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We study how the formation of the Kondo compensation cloud influences the dynamical properties
of a magnetic impurity that tunnels between two positions in a metal. The Kondo effect dynamically
generates a strong tunneling impurity-conduction electron coupling, changes the temperature dependence
of the tunneling rate, and may ultimately result in the destruction of the coherent motion of the particle at
zero temperature. We find an interesting two-channel Kondo fixed point as well for a vanishing overlap
between the electronic states that screen the magnetic impurity. We propose experiments where the
predicted features could be observed.
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Introduction.—Tunneling of a heavy particle or some
collective degree of freedom in a dissipative environment
has been the subject of intense theoretical and experimen-
tal research in the past and is by now reasonably well un-
derstood [1–7]. Maybe the most intriguing case is that
of Ohmic dissipation, where the particle usually couples
to electron-hole excitations of a metallic environment. In
this case the bare tunneling amplitude D0 of the particle
is strongly renormalized due to the dissipative environ-
ment, and becomes temperature dependent. In the simplest
scenario, where the tunneling occurs between two sites
(two level system, TLS), the effective tunneling displays
a power-law behavior over a wide range of temperatures,
D�T � � D0�T�v0�a , with v0 a high-energy cutoff of the
order of the Debye frequency, and a a dimensionless cou-
pling constant [1,2]. The renormalization of the tunneling
amplitude is a consequence of Anderson’s orthogonality
catastrophe [8]: At any position the presence of the par-
ticle generates a screening cloud that consists of an infinite
number of electron-hole excitations. The formation of this
huge “electronic polaron-cloud” slows down the particle,
increases its mass, and thus decreases its tunneling ampli-
tude. Depending on the specific value of the coupling a,
the dynamics of the particle can be of three different kinds:
(a) If the coupling is small the particle moves with slightly
damped coherent oscillations between the two positions at
T � 0. (b) For 1�2 , a , 1 the motion of the particle
becomes incoherent while for even larger couplings (c) the
particle becomes localized and cannot move from one well
to the other.

Here we discuss the very interesting but poorly under-
stood case of a tunneling magnetic impurity coupled to
an Ohmic environment [9,10]. Possible examples of such
a system include a magnetic impurity tunneling between
a scanning tunneling microscope (STM) tip and a metal-
lic surface [11], a Kondo impurity in an amorphous re-
gion [12], a spin-1�2 quantum soliton interacting with
a metallic environment [13], charge tunneling in double
quantum-dot systems [14,15], or a Kondo impurity on a
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metallic surface. In all these cases the spin of a mag-
netic impurity couples through an exchange interaction to
the local spin density fluctuations of the conduction elec-
trons, providing an Ohmic dissipative environment. Unlike
the usual Caldeira-Leggett model, this coupling becomes
renormalized due to many-body effects as the tempera-
ture is lowered, and leads to the dynamical formation of
a Kondo compensation cloud below the Kondo tempera-
ture TK . Since the impurity has to drag the compensation
cloud with itself, this results in an increased dissipation
and a renormalized tunneling amplitude below TK . In the
present paper we study this interplay between the magnetic
Kondo effect and the orbital motion of the TLS. Electron
assisted processes involving simultaneous tunneling and
electron scattering have a negligible effect compared to di-
rect tunneling [16]. Therefore, in contrast to Refs. [9,10]
we neglect them.

Model.—We consider the simplest possible case, where
tunneling takes place between two positions only, R6.
Furthermore, though we also discuss the role of asym-
metry to some extent, we mostly focus on spatially sym-
metrical TLS’s. We show, in particular, that the Kondo
effect associated with the magnetic degrees of freedom
leads to a strong temperature dependence of the exponent
a, and may eventually induce an incoherent state. De-
stroying the Kondo cloud with a magnetic field, one can
decrease the dissipation, increase the tunneling rate, and
eventually drive the particle back to the coherent regime.
We also find that under very special circumstances the or-
bital motion may lead to the appearance of a two-channel
Kondo (2CK) state where the impurity tunnels very fast
back and forth and forms a Kondo state with the conduc-
tion electrons at both positions. This new type of 2CK
fixed point appears in the real spin sector and has noth-
ing to do with the orbital Kondo effect [17] debated in
Ref. [16].

