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Fixed-N Superconductivity: The Crossover from the Bulk to the Few-Electron Limit
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We present a truly canonical theory of superconductivity in ultrasmall metallic grains by variationally
optimizing fixed-N projected BCS wave functions, which yields the first full description of theentire
crossover from the bulk BCS regime (mean level spacingd ø bulk gapD̃) to the “fluctuation-
dominated” few-electron regimesd ¿ D̃d. A wave-function analysis shows in detail how the BCS
limit is recovered ford ø D̃, and how ford ¿ D̃ pairing correlations become delocalized in energy
space. An earlier grand-canonical prediction for an observable parity effect in the spectral gaps is found
to survive the fixed-N projection. [S0031-9007(98)07675-3]

PACS numbers: 74.20.Fg, 74.25.Ha, 74.80.Fp
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In the early days of BCS theory, its use of essentia
grand-canonical (g.c.) wave functions was viewed as o
of its most innovative, if not perplexing, features: the var
ational BCS ansatz for the ground state is a superpo
tion of states with different electron numbers, althoug
BCS [1] themselves had emphasized that the true grou
state of an isolated superconductor must be a state of d
nite electron number. That this ansatz was neverthel
rapidly accepted and tremendously successful had t
reasons: first, calculational convenience—determining t
variational parameters is incomparably much simpler in
g.c. framework, where the particle number is fixed on
on the average, than in a canonical one, where a furt
projection to fixed electron number is required; and se
ond, it becomes exact in the thermodynamic limit—fixed
N projections yield corrections to the BCS ground sta
energy per electron that are only of orderN21, as shown,
e.g., by Anderson [2] and Mühlschlegel [3].

Recently, however, a more detailed examination of t
range of validity of BCS’s g.c. treatment has become ne
essary, in light of the measurements by Ralph, Black, a
Tinkham (RBT) [4] of the discrete electronic spectrum o
an individual ultrasmall superconducting grain: it had
charging energy so largesEC ¿ D̃d that electron number
fluctuations are strongly suppressed, calling for a cano
cal description, and the number of electronsN within the
Debye frequency cutoffvD from the Fermi energý F

was only of order102; hence, differences between canon
cal and g.c. treatments might become important. Mor
over, its mean level spacingd ~ N21 was comparable
to the bulk gapD̃; hence, it lies right in thecrossover
regime between the “fluctuation-dominated” (f.d.) few
electron regimesd ¿ D̃d and the bulk BCS regimesd ø
D̃d, which could not be treated satisfactorily in any o
the recent theoretical papers inspired by these expe
ments: the results of [5–9], including the predictions o
parity effects, were obtained in a g.c. framework; an
Mastellone, Falci, and Fazio’s (MFF) [10] fixed-N exact
numerical diagonalization study, the first detailed anal
sis of the fluctuation-dominated regime, was limited
N # 25.
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In this Letter we achieve thefirst canonical description
of the full crossover.We explicitly project the BCS ansatz
to fixed N (for N # 600) before variationally optimizing
it, adapting an approach developed by Dietrich, Mang, a
Pradal [11] for shell-model nuclei with pairing interac
tions to the case of ultrasmall grains. This projected BC
(PBCS) approach enables us (i) to significantly improv
previous g.c. upper bounds on ground state energies
8], (ii) to check that a previous grand-canonical predictio
[8] for an observableparity effect in the spectral gaps sur
vives the fixed-N projection, (iii) to find in the crossover
regime a remnant of the “breakdown of supercondu
tivity” found in g.c. studies, at which the condensatio
energy changes from being extensive to practically inte
sive, and (iv) to study this change by anexplicit wave-
function analysis,which shows in detail how the BCS
limit is recovered ford ø D̃, and how ford ¿ D̃ pair-
ing correlations become delocalized in energy space.

