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We study the phase diagram and transport properties of arbitrarily doped quantum wires func-
tionalized by magnetic adatoms. The appropriate theoretical model for these systems is a dense
one-dimensional Kondo Lattice (KL) which consists of itinerant electrons interacting with local-
ized quantum magnetic moments. We discover the novel phase of the locally helical metal where
transport is protected from a destructive influence of material imperfections. Paradoxically, such a
protection emerges without a need of the global helicity, which is inherent in all previously studied
helical systems and requires breaking the spin-rotation symmetry. We explain the physics of this
protection of the new type, find conditions, under which it emerges, and discuss possible experi-
mental tests. Our results pave the way to the straightforward realization of the protected ballistic
transport in quantum wires made of various materials.

PACS numbers: 75.30.Hx, 71.10.Pm, 72.15.Nj

I. INTRODUCTION

Protected states, which are important elements for na-
noelectronics, spintronics and quantum computers, at-
tract evergrowing attention of physicists. A certain pro-
tection strongly reduces effects of material imperfections,
including backscattering and localization, and provides a
possibility to sustain the ballistic transport in relatively
long samples.

The current progress in understanding protected trans-
port develops in two directions. The first one is related
to time-reversal invariant topological insulators (TIs) [1–
3]. One dimensional (1D) helical edge modes of two-
dimensional TIs possess lock-in relation between electron
spin and momentum [4, 5]. Though this locking may
protect transport against disorder [6–8], the protection
in realistic TIs is not perfectly robust; reasons for this
remain an open and intensively debated question [6–15].

The second direction exploits the emergent helical pro-
tected states in interacting systems which are not nec-
essarily time-reversal invariant. Numerous examples of
suitable interactions include the hyperfine interaction be-
tween nuclei moments and conduction electrons [16–20],
the spin-orbit interaction in combination with either a
magnetic field [21, 22] or with the Coulomb interaction
[23, 24], to name just a few; see Refs.[25–30]. State-of-
the-art experiments confirm the existence of helical states
governed by interactions [31–34].

We focus on another recently predicted and very
promising possibility to realize protected transport in
quantum wires functionalized by magnetic adatoms. The
corresponding theoretical model is a dense 1D Kondo
lattice (KL): the 1D array of local quantum moments
– Kondo impurities (KI) – interacting with conduction
electrons. KLs have been intensively studied in differ-
ent contexts, starting from the Kondo effect and mag-
netism to the physics of TIs and Tomonaga Luttinger

liquids (TLLs) [10, 11, 35–65]. The physics of KL is deter-
mined by the competition between the Kondo screening
and the Ruderman-Kittel-Kosuya-Yosida (RKKY) inter-
action, as illustrated by the famous Doniach’s phase di-
agram [38]. We have recently predicted that the 1D
RKKY-dominated KL with magnetic anisotropy of the
easy-plane type will form a helix spin configuration which
gaps out one helical sector of the electrons. The second
helical sector remains gapless. In the resulting helical
metal (HM), the disorder induced localization is para-
metrically suppressed and, therefore, the ballistic trans-
port acquires a partial protection [66, 67].

All previous studies, including the TIs and the inter-
acting helical systems, revealed protection of transport
governed by the global helicity, i.e., helicity of the gap-
less electrons and/or the spiral spin configuration were
uniquely defined in the entire sample. The global helic-
ity always requires breaking the spin-rotation symmetry,
either internally (e.g., due to the spin-orbit interaction,
or the magnetic anisotropy) or spontaneously (e.g. in
relatively short samples with a strong electrostatic inter-
action of the electrons). This certainly diminishes ex-
perimental capabilities to fabricate the helical states, es-
pecially those governed by the interactions: one always
needs either specially selected materials or a nontrivial
fine-tuning of physical parameters. For instance, the pre-
diction of Refs.[66, 67] remains practically useless for the
experiments because one can hardly control the magnetic
anisotropy.

