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We present a conceptually simple, analytical calculation of the finite-size crossover spectrum of the aniso-
tropic two-channel Kond¢2CK) model at its Toulouse point. We use Emery and Kivelson’s method, gener-
alized in two ways. First, we construct all boson fields and Klein factors explicitly in terms of the model’s
original fermion operators and, secondly, we clarify explicitly how the Klein factors needed when refermion-
izing act on the original Fock space. This enables us to follow the evolution of the 2CK model’s free-fermion
states to its exact eigenstates for arbitrary magnetic fields and spin-flip coupling strengths. We thus obtain an
analytic description of the crossover of the finite-size spectrum to the non-Fermi-liquid fixed point, where we
recover the conformal field theory resulisiplying a direct proof of Affleck and Ludwig’s fusion hypothesis
From the finite-size spectrum we extract the operator content of the 2CK fixed point and the dimension of
various relevant and irrelevant perturbations. Our method can easily be generalized to include various
symmetry-breaking perturbations, and to study the crossover to other fixed points produced by these. Further-
more, it establishes instructive connections between different renormalization group schemes. We also apply
our method to the single-channel Kondo model.

I. INTRODUCTION fixed points, a result first reported in Ref. 4. The calculation
enables us to elucidate the nature of the NFL excitations at

One of the most intriguing aspects of a non-Fermi liquidthe fixed point in great and instructive detail, and to see
(NFL) is that its elementary excitations are not simply re-explicitly how the symmetries of the NFL fixed point emerge
lated to the bare excitations of the non-interacting Fermi lig-as it is approached from the crossover region. Furthermore it
uid; gaining an understanding of the nature of the elementargstablishes instructive connections between various popular
excitations of a NFL is thus an important conceptual chal+enormalization grougRG) schemes, since it allows one to
lenge. The two-channel Kond@CK) model, introduced in analytically illustrate their main ideas.

1980 by Noziees and Blandir,is one of the simplest and The two-channel Kondo model has of course already been
most-studied quantum impurity models with NFL behavior,studied theoretically by an impressive number of different
and offers the rare opportunity to address this question dimethods, which are comprehensively reviewed in Ref. 3.
rectly: it has both a free and a NFL fixed point, and theThey include approximate methods such as multiplicAfi\e
crossover between the two, including the change in the naand path-integrd® RG approaches and slave-boson
ture of the elementary excitations, can be analyzed exactlynethods’~*! effective models such as the so-called compac-
using the bosonization approach of Emery and Kivelsontified model*>~1° which is partially equivalent to the 2CK
(EK). model; the numerical RGNRG);**~'8 and exact methods,

In the 2CK model two channels of spinful conduction such as the Bethe ansdtz?' conformal field theory
electrons interact with a single spin 1/2 impurity via a local (CFT),322~2*and Abelian bosonizatioh??5-30
antiferromagnetic exchange interaction. In contrast to the Among the several exact approaches to solving the 2CK
single-channel Kondao1CK) model, which has a stable model, the one that in our opinion is the most simple and
infinite-coupling fixed point at which the conduction elec- straightforward, is that introduced by Emery and Kivelson
trons screen the impurity spin completely, in the two-channe(EK),> who employ one-dimensional Abelian bosonization
case the impurity spin isverscreenedt infinite coupling, (pedagogically reviewed in Ref. 3and refermionization to
and the 2CK model’s infinite-coupling fixed point is un- show that along the so-called Emery-Kivelson lif@ulouse
stable. A stable NFL fixed point exists at intermediate couoint) the anisotropic 2CK model maps ontogaadratic
pling, and is characterized by a nonzero residual entropy anaesonant-level model. Since spin anisotropy is irrelevant for
nonanalytical behavior for various physical quantities. Thethe 2CK Kondo modéf (as also shown belowtheir work
relevance of this model to physical systems is extensivelylso yielded new insight into the generic behavior of the
reviewed in Ref. 3. isotropic 2CK model.

In this paper, we use EK’s method to perform a concep- Though the approach is constrained to the vicinity of the
tually simple, analytic calculation of the finite-size crossoverEK line, the latter is stabf@ and connects the Fermi-liquid
spectrum of the 2CK model between the free and the NFland non-Fermi-liquid regimes, so that EK’s method captures
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both the model's NFL behavior and the crossover from thalifferent relevant and irrelevant operators. We also prove
free to the NFL fixed point. EK calculated a number of ther-that the leading irrelevant operator is missing along the EK
modynamic and impurity properties and also some electrofine but is present away from it. Since our method works also
correlation functions, and explained the NFL behavior by than the presence of an arbitrary magnetic fiélohlike CFT),
observation that only “one half” of the impurity’s Majorana we can alsdiv) investigate how a finite magnetic field de-
degrees of freedom couples to the electrons. Although at thetroys the NFL spectrum for the low-energy excitations of
EK line the properties of the model are somewhat specifithe model and restores the FL propertiés. Furthermore,
since the leading irrelevant operator vanishes along it, theur finite-size bosonization approach can easily be related to
generic behavior can easily be derived by perturbation theoryarious popular RG methods; it therefore not only provides a
in its vicinity. The EK method has since been fruitfully ap- useful bridge between them, but can potentially be used as a
plied and generalized to several related quantum impuritpedagogical tool foanalyticallyillustrating their main ideas.
problems®>~?° Ye in particular showed how to use the EK (vi) For completeness, we also construct the analytical finite
method and simple scaling arguméhts identify easily the  size spectrum of theingle channel Kondo modeind cal-

fixed points of various bosonizable quantum impurity mod-cylate the crossover between its weak and strong coupling
els, including the k-channel spin anisotropic Kondo EFerm; liquid fixed points.

27(a) i i . .
model;"® and how to calculate electronic correlation func- |, a future pubhcaﬂof’F we shall show that EK’s method

tions at these fixelc_i PQi“ﬁfS- N N hat th . furthermore allows onévii) to construct very easily the scat-
EKlrllaa rec'en:'pub icatio t’We” ak;/e§ own t datt € power o tering states of the modelyiii) to verify explicitly the va-
-bosonization can actually be increased even nieee lidity of the bosonic description of the NFL fixed point

ppints (i)—(vi).and (x)—(xii) bel_oyv] by generalizing it tofi- worked out in Refs. 30 and 27ix) to determine the fixed
nite system size.lThough retaining terms of orderlLhatu- : o : S .
rally requires some additional technical effort, none of thepomt boundary copdltlo_r]s at the |mpyr|ty site for the differ-
conceptual simplicity of the EK approach is thereby lost. TheSNt currents anq fields in avery stralgh.tforward way, as
ell as the leading corrections to the$gi) to calculate all

present paper is devoted to presenting the calculations b . . ; o
which the results of Ref. 4 were obtained in explicit detail, CoTrélation functions at and around the NFL fixed point; and

and includes discussions of a number of subtleties and resultii) to clarify the role of the dynamics of Klein factors in
not mentioned there. correlation functions[Although (vii) to (ix) can also be ob-
The generalization to finite system size necessitates twiined in a system of infinite sizex) to (xii) turn out to
important modifications relative to the work of EK]_) depend crucially on the finite-size results of the present pa-
While they use the field-theoretical approach to bosonizatiofer] This implies that all CFT results can be checked from
in which the bosonization relatiot,;~F ,;e~'?«i is used first principles using bosonization.
merely as a formal correspondence, we use the more careful The paper is organized as follows. In Sec. Il we define the
constructivebosonization procedure of Haldafi=’t where ~2CK model to be studied. For completeness, and since the
both the boson fieldg,; and Klein factorsF,; are con- proper use of Klein factors is essential, Sec. Il briefly re-
structedexplicitly from the originali,; operators, so that the views the “constructive”(operator identity-basg¢dpproach
bosonization formula becomes an operator identity in Focko finite-size bosonization used throughout this paper. The
space(2) Since EK were interested mainly in impurity prop- Emery-Kivelson mapping onto a resonant-level model is dis-
erties, they did not need to discuss at all the Klein factorgussed in Sec. IV, using our novel, more explicit formulation
F4j [which lower the number ofj electrons by one and of refermionization within a suitably extended Fock space.
ensure proper anticommutation relations for thig;'sl.  The solution of the resonant level model and the construction
However, as shas been pointed out by several authorgfthe NFL spectrum using generalized gluing conditions is
recently;™ " *these Klein may be extremely important in resented in Sec. V. In Sec. VI the results of our finite-size
some situations, and they are essential for quantities like the;|cylations are compared with and interpreted in terms of

;lnlt(etfaz%“s_rpr?ctrlfjm 'to.r Var'.oﬁ eIec_tfrort: Cct’:elat'onvarious RG procedures. In Sec. VII we show the finite-size
unctions. eretore 1 1S cruciaj to specily nNow the new spectrum for the 1CK model. Finally, in Sec. VIII we sum-
Klein factors of the refermionized operators act on the Fock

) ﬂ'larize our conclusions.
space. As we shall see, these new Klein factors are only we The centerpiece of the main text is our uncommonly care
defined on a suitablgnlargedFock space that also contains P y

unphysical states, which must be discarded at the end usi ! anq dgt_alled finite-size form_ulatlon O.f the EK mapping.
certaingluing conditions echnicalities not related to this mapping are relegated to