The model.—We model the superconducting grain
by a reduced BCS Hamiltonian which has been us
before to describe small superconducting grains [6–9]
was phenomenologically successful ford & D̃ [7,8], but
probably is unrealistically simple ford ¿ D̃, for which it
should rather be viewed as a toy model):

H ­
N21X

j­0,s

´jc
y
jscjs 2 ld

N21X
j,j0­0

c
y
j1c

y
j2cj02cj01 . (1)

The c
y
j6 create electrons in free time-reversed singl

particle-in-a-box statesj j, 6l, with discrete, uniformly
spaced, degenerate eigenenergies´j ­ jd 1 ´0. The
interaction scatters only time-reversed pairs of electro
within vD of ´F . Its dimensionless strengthl is related
to the two material parameters̃D and vD via the
bulk gap equation sinh1yl ­ vDyD̃. We chosel ­
0.22, close to that of Al [8]. The level spacingd
determines the numberN ­ 2vDyd of levels, taken
symmetrically around´F , within the cutoff; electrons
outside the cutoff remain unaffected by the interaction a
are thus neglected throughout.

Projected variational method.—We construct varia-
tional ground states forH by projecting BCS-type wave
© 1998 The American Physical Society
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functions onto a fixed electron numberN ­ 2n0 1 b
[11], wheren0 andb are the number of electron pairs an
unpaired electrons within the cutoff, respectively. Con
sideringb ­ 0 first, we take

j0l ­ C
Z 2p

0
dfe2ifn0

N21Y
j­0

suj 1 eifyjc
y
j1c

y
j2d jvacl ,

(2)
wherejvacl is the vacuum state. Bothyj, the amplitude
to find a pair of electrons in the levelsj j, 6l, and uj ,
the amplitude for the levels being empty, can be chos
real [11] and obeyu2

j 1 y
2
j ­ 1. The integral over

f performs the projection onto the fixed electron pa
numbern0, and C is a normalization constant ensuring
k0 j 0l ­ 1.

Doing the integral analytically yields a sum ove
s 2n0

n0
d terms [all products in (2) that contain exactlyn0

factors ofyjc
y
j1c

y
j2], which is forbiddingly unhandy for
d
-

en

ir

r

any reasonablen0. Therefore we follow Ref. [11] and
evaluate all integrals numerically instead. Introducing th
following shorthand for a generalprojection integral,

Rj1···jN
n ;

Z 2p

0

df

2p
e2isn02ndf

Y
jfij1···jN

su2
j 1 eify2

j d ,

the expectation valueE0 ­ k0jHj0l can be expressed as

E0 ­
X

j

s2´j 2 lddy2
j

R
j
1

R0
2 ld

X
j,k

ujyjukyk
R

jk
1

R0
.

Minimization with respect to the variational parametersyj

leads to a set of2n0 coupled equations,

2s ˆ́ j 1 Ljdujyj ­ Djsu2
j 2 y2

j d , (3)

where the quantitieś̂j, Lj, andDj are defined by

ˆ́ j ; s´j 2 ldy2d
R

j
1

R0
, Dj ; ld

X
k

ukyk
R

jk
1

R0
,

Lj ;
X

k

µ
´j 2

ld
2

∂
y2

k

"
R

jk
2 2 R

jk
1

R0
2

Rk
1

R0

R
j
1 2 R

j
0

R0

#
2

ld
2

X
k,,

ukyku,y,

"
R

jk,
2 2 R

jk,
1

R0
2
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R0

R
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1 2 R
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0
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5]
We obtain an upper bound on the ground state ener
and a set ofyj ’s, i.e., an approximate wave function,
by solving these equations numerically. To this end, w
use a formula of Ma and Rasmussen [12] to express a
R

j1···jN
n in terms ofR0 and allR

j
0 ’s, and evaluate the latter

integrals using fast Fourier transform routines.
Next consider states withb unpaired electrons, e.g.,

states with odd number parity or excited states: Unpair
electrons are “inert” because the particular form of th
interaction involves only electronpairs. Thus the Hilbert
subspace withb specific levels occupied by unpaired
electrons, i.e., levels “blocked” to pair scattering [7,13], i
closed under the action ofH, allowing us to calculate the
energy, sayEb, of its ground statejbl by the variational
method also. To minimize the kinetic energy of the
unpaired electrons injbl we choose theb singly occupied
levels,j [ B, to be those closest to the Fermi surface [8
Our variational ansatz forjbl then differs fromj0l only
in that

