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Tunneling from a two-dimensional contact into quantum-Hall edges is considered theoretically for a case
where the barrier is extended, uniform, and parallel to the edge. In contrast to previously realized tunneling
geometries, details of the microscopic edge structure are exhibited directly in the voltage and magnetic-field
dependence of the differential tunneling conductance. In particular, it is possible to measure the dispersion of
the edge-magnetoplasmon mode, and the existence of additional, sometimes counterpropagating, edge-
excitation branches could be detected.
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The quantum-Hal(QH) effect arises due to incompress- realized recently for studying the integer QH effect in
ibilities developing in two-dimensional electron systemscleaved-edge overgrown semiconductor heterostructires.
(2DES at special values of the electronic sheet densjy In contrast to previous experiments, it providesiamentum
and perpendicular magnetic fieRifor which thefilling fac-  resolvedspectral probe of QH edge excitatiotiswith both
tor v=2mhcng/|eB| is equal to an integer or certain frac- the components of canonical momentum parallel to the bar-
tions. The microscopic origin of incompressibilities at frac- rier and energy being conserved in a single tunneling event,
tional v is electron-electron interaction. Laughlin’s trial- strong resonances appear in the differential tunneling con-
wave-function approaétsuccessfully explains the QH effect ductancedl/dV as a function of the transport voltage and
atv=w,,=1/(p+1) wherep is a positive even integer. Our applied magnetic field. Similar resonant behavior for tunnel-
current microscopic understanding of why incompressibili-ing via extended uniform barriers has been used recéntfy
ties develop at many other fractional values of the fillingto study the electronic properties of low-dimensional elec-
factor, e.g., v p=m/(mp+1) with nonzero integerm  tron systems. It has also been suggested as a tool to observe
++1, is based on hierarchical theori&s. spin-charge separation in Luttinger liquf8sand the

The underlying microscopic mechanism responsible fointeraction-induced broadening of electronic spectral func-
creating charge gaps at fractionaimplies peculiar proper- tions at single-branch QH edg&sHere we find that the
ties of low-energy excitation in a finite quantum-Hall samplenumber of resonant featuresdt/dV corresponds directly to
which are localized at the bounddryFor v= Vmp, M  the number of chiral edge excitations present. Edge-
branches of such edge excitati6nd are predicted to exist magnetoplasmon dispersion curves can be measured and
which are realizations of strongly correlated chiral one-power laws related toyxLL behavior be observed.
dimensional electron systems callekiral Luttinger liquids ~Momentum-resolved tunneling spectroscopy in the presently
(xLL). Extensive experimental efforts were undertaken re-considered geometry thus constitutes a powerful probe to
cently to observeyLL behavior because this would yield an
independent confirmation of our basic understanding of the
fractional QH effect. In all of these studiés;*® current-
voltage characteristics yielded a direct measure of the energy
dependence of théunneling density of statefor the QH
edge. This quantity generally contains information on global
dynamic properties as, e.g., excitation gaps and the orthogo-
nality catastrophe, but lacks any momentum resolution.
Power-law behavior consistent with predictions froL
theory was fountt2'°for the edge of QH systems at the
Laughlin series of filling factors, i.e., far=wv,,. However,
at hierarchical filling factors, i.e., when=v, , with |m|

o FIG. 1. Schematic picture of tunneling geometry. Two mutually
>1, predictions ofyLL theory are, at present, not supported perpendicular two-dimensional electron systems are realized, e.g.,

by experlmenf‘.3'14 This d_lscrepancy InSpl_red theoretical in a semiconductor heterostructure. An external magnetic field is
works, too numerous to cite here, from which, however, o, jieq such that it is perpendicular to one of them (2DESut in
generally accepted  resolution —emerged.  Curréniane for the other one (2 DES When 2DES is in the quantum-
experlment_%ﬁ suggest that details of the edge potential mayy| regime, chiral edge channels form along its boundmgli-
play a crucial rte. New experiments are needed to test thecated by broken lines with arrowsWhere they run parallel to
present microscopic picture of fractional-QH edge excita-2DES, electrons tunnel between edge states in 2DESd plane-
tions. wave states in 2DESwith the samequantum numbep, of mo-