Thus, further progress in obtaining the helical quan-
tum wires, in particular by means of the magnetic dop-
ing, has been hampered by two open questions: (i) Is
the global helicity accompanied by breaking the spin-
rotation symmetry really necessary to obtain HM? (ii) If
the global helicity is not really needed, which parame-
ters must be tuned for detecting HM in the KLs (theo-
retically) and in the magnetically doped quantum wires
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FIG. 1. Central Panel: Phase diagram of the magnetically
doped 1D quantum wire for JK � EF , see explanations in
the text; here |kf − fπ/ξ| ∼ JK/vF , f = 1/4, 1/2. Upper
panel: band structure of the non-helical collinear metal with
the renormalized Fermi-momentum, k∗F . Green and red ar-
eas denote filled valence- and partially occupied conduction-
bands, respectively. Lower panel: band structure and local
helicity of the novel metallic phase. At some space-time point
“1”, the local spin ordering can open a gap, ∆h, in the spec-
trum of the fermions {Rσ, L−σ} with a given helicity, h. The
second helical sector, {R−σ, Lσ} (not shown on this illustra-
tion for simplicity), remains gapless at the point “1”. The gap
of the fermions {R,L} slowly varies in space-time due to spin
fluctuations described by the SU(2) matrix g. There can exist
another space-time point “2” where ∆h → 0, |∆−h| → max
and, thus, the gapped (gapless) helical sector becomes gapless
(gapped). Hence, the global helicity cannot be defined though
transport remains protected as in the case of the globally he-
lical quantum wires.

(experimentally)? We note that numerical studies have
never provided a reliable signature of the helical phase in
the KLs [53, 61, 65].

In this Paper, we answer both questions: Protection of
the ballistic transport can be provided by the local helic-
ity which, paradoxically, requires neither the global he-
licity nor breaking the spin-rotation symmetry. We show
that such a novel HM is the 4kF charge-density-wave
(CDW) phase [68] where all effects of disorder are para-
metrically suppressed. It can be found in the isotropic
KLs if the Kondo exchange coupling is much smaller than
the Fermi energy and the band width, JK � EF , D,
and the band filling is far from special commensurate
cases (1/4-, 3/4-, 1/2-fillings), see Fig.1. To the best of
our knowledge, this is the first prediction of the helicity-
protected transport in the quantum 1D system where
the spin-rotation symmetry exists and cannot be sponta-

neously broken. Our results pave the way towards novel
numerical and experimental investigations of the HM.

II. THEORETICAL MODEL

We start from the standard KL Hamiltonian:

Ĥ = −
∑
n

[
t ψ†nψn+1 +h.c.+µρn−JKψ+

nσSnψn

]
. (1)

Here ψn ≡ {ψn,↑, ψn,↓}T are electron annihilation (ψ†n -
creation) operators; ρn = ψ†nψn; Sn are quantum spins
with magnitude s; σ ≡ {σx, σy, σz} are Pauli matrices; t
and µ are the electron hopping and the chemical poten-
tial; summation runs over lattice sites. We assume that
sJK < D = 2t and consider low temperatures, T → 0.

III. METHOD

We proceed in several steps. Firstly, we find classi-
cal spin configurations minimizing the free energy. Sec-
ondly, we identify degrees of freedom whose fluctuations
are gapped, including gapped fermionic and spin vari-
ables (|m| and α in Eq.(4) below) and integrate out the
gapped variables perturbatively. Remaining spin fluctu-
ations [described by vectors ea in Eq.(4)] receive the fully
quantum mechanical treatment. This approach is justi-
fied by the separation of scales: the shortest scale is of
order of the inverse Fermi momentum, 1/kF . It is present
in the spin ordering and must be much smaller then the
coherence length ζ of the gapped variables. We have
performed the self-consistency check which confirms that
ζ � 1/kF and, thus, justifies the validity of our theory.

A. Separating the slow and the fast variables

To describe an effective low energy theory, it is conve-
nient to focus on the regime |JK | < |µ| � t where we can
linearize the dispersion relation and introduce right-/left
moving fermions, ψ±, in the standard way [68]. In the
continuum limit, the fermionic Lagrangian reads

LF [ψ±] =
∑
ν=±

ψ†ν∂νψν ; ∂± ≡ ∂τ ∓ ivF∂x . (2)

Here vF is the Fermi velocity, ν is the chiral index which
indicates the direction of motion, ∂ν is the chiral deriva-
tive, τ is the imaginary time.