With these modifications, EK’s bosonization approach enfour Appendixes(see Ref. 37 Appendix A discusses in

ables us by straightforward diagonalization of the quadratiSome detail matters related to the choice of an ultraviolet
resonant-level modefi) to analytically calculate the cross- cutoff, and also gives the often-used position-space defini-
over of the 2CK model's finite-size spectrum from the FL totion of the 2CK model, to facilitate comparison with our
the NFL fixed point, at which we reproduce the fixed-pointmomentum-space version. The construction of the extended
spectrum previously found by CFT using a certain fusionFock space needed for refermionization is discussed in Ap-
hypothesis(which we thereby prove directly (ii) to con- pendix B, and the technical details used to diagonalize the
struct the eigenstates of the 2CK model corresponding to thigesonant-level model and to calculate several of its properties
crossover spectrum explicitly, thereby elucidating the naturare given in Appendix C. Finally, in Appendix D we present
of the NFL excitations; andiii) to extract the operator con- our finite-size bosonization calculation for the one-channel
tent of the NFL fixed point and determine the dimensions ofKondo model as well.
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[I. DEFINITION OF THE MODEL Here theS,, (u=x,y,2) are the impurity spin operators, with

Throughout the main part of this paper we shall use the>: €igenvaluesf(l)=(3,—3), and thex,’s denote dimen-
standard 2CK Hamiltonian in momentum space. We consionless couplingsa, generates different phase shifts for
sider a magnetic impurity with spin 1/2 placed at the originSPin-up and spin-down conduction electrons, while=\,
of a sphere of radiuR=L/2, filled with two species of free, =\, describe spin-flip scattering off the impurity. Finally,
spinful conduction electrons, labeled by a spin index We add a magnetic term
=(7,1)=(+,—) and a channel or flavor indep}=(1,2)= .

(+,—). We assume that the interaction between the impurity Hp=h;iS,+heAs, (8
and the conduction electron is sufficiently short-ranged that

it involves only sswave conduction electrons, whose kinetic Yvherg hi and he dethe the magne.t|c fields a(?tmg on the
energy can be written as impurity and conduction electron spins, respectively, Afd

denotes the total spin of the conduction electrons.
+ Since the constructive bosonization method requires an
H0:; K:CoiChaj:  (Lp=h=1). (1) unbounded spectrum, the fermion bandwidth cutoff is re-
“ moved(i.e., taken to be infinitein the equations above. This
The operatomlaj creates ars-wave conduction electron of ultraviolet cutoff will only be restored when we define the
species &j) with radial momentunk=p— p relative to the  new Bose fields in Eq(13) below.
Fermi momentunpg, and the dispersion has been linearized
around the Fermi energyr : e,—eg~Kk. The colons in Eq. IIl. BOSONIZATION BASICS
(1) denote normal ordering with respect to the free Fermi sea

or “vacuum state”|6)0: The key to diagonalizing the Hamiltonian is to find the

relevant quantum numbers of the problem and to bosonize
(23 the Hamiltonian carefully. While bosonization is a widely

used technique, the so-called Klein factors mentioned in the
> Introduction are often neglected or not treated with sufficient
i) -

Ckai|0>0_0 for  k<0. (2b) care. In the present section we therefore discuss our

The c,;’s obey standard anticommutation relations bosonization approach in somewhat more detail than usual,
{Cha ,Cl,a,j,}:(gkk, Sqar8jjr» Where due to radial momen- formulating it as a set obperator identities in Fock space

tum quantization the values &fare quantized: and emphasizing in particular the proper use of Klein factors
' to ladder between states with different particle numbers in

Fock space.

ckaj|5>050 for k>0,

2
k= T(nk— P0/2), nkEZ. (3)
A. Bosonization ingredients
Here P,=0 or 1, since at zero temperature the chemical
potential(and henceg) must either coincide with a degen-
erate level Py=0) or lie midway between two of them

(Po=1). The level spacing in both cases is NQJEEKD CaiChaj T 9

As a first step we introduce the operators

A =2mlL. 4} \hich count the number of electrons in channej) with

Thes-wave conduction electrons can also be described byespect to the free electron reference ground $Gjig The
a one-dimensional chiral field” nonunique eigenstates bif,; will generically be denoted by
\/ﬂ |N)E|N11>®|NL1>®|N12>®|NLZ>, where theN,;’s can be
. = - —ikx .
waj(x) L reey € Ckaj ’ (XE

L , _} ) . (5)  arbitrary integers, i.eNe Z°.
2°2 Next, we define bosonic electron-hole creators by
{Wa (0,3 (XD} = By 82 8(x=X). (6) .t

|
+
= Ci+ geri Ckaj » (10
qaj \/n—anzeZ k+qaj“kaj

In the continuum limitL — o0, thex>0 andx<0 portions of
,j(X) can be associated with the incoming and outgoin
scattering states, respectively. Note thatRg=0 or 1 the
fields ¢,;(x) have periodic or antiperiodic boundary condi-
tions atx= *=L/2, respectively, hencB, will be called the

E{/vhereq=qunq/L>0 and then, are positive integers. The
operatorsbgaj create “density excitations” with momentum
g in channelaj, satisfy standard bosonic commutation rela-

“periodicity parameter.” tions, and commute with th&aj’s:
We assume a short-ranged anisotropic exchange interac- . .
tion between the impurity spin and treewave conduction [Dgaj Pgrarj 1= Sqq Saar Sjjr+ [Dgaj Narj 1=0.
electron spin density at the origin of the form (11
1 Among all state$N) with givenN, there is a unique state
H' ZA )\ S :CT (_O'M /)C rar':. 7 - . ' !
nt LM%(/ = Zkaj| 2% aa! | Tk el ) to be denoted byN),, that containsno holesand thus has

a,a’,j the defining property
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Jy . — ; bosonization identiti€s for the fermion field, density and

Paej[N)o=0  (forany g=0, a.j). (12 kinetic energy take the following forms: g
We shall call it the ‘N—particle ground state,” since in the
absence of interactions i) has a lower energy thai),;
likewise, no|ﬁ>o has a lower energy than the “vacuum
state” |0), defined in Eq.(2). Note, though, that iPy=0,
the statescy,|0), are degenerate witt0),, because then
Coqj FEMoves a zero-energy electron. ANyelectron state AL~ . :
IN) can be written a$N)=f(b")|N),, i.e., by acting on the HO:% 7Na1(NaJ+1_ Po)+ % abgajPgaj - (18)
N-electron ground state with an appropriate function of 4=0
electron-hole creation operatots::

Next, we define bosonic fields by

Yo (X) =F 4@~ 126 (Ngj— Po/2)2mx/Lg-idai(d) (1)

1 1 -
S (i (X):= 5o (0 + Ny /L, (17)

Several comments are in ordéiy in the limita—0 Egs.
(16) to (18) are not mere formal correspondences between
the fermionic and bosonic expressions, but hold as rigorous
operator identities in Fock spac&ora+0, they should be
viewed as conveniently regularized redefinitions of the fer-
_ . - mion fields and densitie¢se€’ Appendix A2. (i) The
Herea~1/pg is a short-distance cutoff, it is introduced 0 Kiein factorsF,,; in Eq. (16) play a twofold role: First, by
cure any ultraviolet divergences the theory may have acgq. (159 they ensure that the right-hand side of Ef6)
quired by taking the fermion bandwidth to be infinite. It is acting on any state indeed does lower the numberpf
well known, however, that within thibosonization cutoff  gjectrons by one, just as,; does; and secondly, by Egs.

schemehe coupling constants have different r_neaning_s thaQ15d) and (156 they ensure that fields with different{)’s
for other standard regularization schemes using a finite ferg have the proper anticommutation relatiois. (i) In

mion bandwidth, and that the relations between couplin , . = N
constants in different regularization schemes can be found k?Eqs.SlS) the firstA,_ term is justo(N|Ho|N)o, the energy of

requiring that they yield the same phase shifts. This andne N-particle ground statgN), relative to|0),. Since the
other cutoff related matters are discussed in Append® A. Klein factors do not commute with this term, they evidently
The fields d,.;(x) are canonically conjugate to the cannot be neglected when calculating the full model's finite-
baj(X)'s size spectrum, for which all terms of ordA; must be re-
tained. The second term of E(L8) describes the energy of
[¢aj(x),ax,¢a,j,(x')]=277i(5a(x—x’)—1/L)8w,5“(,, ) electron-hole excitations relative 16),.
14

where 8,(x) =a/ m(x2+a?) is the smeared delta function.

As final bosonization ingredient, we need the so-called |, this section, we map the 2CK model onto a resonant
Klein factorsF,; , which ladder between states with differ- jeve| model, using a finite-size version of the strategy in-
entN,;'s. By definition, theF ,;'s are required to satisfy the yented by Emery and Kivelson: using bosonization and re-
following relations: fermionization, we make a unitary transformation to a more

convenient basis, in which the Hamiltonian is quadratic for a

-1 . )
¢aj(X)EqZO \/?(e—qubqaj+equb(’;aj)e—aq/2. (13)
q

IV. EMERY-KIVELSON MAPPING

[Faj Narj 1= 80ar 8jj Faj, (153  certain choice of parameters.
t
[Faj ’bqa'j’]:[Faj !bqa/j’]zoi (15b) A. Conserved quantum numbers
The quantum numbefs,,; of Eq. (9) are conserved under
Fr =T E .= aj
FaiFaj=FaFa=1, (159 the action ofHy, H,, and H, (the \, term of H;;=H,
+ +H,), but fluctuate under the action of the spin-flip interac-
{Faj 'Fa’j’}zzaaa’éﬂ’ (150 ton H, (the\, term). On the other hand, the total charge
_ _ and flavor of the conduction electrons is obviously conserved
{Faj .Farjr}=0 for (aj)#(a'j"). (156 by all terms in the Hamiltonian, including, . Therefore it

These relations imply thaf ,; (FLJ) decreasegincreases
the electron number in channfglj} by one without creating

is natural to introduce the following new quantum numbers:

particle-hole excitations. As shown in Refs. 33 or 31, the Ne 11 1 1 Nis
constructionF ,j=a"%,;(0)e'?«(®), which explicitly ex- Ne| 1f1 -1 1 -1|[R,
presses-,; in terms of the fermion operatorg,;, has all 15211 1 -1 -1 - . 19
the desired properties. N N2

'/vx 1 -1 -1 1 N,

B. Bosonization identities

Any expression involving the fermion operatarg,; can
be rewritten in terms of the the Klein factdfs,; and boson

where 2/§/c, NS, andﬁ/f denote the total charge, spin, and
flavor of the conduction electrons, aing measures the spin

fields ¢,; defined above. In our notation, the standarddifference between channels 1 and 2. Clearly, any conduc-
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diagonalize the Hamiltonian for give8;, A, and N, it
evidently suffices to restrict one’s attention to the corre-
sponding subspac8,,{ Sr, N, Ny).

