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Time-reversal invariant two-dimensional topological insulators, often dubbed Quantum Spin Hall
systems, possess helical edge modes whose ballistic transport is protected by physical symmetries.
We argue that, though the time-reversal symmetry (TRS) of the bulk is needed for the existence of
helicity, protection of the helical transport is actually provided by the spin conservation on the edges.
This general statement is illustrated by some specific examples confirming the importance of the
spin conservation. One of these examples demonstrates the ballistic conductance in the setup where
the TRS on the edge is broken. It shows that attributing the symmetry protection exclusively to the
TRS is not entirely correct. Analysis of the spin conservation may be important for understanding
transport properties of the QSH samples which demonstrate a sub-ballistic conductance.

PACS numbers: 71.10.Pm, 73.43.-f, 75.30.Hx

The search of materials which may be used as a plat-
form for realizing protected states has acquired nowadays
the great importance because of potential applications in
nanoelectronics, spintronics and quantum computers. A
particular attention is drawn to systems whose transport
properties are virtually not liable to effects of material
imperfections, including backscattering and localization.
This could provide a possibility to sustain the ballistic
transport in relatively long samples.

One possibility for such a protection in one-
dimensional (1D) conductors is provided by helicity. The
latter is defined as a product of signs of the particle
spin and chirality (denoting the direction of motion):
η = sign(σz)sign(µ). Modes of the given helicity pos-
sess lock-in relation between their spin and momentum:
electrons propagating in opposite directions have oppo-
site spins. In the idealized case, this locking protects
transport against potential disorder.

Helical transport originates on edges of time-reversal
invariant two-dimensional topological insulators, the so-
called Quantum Spin Hall (QSH) samples [1–3] which
attract an enormous and continuous attention of exper-
imentalists [4–24] and theoreticians [25–47] during past
decade. The edge helicity requires the topologically non-
trivial and time-reversal invariant state of the insulating
bulk. That is why the protection is often referred to as
the topological protection. This is a kind of historical
term which should not be taken literally. There are ex-
ample where the ballistic transport can be suppressed by
a local perturbation on the edge, e.g. anisotropic spinfull
impurities, which have no influence on the topologically
nontrivial bulk. To understand the origin of protection,
one should consider not only the state of the bulk but
also all physical symmetries of the system, including the
symmetries of the edge. In the simplest non-interacting
case, helicity of the edge modes is related to the Kramers
degeneracy which requires the time-reversal symmetry
(TRS). In many papers, starting from classical reviews [1]
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FIG. 1. (color on-line) Illustration of a generic two terminal
setup: a wire with two modes of the same helicity (red and
blue lines) is connected to 2D leads (colored trapezia). The
central part of the wire includes ”a black box” - an arbitrary
conducting region which conserves charge and spin. The dc
voltage, Vdc, is applied to outer ends of the helical wire.

ending by very recent papers [24, 48], the protection is at-
tributed exclusively to the TRS and other physically sym-
metries are somehow forgotten or, at least, not present
in the common terminology, though their importance is
acknowledged by some members of the community. Note
that, in the above mentioned example of the anisotropic
spinfull impurities, the ballistic transport is suppressed
though the TRS remains unbroken.

The goal of this Paper is to emphasize the róle of an-
other symmetry on the edges of the QSH sample. We will
argue that, though the TRS symmetry of the insulating
bulk is necessary for realization of the QSH samples, the
necessary and sufficient condition for the symmetry pro-
tection of the helical transport is the spin conservation,
i.e. the spin U(1) symmetry, on the edge. Paradoxically,
the TRS may be of the secondary importance. To illus-
trate this statement, we will explore an example of the
helical fermions coupled to an array of localized spins.
We will demonstrate that the helical transport is pro-
tected by the spin conservation even though the TRS on
the edge can be broken by a spin ordering. Importance
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of the spin conservation in this system was noticed in
Refs.[32, 35] where a renormalized Drude peak in the dc
conductivity was found for the simplest spin-conserving
setup. Based on a straightforward though a kind of su-
perficial analogy with the physics of usual (not helical)
interacting 1D wires [49–51], a ballistic nature of the dc
conductance was conjectured. Our analysis demonstrates
that this conjecture is correct.