According to Doniach’s criterion, the RKKY interac-
tion wins in 1D when the distance between the spins is
smaller then a crossover scale: ξs < ξ

√
ϑ0J2

K/TK ; here
ξ is the lattice spacing, ϑ0 is the density of states at EF ;
TK is the Kondo temperature. We study this RKKY-
dominated regime. For simplicity, we assume ξs = ξ.
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Following Refs.[46, 66, 67], we keep in the Lagrangian
of the electron-KI interaction only the backscattering
terms governing the physics of the dense 1D KL:

Lbs(n) = JK
[
R†nσSnLne

−2ikF xn + h.c
]
, xn ≡ nξ ; (3)

where R ≡ ψ+, L ≡ ψ−. Lbs contains the fast 2kF -
oscillations which must be absorbed into the spin con-
figuration. We perform this step using the path integral
approach where the spin operators are replaced by inte-
gration over a normalized vector field decomposed as

Sn/s = m+ b
(
e1 cos(α) cos(qxn + θ) + (4)

e2 sin(α) sin(qxn + θ)
)√

1−m2 .

Here q ' 2kF ; {e1, e2,m} is an orthogonal triad of vec-
tor fields whose coordinate dependence is smooth on the
scale 1/kF , |e1,2| = 1. Angle α and constants b, θ must
be chosen to maintain normalization |S/s| = 1. Eq.(4)
is generic; it allows for only three possible choices of the
constants which, in turn, reflect the band filling f , see
Suppl.Mat. A. After inserting Eq.(4) into Eq.(3), we se-
lect the non-oscillatory parts of Lbs for these three cases,
and take the continuous limit. This yields the smooth
part of the Lagrangian density:

• f = 1/2, 2kFxn = πn:

b = 1, θ = α = 0, L(1/2)
bs = J̃

(
R̃†σxL̃+ h.c

)
; (5)

• f = 1/4, 2kFxn = πn/2:

b =
√

2, θ = π/4, α ∈ [0, 2π]; (6)

L(1/4)
bs =

J̃√
2

(
eiπ/4R̃†[cos(α)σx + i sin(α)σy]L̃+ h.c

)
;

• generic filling:

b =
√

2, θ = 0, α = π/4; L(gen)
bs = J̃

(
R̃†σ−L̃+ h.c

)
.(7)

Here J̃ ≡ sJK
√

1−m2/2; σ± = (σ1 ± iσ2)/2; we
expressed vectors e1,2 via matrix g ∈ SU(2), see
Suppl.Mat. B. g is a smooth function of {x, τ}; it governs
the new rotated fermionic basis

R̃ ≡ g−1R, L̃ ≡ g−1L ; (8)

LF [R̃, L̃] = R̃†(∂+ + g−1∂+g)R̃+ L̃†(∂− + g−1∂−g)L̃.

Eq.(5) assumes a staggered configuration of spins at half-
filling, ↑↓, which was studied in Ref.[46]. The spin sector
of the half-filled KL is an antiferromagnet where the spins
fluctuate around the Neel order with a finite correlation
length. Eq.(6) reflects two spins up- two spins down con-
figuration, ↑↑↓↓, which agrees with the spin dimerization
tendency observed numerically in Ref.[58] at quarter-
filling. Eq.(7) is a rotationally invariant counterpart of

the helical spin configuration discovered in Refs.[66, 67]
in the anisotropic KL at incommensurate fillings. Spins
fluctuate around this configuration. Detailed derivation
of their effective action is presented in Ref.[69]. A sim-
plified version of Eq.(7) was used in Ref.[41] for ana-
lyzing magnetic properties of KLs. Below, we refer to
Eqs.(5,6) at α = 0 as “commensurate configurations”
and to Eqs.(6,7) at α = π/4 as “general configurations”.
We note that the low energy physics of KLs with the 1/4-
and 3/4-filling is equivalent in our model. Therefore, we
will discuss only 1/4-filling and do not repeat the same
discussion for the case of the 3/4-filling.

IV. RESULTS

Let us start from the presentation of our results at the
simplified and transparent semiclassical level.

A. Fermionic gap

The backscattering described by Eqs.(5-7) opens a gap

in the spectrum of the rotated fermions R̃, L̃. It decreases
their ground state energy: the larger the gap, the greater
is the gain in the fermionic kinetic energy. Since the
spin degrees of freedom do not have kinetic energy, the
minimum of the ground state energy is achieved by max-
imizing the fermionic gap. This indicates that |m| is the
gapped variable with the classical value m0 = 0. Below,
we use m0 for the semiclassical part of the discussion.