Here we consider a tunneling geometry that is particularlymentum component parallel to the barrier. Experimentally, the dif-
well suited for that purpose, see Fig. 1, and which has beeferential tunneling conductanaH/dV is measured.
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characterize the QH edge microscopically. scopic theories® predict the existence of two Fermi points
To compute the tunneling conductances, we apply thég, and kg which correspond to outer and inner single-
general expression for the current obtained to lowest order ibranch chiral edges of QH fluids at Laughlin-series filling
a perturbative treatment of tunneliig, factors v, =1/(p=1) and v =+ 1[(2p=1)(p=1)], re-
spectively. The negative sign ef- indicates that the inner

e de edge mode is counterpropagating. We have usedyttie
- . 2| = —
(V)= 72 KEX |tkuvn’><| f ZW{nF(S) ne(e +eV)} bosonization ansatzand standard methotsroutinely ap-
-0 plied in the study of one-dimensional electron systems to
><A”(IZ” £)A, (n,X,e+eV). (1) ~ compute the spectral functions. As these have not been ob-

tained before, we briefly discuss their main features here.
HereA| andA, denote single-electron spectral functions for ~ According to yLL theory, the existence of two Fermi
2DES and 2DES, respectively.(See Fig. 1L We use a points gives rise to a discrete infinite set of possible electron
representation where electron states in the first are labeled hynneling operators at the edge. This is because an arbitrary
a two-dimensional wave vecttr kj=(ky,k,), while the numberN of fractional-QH quasiparticles with charge equal
quantum numbers of electrons in 2DE&re the Landau- to ev, can be transferred to the inner edge after an electron
level indexn and guiding-center coordinaiin x direction.  has tunneled into the outer ofe€Each of these processes
We assume that 2DE® located ak=0. The simplest form  gives rise to a separate contribution to the electronic spectral
of the tunneling matrix elememp;” n.x reflecting translational  function at the edge which is of the general form
invariance iny direction is

i, nx=ta(X) S(ky —K), 2 ALY, (d.e)=

27z ( L,/2mh ) RS AR
) v1F o,

T(7{MT (7Y

wherek=X/1? with the magnetic length= \#%c/[eB|. The

X|e—rhvq] ”<2N)_1|81 rfiv,q| -1
dependence df,(X) on X results from the fact that an elec- 1 2

tron from 2DES occupying the state with quantum number X{O(rhv1g—e)O(Ete—rhv,Qq)
X is spatially localized on the scale bfaroundx=X. The _
overlap of its tail in the barrier with that of states from +0O(e—rfiv,q)O(rhv,q+e)}. 6)

2DES§ will drop precip_itlo_usly asx/I gets I_arge. Finally, Hereqzk—k(FN),Wherek(FN)=kpo—NV§(kFo— ke;). The ve-
ne(e) =[exp/kgT) + 1]~ is the Fermi function. In the fol- |, ities,,. >4 ,>0 of normal-mode edge-density fluctuations
lowing, we use the expressioA(kj,e)=2md(¢—Eg)  and the exponents!} depend strongly on microscopic de-
which is valid for a clean system of noninteracting tails of the edge, e.g., the self-consistent edge potential and
electrons® Here E;;H denotes the electron dispersion in interedge interactions. We focus here on the experimentally
2DES . realistic case when inner and outer edges are strongly
The spectral function of electrons in 2DESepends cru-  coupled and the normal modes correspond to the farifiliar
cially on the type of QH state in this layer. At integey ~ charged and neutral edge-density waves. In this limit, we
when single-particle properties dominate and disorder broad1@ve”** vi=vc~O(IN[Ly/1]), v,=v,~O(1) (wherec and

ening is neglected, it has the form n denote charged and neutral, respectiyegnd the expo-
nents assume universal valuegiN=7y=p=+1/2, 7M™
A (n,X,e)=A,(k,e)=2m8(s—Ep, (3 =y7M=(2N=*1)%2. Note that exponents are generally

i =0F (N) —
whereE,, is the Landau-level dispersion. Strong correlations /96" than unity except foN=0,51 where ;"= 1/2. In
) . the latter case, an algebraic singularity appears in the spectral
present at fractional alter the spectral properties of edge

o OEEE : ) =~ function. This is illustrated in Fig. 2. Such divergences will
excitations. In the low-energy limit, it is possible to linearize

. . o Pe visible as strong features in the differential tunneling con-
the lowest-Landau-level dispersion around the Fermi POINYuctance; see below. Contributions to the spectral function
ke. At the Laughlin seriegy=1/(p+1) and for short-range ’ . P

interactions present at the edge, the spectral function wafgr all'other values oN do not show such divergences and
found28 o bg 9e, P will give rise only to a featureless background in the conduc-

tance.
7 q \P With spectral functions for 2DESat hand, we are now
AL (0,8)= —,<—) S(e—rhved). (4  able to calculate tunneling transport. We focus first on the
p+i pt\ 2L, case when 2DESis in the QH state ab=1. For realistic

Here q=k—kg, r== distinguishes the two chiralities of situations, the differential tunneling conductartiédV as a
edge excitationsL, is the edge perimeten. the edge- function of voltageV and magnetic field will exhibit two
magnetoplasmon velocity, ardan unknown normalization ines of strong maxima whose positions B space are
constant. The power-law prefactor of tidefunction in Eq.  9iven by the equations

(4) is a manifestation ok LL behavior.