Let us start from a simple elucidating proof of impor-
tance of the spin conservation. We focus only on the edge
modes of the QSH sample and explore the dc conduc-
tance of the 1D helical wire attached to two leads. The
Hamiltonian describing clean helical 1D Dirac fermions
reads as:

Ĥ0 = −ivF
∫

dx ψ̂†(x)σ̂z∂xψ̂(x) . (1)

Here vF is the Fermi velocity; ψ̂ = {ψ+, ψ−}T is
the spinor constructed from the helical fermionic fields;
σ̂x,y,z denote the Pauli matrices operating in the spin
space. A natural direction of the spin quantization is de-
termined by the spin-orbit interaction (SOI) which gov-
erns helicity. We assume that it is directed along z-axis.
We consider the wire whose left- and right parts are clean
but the middle part contains “a black box” - a conduct-
ing region whose only known property is the absence of
the spin and charge relaxation, see Fig.1.

The spin and charge conservation in the black box re-
sult in two equations:

Charge conservation: J
(in)
R + J

(in)
L = J

(out)
R + J

(out)
L ;(2)

Spin conservation: J
(in)
R − J (in)

L = J
(out)
R − J (out)

L .(3)

Fermionic currents J
(in/out)
µ are explained in Fig.1. It

follows from Eqs.(2,3) that

J (in)
µ = J (out)

µ , µ = R (≡ +), L (≡ −) ; (4)

i.e. the current through the entire system is ideal and
the conductance of the helical wire with the inclusion of
the charge/spin conserving black box is ballistic. Internal
details of the black box, including the temperature, the
presence or absence of the TRS and interactions, etc., do
not matter. We emphasize that these properties are the
direct consequence of helicity and, therefore, the physics
is very distinct from that of usual (non-helical) 1D wires
[49–51] where the number of currents is larger than that
of conservation laws.

Now we will give two specific examples which illustrate
the above generic statements.

1. Rotating SOI: ballistic conductance and hidden spin
conservation. Consider at first the black box where there
are no spinfull impurities but the direction of the spin
quantization is locally rotated. This rotation could result
from the inhomogeneously changed direction of the SOI
inside the box. The Hamiltonian of this system can be
written as

Ĥrot = − i
2
vF

∫
dx ψ̂†(x) {(n · σ) , ∂x}+ ψ̂(x) . (5)

The coordinate-dependent unit vector n =
{sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)} corresponds to
the direction of the SOI. Here θ and ϕ are the polar
and azimuthal angles. The boundary condition is
θ = 0⇒ n = {0, 0, 1} in the helical wires which connect
leads and the black box. Inside the box, the direction
of n is not fixed and angles θ and ϕ slowly (on the
scale of the inverse Fermi momentum 1/kF ) change in
space. The anticommutator {. . .}+ is needed for the

Hermiticity of Ĥrot.
Ĥrot is time-reversal invariant but it does not commute

with any spin operators and, therefore, the spin quan-
tization axis cannot be globally defined in the basis of

ψ̂-fermions. Nevertheless, the dc transport remains bal-
listic which can be erroneously understood as the TRS
protection of transport in the absence of the spin con-
servation [48]. Such a conclusion, if correct, would con-
tradict to our main statement concerning the role of the
spin conservation. In reality, one can find the spin con-
servation which protects transport. This was reported
in Ref.[52], where the interacting helical edge with a
random SOI was explored by using the transfer matrix
technique and the Luttinger liquid theory. The ballistic
nature of transport in such a system was subsequently
questioned and checked[39]. Let us show how one can
trivially reduce the Hamiltonian (5) to the form which,
after using Eqs.(2,3), straightforwardly explains robust-
ness of the ballistic transport even in the presence of the
spin-preserving interaction.

To uncover the spin conservation which protects trans-
port, we simply rotate the fermionic basis. Firstly we
note that

ĝ† (n · σ) ĝ = σ̂3, ĝ = e−i
ϕ
2 σ̂3e−i

θ
2 σ̂2 . (6)

Thus, the unitary rotation of the fermionic basis by the
matrix ĝ diagonalizes Ĥrot. Note that ĝ = 1 outside
the black box because of the boundary conditions for n.