Q
j is replaced bys

Q
j[B c

y
j1d

Q
j”B. Thus in all

products and sums overj above, the blocked levels are
excluded (theuj and yj are not defined forj [ B) and
the total energyEb has an extra kinetic term

P
j[B ´j.

In the limit d ! 0 at fixed n0d, the PBCS theory
reduces to the g.c. BCS theory of Ref. [7] (proving tha
the latter’sN fluctuations become negligible in this limit):
The projection integrals can then be approximated by the
saddle point values [11]; sincef ­ 0 at the saddle, theR’s
used here are all equal, thusLj vanishes, the variational
equations decouple and reduce to the BCS gap equati
and the saddle point condition fixes themeannumber of
electrons to be2n0 1 b. To check the opposite limit of
d ¿ D̃ wheren0 becomes small, i.e., the f.d. regime, we
compared our PBCS results forE0 and E1 with MFF’s
gy
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exact results [10], finding agreement to within 1% fo
n0 # 12. This shows that “superconducting fluctuations
(as pairing correlations are traditionally called when,
in this regime, the g.c. pairing parameter vanishes [6
are treated adequately in the PBCS approach. Becau
works so well ford ø D̃ andd ¿ D̃, it seems reasonable
to trust it in the crossover regimed . D̃ also, though
here, lacking any exact results for comparison, we can
quantify its errors.

Ground state energies.—Figure 1(a) shows the ground
state condensation energiesEb ­ Eb 2 kFbjHjFbl for
even and odd grains (b ­ 0 and 1, respectively), which is
measured relative to the energy of the respective unc
related Fermi sea (jF0l ­

Q
j,n0

c
y
j1c

y
j2jvacl or jF1l ­

c
y
n01jF0l), calculated forN # 600 using both the canoni-

cal sEC
b d and g.c.sEGC

b d [6,7] approaches. The g.c. curve
suggest a breakdown of superconductivity [6,7] for larg
d, in thatEGC

b ­ 0 above some criticalb-dependent level
spacingdGC

b . In contrast, theEC
b ’s are (i) significantly

lower than theEGC
b ’s, thus the projection much improves

the variational ansatz, and (ii) negative forall d, which
shows that the system canalwaysgain energy by allowing
pairing correlations, even for arbitrarily larged. As antici-
pated in [8], the breakdown of superconductivity is ev
dently not as complete in the canonical as in the g.c. ca
Nevertheless, some remnant of it does survive inEC

b ,
since its behavior also changes markedly at absandld-
dependent characteristic level spacingdC

b s,dGC
b d: it marks

the end of bulk BCS-like behavior ford , dC
b , where

EC
b is extensives,1ydd, and the start of a f.d. plateau fo

d . dC
b , whereEC

b is practicallyintensive(almostd inde-
pendent) [14]. The standard heuristic interpretation [1
of the bulk BCS limit2D̃2y2d (which is indeed reached
4713
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FIG. 1. (a) The ground state condensation energiesEb , (b) the
spectral gapsVb ­ Eb12 2 Eb , and (c) the pairing parameters
Db , for even and odd systemssb ­ 0, 1d, calculated canonically
(C) and grand canonically (GC) as functions ofdyD̃ ­
2 sinhs1yldyN . The inset shows a blowup of the region aroun
the characteristic level spacingsdC

