in our
Fig. 2, they are suppressed). This fact, which is our main
new result, is a strong indication that the expressions of
Eqs. (3) to (6) for the influence functional are sound,
and the approximations made during its derivation rea-
sonable [steps (5) and (6) in App. A.1, and Ref.17)].

Moreover, this fact also allows us to shed new light on
the roles of S̄R and S̄I in the effective action. S̄I gives
rise to the terms Σ̃I , which contain a factor coth(�ω/2T )
[arising from the factor Ī(k, ω), cf. Eqs. (A.7b) and
(A.13)], and S̄R gives rise to the terms Σ̃R, which con-
tain a factor tanh[(ελ − ω)/2T ] [arising from the factor
(δ̃ − 2ρ̃0) in Eq. (A.13)]. Now, the sum of all the self-
energy diagrams for iΣ̃R + Σ̃R in Fig. 2 has been eval-
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uated in Ref.,9) in the energy-momentum representation
and for those choices of energy and momentum argu-
ments that are relevant for determining the Cooperon
lifetime; the result [Eqs. (3,4) of Ref.9)] was found to be
not ultraviolet divergent, since the coth and tanh func-
tions always occur in the combination∫

dω

2π
{tanh[(ελ − ω)/2T ] + coth(ω/2T )} . . . , (12)

so that the frequency integral is cut off at ωmax � T/�, as
anticipated by AAK.6) We expect this cancellation of UV
divergencies from iS̄R and S̄I to occur not only in first
order perturbation theory, but in every order,22) since
the structure, e−(iS̄R+S̄I), of the influence functional is
such that the self energy contribution iΣ̃R and Σ̃I always
occur in the combination iΣ̃R + Σ̃I .16)

Conversely, we conclude that GZ’s neglect of δS̄R cor-
responds to neglecting the contribution of S̄R to the
Cooperon self energy, i.e., GZ neglect all the diagrams
of Fig 2(b), as first pointed out in Ref.9) As argued
above, we believe that this is allowed only if T � �/τel.

7. Conclusion

Our analysis can be summarized as follows: GZ’s influ-
ence functional stratey is sound in principle; when imple-
mented with sufficient care, it properly incorporates, via
S̄R, the Pauli principle. However, GZ neglect the latter
by neglecting δS̄R during the semiclassical calculation of
τϕ. This can work only for large temperatures.

A complete, first-principle evaluation of τϕ would be
obtained if one sums up the Dyson-like equation (A.14)
for the Cooperon in the presence of disorder, either dia-
grammatically or by using path integral techniques, but
without neglecting δS̄R. To the best of our knowledge,
this program has not yet been fully carried out to the
end. Thus, at least in the eyes of the present author,
the fate of τϕ as T → 0 for the present model has not
yet been worked out in complete, conclusive detail. At
present we see no reason to believe, though, that the
result will disagree with the conclusions of AAK.
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Appendix: Appendix

This appendix summarizes, without derivations, useful
technical results that are alluded to in the main text.

A.1 Kubo formula in terms of path integrals

The Kubo formula for the DC conductivity of a d-
dimensional conductor can be expressed as

σDC = − lim
ω0→0

e

d

∑
σ1

∫
dx2 j11′ · r2G̃R

11′,22(ω0)
∣∣∣
x1=x1′

,

G̃R
11′,22′(ω0) =

∫ ∞
−∞

dt12e
iω0t12θ(t12) C̃[11′,22′] , (A.1)

C̃[11′,22′] ≡ 1

�
〈[ψ̂†(t1, x1′)ψ̂(t1, x1), ψ̂

†(t2, x2′)ψ̂(t2, x2)]〉H ,

where j11′ ≡ −ie�
2m (∇1 − ∇1′) and a uniform applied

electric field E(ω0) was represented using a scalar po-
tential, Vext(ω0, r2) = −r2 · E(ω0). A path integral
representation for C̃[11′,22′] can be derived using the fol-