Changing to the basis Ψ̂ = ĝ†ψ̂, we find

Ĥrot = −vF
∫

dxΨ̂†
{
iσ̂3∂x +

1

2
cos(θ)[∂xϕ]

}
Ψ̂ ; (7)

see algebraic details in Suppl.Mat.A. The spin of the
fermions is manifestly conserved in the Ψ̂-basis. There
is no backscattering in Eq.(7). Thus, conservation laws
(2,3) hold true and the dc transport remains ballistic,
as expected. Clearly, the spin preserving density-density
electron interactions have no influence on our approach
and cannot change the ballistic nature of the helical
transport.
2. Helical modes interacting with a Kondo-Heisenberg

array: ballistic conductance and broken TRS. Consider
the helical edge modes which interact with the array of
local magnetic moments – Kondo Spins (KSs), see Fig.2.

The total Hamiltonian, Ĥ = Ĥ0+Ĥb+ĤH+ĤV , includes
the fermionic and spin parts, Ĥ0 and ĤH , respectively,
and the voltage source part ĤV which depends only on
the fermionic operators. Ĥb is the Hamiltonian of the
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FIG. 2. (color on-line) 1D wire with helical electrons, ψ±,
coupled to the Kondo-Heisenberg array (green arrows) located
inside the black box (shadowed rectangle) . Density of the
local spins (dotted line) vanishes outside the black box and
fluctuates in space inside it. The interaction constants, JK,H

can also depend on the coordinate.

fermion-spin interaction which originates from backscat-
tering induced by KSs. In the spin-conserved setup, it
reads as follows:

Ĥb =
∑
j

Ŝ+
j [JKψ

†
−ψ+](xj) + h.c. (8)

Here the sum runs over KS positions xj , JK is the po-
sition dependent coupling constant between the KSs and
the fermions; Ŝ±j = e±2ikF xj (Ŝx± iŜy)j are rotated rais-

ing/lowering operators of the KSs. Eq.(8) corresponds

to the XXZ-coupling with JK = J
(x)
K = J

(y)
K . To sim-

plify discussion, we take into account neither electron-
electron interactions nor forward-scattering generated by

the component J
(z)
K though including them is straightfor-

ward and does not change our conclusions.
The spin Hamiltonian ĤH describes the direct Heisen-

berg exchange interaction between the z-components of
the KSs:

ĤH =
∑
j

JH(xj)Ŝz(j)Ŝz(j + 1) ; (9)

where JH is the position dependent coupling constant.
For concreteness, we have chosen the exchange interac-
tion between nearest neighbors. The interspin distance
ξs(j) = xj+1− xj can fluctuate in space if the spin array
is geometrically disordered.

The spin density is ρ
(d)
s (x) =

∑
j δ(x− xj) for the dis-

crete array. Its smeared counterpart, ρs(x), vanishes out-
side the black box and is finite and coordinate-dependent
inside it.

Our approach is similar to that suggested in Refs.[49,
53]: We express the electric current via a convolution of
the non-local conductivity, σ(x, x′;ω), and an inhomoge-
neous electric field E(ω, x′):

j(x, t) =

∫
dx

∫
dω

2π
e−iωtσ(x, x′;ω)E(ω, x′) . (10)

E(ω, x) is governed by the applied voltage. Next, we
bosonize the theory, use the technique of the func-
tional integrals on the imaginary time, and describe the

fermions by the standard Lagrangian of the helical Lut-
tinger Liquid with the source term [26, 54]:

LHLL =
[
(∂τφ)2 + (vF∂xφ)2

]
/2πvF + iχφ . (11)

The Fourier transform of the bosonic Green’s function
(GF), G(x, x′; τ) = −〈φ(x′, τ)φ(x, 0)〉, yields the Mat-
subara conductivity: σ(x, x′; ω̄) = (e2ω̄/π)G(x, x′; ω̄) .
Following Refs.[32, 35], we parameterize each Kondo spin
by its azimuthal angle, α, and projection on z-axis,
|nz| ≤ 1: S± = seiα

√
1− n2z , Sz = snz; with s being

the spin value. This approach requires the Wess-Zumino
term in the Lagrangian [55, 56]:

LWZ[nz, α] = isρs(1− nz)∂τα . (12)

The Lagrangian describing the spin-conserving
backscattering reads:

Lb[nz, α, φ] = 2sρs(x)JK(x)
√

1− n2z cos(α− 2φ) . (13)

Let us now shift the spin phase α̃ = α − 2φ. The full
Lagrangian in the new variables is

L = LHLL[φ, χ] + LWZ[nz, 2φ] + LKS[nz, α̃] . (14)

Here LKS ≡ Lb[nz, α̃, 0]+LH [nz]+LWZ[nz, α̃] is the spin
Lagrangian; LH describes the Heisenberg interaction of
the KSs.