0 ­ 0.5D̃ and dC
1 ­ 0.25D̃

(indicated by vertical lines in all subfigures). ThedC
b (a) mark

a change in behavior ofEC
b from ,1yd to being almostd

independent, and roughly coincide with (b) the minima inVb ,
and (c) the position of the abrupt drops inDb .

by EC
b for d ! 0) hinges on the scalẽD: the number of

levels strongly affected by pairing is roughlỹDyd (those
within D̃ of ´F), with an average energy gain per level o
2D̃y2. To analogously interpret thed independence ofEC

b
in the f.d. regime, we argue thatthe scaleD̃ loses its sig-
nificance—fluctuations affectall n0 ­ vDyd unblocked
levels withinvD of ´F (this is made more precise below)
and the energy gain per level is proportional to a reno
malized coupling2l̃d (corresponding to the1yN correc-
tion of [2,3] to the g.c. BCS result). The inset of Fig. 1(a
shows the crossover to be quite nontrivial, being surpr
ingly abrupt forEC

1 .
Parity effect.—Whereas the ground state energies a

not observable by themselves, the parity-dependent sp
tral gapsV0 ­ E2 2 E0 and V1 ­ E3 2 E1 are mea-
surable in RBT’s experiments by applying a magnetic fie
[8]. Figure 1(b) shows the canonicalsVC

b d and g.c.sVGC
b d

results for the spectral gaps. The main features of t
g.c. predictions are as follows [8]: (i) The spectral gap
have a minimum, which (ii) is at a smallerd in the odd than
the even case, and (iii)V1 , V0 for small d, which was
argued to constitute an observable parity effect. Rema
ably, the canonical calculation reproduces all of thes
qualitative features, including the parity effect,differing
from the g.c. case only in quantitative details: the minim
are found at smallerd, andV

GC
0 , V

C
0 for larged. The

latter is due to fluctuations, neglected inE
GC
b , which are

less effective in loweringE C
b the more levels are blocked

so thatjE C
b 2 E

GC
b j decreases withb.
4714
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Wave functions.—Next we analyze the variationally
determined wave functions. Eachjbl can be characterized
by a set of correlators:

C2
j sdd ­ kcy

j1cj1c
y
j2cj2l 2 kcy

j1cj1l kcy
j2cj2l , (4)

which measures the amplitude enhancement for find
a pair instead of two uncorrelated electrons inj j, 6l.
For any blocked single-particle level and for allj of an
uncorrelated state, one hasCj ­ 0. For the g.c. BCS
caseCj ­ ujyj and theCj ’s have a characteristic peak
of width .D̃ around ´F [see Fig. 2(a)] implying that
pairing correlations are “localized in energy space.” F
the BCS regimed , D̃, the canonical method produce
Cj ’s virtually identical to the g.c. case,vividly illustrating
why the g.c. BCS approximation is so successful: n
performing the canonical projection hardly affects th
parametersyj if d ø D̃, but tremendously simplifies thei
calculation(since the2n0 equations in (2) then decouple)
However, in the f.d. regimed . dC

b , the character of the
wave function changes: weight is shifted into the tails f
from ´F at the expense of the vicinity of the Fermi energ
Thus pairing correlations become delocalized in energ
space(as also found in [10]), so that referring to them
as mere “fluctuations” is quite appropriate. Figure 2(
quantifies this delocalization:Cj decreases assAj´j 2

´F j 1 Bd21 far from the Fermi surface, withd-dependent
coefficientsA andB; for the g.c.d ­ 0 case,A ­ 2 and
B ­ 0; with increasingd, A decreases andB increases,
implying smallerCj ’s close to´F but aslower falloff far
from ´F . In the extreme cased ¿ dC

b , pair mixing is
roughly equal for all interacting levels.