We describe the TLS by the tunneling Hamiltonian

Htun � 2�D0Tx 1 DzTz� , (1)
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where the two pseudospin states Tz � 61�2 correspond
to the two tunneling positions, D0 is the tunneling matrix
element, and Dz describes the asymmetry of the TLS.

We assume that the tunneling particle interacts with the
local electronic spin density only at its actual position:

Hint �
X

q�6

JqPq
�S�Cy

q �sCq� . (2)

Here P6 � 1�2�1 6 2Tz� projects out the TLS states at
positions R6, J6 is the exchange coupling at these posi-
tions, �S denotes the spin operator of the impurity, and �s
stands for the Pauli matrices. The field operators, C

y
6,m �R

eikR
6 c

y
kmd3k��2p�3, create conduction electrons at R6

with spin m. Including electron-assisted processes in
Eq. (2) has not changed our results [14].

Consider the case of a symmetric TLS with J2 � J1 �
J and Dz � 0. The relevant conduction electron
degrees of freedom can be represented simply by
one-dimensional fermion fields [18,19], cpam, obeying
canonical anticommutation relations, �cpam, cy

p0a 0m0 � �
2pd�p 2 p0�daa 0dmm0:

Hel �
X

a�e,o

X
m�",#

Z kF

2kF

dp

2p
yFpcypamcpam . (3)

The radial momentum p is measured from the Fermi mo-
mentum kF , yF is the Fermi velocity �yF � kF � h̄ � 1�,
a � �e, o� is the parity, and m denotes the spin. In terms
of the fields Ca,m �

RkF

2kF
cpamdp�

p
2p , Eq. (2) can be

rewritten as

Hint �
g

2
�S�1 1 F�Cy

e �sCe 1
g

2
�S�1 2 F�Cy

o �sCo

1 g �S
p

1 2 F2 Tz�Cy
e �sCo 1 Cy

o �sCe� . (4)

Here F � sin�kFd��kFd measures the overlap of the states
C6, with d � jR1 2 R2j the tunneling distance, and
g � Jk2

F�2p2. For d � 0 this Hamiltonian obviously re-
duces to the single-channel Kondo model.

Numerical Renormalization Group.—We used Wilson’s
numerical renormalization group (NRG) [20] to determine
the effective temperature-dependent tunneling amplitude
D�T� and the T � 0 impurity spin and pseudospin spectral
functions � i

O � 2Im�xi
O �v��, (with x

i
O �v� the Fourier

transform of the retarded response function, O � �T , S�.)
In this technique one constructs a series of Hamilto-
nians, HN , which are diagonalized iteratively. Having
obtained the many-body eigenstates and energies of HN

one can calculate physical quantities at an energy scale
T , v � vN � L2�N11��2, with L � 3 a discretization
parameter. Our results were obtained by keeping the low-
est 250 states in each iteration. To obtain accurate results
we exploited invariance under (i) parity (ii) global spin
rotations, and (iii) a hidden SU(2) symmetry, related to
electron-hole symmetry [21]. [For calculations in the
presence of magnetic field we used only the U(1) compo-
nent of the two SU(2) symmetries, and kept �700 states.]
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FIG. 1. Logarithmic plot of various spectral functions dis-
cussed in the text for L � 3, g � 0.144, and D0 � 2.31 3
1025. The energy scales TK and D� are also indicated.

Results.—The spectral functions �S and �x
T are shown

in Fig. 1. In the somewhat peculiar case of F � 0, where
C1 and C2 do not overlap, we can observe two distinct
crossovers: The first takes place at the Kondo energy
TK � e21�2g and corresponds to the formation of a Kondo
state at the actual position of the TLS. Above TK all spec-
tral functions behave as 1�v, indicating that all correlation
functions are constant for times shorter than 1�TK . Below
TK the spin spectral function becomes linear correspond-
ing to a Fermi liquid impurity susceptibility �1�TK . The
logarithmic slope of �x

T changes at TK : This change is
related to the dynamical renormalization of the tunneling
amplitude by the formation of the Kondo compensation
cloud.