In these new variables, the coupling between the
fermionic and KS sectors is reflected only by LWZ[nz, 2φ].
Its contribution to the low-energy theory effectively van-
ishes and the KS variables drop out from the equation for
the dc conductivity which reduces to that of the clean he-
lical wire, see the proof in Suppl.Mat.B. Therefore, cou-
pling between the helical modes and the spin-preserving
Kondo-Heisenberg array is unable to change the helical
dc conductance which remains ballistic.

A physical explanation for the robustness of the heli-
cal transport at JH � JK can be found by exploiting an
analogy with a single spin-1/2 Kondo impurity immersed
in the helical wire [57]: Each spin-preserving backscatter-
ing is accompanied by the spin-flip. Therefore, the Kondo
spin-1/2 is able to support only successive backscatter-
ings of the helical fermions with alternating chirality:
ψ+ → ψ−, ψ− → ψ+, . . . This successive backscatter-
ing does not change the dc conductance. The KS array
can be qualitatively considered as a single collective im-
purity. Its spin S is large but finite. The helical fermions
can transfer their spins to the collective impurity only
during the time T ∼ Sτs, where 1/τs is the spin-flip rate
for the individual KS. If the total spin is conserved and
the observation time is large, � T , the successive nature
of backscatterings is restored and the KS array cannot
change the dc conductance of the helical wire.

Direct and indirect (RKKY) exchange interactions be-
tween the KSs compete with each other [58]. If the
Kondo-Heinserberg array is dense and large enough, such
a competition leads to an exotic spin order on the edge
of the QSH sample [59]. If JH � JK , one comes across
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a nematic (or vector chiral) spin order. If JH exceeds
some critical value, J∗H , the quantum phase transition of
the Ising type occurs at zero temperature and the ne-
matic spin order becomes the scalar chiral spin order.
The component Sz acquires a non-zero semiclassical av-
erage value, s〈nz〉. This means that the TRS can be
spontaneously broken on the QSH edge. Nevertheless,
the helical dc transport remains ballistic and protected
as soon as the total spin is conserved. These arguments
show the secondary importance of the TRS on the edge
for the protection of the helical transport. Note that
the fermion backscattering by the magnetically ordered
Kondo-Heisenberg array is suppressed because it requires
an energy of the order of the energy of the domain wall,
EDW ∼ [(JH − J∗H)/JK ]2ξs/vF close to the critical re-
gion, see details in Ref.[59], and EDW ∼ JH at JH � JK .
Thus, the ballistic nature of transport is extended to fi-
nite frequencies which are much smaller than EDW.

General arguments underlying Eqs.(2,3) suggest that
the spin-conserving in-plane Heisenberg interaction of the

KSs, L(xy)
H ∝ ρse−2ikF ξsS+(x+ξs)S

−(x)+h.c., is also un-
able to suppress the ballistic helical dc transport. How-
ever, it is not simple to trace microscopic details of real-
ization of that generic statement because the phase φ can-
not be gauged out simultaneously from the Lagrangians

Lb and L(xy)
H . Detailed study of this case is beyond the

scope of the present paper. Qualitative arguments in fa-
vor of the helical ballistic transport are given in Ref.[59]
where the properties of the helical edge coupled to a large
SU(2)-symmetric Kondo-Heisenberg array are considered
in the continuous limit.

We emphasize that the dc helical transport is sensi-
tive neither to the profile of the spin density, ρs(x), nor
to the spatial inhomogeneity of the coupling constants,
JK,H(x). We conclude that, unlike the case of the usual
(non-helical) wires [49–51], properties of the transition
region between the clean helical wire and the black box
do not matter. This is the essential difference between
these two cases. We note that such a difference does not
appear in the ac conductance which might be sensitive to
details of the setup in the helical and non-helical systems.