B. Emery-Kivelson transformation

Following Emery and Kivelson, we now introduce, in
analogy to Eq(19), new electron-hole operators and boson

since it can acquirany value consistent with the gluing conditions fields via the transformations
(20). The dotted line represents the reference energy 0 up to which

the free Fermi sea is filled fdPy=1, the filled and empty circles
represent filled and empty single-particle states with endggy
which increases from left to right.

tion electron state}lﬁ} can equally well be labeled by the
corresponding quantum numbersV= (N, , Ng, N5, N).
However, whereas thid,,;’s take arbitrary independent inte-
ger values, the\’s generated by Eq19) (with Ne Z%) can
easily be shown to satisfy the followirfgee gluing condi-
tions

Ne (Z+Pl2)%, (203

NeEN;=(NgE=N,)mod 2, (20b)

where theparity index Pequals O or 1 if the total number of
electrons is even or odd, respectively. Equat@dg formal-
izes the fact that the addition or removal of omg electron
to or from the system changeschof the j's by +1/2, so

that they are either all integers or all half-integers. Equation

(20b) selects from the set of alN’ of the form (209 the
physical ones for whiciN e Z4, and eliminates the unphysi-
cal ones for whichN e (Z+ 1/2)°.

In the new basisV; and N; are conserved; moreoveX
fluctuates only “mildly” between the valueS; 1/2, since
the total spin

Sr=Ns+S,

is conserved. In contrast/, fluctuates “wildly,” because an
appropriate succession of spin flips can prodag/N, that
satisfies Eq(20b), as illustrated in Fig. 1This wildly fluc-

(21)

bqy= % Ry,aj Dgaj
(y=c,s,f,x), (24)

QDVEEJ. Ry.aj Paj

whereR, ,; is the unitary matrix in Eq(19). These obey
relations analogous to Eg4.1) and(14), with «j—Yy. More-

over, we definéﬂ/}o, the/\7—partic|e vacuum state, to satisfy
bqy|J\7)o=O, as in Eq.(12). If A" andN are related by Eq.

(19), then the states\), and|N), are equal up to an unim-
portant phaseseé’ Appendix B, because both have the

sameNaj and/Vy eigenvalues and both are annihilated by all
Dgoj's andbgy's.

Using the quantum numbev&fy and the bosonic fields
¢y(X), theHq of Eq. (18) becomes

Ho=A | No(1-Po)+ > NZ2|+ X qbf by,
y Y, q>0
(25
while Eqgs.(17) and(16) are used to obtain, respectively,

H, =\ [ dx0s(0) +ALNIS,, (26)

Ay —igg(0) t —igy(0)
Hizg[e Ps SJr(FllFTle Px

+F],F € 9) + H.c]. (27)

Equationg25)—(27) and(8) constitute the bosonized form of
the Hamiltonian for the anisotropic 2CK modeip to and

tuating quantum number will be seen below to be at the hearfcluding terms of orden,.

of the 2CK model's NFL behaviom revealing contrast, the

1CK model, which shows no NFL behavior, lacks such

wildly fluctuating quantum numbesee Appendix D
SinceSr, N, and N are conserved, the Fock spaEgs

of all physical states can evidently be divided as follows into

subspaces invariant under the actiontbf

>

e’ St Ne M

Fohys= Sohyd St N N), (22)

Sonyd St N N = ZN {INe . Sr— 12,7 Ny )
®!

69|~/\/C ,Sr+ 12, N¢ N+ 1;0)}.
(23

a

Next we simplifyH, . It merely causes a phase shift in the
spin sector, which can be obtained explicitly using a unitary
transformationdue to EK parametrized by a real number
to be determined below:

H—H'=UHU", U=g75#s0), (28)

The impurity spin, spin-diagonal part &f, spin boson field
and fermion fields then transform as followssing, e.g., the
identities in Appendix C of Ref. 31

In both equations the prime on the sum indicates a restriction

to thoseN,’s that satisfy the free gluing conditiori0). To

S.—US. Ut=e*i7es0g, | (29
Ho+H,—Ho+ (A= 1) dx0s(0)S,+ N ,A NS,

+92[1U(4a)— m/(4L)], (30)
os(X)— oy(X) — 2yS, arctarix/a)  (|x|<L), (3D
Paj(X) = oy ()€ 7SR ([x]<1).  (32)
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Equation(30) is most easily derived in the momentum-space C. Refermionization
representation, but for E431), the position-space represen-
tation is more convenieiffirst evaluateU 9, ¢(x)U ! using
Eqg. (14), then integrate Equation(32) follows from Eq. The most nontrivial step in the solution of the model is
(31), sincey, e “¢s2, the proper treatment of Klein factors when refermionizing
Recalling thatd,@(x)/27 contributes to the conduction the transformed Hamiltonian. In their original treatment EK
electron spin density, we note by differentiating E3fl) that ~ did not discuss Klein factors at all and simply identified
the EK transformation produces a change in the spin densitg” ' “<*/+/a as a new pseudofermion fielg(x). Though
of —2yS,78,(x)/27, and thus ties a spin of yS, from the  this was adequate for their purposes, the proper consideration
conduction band to the impurity spi,. of the Klein factors and gluing conditions is essential for
To eliminate theS,d, ¢, term in Eq.(30), we now choose solving the model rigorously and obtaining the finite-size

y=\,; then the spin-flip-independent part of the Hamil- spectrum. Other authors tried to improve the Emery-

tonian takes the form Kivelson procedure by representing the Klein factors by
i0

1. Definition of new Klein factors

F.j~€ ", where®,; is a “phase operator conjugate to
) - ~ 5 i Nai ,” and added these to the bosonic fieldg; before mak-
H' (A, =0)=NANS+ A NGI2+ ZO qbgybqy ing the linear transformatio24). This procedure is prob-
g 7a lematic, however, since thei '#¥(%) contains factors such as
+H,,+ const, (33 e 94’2 which are ill definedsee Appendix D 2 of Ref. 31

A rigorous way of dealing with Klein factors when refer-
andH! contains the factore™!(}~*2¢s(%) These factors are mionizing was presented in Ref.(dnd adapted in Ref. 31 to
simply equal to 1 at th&mery-Kivelson line\,=1, where treat an impurity in a Luttinger liquid We introduce a set of
H| simplifies to ladder operator§-'; and 7, (y=c,s,f,x) to raise or lower

the quantum numberd/, by =1, with, by definition, the
LA ) o) et ) following properties:
HLZE[S'*'(FL]-FTle Px +Fl2FT2e Px )+HC]

(34) [Fy Ny 1= 8,y Fy, (363
We shall henceforth focus on the case=1, which will [Fyubqy’]:[Fyub;yr]:Oa (36b)

enable us to diagonalize the model exactly by refermioniza-
tion. Deviations from the EK line will be shown in Sec. VI C

ot
to be irrelevant, by taking/=1 but\,=1+ é\,, and doing FyFy=FyFy=1, (369
perturbation theory in .
{7y Fyt=26yy, (360
SH.= 6\ d,04(0)+ A NS, . 35

The crucial property of the EK line is that it contains the Now, note that the action of any one of the new Klein factors
NFL intermediate-coupling fixed point. A Heuristic way to = o £t respects the first of the free gluing conditions
see this it to note that on the EK line, the impurity spin is i”(ZyOa), bu){ not the second, Eq20b). More generally, Eq.
fact “perfectly screened:” the spir-yS, from the conduc- (20b) is respected only by products of @vennumber of
t?on b_and, that is tied_ to the impurity by the EK transforma- naw Kiein factors, but violated by products of add num-
tion, is equal to—S, if y=X,=1. It thus precisely “can-  per of them. This implies that the physical Fock sp&ggys

cels” the impurity’'s spin S,, and forms a “perfectly > L .
screened singlet” withzero total spin (without breaking of all |A) sat|_sfy|ng both Eqs(20g and (20b) is closed
. . . under the action of even but not of odd products of new
channel symmetiy in agreement with the heuristic argu- lein f h ; f : M f
ments of Noziees and Blandir. Klein factors.The action o arbitrary combinations of new
Klein factors thus generates an extended Fock spége

Of course, there are more rigorous ways of seeing that the . . .
NFL fixed point lies on the EK line. First, fox,=1 it fol- Which containspnysas a subspace and is spanned by the set

lows from Eq.(32) that the phase shifs of the outgoing Of all |\) satisfying Eq.(20a), including unphysical states
relative to the incoming fields, defined by, (07)  Violating Eq.(20D. In Appendix B we show thaf s can
Eeiza%j(o+) (with |0*|>a), is| 8| = 7/4, which is just the mdeeq be embedded;?ﬁext by explicitly constructing a set
value known for the NFL fixed point from other Of basis states fofey.