As also confirmed by a detailed analysis of the finite size
spectrum [14], at time scales �1�TK ø 1�D0 tunneling
events are very rare, and the particle is essentially immo-
bile. However, D0 is a relevant perturbation, and leads to
a second crossover at a renormalized tunneling amplitude
D�, where the TLS freezes into the even tunneling state.

For F � 0 a two-channel Kondo state is formed below
D�, as confirmed by the analysis of the finite size spectra
[14]. This is most easily understood by observing that the
last term of Eq. (4) flips the TLS between the Tx � 61�2
states, and can therefore be dropped below D�. Then Hint
becomes simply the two-channel Kondo Hamiltonian with
couplings ge�o � g�1 6 F�, and for F � 0 a two-channel
Kondo state is formed in the spin sector [22]. The spin
spectral function becomes constant below D�, implying the
logarithmic divergence of the spin-susceptibility, xS�T ,

D�� � D� ln�TK�T��T2
K . The external magnetic field and

asymmetry are both relevant operators at this two-channel
Kondo fixed point [23], which is thus extremely unstable,
and probably rather difficult to access experimentally. For
any finite overlap ge fi go, a third crossover occurs to a
Fermi liquid state at an energy T � , D�. For generic F’s
this second crossover takes place almost simultaneously
247203-2
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FIG. 2. Magnetic field dependence of the tunneling rate for
F � 0.2 and several values of T�TK . Inset: Temperature de-
pendence of the normalized tunneling rate R̃�T� � R�T ��D

2
0. F

decreases from top to bottom. We used L � 3, g � 0.144, and
D0 � 2.31 3 1025 in both figures.

with the crossover at D� and only a small kink remains
from the two-channel Kondo behavior at F � 0.

While the spectral functions help us to understand the
behavior of the model, experimentally it is next to impos-
sible to measure them. Quantities of real interest are the
effective tunneling amplitude at temperature T , D�T�, and
the tunneling rate R�T�. We determined D�T� directly from
the D0 induced ground state splitting and also indirectly
from the spectral function � x

T �v � T � using scaling ar-
guments, with identical results [14]. The temperature de-
pendent tunneling rate [1], R�T� � D�T�2�T , calculated
in this way is shown in the inset of Fig. 2. It can be ex-
perimentally determined by performing real-time measure-
ments [7]. As the most striking consequence of the Kondo
effect, the logarithmic slope of R�T� changes at T � TK .

In some experiments it is difficult to change the external
temperature. However, one can suppress the Kondo effect
by applying an external magnetic field Htun ! Htun 2

BSz , and thereby increasing R�T� by several orders of
magnitude, as shown in Fig. 2.

Another quantity of theoretical interest is the effective
dissipation strength a, that we can define as
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FIG. 3. (a) Energy and overlap dependence of the anomalous dimension a of the dimensionless tunneling amplitude for F � 0,
0.1, 0.2 0.3, 0.4, 0.5, and 0.6 (top to bottom), as determined from the logarithmic derivative of the spectral function �x

t . (b) Rescaled
spectral functions and the evolution of the coherence peak with increasing overlap. We computed D� from Eq. (6) with C � 0.0916
and TK � e21�2g .
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d lnD�v�
d lnv

� a�g, v,F�, 	D�v0� � D0
 . (5)

In the regime of interest v ¿ D�, one can show that a

is a universal function of v�TK , and F, that can be also
related to the logarithmic derivative of �x

T as [14] a�v� �
1
2 � d ln�x

T

d lnv 1 1�. For large frequencies a � 0, meaning that
the tunneling amplitude remains unrenormalized above TK

(see Fig. 3a). Below TK , on the other hand, the dissipation
strength scales to an overlap-dependent constant, a,, that
coincides with the Anderson orthogonality exponent K �
2� 1

p atan
q

1
F2 2 1 �2 for a maximally strong scatterer with

a phase shift d � p�2 (see inset) [24].
The physical picture behind this is as follows: It takes

about a time of �1�TK to build up the Kondo compen-
sation cloud at the impurity’s actual position. There-
fore the motion of the impurity is essentially decoupled
from the heat bath at energy scales v . TK . However,
once formed, this compensation cloud acts as a maxi-
mally strong potential scatterer in agreement with Noz-
ières’ Fermi liquid picture [25], and leads to a strong dis-
sipation.