Broken spin conservation: If the total spin in the
black box is not conserved, transport is not protected
any longer and the ballistic dc conductance becomes sup-
pressed. For instance: (i) Coupling between the helical
fermions and the infinitely long XY-anisotropic Kondo
array, JH = 0, L→∞, has been explored in Refs.[32, 35].
A constant XY-anisotropy opens a gap in the spectrum of

the helical modes while a random XY-anisotropy causes
their Anderson localization. Moreover, even a single XY-
anisotropic Kondo impurity has a pronounced destruc-
tive effect on the ballistic dc transport [60]. In both
cases, the anisotropy impedes the helical dc transport
and leads to the vanishing dc conductance at low tem-
peratures. (ii) Electron interactions could generate two-
particle umklapp backscattering which is consistent with
the TRS but does not preserve the spin and, as a result,
can suppress the ballistic helical transport [26, 61].
Conclusions: We have demonstrated that, though the

time-reversal symmetry of the bulk is the necessary con-
dition for formation of helical edge modes in 2D topolog-
ical insulators, the necessary and sufficient condition for
protection of the 1D helical transport is the total spin
(and, obviously, charge) conservation on the edges. This
conservation law makes the dc helical transport insensi-
tive to disorder, properties of contacts and even to break-
ing the TRS on the edges. The generic result [Eqs.(2,3)
and their discussion] has been exemplified by the micro-
scopic analysis of two nontrivial examples: 1) the Quan-
tum Spin Hall sample with inhomogeneous spin-orbit in-
teraction, and 2) the helical edge coupled to the Kondo-
Heisenberg array of localized spins. An Ising-like spin
order, which breaks the TRS on the edge, can appear in
the latter example. If the total spin is conserved, this
broken TRS has no influence on the dc ballistic helical
transport. Moreover, a single-electron backscattering in
Ising-ordered spin arrays is suppressed and, therefore,
transport can remain ballistic even at finite frequencies.

Analysis of the spin conservation is a powerful tool
which allows one to identify mechanisms leading to sup-
pression of the ballistic helical transport and to rule out
irrelevant ones. Thus, our approach may be important
for understanding transport properties of the QSH sam-
ples which demonstrate a sub-ballistic conductance.
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Supplemental Materials for the paper

“Symmetry protection of helical transport on edges of Quantum Spin Hall samples”

by O. M. Yevtushenko and V.I. Yudson

Suppl.Mat. A: Rotation of spinors

Consider the Hamiltonian Eq.(5):

Ĥrot = − i
2
vF

∫
dx ψ̂†(x) {(n · σ), ∂x}+ ψ̂(x) = −ivF

∫
dx ψ̂†(x)

[
(n · σ)∂x +

1

2
[∂x(n · σ)]

]
ψ̂(x) . (A1)

Here n = {sin (θ) cos (ϕ), sin (θ) sin (ϕ), cos (θ)} is the unit vector. Let us introduce a unitary matrix

ĝ = exp
[
−iϕ

2
σ̂3

]
exp
[
−iθ

2
σ̂2

]
, (A2)

which has the property

ĝ†(n · σ)ĝ = σ̂3 ⇔ ĝσ̂3ĝ
† = (n · σ). (A3)

Changing to a new spinor Ψ̂ = ĝ†ψ̂, we obtain the new Hamiltonian in the form

Ĥrot = −ivF
∫
dx Ψ̂†(x)ĝ†

[
(n · σ)∂x +

1

2
[∂x(n · σ)]

]
ĝΨ̂(x) = −ivF

∫
dx Ψ̂†(x)

[
σ̂3∂x + ĥ

]
Ψ̂(x) , (A4)

where

ĥ = ĝ†(n · σ)ĝĝ†∂xĝ +
1

2
σ̂3(∂xĝ

†)ĝ +
1

2
ĝ†∂xĝσ̂3 =

1

2

[
σ̂3ĝ
†∂xĝ + ĝ†∂xĝσ̂3

]
. (A5)

We have used Eq.(A3) to obtain Eq.(A5). The spatial derivative of the matrix ĝ(x) reads as

∂xĝ = −i1
2

[σ̂3ĝ∂xϕ+ ĝσ̂2∂xθ] . (A6)