approacheé® Secondly, we shall deduce in Sec. VI C from  Sinceoddproducts of,’s lead out ofFps, theycannot
an analysis of the finite-size spectrum that the leading irrelP® expressed in terms of the original Klein factdtg;,
evant operators with dimensions 1/2 vanish exclusivelyVhich leaveF,, invariant. However, the Hamiltonian con-
along this line, but not away from it. Since the presence ortains onlyevenproducts of old Klein factors. Now, any com-
absence of the leading irrelevant operators strongly influbinationF};F ,.j, or FL,F!, . of Klein factorsjust changes
ences the low-temperature properties of the model such as iteo of the N,; quantum numbersJsing Eq.(19) to read off
critical exponents$;?® and since these must stay invariant un-the corresponding changes M, we can thus make the
der any RG transformation, one concludes that the Emeryfollowing identifications betweepairs of the old and new
Kivelson line must be stable under RG transformations.  Klein factors:
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FIFIEFIFL RFISFLF),, (379 (Gl Chnd =, {Ca.Cit=1, (43)
FIF:EF}}FTZ, ]-‘Z]-‘;V:F}LlF%fz_ (37b) {CdrC%X}:{CdrCB(}:Oa (44)

These relations, which each involve an arbitrary choice of
sign, can be used to express any product of two old Klein [Cq ,NS]:cd, (45)
factors in terms of two new ones, e.g.F.F|
= —(AF)FIFH=F1,F,,. Since relationg37) by con-
struction respect Eq19) (as can be checked by acting on
anle)), they, and all similar bilinear relations derived from
them, also respect both free gluing conditid@s).

We can thus replace the Klein factor pairs occurring in
Eq. (34) by the ones in Eq(37a):

which follow directly from the properties o, and Egs.
(36). Note thatcy lowers the impurity spin, raises the total

electron spinﬁ/S and hence conserves the total si3q,
whereas), conserves each of the impurity, electron and total
spins.
To relate the number operator for the new
x-pseudofermions to the quantum numbér, we must de-
N _ _ fine a free reference ground state, gaysext, in the extended
Hi=5,[S: FyFe '#O+Fle@)+Hel. (38)  subspace.y, with respect to which the number of pseudo-
fermions are counted. In analogy to E@), we define it by
The only consequence of this change is that we now work in
the extended Fock spad&,;, and will diagonalizeH’ not in Cid 0) s =0 for k>0, (463
the physical invariant subspac8n,d St N, N;) of Eq. &

(23), but in the corresponding extended subspace t _ -

Sexl(St,N:,N5), given by an equation similar to E@23), %|o>sext_0 for k=0, (460
but with the @' N, sum now restricted only to satisfy Eq. _ ) (0)—

(203, not also Eq.(20b). At the end of the calculation we Ca|0)s,, =0 for £4>0, i.e, ng’=0, (460
shall then use the gluing conditig@0b) to discard unphysi-

cal states. This approach is completely analogous to the use C$|O>SGXKEO for 4<0, i.e., n’=1. (460

of gluing conditions in AL’'s CFT solution of the 2CK , )
model. It is also somewhat analogous to Abrikosov'sHereeq, whose value will be derived belojgee Eq(52)],

. . ! . i (0) i
pseudofermion technigéfeof representing a spin operator 1S the energy of they pseudofermion, and,™ denotes its
via pseudofermions acting in an enlarged Hilbert space, anBccupation number in the reference ground sf@jg,_ . Us-
projecting out unphysical states at the end. ing colons to henceforth denote normal ordering of the

pseudofermions with respect t{®) Sy We have cgcd:
2. Pseudofermions and refermionized Hamiltonian =C:§Cd—n&0). Furthermore, we define the number operator

We now note thaH| of Eq. (38) can be written in a form

Y e ) for the x pseudofermions wazﬁp:cgcpx:. Then
quadraticin fermionic variables X

,_ M + t ﬁﬁﬁfx— P/2 (47
Al _2_\/5[%(0%L Yx(0)1(Ca=Cg). B9 holds as an operator identity. This can be seen intuitively by

o _ ~ noting thaty,~ F,~ i [by Eq.(41)], hence the application
b_y defining a local psegdofermmy a_nd a pseud_ofermlon of i (or lﬁl) to a state decreasésr increasesboth \V, and
field ¢,(x) by the following refermionization relations: Wx by one. These two numbeE can thus differ only by a

ca=FIs_, cleg=5,+1/2, (40)  constant, which must ensure thd{ is an integer. Our defi-
nition (46) of |0) s, Effectively fixes this constant to &/2,

P(X) =F @ Ve I U2)2mil =i (419  py settingN,=0 for N,=P/2 (see Appendix A3 for a rig-
orous argumeni).
We are now ready to refermionize the Hamiltonildn.

2 —
= _ —ikX~— 2|
N L 2;: € G (410 The kinetic energy of th& pseudofermions obeys

where Eq.(41b) defines thesy, as Fourier coefficients of the S Al ~

field 4,(x). For reasons discussed below, the figldin Eq. 2 KiCgCin: = S Nx(Ny+ P)+> qblbgy, (48
(419 has been defined in such a way that its boundary con- K q

dition at =L /2 is P dependent, sinc#/, e Z+P/2 andg,(x)  an operator identity which follows by analogy with Eqs)

is a periodic function. Thus the quantizednomenta in the  and (18) (also se& Appendix A3. Now note thatN (N,

Fourier expansioit41b) must have the form +P) =/A\/X2— P/4, i.e., Eq.(48) doesnot contain a term linear

k=A[n—(1—-P)/2] (nge?). (42)  in N,. Actually, the choice of the phage ' 22mL jn
our refermionization ansat@l1g for #,(x) was made spe-
The new pseudofermions were constructed in such a wagifically to achieve this. Hence E@8) can be directly used
that they satisfy the following commutation-anticommutationto represent the kinetic energy of thesector in Eq(25) in
relations: terms ofcy, fermions:
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Hyo=A N2+ EO qbjbox (493
q>
=2 kictCio: +A_P/8. (49b)

k

As a check, note that this equation also follows from the
following observations. First, the equation of motion for the

field ¢,(x), expressed as Ed41a or (41b), is the same
when calculated using E@449a or (49b), respectively, and

therefore the latter two expressions can differ only by a con
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the spin quantum number, nameJ\w, ,Ns—2,N; ,N,)o, by
flipping the topmost spin- electrons in both channelp
=12to].

For general valuek.# 2nA , there is no such symmetry
(essentially since electron-hole symmetry in the spin sector
is losY, and the corresponding finite-size spectrum differs
from that at the periodicity points in that some additional
spllttings of states occdf. For simplicity we henceforth set
h.=0 and consider only a local magnetic field, withy
Ehi , but the more general casg#0 can be treated com-
pletely analogously.

stant; and secondly, this constant can be determined to be

A P/8, by requiring the free ground state energies| ﬂ)@exl

given by the two expressions to be the same.
Finally, in the subspacé,,,s[of Eq.(23)] and hence also

in Sexi» We can use Eqg21) and (40) to express/VSSZ and

st in terms ofclicy. Thus, the EK-transformed 2CK Hamil-

tonian of Eqs(33) and(34) takes the form

H'=H.s+H,+Eg+const, (50
Hesr= gf qgo qbfbay. (51)
He=gq4:Clca:+ 2 KicrCioc:
k
+¢_2< Co Ciod (Ca— ), (52

Eg=A[Ne(1—Pg)+(N2+ N2+ S2—1/4)/2+ P/8]
+eg(nP—1/2)+ Sth,. (53

The charge, spin, and flavor degrees of freedorH ig; evi-
dently decouple completel{d, in Eq. (52) has the form of a

guadratic resonant level model whose “resonant level” has

energyeq and widthI', wheree =h; —h, is the energy cost
for an impurity spin-flip, and“E)\fMa, which will be iden-
tified below as the Kondo temperature.

E¢ is the “free ground state energy” of the subspa&.g
in the presence of magnetic fields. &sh, term implies that
the magnetic fields doot enter only in the combinatioh,;
—h, of g4, thus the role of the magnetic fielg, applied to

V. FINITE-SIZE SPECTRUM OF 2CK MODEL
A. Diagonalization of H,

SinceH; is trivial, we just have to diagonalize the reso-
nant level part, in the extended subspa&g,( Sy, N ,N5),
which is straightforward in principle, sindd, is quadratic.
However, special care is needed regarding normal ordering:
the change in ground state energy due to the interaction turns
out to be of order—T", and the subleadingstate-dependent
contributions of order\| relative to this energy have to be
extracted carefully when constructing the finite-size spec-
trum.

As first step, we define new fermionic excitations, whose
energies are strictly non-negative,

= (Cig+ ¢ )12

for k°
Bzz—i(ckx—c*_;x)/ﬁ] e o

ag=c), for k=0if P=1, (54b)
cqg for £4>0,
dd= ¢l for £4=0, (549

where theBy’'s decouple completely from the impurity:

D 1ol
He= 2 kayaict 2 kB Bict |edl ada

k=0 k>0

.
+ 2 Vidant aid(ag— a).
k=0

(59

Here the possibld values are given by Eq42), and the
hybridization amplitude®, by

the conduction electrons is somewhat different from that of

the local fieldh;. Note though, that foh,=2nA, (with n
e 7) the Sth, term can formally be absorbedp to a total
energy shift by introducing a new total spin”S;=S;
+2n, since thenA S3/2+Sthe=A, S;2/2—2n%A, . Now,

since the construction of the complete finite-size spectruncontainsno a or ,8k excitations, i.e.,ad|0>5ext= @ ]0) s

involves enumerating all possible valuesSf, and since the
generalized gluing conditiof69) to be derived below is in-
variant underS;— S;+2n, the finite-size spectrum foln,
=2nA, and a local fielch; (so thateg=h;—2nA,) will be
identical to that foth,=0 and a local fleld oh;—2nA, (so
that g4 is unchange):l The origin of this “periodicity” is
that ash, increases, at each valu@2, a “level crossing”

occurs in which the free-electron ground state changes from,

say,|NV: . Ns,Ni,Ny)o to a new one differing from ibnly in

VOEVE&O/\/E_eqund VIA,.