The main focus of our work is the sharp QH edge at Eok, = &L 63
hierarchical filling factors. Here we provide explicitly the _ b
momentum-resolved spectral functions fot v..,,. Micro- EOkFH_SFi’LeV' (6Db)
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FIG. 3. Gray-scale plot of singular contributions to the differen-
tial conductance for tunneling into the two-branch QH edge at fill-
ing factor 2/3. A qualitatively similar plot is obtained for filling
factor 2/5. Note the strong maximum rising as a power law for
negative bias, which is continued as a step edge for positive bias. Its
position in thee V-6 plane follows a line whose slope corresponds

| to the edge-magnetoplasmon velocity. To obtain the plot, we
have linearized the spectrum in 2DESd absorbed the magnetic-
field dependence into the paramety=k® —kg . As there are
two such singular contributions @l/dV with N=0,1 which have
different 5y, a doubling of resonant features shown in this plot
would be observed experimentally.

FIG. 2. Spectral functions for two-branch hierarchica
fractional-QH edges at bulk filling factor 2/B)] and 2/5[b)],
where the charge(edge-magnetoplasmpmode is assumed to be
left-moving. (a) We showA®)(q,e)=A%)(q,¢) for a fixed value of
g. Note the similarity with the spectral function of a spinless Lut-
tinger liquid?*?®The only difference is that, in our case, velocities
of right-moving and left-moving plasmon modes are not eq(ml.
AQLXq,e)=A%:(q,¢) at fixedq. It is reminiscent of the spectral experimental investigation. Most importantly, however, the
function for a spinfulyLL exhibiting spin-charge separatiot®but  two spectral functions with singularities exhibit them slightly
differs due to the absence of any algebraic divergencewag. shifted in guiding-center, i.e.k direction by an amount

vy (Keo—Kg) . Hence, two maxima and a double-step feature
Herek\,z\/2m(aF||—e\/)/ﬁ2 andkg, the Fermi wave vec- should appear in the differential tunneling conductance
tor in 2DES, are the extremal wave vectors for which whose distance in magnetic-field direction will be a measure
momentum-resolved tunneling occurs. Fermi energies if the separation of inner and outer edges. Observation of
2DES ) are denoted by, | . Equations(6) can be used to this doubling would yield an irrefutable confirmation of the
extract the lowest-Landau-level dispersigg, from maxima  expected multiplicity of excitation branches at hierarchical
in the experimentally obtainedl/dV, thus enabling micro- QH edges.
scopic characterization of real QH edges. Experimental observation of our predictions requires suf-

When 2DES is in a QH state at a Laughlin-series filling ficient momentum resolution for tunneling in real samples.
factor v, ,, it supports a single branch of edge excitationsDeviations from perfect momentum conservation can be
just like atv=1, and the calculation of the differential tun- quantified by a length scale <L, associated with the
neling conductance proceeds the same way. The major diffominant source of momentum relaxation. To resolve struc-
ference is, however, the vanishing of spectral weight at théure in guiding-center space such as distinct integer QH edge
Fermi point of the edge; compare Eq®) and (4). This  branches with Fermi points having a distaht&kg requires
results in the suppression of maxima described by(Ea), L.e>2m/Ake. Edge-dispersion spectroscopy performed in
while those given by Eq(6b) remain. The intensity of the the integer QH regimé indicates that this requirement can
latter rises along the curve as a power law with expoment be fulfilled in real samples whetéA kg of the order of a few

Finally, we discuss the case of hierarchical filling factorsl is expected. Multiple edge-excitation branches due to
v+, Which are expected to support two branches of edgeeconstructiof? at a smooth edge could be observed in a
excitations. To be specific, we consider filling factors 2/3 andsimilar fashion. Verification of the two-branch structure of
2/5. In both cases, there are many contributions to the speedges atv=v.,, requiresL o> 27/ (v, |Keo— Kgil) and re-
tral function and, hence, the differential tunneling conduc-alization of a sharp edge in the fractional QH regime.
tance. However, only two of these exhibit algebraic singu- In conclusion, we have calculated the differential conduc-
larities. It turns out that these singularities give rise to eithetance for momentum-resolved tunneling from a 2DES into a
a strong maximum or a finite step in the differential tunnel-QH edge. Maxima exhibited at=1 follow two curves in
ing conductance, depending on the sign of voltd§ee Fig. V-B parameter space whose expression we give in terms of
3.) The strong maximum results from a logarithmic diver- the lowest-Landau-level dispersion. Their explicit form en-
gence that occurs whem/:ﬁvc(k(FN)— kg). Both the maxi-  ables edge-dispersion spectroscopy. At Laughlin-series filling
mum and the step edge follow the dispersion of the chargethctors, yLL behavior results in the suppression of one of
edge-magnetoplasmon mode and would therefore enable iteese maxima and characteristic power-law behavior exhib-
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