Inserting this expression in Eq.(A5), we find

ĥ = − i
4

[
σ̂3ĝ
†σ̂3ĝ + ĝ†ĝσ̂3

]
∂xϕ = − i

4
ĝ†
[
ĝσ̂3ĝ

†σ̂3 + σ̂3ĝσ̂3ĝ
†] ĝ∂xϕ . (A7)

Using Eq.(A3), we simplify Eq.(A7):

ĥ = − i
4

[(n · σ)σ̂3 + σ̂3(n · σ)]∂xϕ = − i
2

cos (θ)∂xϕ . (A8)

Thus, the Hamiltonian in the rotated frame takes the form

Ĥrot = −vF
∫
dx Ψ̂†(x)

[
iσ̂3∂x +

1

2
cos (θ)∂xϕ

]
Ψ̂(x) , (A9)

see Eq.(7) in the main text.

Suppl.Mat. B: Helical wire coupled to a Kondo-Heisenberg array

Non-local Matsubara conductivity of a helical wire can be expressed in terms of the Green’s function (GF) of
bosonized excitations [54]:

σ(x, x′; ω̄) = (e2ω̄/π)G(x, x′; ω̄) . (B1)
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If the wire is coupled to localized spins (a Kondo-Heisenberg array), the generating functional, Z[χ], for this GF reads
as follows:

Z[χ] =
1

Z[0]

∫
D{nzα̃} exp

(
−Sspin[nz, α̃]

) ∫
D{φ} exp

(
−SHLL[φ, χ]− SWZ[nz, 2φ]

)
; (B2)

G(x1, x2; τ1 − τ2) =
δ2Z[χ]

δχ(ζ1)δχ(ζ2)

∣∣∣
χ→0

, ζ1,2 ≡ {x1,2, τ1,2} . (B3)

Here Z[0] is the partition function; actions SHLL,WZ,KS correspond to the Lagrangians LHLL,WZ,KS, see Sect.”Helical
modes interacting with the Kondo-Heisenberg array” in the main text:

SHLL =

∫
dζ

{
1

2πvF

[
(∂τφ)2 + (vF∂xφ)2

]
+ iχφ

}
; (B4)

SWZ[nz, 2φ] = 2is

∫
dζ ρs(1− nz)∂τφ = 2is

∫
dζ ρsφ∂τnz ; (B5)

SKS =

∫
dζ ρs(x)

(
2sJK(x)

√
1− n2z cos(α̃) + s2JH(x)nz(x, τ)nz(x+ ξs, τ)

)
+ SWZ[nz, α̃] . (B6)

The Gaussian integral over φ in Eq.(B2) can be calculated straightforwardly:∫
D{φ} exp

(
−(S0[φ, χ] + SWZ[nz, 2φ])

)
∫
D{φ} exp

(
−(S0[φ, χ = 0])

) =

exp

(
−Szz +

1

2

∫
dζdζ ′

[
χ(ζ)G0(ζ − ζ ′, ω)χ∗(ζ ′) + 2sχ(ζ)G0(ζ − ζ ′)ρs(x′)∂τ ′nz(ζ

′)
])

; (B7)

with

Szz ≡ −
∫

dζdζ ′
[
2s2ρs(x)∂τnz(ζ)G0(ζ − ζ ′)ρs(x′)∂τ ′nz(ζ

′)
]
. (B8)

The variational derivative over the source field, Eq.(B3), yields:

G(x1, x2; τ1 − τ2) = G0(ζ1 − ζ2) + s2
∫

dζdζ ′G0(ζ1 − ζ)ρs(x)
[
∂2τ,τ ′N (ζ, ζ ′)

]
ρs(x

′)G0(ζ ′ − ζ2) ; (B9)

where

N (ζ, ζ ′) ≡ 〈〈nz(ζ)nz(ζ
′)〉〉spin ; (B10)

G0 is the bare bosonic GF of the clean wire, and 〈〈AB〉〉 ≡ 〈AB〉−〈A〉〈B〉. Decoupled part of N does not contribute to
Eq.(B9) because ∂τ 〈nz〉 = 0. The averaging in Eq.(B10) is performed over the full spin action SKS + Szz. Integrating
by parts and using transnational invariance of G0, we find:

G(x1, x2; τ1 − τ2) = G0(ζ1 − ζ2) + s2
∫

dζdζ ′
[
∂τ1G0(ζ1 − ζ)