Note that in Eq.(54) we purposefully definedr| and ,8%
such that the free reference ground st@t)%exl, by Eq.(46),

(56)

ext

=i]0)s, . =0. Note too thata}|0)s, is degenerate with
0)s,, if £4=0, as iSa(T)|0>Sext in the odd electron sectoP,
=1. (Figure 5 of Appendix C5 illustrates these fagts.

Since the Hamiltonian Eq(55) is quadratic, it can be
diagonalized by a Bogoliubov transformation

He= >, kﬂk,B—+2 eal@, + 6Eg, (57)

k>0
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@= 2

> X Bun(a) a2,
nef{kd ¥==*

(58)

where SEg denotes the ground state energy shift of e
teracting vacuunf()) Sext defined as

=Bd0)s,, =

ext

as|6>5

ext

(59

The non-negative eigenenergiesand the coefficient8,,,,
are determined from the usual relations

{al @, }=6.,. (60)

These are solved explicitly in AppendixTwith the follow-
ing results. The excitation energiesare the non-negative
roots of the transcendental equation

[Hy, @l 1=¢a],

ednl
WZ—COUT(S/AL—P/Z), (61)
d
and the ground state energy shift is
5EG=M+E - 05 (62
k>0 &=
For e>0, the coefficient8,,, are given by
B.ar=0(¢)legql, B.g-=0(e)s, (633
Vice? ZVI{;‘?
sk+ Q(S) k ) BS?—:Q(s)ﬁY (63b)
where the normalization fact@(e) is
2A,T 172
o(e)=
Z(sz—83)2+ALF(82+85)+4772r282
(64)

For ¢=0, the coefficientsB,,, must be considered sepa-

rately and are given in Appendix C 2°h.Equations(51),
(53), (57), and(61)—(64), together with the gluing conditions
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FIG. 2. Evolution of the excitation energiesp, found by nu-
merically solving the eigenvalue equatit6il). On the left the evo-
lution is shown as function of /A, €[0,©) at T,=0, and on the
right as function of /A e[0®) at fixed '/A >1, for (a) P
=0 and(b) P=1. These excitation energies are combined in Table
Il with excitations in the charge, spin, and flavor sectors to obtain
the evolution of the full finite-size spectrum shown in Fig. 3.

s 1.1 L[ Th ep -
jyp—z arctanﬂ SI_P_T , ( )
with T,=&3/T. The lowest-lying modes are given by
0 for £4=0,
foo_ 7 (660
AL (_1/2+ 5010)6(0,1/2] fOI’ Sdio,
€0,=0 forall I',eq (66b)

(see also Append® C 2 b).

(69) discussed in the next subsection, constitute a complete, Equation(65b) shows very nicely thalf andT,, are cross-

analytic solution of the 2CK model along the EK line.

B. Evolution of excitation energies

The eigenvalue equatigBl) is a central ingredient of our

analytical solution, since it yields the exact excitation ener-
giese of H,, and also allows one to explicitly identify the
various crossover scales of the problem. Let the Igbel
, enumerate, in increasing order, the solutions_

=0,1,2,.
gjp Of Eq (61) in a sector with parityP. Their smooth
evolution as functions of' and|e4| can readily be under-
stood by a graphical analysis of E(1), and is shown in
Figs. 2a) and 2Zb) for P=0 and 1, respectively. All but the
lowest-lyingj =0 solutions can be parametrized as

p
2 2

where 6 p[0,1] is the shift ofe; p/A from its I'=ggq
=0 value and is determined self-consistently by

8j,P:AL|:J 5t 5] P:|1 j:112131- ] (6559

over scales: First, in the absence of magnetic fields, i.e., for
leq|=|hi|=Tr=0, the spectral regimbelow I is strongly
perturbed[ 8; p=1/2 for &; p<I'], whereasabovel it is
only weakly perturbefls; p=0 for &; p>TI']. It is thus natu-
ral to identify the crossover scaléwith the Kondo tempera-
ture Ty=T".
Secondly, in the presence of a local magnetic fidlg,
h2/F>O furnishes another crossover scale. When consid-
ering theTy,-induced shifts ins; p relative to their values for
T,=0, several cases can be distinguish@gdfor T,<A,
i.e., for|h;| much smaller than a crossover figtdg~ \T'A_,
none of the Ty-induced shifts are strong(ii) For T,
>A,I', the crossover scal&, divides the spectrum into
two parts: theT,-induced shifts are weak for all levels with
e>T,, but strong for all those withe<T,,. (iii) For I
>T,,>A_ one can distinguish three physically different re-
gimes: the spectrum is NFL-likenonuniform level spacings
in the intermediate regim&,<e<I", and Fermi-liquid-like
(with uniform level spacingin the extreme regimes>T
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ande<Ty. In the last of these regimesightmost part of  for a4. Imposing now the condition th&E) must be inSppnys
Fig. 2), the set of lowest-lying:’s is identical to that for the g3nd hence satisfy Eq20b), we obtain
free caseT,,=0, I'=0 (leftmost part of Fig. 2 except that

the free case has one mate=0 mode, reflecting the impu- [Ne+N;=S;—(P+1)/2lmod 2 (g4>0),
rity’s twofold degeneracy due to spin reversal symmetry for Pe= e D
|h;|=0. Since at a finite temperature physical quantities are [NetNi=Sr=(P=1)/2]mod 2 (24=0). (69)

governed mostly by excitations of energy-T, they will

show NFL behavior fol'>T>T, and Fermi liquid behavior This generalized gluing conditiospecifies which of all the
for T>T or T<T,.2>192640 possible states inSe are physical, i.e., are iBpps; it
supplements the free gluing conditit@0a), which stipulates
that S+ 1/2 must be integethalf-integey if A, and\; are
. ) integer(half-integey.

Next, we clarify how the exact many-body eigenstates of
the full Hamiltonian are to be constructed from the various
excitations in the, s, f, andx sectors. A general eigenstate of
Hcsit Hy in Sgy has the form The form of Eq.(62) for the change in ground state en-

ergy 6E¢ suggests that it can be interpretedfas dynamical
Mg Ne _ binding energy of the impurity spimyhich results from the
|Ey=]1 ?vli I1 Bﬂo)sext, (67)  impurity-induced energy shifts of all the states in the filled
==t Fermi sea|The factor 1/2 in Eq(62) reflects the faét* that

where the proportionality sign indicates that excitations inonly “half” of the x-pseudofermion field, namelyk, +
thec, s, andf sectors are not shown explicitly. However, as couples to the impurity in Eq(39), while i,— ¢} remains
emphasized earlier, of all such states only those in the physfree] For£4=0, the number of levels strongly shifted by the
cal subspace,,,s must be retained, and all others discardedinteraction is[by Eq. (65b)] of orderI'/A,, and each of
as being unphysical. To identify WhidE) are physical, we thesg ggts shifted roughly.hyL/Z; we can thus estimate that
now derive ageneralized gluing conditiosatisfied by them the binding energysEg| will be of orderl'~Ty.

. ~ o However, since the level shiftd, §; p also have a
that relates the parity of the numbera@} and 8- excitations ! L%.P
party i Py P-dependence of ordePAE/F [from Eq. (65b)], the total

in [E) to its quantum numbers/;, N , andSrinthec, f,  45und state energy shifE will have aP dependence too,
ands sectors. To this end, we note tH&t) can be physical of order~A, . We therefore write
only if the statd E)=lim_ o|E), to which it reduces wheh
is adiabatically switched off, satisfies the free gluing condi- SEg=SEg+P SEg, (70)
tions (20). The key to the derivation is the fact that although
the hybridization interactiotd| of Eq. (39) does not con-
serve the number af; excitations, itdoes conserve the par-
ity of their number.

To be explicit, letPg be the the parity of the number of

C. Generalized gluing conditions

D. Ground state energy shift

where the first term i® independent and hence gives only an
overall energy shift. In contrasﬁE(P3 affects the finite-size
spectrum since it shifts the odd electron states-() rela-
tive to even electron state® & 0), and hence must be evalu-
ated with particular care. This is done in Appendix &4,

excitations of|E) relative to[0)_: where we find, fo /A, > 1
I I - —AL/8 (Ty=0),
Pe=(El| 2 &l@,+ % BiBimod2E).  (69) SER={ " 71
E e=0 I>O KPPk > G O (Th>AL)1 ( )
During the adiabatic switch-off df, this quantity of course —2T'[In(D/4=T)+1] (T,=0)
remainsfixed and hence equalBz(I"—0). This in turn can 558%[ ' (72

i HereD>T',T}, is a cutoff needed to regularize the sums in
Pe(T—0)=(E|| D ala,+> BB mod2E Eq. (62). Note that forT,=0, Eq.(72) is consistent with the

- : |_n:d,?>o S “ 2E) estimate foréEg above, sinceD=1/a andT'=\?/4a. For
T,>T, the magnetic fieldey takes over as lower energy

=(E|[ﬁx+ alaglmod 2E) scale in the logarithm instead of.
([~ Py . 1 0) . L
=(E||| Ny— 5 +Ng—Sr— > +ng” [mod 2E). E. Construction of the finite-size spectrum

Now we are finally ready to construct the finite-size
The first equation follows because the hybridization interacinany-body excitation spectrum of the 2CK model. In doing
tion preserves the parity of the excitation numbers; the secso, we shall generally use calligraplits to denote dimen-
sionless energies measured in unitsAgf. Specifically, we

ond follows because thel— excitations counted by, are ) i .
x shall construct the dimensionless energies

linear combinations oty a% By, and ,8%; and the third
follows from Eq.(47) for N, and Eqs(540, (40), and (21) E(L)=[E(L)—Emn(L)J/AL, (73
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Etree € phase ENFL €oh struction, see Fig. 5 and Table Il in Appendix ¢&Here we

= 1.5 N = € oz just' state the main ideas.