lowing strategy, adapted18) from GZ’s Ref.:2) (1) intro-
duce a source term, in which an artificial source field
ṽ2′2 couples to ψ̂†(t2, x2′)ψ̂(t2, x2), and write C̃[11′,22′] as
the linear response of the single-particle density matrix
ρ̃11′ = 〈ψ̂†(t1, x1′)ψ̂(t1, x1)〉H to the source field ṽ22′ . (2)
Decouple the interaction using a Hubbard-Stratonovitch
transformation, thereby introducing a functional integral
over real scalar fields VF/B, the so-called “interaction
fields”; these then constitute a dynamic, dissipative en-
vironment with which the electrons interact. (3) Derive
an equation of motion for ρ̃V11′ , the single-particle den-
sity matrix for a given, fixed configuration of the fields
VF/B, and linearize it in ṽ2′2, to obtain an equation of
motion for the linear response δρ̃V11′(t) to the source field.
(4) Formally integrate this equation of motion by intro-
ducing a path integral

∫ D(RP ) over the coordinates
and momenta of the single degree of freedom associated
with the single-particle density matrix δρ̃V11′ . (5) Use the
RPA-approximation to bring the effective action SV that
governs the dynamics of the fields VF/B into a quadratic
form. (6) Neglect the effect of the interaction on the
single-particle density matrix whereever it still occurs,
i.e. replace ρ̃Vij by the free single-particle density matrix

ρ̃0ij = 〈ψ̂†(xj)ψ̂(xi)〉0 =
∑
λ

ψ∗λ(xj)ψλ(xi)n0(ξλ) , (A.2)

where 〈Ô〉0 = Tre[−βĤ0Ô]/Tr[e−βĤ0 ]. (7) Perform the
functional integral (which steps (5) and (6) have ren-
dered Gaussian) over the fields VF/B; the environment is
thereby integrated out, and its effects on the dynamics of
the single particle are encoded in an influence functional
of the form e−(iS̄R+S̄I). The final result of this strategy
is that C̃[11′,22′] can be written as17) [cf. (II.49)]

lim
t0→−∞

∫
dx2̄ {J̃12′,22̄,2̄1′(t1, t2; t0)− J̃12̄,2̄2′,21′(t1, t2; t0)},

J̃12′,22̄′,2̄1′(t1, t2; t0)〉V =

∫ 1F ,1′B

2′F ,2̄B

D(RP ) (A.3)

×
∫ 2F ,2̄′B

0F ,0̄B

D(RP )
1

�

∫
dx0dx0̄ ρ̃

0
00̄ e

−[iS̄R+S̄I ](t1,t0)/� .
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where t2̄ = t2, i.e. the indices 2 and 2̄ refer to the same
time t2, but the integration variable x2̄ is independe-
nent of x2. The symbol

∫ D(RP ) stands for the double
path integral defined in Eq. (4). The complex weight-

ing functional ei(S̄
F
0 −S̄B0 ) occuring therein involves the

action for a single, free electron, in the mixed coordinate-
momentum representation,

S̄a
0 (ti, tj)[R

a(t3),P
a(t3)] (A.4)

=

∫ ti

tj

dt3
[
P a(t3) · ∂t3R

a(t3)− h̄0
(
Ra(t3),P

a(t3)
)]
,

h̄0(R
a,P a) =

P a2

2m
+ Vimp(R

a)− µ . (A.5)

The first line of Eq. (A.3) corresponds to Eq. (3), and
its signifiance as describing Cooperon propagation along
two paths from r2′ at time t2 to r1 at t1, and r1′ at time
t1 to r2 at t2, is explained after Eq. (4). The integrals in
the second line of Eq. (A.3) “initialize” this Cooperon19)

at an initial time t0 → −∞, by including forward and
backward propagation [see the left (non-loop) part of
Fig. 1] between the times t0 and t2, from and to some
initial positions r0 and r0̄, which are weighted by the ini-
tial, free single-particle density matrix ρ̃000̄ of Eq. (A.2).

The effective action iS̄R+S̄I in the influence functional
e−(iS̄R+S̄I) in Eq. (A.3) is given by Eqs. (5) and (6). S̄R

depends via Eq. (6a) on the single-particle density matrix
in a mixed coordinate-momentum representation,20)

ρ̄F0 (RF ,P F ) =

∫
drF e−ipF ·δrF ρ̃0(RF + δrF ,RF ) ,

ρ̄B0 (RB,PB) =

∫
drB e−ipB ·δrB ρ̃0(RB,RB − δrB)

(A.6)

where ρ̃0(ri, rj) = ρ̃0ij is defined in Eq. (A.2).