To quantify how the total amount of pairing cor-
relations, summed over all statesj, depends ond,
Fig. 1(c) shows thepairing parameterDbsdd ­ ld

P
j Cj

FIG. 2. The pairing amplitudesCj of Eq. (4), for b ­ 0.
(a) The dashed line shows the g.c. BCS result; pair correlatio
are localized withinD̃ of ´F . Lines with symbols show the
canonical results for severald; for d , dC

0 ø 0.5D̃, the wave
functions are similar to the BCS ground state, while ford , dC

0

weight is shifted away froḿF into the tails. (b) For alld, C21
j

shows linear behavior far froḿF . For largerd the influence
of levels far from´F increases.
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FIG. 3. The canonical (solid line), g.c. (dashed line), an
perturbative (dotted line) results for the parity paramet
DML [9].

proposed by Ralph [8,16], calculated with the canon
cal sDC

b d and grand-canonicalsDGC
b d approaches. By

construction, bothD
GC
b and D

C
b reduce to the bulk

BCS order parameter̃D as d ! 0, when Cj ! ujyj.
D

GC
b decreases with increasingd and drops to zero

at the same critical valuedGC
b at which the energy

EGC
b vanishes [8], reflecting again the g.c. breakdow

of superconductivity. In contrast,DC
b is nonmonotonic

and never reaches zero; even the slopes ofDC
e and

DGC
e differ as d ! 0 [5,6], illustrating that the1yN

corrections neglected in the g.c. approach can sign
cantly change the asymptoticd ! 0 behavior (this ev-
idently also occurs in Fig. 1b). Nevertheless,D

C
b does

show a clear remnant of the g.c. breakdown, by decre
ing quite abruptly at the samedC

b at which the plateau in
EC

b sets in. For the odd case this decrease is surprisin
abrupt, but is found to be smeared out for largerl. We
speculate that the abruptness is inversely related to
amount of fluctuations, which is reduced in the odd ca
by the blocking of the level at́F , but increased by larger
l. D

C
b increases for larged, because of the factorld in

its definition, combined with the fact that (unlike in the
g.c. case) theCj remain nonzero due to fluctuations.

Our quantitative analysis of the delocalization of pair
ing correlations is complimentary to but consistent wit
that of MFF [10]. Despite being limited ton0 # 12, MFF
also managed to partially probe the crossover regime fro
the f.d. side via an ingenious rescaling of parameters,
creasingl at fixedvD andd, thus decreasingdyD̃; how-
ever, the total number of levels2vdyd stays fixed in
the process; thus this way of reducing the effective lev
spacing, apart from being (purposefully) unphysical, ca
yield only indirect and incomplete information about th
crossover, since it captures only the influence of the le
els closest tó F . Our method captures the crossover full
without any such rescalings.

Matveev-Larkin’s parity parameter.—ML [9] have in-
troduced a parity parameter, defined to be the differen
between the ground state energy of an odd state and
mean energy of the neighboring even states with one el
tron added and one removed:DML ­ E1 2

1
2 sE add

0 1

E
rem
0 d. Figure 3 shows the canonical and g.c. results f

DML, and also the large-d approximation given by ML,
DML ­ dyf2 logsadyD̃dg, where the constanta (needed
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because ML’s analysis holds only with logarithmic accu
racy) was used as a fitting parameter (witha ­ 1.35).
As for the spectral gaps, the canonical and g.c. resu
are qualitatively similar, though the latter, of course
misses the fluctuation-induced logarithmic corrections fo
d . dC.

In summary, the crossover from the bulk to the
f.d. regime can be captured in full using a fixed-N
projected BCS ansatz. With increasingd, the pairing cor-
relations change from being strong and localized withinD̃

of ´F , to being mere weak, energetically delocalized fluc
tuations; this causes the condensation energy to chan
quite abruptly, at a characteristic spacingdC ~ D̃, from
being extensiveto intensive(modulo small corrections).
Thus, the qualitative difference between superconducti
ity for d , dC, and fluctuations ford . dC, is that, for
the former but not the latter, addingmoreparticles gives
a differentcondensation energy; for superconductivity, a
Anderson put it, “more is different.”
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