>§ 23 y//()g (i) Phase-shifted spectruriror \,€[0,1] at \ |, =&4=0,
J

w

the impurity has no dynamics, thus the spectrum is that of a

1.0
Z (3?1)2) (248) < = free-electron Fermi liquid with a Sdependent phase shift in
R &) sy & the spin sectargiven byH’ (A, =0) of Eq.(33). It evolves
5 %\ ay/ 09 Q) linearly with increasing\,, from &gee at X,=0 t0 Ejpaseat
% COM) @ \,=1, see Fig. &).
0.0 = ((327; 1(ao) = (2)1‘ e 22)3(; (i) Crossover spectrumNext we study the spectrum
Pl r /AL ey /T alongthe EK line forl'/A €[0) at\,=1, e4=0. To this

end one first has to enumerate the lowest-lying physical
FIG. 3. Evolution of the many-body finite-size spectrum of the eigenstate$~E) of the full HamiltonianH’ in terms of the
2CK model, for antiperiodic boundary conditionPy=1), from excitationsa;r , B% and bgy which diagonalize it, andol-
P

the free Fermi-liquid fixed point to the NFL fixed point, and the i S . o
additional crossover induced by a local magnetic field to a phasel-OW the evolution with increasing/A, of the excitation en-

shifted Fermi-liquid fixed point. All eigenstates bf’ of Eq. (50) erg'essgp (shown in Fig. 2_’ an_d of the ground state e”ergy
are shown for whictEye <1, as well as some higher-lying states, Sift 5Eg [see Eq(71)]. This yields the crossover shown in
with degeneracies given in brackéts Ref. 4, the degeneracies for Fig. 3(b) from the phase-shifted to the NFL fixed point spec-
EneL=1 were incorreot (8) When\, is tuned from 0 to its Emery-  trum, consisting of a set of universal, dimensionless energies
Kivelson valuex,=1, with A, =&4=0, the free Fermi-liquid spec- defined by

trum Egee at A,=0 evolves smoothly into a simple phase-shifted

spectrumé&ppase @t A,=1. (b) When I'/A =)\%/(4aA|) is tuned . E(L;Sdzoar)_Emin(L;ed:O,F)
from 0 to « along the EK line, i.e., witlh,=1 andey=0, the EnpL = lim A . (74
spectrum crosses over frofi,aseto the non-Fermi-liquid spectrum L—e L

EnpL at T'/A| =00, which agrees with NRG and CFT resul(s) . . N
Turning on a local magnetic fieldq=h; (with h,=0) by tuning Satisfyingly, the spectrum diyg, energies found in Fig.(8)

|eg|/T from O toee with \,=1, '>A, fixed, then induces a further ar?d Table I(degenerames' are given in brachetsincides
crossover from&yg to &y,. For the lowest levels this crossover with t_he 6?8”2%32 tha'”ed n _NRG and . CFT
occurs wherje4|/I'=1, since then the crossover parameter used incalculatlonsl._ 182223This constitutes a direct and straightfor-
Fig. 2, namely.T, /A =(e4/T)2(T/A), is >1. The&,y, spectrum ward analytical p_roof of the soundness of the_ latter ap-
is identical to the phase-shifted spectrfifas.0f \,=1 andx,  Proaches. In particular, it provéEsthe so-calledfusion hy-

=&4=0, apart from a degeneracy factor of 2 due to the lack of spirPothesisemployed by Affleck and Ludwig in their CFT
reversal symmetry. calculation of this spectrudf:?® As is well-known from

CFT* each of the fixed-point valued, can be associated
associated with the lowest few exact many-body eigenstatesith the scaling dimension of one of the operators character-
|E) of the full HamiltonianH' of (50), measured relative to 1ziNg the fixed point. The occurrence 6{r’s that are not
its ground state energi,,i,. For the sake of simplicity we simply Integers or hali-integers is thus a very dlr_ect_ sign of
only consider the case with periodicity inde=1 [see Eq. NFL physics, since these correspond to nonfermionic opera-

(3)], for which they,;'s have anti-periodic boundary condi- tors.

tions. In this case the free ground state in the electronic Se%{niggtrrol\é?_issiigreeﬁg\lg?utdair?r?;Sl\f?lfiisx:éi(p;ggr%tysitr??é mr;

tor is unique, namely|0)o, which somewhat simplifies the take the continuum limit, —0 at fixedT', the fixed point
counting of states(Of course, one can use the same procespectrum is evidently reacheddependentlyof the specific
dure forPo=0, with similar resuits. . value ofI'. More formally: the symmetry of our anisotropic
The construction proceeds in three steps: we first evolV@ariing Hamiltonian with respect to transformations in the
toyvard the EK line, second.ev_olve along the EK line, andcharge, spin and flavor sectors is U{£)U(1)x SU(2),
third turn on a local magnetic field. The results are suUmma; e i the spin sector it is only invariant under spin rotations
rized in Fig. 3 and Table I. For technical details of the con-5rond thez axis: in contrast, Affleck and Ludwig derived
o _ the NFL fixed point spectrum byssumingit to have the
TABLE I. Summary of the finite-size spectrum of Fig. 3 for the complete U(1)XSU(2)X SU(2); symmetry of the free
2CK model, at the four points, =\, =£4=0 (&red; X2=1, Ai model. The fact that the low-energy pa#<T,) of our
1? /‘2"_:000 (‘STP*‘E;SAQ’ Z)‘;_é’ h)F/\f/;i;’ aﬁ‘;gréiﬁ;ﬁi a(‘ir:’ldu)l\’lzit_s:l;)’f _NFL fixed point spectrum coincides with theﬁrg beautifully
A )Land ’givg thLeir totalpdégeneracies i brackets illustrates how the broken symmetry of the original model is
- i restored in the vicinity of the NFL fixed point, and thus
proves another central assumption of the CFT solution of the

Eree Epase Evr Eon 2CK model, in agreement with the NRG study of Pang and
0 ) 0 @ 0 2 0o O Cox!’
12 (16 1/4 (8 1/8 (4 14 (4 The fact that the exact eigenenergiestof interpolate
1 (59 12 (12 1/2 (10 12 (6 smoothly between their values far, =0 and\, #0 [Fig.
314 (16) 5/8 (12) 314 (8) 3(b)] may at first seem somewhat surprising, because a com-
1 (39 1 (26 1 19 mon way of heuristically characterizing a NFL is that its

quasiparticles are orthogonal to the bare ones of the corre-
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sponding free Fermi liquid. This is referred to as the “break-
down of Landau’s quasiparticle construction,” since in Lan-
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breaking®® At finite temperatured takes over the role of the
infrared cutoffA, , so that the susceptibility diverges loga-

dau’s picture of a Fermi liquid, the dressed quasiparticlesithmically with T.1%2

and the corresponding bare ones have finite overlap. Here,
fact, one can readily check th@gxﬂmaﬁ;r@m%exl is non-

zero[wheree (F) is the excitation energy that reducesktas
I'/A| —0], implying that in the a-basis the systenis a

iN The fluctuations ian can be quantified by calculating
(N2 —(N;)2. In Appendix C 6 this is done aty=0 for the
physical ground state @, sfor bothP=0 and 13’ We find
that (/V)():O for arbitrary ratios of /A, , showing that the

in the original c,,; basisthe system nevertheless behaves ag/orsj=1,2, as expected from the 2CK model’s flavor sym-

a NFL, since the bosonization-refermionization relation be-

tween states in thej andc,,; bases is very highly nonlin-
ear.

(iii) Crossover due to local magnetic fielfinally, we
turn on a local magnetic field,y=h;# 0 at fixed\,=1 and
I'’/A >1, thus breaking spin reversal symmeffe further
evolution of the excitation energies p as functions of in-
creasing |/A_, shown in Fig. 2b), yields the magnetic-
field-induced crossoveishown in Fig. &), from the NFL
fixed point energiesyg, to a set of energie&;;, correspond-
ing to a phase-shifted Fermi liquid fixed point. Fog/A
>1, the impurity level evidently becomes empty for all low-
lying states(cgcd>=0, i.e., the impurity spin is frozen in the
stateS,=|. Indeed, the spectru,, which one recovers is
precisely the same phase-shifted spectruntass.at the
pointA,=1 and\, =0, apart from a degeneracy factor of 2,
due to the lack of spin reversal symmetry, compare Table |
This shows nicely how the magnetic field “erases” all traces
of NFL physics for the lowest-lying part of the spectrum,
since low-energy electrons cannot overcome the Zeeman e
ergy cost for a spin flip in a magnetic field.