Furthermore, iS̄R + S̄I depends on two purely real
functions, R̃(t, r) and Ĩ(t, r), that are defined as follows
via their Fourier transforms [cf.(II.56,57)]:

(R̃/Ĩ)(t,R)=

∫
dkdω

(2π)d+1
e−iωt+ik·R(R̄/Ī)(ω,k) ,

R̄(ω,k) =
V̄ int(k)

1− V̄ int(k)χ̄(ω,k)
, (A.7a)

Ī(ω,k) = − coth(�ω/2T ) Im R̄(ω,k) . (A.7b)

Here V̄ int(q) and χ̄(ω,k) are the Fourier transforms of
the interaction potential Ṽ int(|r1 − r2|) and the charge
susceptibility χ̃12, which can be written as

χ̃12 = −i e2�(G̃R
12G̃

K
21 + G̃K

12G̃
A
21

)
. (A.8)

G̃
R/A/K
ij are the retarded, advanced and Keldysh Green’s

functions of the noninteracting, disordered system:

G̃
R/A
ij = ∓ i

�
θ(±tij)

∑
λ

ψ∗λ(xj)ψλ(xi)e
−iξλtij/� , (A.9a)

G̃K
ij = − i

�

∑
λ

ψ∗λ(xj)ψλ(xi)e
−iξλtij/�[1− 2n0(ξλ)] .

A.2 Derivation of Cooperon self energy from influence
functional

The path integrals
∫ D(RP ) of Eq. (3) can be given

a precise definition in terms of the standard time-slicing
procedure for path integrals, with one coordinate and
one momentum integral for every time slice.20) For each
time slice (labeled by n, say), the momentum integral∫
dPn can then easily be performed, since it simply has

the effect of converting the expressions occuring in the
action for that time slice from the mixed coordinate-
momentum representation to the coordinate-only repre-
sentation. Thus, the free action S̄a

0 [R,P ] is mapped to

S̃a
0 (t, t′)[Ra, Ṙa] =

∫ t

t′
dt3

[
1
2mṘ

a2(t3)− Vimp
(
Ra(t3)

)]
,

the density matrix at time slice n is converted20) from
ρ̄a0(R

a
n,P

a
n ) to ρ̃0(ran, r

a
n−1), and C̃12′,2̄1′ of Eq. (3) can

be rewritten as

C̃12′,2̄1′ =

∫ 1F ,1′B

2′F ,2̄B

D′(R) e−[iS̃R+S̃I ](t1,t2)/� , (A.10)

where the integral
∫ D′(R) is used as a shorthand for

∫ 1F ,1′B

2′F ,2̄B

D′(R) =

∫ RF (t1)=r1
RF (t2)=r2′

D′RF (t3) (A.11)

×
∫ RB(t1)=r1′
RB(t2)=r2̄

D′RB(t3)e
i[S̃F0 −S̃B0 ]/� .

The effective action iS̃R + S̃I in Eq. (A.10) is found to
have the following form21) [with δ̃ı̄i = δσı̄σiδ(rı̄−ri) and
(R̃/Ĩ)ı̄a ̄a′ = (R̃/Ĩ)

(
ti − tj , r

a
ı̄ (ti)− ra′̄ (tj)

)
]:

S̃R/I(t1, t2) =
∑
aa′

∫ t1

t2

dt3a

∫ t3a

t2

dt4a′ L̃
R/I
3a4a′

, (A.12)

L̃
R/I
3F 4F

=

{
1
2 δ̃3F 3̄F (δ̃ − 2ρ̃0)4F 4̄F R̃3̄F 4̄F

δ̃3F 3̄F δ̃4F 4̄F Ĩ3̄F 4̄F ,
(A.13a)

L̃
R/I
3B4F

=

{ −12 δ̃3̄B3B (δ̃ − 2ρ̃0)4F 4̄F R̃3̄B 4̄F

− δ̃3̄B3B δ̃4F 4̄F Ĩ3̄B 4̄F ,
(A.13b)

L̃
R/I
3F 4B

=

{
1
2 δ̃3F 3̄F (δ̃ − 2ρ̃0)4̄B4B R̃3̄B 4̄B

− δ̃3F 3̄F δ̃4̄B4B Ĩ3̄F 4̄B ,
(A.13c)

L̃
R/I
3B4B

=

{ −12 δ̃3̄B3B (δ̃ − 2ρ̃0)4̄B4B R̃3̄B 4̄B

δ̃3̄B3B δ̃4̄B4B Ĩ3̄B 4̄B .
(A.13d)

Now expand the effective action in powers of S̃R/I ,

C̃12′,2̄1′ =
∞∑

N=0

1

N !