]
ρs(x)N (ζ, ζ ′)ρs(x

′)
[
∂τ2G0(ζ ′ − ζ2)

]
. (B11)

If there is no exchange interaction between the itinerant electrons and the localized spins, JK = 0, Eq.(B9) manifestly
reproduces G0 because Szz = ∂2τ,τ ′N (ζ, ζ ′) = 0. In the momentum-frequency representation, the expression for G0

reads:

G0(q, ω̄) = −〈φ∗(q, ω̄)φ(q, ω̄)〉 = − πvF
ω̄2 + (vF q)2

. (B12)

We are interested in the dc response of the wire at zero temperature. Changing from the momentum to the coordinate,
we obtain in the low-frequency limit:

|ω̄(x1 − x2)|/vF � 1 : ω̄ G0(x1 − x2; ω̄) = −π
2

sign(ω̄) . (B13)
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If JK 6= 0, nz acquires dynamics and Szz 6= 0. The dc response requires only the low-energy sector of the entire
theory where Eq.(B8) for Szz can be simplified by using Eq.(B13):

Szz = −2s2
∫

dω̄

2π

∫
dxdx′

[
ω̄2ρs(x)nz(x, ω̄)G0(x− x′, ω̄)ρs(x

′)nz(x
′,−ω̄)

]
'
∫

dω̄

2
|ω̄| ×

∣∣∣∣∫ dx sρs(x)nz(x, ω̄)

∣∣∣∣2 .
(B14)

Let us now Fourier-transform Eq.(B11) for the GF, analytically continue it to the upper half-plane to obtain the
physical retarded correlation function, GR, and simplify the product ωGR in the dc limit:

ωGR(x1, x2;ω) = ω
[
GR0 (x1 − x2;ω) + δGR(ω)

]
. (B15)

We have to analyze the low frequency limit of the product

ω δGR(ω) =
π

2
s2ω

∫
dx1dx2 ρs(x1)NR(x1, x2;ω)ρs(x2) , (B16)

which yields a correction to the nonlocal conductivity of the clean wire, see Eq.(B1). Low-energy properties of the
Matsubara correlation function N (x1, x2; ω̄) are governed mainly by the action SKS, Eq.(B6). This is because Szz
yields vanishing contributions at small energies, see Eq.(B14). SKS corresponds to the quantum 1D Ising model
in a transverse (effective) magnetic field, Bx ∼ sρsJK . The competition between the magnetic field and the Ising
interaction results in formation of phases with different spins order: the spins become aligned with the magnetic field
at JK � JH while the Ising order dominates in the opposite case with JK � JH . nz is gapped variable in both
phases – see, e.g., the analysis of the continuous case in Ref.[59] and the exact solution for the spin-1/2 quantum
Ising model in the textbook [56]. These two phases are separated by the point of the quantum phase transition. Far
from criticality, one can estimate NR(x1, x2;ω → 0) ∼ 1/∆, with ∆ being the gap of spin excitation. ∆ shrinks to
zero at the transition. Nevertheless, NR(x1, x2;ω → 0) remains finite due to the finite size L of the spin array. Close

to criticality, the estimate becomes NR(x1, x2;ω → 0) ∼ 1/E
(min)
s , where E

(min)
s is the minimal energy of the spin

excitations with the momentum of order ∼ 1/L. Thus, we arrive at inequality

ω δGR(ω) . (Stot)2
ω

max
[
∆, E

(min)
s

] . (B17)

Here Stot ≡
∫

dx sρs(x) is the total spin of the array. Eq.(B17) shows that

lim
ω→0

(
ω δGR(ω)

)
= 0 (B18)

for any finite spin conserving Kondo-Heisenberg array and, hence, the dc conductance of the helical wire coupled
to such an array coincides with the ballistic conductance of the clean helical wire regardless of (i) properties of
contacts between the wire and the region of localized spins, (ii) a spatial inhomogeneity or a spin disorder of the
Kondo-Heisenberg array, etc.

If the spin array is infinite, the right-hand side of Eq.(B17) may diverge, our approach is not applicable any longer
and the theory of Ref.[32] for the infinite Kondo array should be used instead. This theory predicts the dc conductivity
(not conductance!) with the renormalized Drude weight.
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