F. Finite-size behavior of physical quantities

Let us now briefly discuss the finite-siZ€=0 behavior
of the entropy, susceptibility, and the fluctuationsAfy at
the NFL fixed point. Theentropy of the ground state at
=0, e4=0 is evidently simply In2 for anyL, since the
ground state is twofold degenerdtee Fig. 3. This should
be contrastéf with the famous resultiin2 that one
obtaing® taking the limitL—o beforeT—0. The differ-
ence simply illustrates that the order of limits does not com
mute, since for finitd. the system is always gapped.

The susceptibilityat T=0 due to a local field; is defined
by x=—#?Eg/dh?. SinceEg=Eg+ 6Eg, we simply have
to evaluatdby Egs.(53), (62)] the sumy =33 (#%s/dh?).
For h;=0, the summands can be determined by differentia
ing Eq.(61), giving

AT £0 & (A 4nT + [ (47T)%+ 2]}
1
%477—2?|n(477F/AL) (for F>AL)
(76)

The fact thaty(h;=0)— asL—x is of course a charac-
teristic sign of 2CK NFL physics: it illustrates the instability
of the NFL phase with respect to a local symmetry

metry. Furthermore{\;?)=P/4 for I/A—0, as expected
intuitively, since in this limit the considered ground states
are linear combinations of states wittf,= = P/2. In con-
trast, in the limitl'/A >1, the fluctuations diverge logarith-

mically with system size(ﬁf)(2>~(1/wz)ln I'L, illustrating
how strongly the impurity perturbs the Fermi sea at the NFL
fixed point.

VI. RELATION TO VARIOUS RG METHODS

In the literature several RG methods have been applied to
the multichannel Kondo model. In this section we relate
these to our finite-size bosonization technique, by showing
how the strategies employed by them can be implemented, in
an exact waywithin the latter.

A. High-energy cutoff scaling techniques

The most common types of RGs are the ones used in
Barticle physics and in the standard treatment of critical phe-
nomena. In these RG procedures, one reduces a high-energy

cutoff, sayD, in order to gradually eliminate some high-
energy degrees of freedom, arguing that they only slightly
influence the low-energy physics of the system. The change
in the cutoff must be compensated by rescaling the model's
dimensionless coupling constants and masses in order to
keep the physical propertiédifferent inherent energy scales
and dressed masgenvariant. These kinds of scaling proce-
dures, which include Anderson’s poor man’s scaffighe
multiplicative RG® and the Yuval-Anderson R, have
been widely used in the continuum limit (- ) to study the

multichannel Kondo modéf/#8:1:7:49

In our case the high-energy cutdlf can be identified

with the cutoff 14 of the boson fieldsp,;, D~1/a. Then
the scaling dimensiory of an operator with dimensionless

tcoupling A can be determined from the scaling equation

dinNMdInD=-dInNdIna=,...), and theoperator is
relevant, marginal or irrelevant foy<0, =0, or >0, re-
spectively.

Now, along the EK line one immediately obtains the scal-
ing equation¥’

dina

1

2

A=1. (77)

1

The first, which follows from the requirement of the invari-
ance of the Kondo scalé=\?/4a, shows thah , is relevant
and grows under bandwidth rescaling, with dimensialr2.

As explained earlier, the second equation follows from the
absence of the leading irrelevant operator at the EK line.
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Equations(77) exactly coincide with the ones obtained with mean level spacing. This strategy is implemented by numeri-

the Yuval-Anderson techniqlie cally diagonalizingH ., and retaining only the lowest few
5 hundred levels. One finds that after a number of iterations the
dr, _ f_ 5_ N (783 spectrum ofHy converges to a fixed, universal set of ener-
dina \ 'm “w?)Tt gies, characteristic of some fixed point Hamiltontaror

the 2CK model this spectrutfiis identical to the one ob-
tained by boundary CF#

The NRG strategy can easily be interpreted in terms of
o ) ) our finite-size calculations. Stép corresponds to increasing
if in these the phase Sh'ﬁf)‘zwm is replaced byr/4, @ the system siz& — AL (i.e., reducing the level spacing,
appropriate for the EK liné’ —A, =A_/A), while step(ii) is equivalent to measuring

In a finite local magnetic fielé =h;, for energies below 4 energies in units ol ,, . Combining both steps, an “ana-
the scaIeTh=hi2/F, the magnetic field destroys the non- lytical RG step” thus has the form

Fermi-liquid behavior and a Fermi liquid is recovered. By
requiring the invariance of, one immediately derives that,

4 dé

45
mdlna T

aw

)xf : (78b)

as long as the high-energy cutoffalis much larger than the Hu(L.T\eq) R Hx(AL.T.eq) — Hy(L, AT Aeq) ,

Kondo scalel’, the fieldh; must be invariant under the RG AL AnL AL

transformation (81)
dh; ~0 (La>T). 79 where the last equality follows identically from E@2). For

dlna e4= 0 this means that increasing the system size at fixéd

equivalent to increasing at fixedL, emphasizing once more
However, once the cutoff is reduced sufficiently so thatthat in this case the spectrum depends onlf'oa, . There-
1/a<T’, the role ofI' is taken over by H, i.e., T, is now  fore the “spectral flow” as function of /A, in Fig. 3 can be

given byh?a, thus Eq.(79) must be replaced by viewed as the analytical version of an NRG spectrum as a
function of iteration number.

dh; _ Eh 1/a<T (80) The fact that changing the system size is equivalent to

dlna 2" (La<T). rescaling the couplings has actually been exploited in several

NRG papers to construct the “exact” scaling trajectories in

To determine the dimension of the magnetic field one has e s S e thi ;
. ; / . pace of the bare couplings: this can be done by rescaling
rewrite Eqs(80) and(79) in terms of thedimensionlesmag- the couplings after each NRG step in such a way that the

netic fi9|d,hEhia. Then it |mmed|ate|y follows that close to NRG Spectrum remains invariant, as in the seminal paper of

the NFL fixed point the local field has dimensierll/2 while  Cragg, Lloyd, and Nozies® or equivalently in such a way

in the regime 1Jd>1I" its dimension is—1; it is therefore  that the energy-dependent dynamical correlation functions

relevant in both cases. remain invarianf!
Equations(79) and (80) are in complete agreement with

those obtained by the Yuval-Anderson technigué/e re-

mark at this point that perpendicular local magnetic fields

hyy (i.e., perturbations of the forim,S, or h,S,) are knowrl It is also straightforward to implement Wilson’s

to scale differently fromh;=h,, and at the EK line their prescriptiofi® for extracting the exact scaling exponent of a

scaling dimension is known to be 1/2 even in the region  perturbation around the fixed point, sayO, from its effect

C. Finite-size scaling

l/a>T. on the finite-size spectrum: In general, it causes the dimen-
_ _ o sionless energy¥(L) [of Eq. (73)] (calculated at a finite,
B. Connection to numerical renormalization group nonzeroA, <T") to differ from its universal fixed point value

In this subsection we show that an analysis of our finite-£,, [of Eq. (74)] by an amounts&(L), whose leading
size spectrum as function afin fact represents an analytical asymptotic behavior fok —« is
version of Wilson’s NRG? In Wilson’s procedure one di-
vides the Fermi sea into energy shells using a logarithmic
mesh characterized by a parameter 1, and then maps the
model onto an equivalent one in which the impurity is
coupled to the end of an infinite conducting chain, where thavheren=1 is some integer angt is the scaling dimension
hopping between the sitesandn+ 1 scales as\ "2 The  of the operatoiO. Thus deviations from the universal spec-
n'th site in this chain represents an “onion-skin” shell of trum are characteristic of the operator content of the fixed
conduction electrons, characterized by spatial exteAt”?  point.
around the impurity site and energyA ~". The NRG trans- We first consider the situatioan the EK line (i.e., for
formation is then defined by considering truncated chains ok ,=1), and close to the NFL fixed point, whefg /I" and
lengthN with HamiltonianH,, and consists ofi) adding a T,/A, are both<1 (atthe NFL fixed point they are both) 0
new site to the end of the chalify— Hy; and(ii) rescaling  For j=1, the leading deviations; p/A| —(&; p/A)Nr O
the new Hamiltonian byA: Hy . 1— AHy. 4. Trivially, step  the dimensionless single-particle excitation eigenenergies
(i) reduces the mean level spacing by a factor &, Mhile  from their NFL fixed point values are then givginom Eq.
step(ii) is needed to measure all energies in units of the new65)] by