∫ 1F ,1′B

2′F ,2̄B

D′(R) (A.14)

×
[
−1

�

∑
aa′

∫ t1

t0

dt3a

∫ t3a

t0

dt4a′
[
iL̃R
3a4a′ + L̃I

3a4a′
]]N

,
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and analyze the structure of this expansion, which can
be viewed as a type of Dyson equation for the Cooperon.
The N = 0 term simply yields free propagation between
the specified end points, C̃012′,2̄1′ = �2G̃R,1F 2

′
F G̃A

2̄B 1̄′B
.

The N = 1 term of Eq. (A.14) turns out to have the
form of a forward-backward propagator sandwidching

self-energy insertions,21) say Σ̃
R/I
aa′ , that are depicted di-

agrammatically in Fig. 2 and are given by:∫ 1F ,1′B

2′F ,2̄B

D′(R)L̃
R/I
aa′ (t3, t4) =

∫
dx3F dx3Bdx4̄F dx4̄B

�
4G̃R,1F 3F G̃A

2̄B 4̄B

(
Σ̃

R/I
aa′

)3F 4̄F
4̄B3B

G̃R,4̄F 2
′
F G̃A

3B1′B
.

(A.15)

(
Σ̃

R/I
FF

)3F 4̄F
4̄B3B

= �
2(G̃K/R)3F 4̄F G̃A

4̄B3B
(LR/iLK)3F 4̄F

(
Σ̃

R/I
BF

)3F 4̄F
4̄B3B

= −�2(G̃K/R)3F 4̄F G̃A
4̄B3B

(LR/iLK) 4̄F
3B

(
Σ̃

R/I
FB

)3F 4̄F
4̄B3B

= −�2G̃R,3F 4̄F (G̃K/A)4̄B3B (LR/iLK)3F
4̄B

(
Σ̃

R/I
BB

)3F 4̄F
4̄B3B

= �
2G̃R,3F 4̄F (G̃K/A)4̄B3B (LR/iLK)3B 4̄B .
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∫ D(RP ) as∏
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∏M−1
n=1

(∫
dran

)∏M
n=1

(∫ dpan
(2π)d

)
ei(... ), etc. In doing

so, we choose to use asymmetric conventions for a = F or B:
If ran−1 and ran are the end-of-interval coordinates for time
slice n, and δran = r

a
n−ran−1 is the relative coordinate [which

is integrated over in the Fourier transforms of Eq. (A.6)], then
we choose the “center-of-mass” coordinate asRFn = rFn−1 and
RBn = rBn , respectively.

21) For each occurrence in Eq. (A.13) for L̃R/I of a pair of indices,
one without bar, one with, e.g. 4a and 4̄a, the corresponding
coordinates ra4 and ra

4̄
are both associated with the same

time t4, and integrated over,
∫
dra4dr

a
4̄
, in the path integral∫ D′(R). When evaluating Eq. (A.15) for L̃I or L̃R, one of

these integrals can be used, respectively, to collapse the δ(ra4−
ra
4̄
) function in L̃I , or to construct a Keldysh function from

G̃K
34̄
=
∫
dx4(G̃R − G̃A)34(δ̃ − 2ρ̃0)44̄.

22) GZ have argued that since S̄R and S̄I are both real func-
tionals if their arguments are real, “iS̄R can never cancel any
contribution from S̄I” [discussion before (III.22)]. However,
this argument overlooks the fact that S̄R and S̄I are both
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and that the integration measure ei(S̄
F
0 −S̄B0 ) in

∫ D(RP ) is
complex (GZ’s argument would be correct if the integration
measure were real).

23) However, the analysis there (critized in cond-mat/0208264) is
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the intrinsic problem (IP) pointed out in section 5, namely
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peratures. Thus, we believe that the expansions in Eqs. (40)
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