The energy scale D� is determined by the condition
D�v � D�� � D� [1], leading to the expression

D� � D0

µ
C

D0

TK

∂a,��12a,�
, (6)

with C a constant of the order of unity. The constant
a, also characterizes the dissipative nonequilibrium dy-
namics of the TLS below TK [1]. In Fig. 3 we show
the rescaled spectral function D�2�z

T �v��v, related to the
real part of the retarded response function. Without dis-
sipation, a, � 0 �F � 1�, the tunneling of the TLS is
entirely coherent: The TLS oscillates between the two po-
sitions without damping, and the spectral function consists
of two Dirac delta’s. For F , 1 the coherence peak broad-
ens: The oscillations become exponentially damped and
at very long time scales (at T � 0) the correlation function
behaves as �Tz�t�Tz�0�� � 1�t2. For even smaller values
of overlap the peak becomes completely invisible, imply-
ing that the formation of the Kondo compensation cloud
suppresses the coherent oscillations.
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Realistic situations.— In general, the TLS model is
more complex than the one we discussed until now. The
TLS may not be symmetrical, Dz fi 0, and the couplings
J6 in Eq. (2) may not be equal. The difference between
J6 leads to two subsequent Kondo effects at TK’s asso-
ciated with the two positions, and consequently changes
in the logarithmic slope of R�T� twice, while a finite
Dz generates a new energy scale, below which the TLS
freezes into one of the states Tz � 61�2 [14].

In Eq. (2) we only took into account the exchange
interaction. In reality, the TLS and the electrons interact
through a local potential scattering as well. However, for
a Kondo impurity this potential scattering is relatively
small ��J� in the exchange scattering-channel and since
it remains essentially unrenormalized, its effect can be
neglected compared to that of the exchange interaction.
Potential scattering in other scattering channels may,
however, be still present and shift a by a temperature-
independent value a�T� ! a�T� 1 a.. Therefore, for
small overlaps the Kondo effect may even drive the TLS
from a coherent ground state to an incoherent state with
a . 1�2 (see Fig. 3a). The value of a, can also be
considerably larger for spin S . 1�2 impurities [14].

Possible experiments.—An interesting experimental re-
alization is provided by a Kondo impurity on a metallic
surface. In a generic situation, the Kondo impurity is too
heavy, and the barrier height and distance between two
neighboring lattice positions are too large to obtain rea-
sonable tunneling probabilities. However, one can actually
tune the barrier height by placing an STM tip above the
impurity and applying a voltage on it. Approximating the
barrier shape by a sine function, we can estimate the tun-
neling rate. Assuming a tunneling distance of d � 1.47 Å,
corresponding to tunneling on a 111 Cu surface, taking the
mass of Co as an example, and an attempt frequency of
v0 � 100 K, we find that a tunneling rate of R � 1 Hz
corresponds to D0 � 0.71025 K and a barrier height of
V0 � 120 K. With these parameters the motion of the
particle is entirely dominated by quantum tunneling be-
low T � � 4 K.

Therefore, if one gradually decreases the barrier height
at T � 1 K until the impurity starts to hop between neigh-
boring positions, one is safely in the tunneling regime,
where our theory applies. One could monitor the motion
of the magnetic impurity by placing it on a nanowire, and
extract the tunneling rate from the time dependent con-
ductance fluctuations, just as in point contact experiments
[7,12]. In an STM experiment it is rather difficult to change
the temperature, however, for a suitable magnetic impurity
with a surface Kondo temperature of TK , 10 K one can
destroy the Kondo effect by applying a magnetic field, and
thereby increase the tunneling rate as shown in Fig. 2.

Our discussion can be easily generalized to the case
of a spinless TLS that happens to be close to a Kondo
impurity. In this case Friedel oscillations generated by
the TLS modify the local density of states at the Kondo
impurity and thus the exchange coupling will depend on
247203-4
the position of the TLS, leading to a Hamiltonian similar to
Eq. (2). In this case we predict that formation of the Kondo
state on the magnetic impurity may strongly suppress the
tunneling rate of the TLS. This effect could be measured
performing real time measurements on magnetically doped
disordered point contacts [7,12], where both the magnetic
field and temperature dependence could be tested.
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