SE(L)Y=E(L) — EnpL~ (SNILM)M, (82
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1 [ Th AL(J - P/Z) Cfree r=0 Cphase A=A CFL
5j,P_(5j,P)NF|_: 2 i - . 15 = z "z
A7’ A (j—PI2) r ©)
83 - @ @
< ] @ i @
The leading dependence on the local magnetic field via—3 ,, (8) D @
Th/A, is evidently[h,L¥2)2 which grows as_—. This i
shows that a local magnetic field has dimensign=— 1/2 Z&-Ii Ei)) — @)
and is relevant: for an arbitrarily smali;, there exists a 1 o5 ((2 i
system sizd. above which the lowest part of the spectrum F" (4) =
and the ground state properties of the model are drastically T ) ]
affected, namely whem\ <T,,, or equivalently,|h;|>h, 00 1@ @ b @
=I'A_, whereh, denotes the crossover scale of section 0.0 s 04 o 02 1
VB. o _ _ Ay /o
In the absence of magnetic fields, the leading term in Eq.
(83) vanishes with increasing as ["L) ~ %, implying that the FIG. 4. Evolution of the many-body finite-size spectrum of the

least irrelevant irrelevant operaton the EK line has dimen- 1CK model, for antiperiodic boundary condition®¢=1), from
sion ygx=1. Thus, we conclude that the leading irrelevantthe free Fermi-liquid fixed point to the strong-coupling Fermi-liquid
operators with dimensiog=1/2 that were found in the CFT fixed point. All eigenstates dfi" of Eq. (D28) are shown for which -
treatmer®? are absenbn the EK line, in agreement with Er=<1, as well as some higher-lying states, with degeneracies
Refs. 2 and 26. given in brackets(a) When\, is tuned from O to its Toulouse-point
Now let us move away from the EK line by taking, valuex* =2— /2, with )\L=sd=0., the freg Fermi-liquid s_pectrum
—1+ 6\, and do perturbation theory #\,, i.e., inoH, of e 31A,=0 evolves smoothly into a simple phase-shifted spec-
Eq. (35). Then the operators with dimensiop=1/2 just trum Epnaseat Az =1 . (b) WhenT/A =) [/(4a4,) is tuned from

mentioned immediately show up: As shown in detail in A _0'to= at the Toulouse point, i.e., with,=\; and sq=0, the
dix C737 fi >(/:i that Ft)h " de” t P spectrum crosses over frof},.scto the strong-coupling Fermi-
pendix » We i a € ~zero mocde erm liquid spectrumé atI'/A =o0. The latter is identical to the free

SONLA NS, of (35) (which does not occur in the continuum Fermi-liquid spectrum X,=\, =&4=0) for periodic boundary

limit considered in Ref. @ affects the spectrum already in conditions P,=0), in agreement with Wilson’s NRG results
first order inS\,: in the absence of magnetic fields, the first (Ref. 50.

excited stategwith &g =1/8) are shifted relative to the
doubly degenerate ground statéwsith &y =0) by an

amount

Tx=T". This differs from the suggestion of Sengupta and
George& that the Kondo scale in the anisotropic 2CK model
close to the EK line is nof but rather’/(S\,)2. This scale
1 emerged naturally in their calculation of the total susceptibil-

SE(L)=— —SN,(1+4m2TIA ) Y2~ Y2  (gg) ity enhgncement due to the impurity, which yieIng;lnE

4 ~(SN)IT In(I'/T) (at h;=0). However, the factor §\,)
L . only expresses the fact that the amplitudes of the leadin

This implies that the 'ead'”9 operator. that appears as qnl‘?re)I/evar?t operators vanistn the EK Iir?e, so that the char- ’
moves away from the EK line has dimension 1/2 and iSyteristic logarithmic features appear only in second order in
irrelevant. 'I_'hus, thé&K line is stable against perturbations S\,. The fact that the scale above which these logarithmic
away from it. features vanish isT=I", not T=I/(J\,)?, supports our

~ Inthe presence of a local magnetic fielg=h; , one finds  apove conclusion that it is rath&r that should be identified
in the continuum limitA| <T", h; that the ground state degen- 35 the Kondo scale.

eracy is split by an amount
VII. SINGLE-CHANNEL KONDO MODEL

% mmm (A <h;<T), The methods used above can also be applied, with minor
SE(L) = 27° I' " 4xl 5 modifications, to the single-channel KonddCK) model.
S\, ar This is done in Appendix D. The main difference to the 2CK
T(l_m) (A <I'<hy). case is of course that both the weak and strong-coupling
I

fixed points are Fermi liquids, but they are again connected

This shows that the magnetic-field behavidong the EK ~ PY @ line, called the “Toulouse point,” along which the
line is not completely generic, since it misses this part of théN0del is exactly solvable. The main results of Appendix D
h; dependence of the magnetic-field-induced crossover. Not&'® Summarized in Fig. 4, which shows the finite-size cross-
that the|h;|/T In|n|/T" behavior that occurs for a local mag- ©Ver spectrum of the 1CK model. It nicely illustrates the fact,
netic field of intermediate strength is consistent with the con{ir'St discussed by Wilsoff that both the two weak- and
clusions of the NRG studies of Ref. 18 for thedependence Strong-coupling fixed-point spectra correspond to free fermi-
of a certain phase shift that can be used to characterize tHfS; Which satisfy, however, different boundary conditions
NRG spectra. (antiperiodic or periodic, respectively

Finally, we would like to comment here on the identifica-
tion of the Kondo scald@ . In Sec. V B we showed that the
crossover scale below which the finite-size spectrum takes its The main general conclusion of our work is that construc-
fixed-point form(at h;=0) wasI’, and hence concluded that tive finite-size bosonization is an unexpectedly powerful tool

VIII. DISCUSSION AND CONCLUSIONS
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for investigating quantum impurity problems. First, for the fact that there are gluing conditions such as 2¢) between
2CK model, it enables one tanalytically calculate by el- the c,f sectors and thes,x sectors. As long as these are
ementary means the crossover along the EK line of the finiteagnored, the compactified model cant be used to calculate
size spectrumiand the corresponding eigenstatdsetween conduction electron properties, since that requires adding
the free Fermi liquid and the NFL fixed point. Although the back the contributions from the charge and flavor channels.
fixed point spectrum had already been obtained by means of Our constructive bosonization approach allowed us to
conformal field theon?22® this crossover had hitherto been clarify this issue completely: it makes precise in what sense
tractable only with the NRG, and has been beyond the reactihe c andf sectors can be “factorized out,” rigorously yields
of all analytical approaches used to study this model. Morean appropriate model for the remainisgndx sectors, em-
over, the ability to treat the crossover explicitly allowed us tophasizes the gluing conditions between thé ands,x sec-
prove in a direct way the two central assumptions on whichtors, and shows how they can be used at the NFL fixed point
Affleck and Ludwig’s very elegant CFT solution is based,to combine the contributions from all four sectors to obtain
namely, that spin anisotropy is irrelevant so that the NFLthe NFL fixed point spectrunfAn alternative way of doing
fixed point has the same U(DX SU(2);X SU(2); symmetry this explicitly was found by Bradley, Bulla, Hewson, and
as the free model, and the fusion hypothesis for the operatdhang'® using the equivalence of the compactified model to
content of the NFL fixed point. a certain @3) symmetric Anderson modél.

Secondly, finite-size bosonizati@an deal without much Maldacena and Ludwiy have used CFT to show that
additional effort with symmetry-breaking perturbatiossch  Affleck and Ludwig’s CFT solution can be reformulated in
as a finite magnetic fieldor channel symmetry breakig, terms of free boson fields,(x) satisfying certain asymptotic
which was not discussed here, but can be included by Boundary conditions. Y& reproduced this result using field-
straightforward extension of our methgdmdeed, it is to be theoretic bosonization at the EK lirim the continuum limix
expected that the methods developed here can fruitfully bénvoking scaling arguments. We have shown in Refadd
applied to a number of related quantum impurity problemswill elaborate this in a future publicatiéf) that these results
For example, an adaption of our finite-size refermionizationcan be reproduced with great ease by simply taking the con-
approach was very recently used to rigorously resolve a retinuum limit L—o of our above finite-size calculation. In
cent controversy regarding the tunneling density of states dhct, this allows us to check explicitly Affleck and Ludwig’s
the site of an impurity in a Luttinger liquitt Other potential  results for electronic correlations functions.
applications would be to the generalized Kondo models stud- In summary, using finite-size bosonization we have calcu-
ied by Ye? or by Moustakas and Fish&t>3or by Kotliar  lated analytically and from first principles, but in a concep-
and Si?® tually straightforward way, the crossover of the finite-size

Thirdly, finite-size bosonization allows orti@ mimic inan  spectrum of the 2CK model from the free to the NFL fixed
exact way the strategy of standard RG approacbesh as point. This enabled us to elucidate the nature of the NFL
poor man’s bandwidth rescaling and finite-size scaling; thugxcitations and to perform a detailed finite-size scaling
it should be useful also as a pedagogical tool for teachin@nalysis of the NFL fixed point.
and analytically illustrating RG ideas.

Coleman and co-workefs!3have proposed a “pedestrian ACKNOWLEDGMENTS
solution” of the 2CK model, in which it is argued that many . . . .
of its properties can be calculated using a so-called “com- We are de‘?p'y indebted to M|chel.e Fabrizio fof his in-
pactified model” involving only a single channel of spinful valugble help in the earl_y stages of this work and his careful
conduction electrons. This model was argued to represeﬁ?ad'r.‘g of the manuscrlpt..We are alsq grqteful'to Andreas
that part of the 2CK model that is left over when one “fac- Ludwig and Abraham S(_:h|ller f_or |IIum|na_1t|ng discussions
torizes out” the charge and flavor degrees of freedom. In—and generous help, Gabriel Kotliar and Anirvan _Sengupta for
deed, using field-theoretic bosonization, Schofield showeb'seful suggestions, and \/olker Meden for a discussion on
that there is a formal correspondence between the compac utoff-related matters. This research has been supported by
fied model and ouH, of Eq. (27) (which involves onlye, rant No. SFB195 qf the Deutsche Forschungsgesellschaft

Lo nd by the Hungarian Grant Nos. OTKA T026327 and
andg,), and that it yields the same results as the 2CK mode TKA F030041. G.Z. has b ted by the M
for theimpurity contributionto thermodynamical properties. ; - -4 Nas been supported by he Magyary
In this sense, the compactified model can be viewed as a%oltan Foundation.
effective model for calculating impurity properties. How-
ever, as first emphasized by Yeit is not equivalent to the
original 2CK model, since Schofield’s arguments ignored the The appendices of this paper may be found in Ref. 37.
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