The KL contains two fermionic sectors which can have
different gaps depending on the band filling and the spin
configuration. The gaps can be found from Eqs.(5-7):

f = 1/2 : ∆
(1/2)
1,2 = J̃ ; (9)

f = 1/4 : ∆
(1/4)
1,2 = J̃(cos(α)± sin(α))/

√
2; (10)

generic filling : ∆
(gen)
1 = J̃ , ∆

(gen)
2 = 0. (11)

The gain in the fermionic ground state energy reads

δEGS = −ϑ0 ξ
∑
k=1,2

∆2
k log

(
D/|∆k|); (12)

see Suppl.Mat. C. ϑ0 = 1/πvF for the 1D Dirac fermions.
Let us now analyze various band fillings.

B. Special commensurate fillings, insulating KLs

At f = 1/2, 1/4, we have to decide which spin config-
urations - the commensurate ones [Eq.(5) for f = 1/2
and Eq.(6) with α = 0, π/2 for f = 1/4] or the generic
configuration - minimize the ground state energy. Using
Eqs.(9-12), we obtain

δEGS(∆(1/2))−δEGS(∆(gen)) = −E log
(
D/|J̃ |

)
, (13)

δEGS

(
∆|(1/4)α=0

)
−δEGS

(
∆|(1/4)α=π/4

)
=−E log(

√
2);(14)



4

with E ≡ ϑ0ξJ̃2 . In both commensurate cases, the com-
mensurate configuration wins, the conduction band of
such KLs is empty and, hence, they are insulators, as
expected. Note that, at quarter-filling, the minimum of
δEGS is provided by α = 0 which means that α is gapped.

C. Vicinity of special commensurate fillings,
collinear metal and heavy TLL

Let us consider fillings which are slightly shifted from
the special commensurate cases. To be definite, we an-
alyze an upward shift; a downward shift can be stud-
ied in much the same way. Eqs.(13-14) suggest that
the commensurate spin configuration remain energeti-
cally favorable even close to the commensurate filling.
The wave vector q of the spin modes remains com-
mensurate, Eqs.(5,6), and is slightly shifted from 2kF :
2kF − q ≡ Q � 1/ξ with q = 2πf/ξ and f = 1/2, 1/4.
This case is described in terms of Dirac fermions with a
non-zero chemical potential:

L̄ = LF [R,L] +L(f)
bs [R,L]− (vFQ/2)(R†R+L†L), (15)

see Suppl.Mat. D. Backscattering by the commensurate
spin configuration opens a gap below the chemical po-
tential. The electrons with energies 0 < E ≤ vFQ/2 are
pushed above the gap, Fig.1, and have (almost) parabolic
dispersion:

E+(k)
∣∣
vF |k|<|J̃|

' |J̃ |+ (vF k)
2
/2|J̃ | ; (16)

see Eq.(D4). Since this new phase possesses a partially
filled band it is a metal. Its metallic behavior originates
from the (almost) collinear spin configuration whose clas-
sic component is governed by only one slowly rotating
vector, e.g. e1. We will reflect this fact by referring to
such phases as “collinear metals” (CMs).

A detail description of CMs is presented in Ref.[69].
Let us mention here that spin modes can mediate re-
pulsion between the conduction electrons and, for ener-
gies |E −E+(k∗F )| � E+(k∗F ), they form a repulsive and
spinful TLL characterized by a new Fermi momentum
k∗F = Q/2. If the effective repulsion is strong enough,
TLL becomes heavy. Such TLL has been observed nu-
merically in Ref.[65]. 1D nature makes repulsive CMs
very sensitive to spinless impurities: even a weak disor-
der easily drives it to the localized regime with suppressed
dc transport [70].

D. Quantum phase transition at generic filling

The CM becomes less favorable when |Q| increases:

the energy of the electrons in the TLL, Ep ' ξJ̃k∗F /π +

ξv2F (k∗F )3/6πJ̃ , becomes large when k∗F = Q/2 increases,
Fig.1. If |Q| is large enough, such that Ep ≥ E , the
minimum of the ground state energy is provided by the

generic spin configuration, Eq.(7). Equalizing the leading
part of Ep with E , we can estimate the critical value of

Q at which the spin configuration changes: Qc ∼ J̃/vF .

If J̃ � vF /ξ ∼ D, there is always a parametrically large
window of the band fillings where the new phase is real-
ized, see Fig.1. If J̃ → D/4, this window shrinks to zero
and the CM dominates at all fillings excluding special
commensurate cases 1/2, 1/4; see Fig.1. The spin con-
figuration cannot change gradually. The switching from
the commensurate to the generic configuration is always
abrupt and, therefore, Qc is the point of a quantum phase
transition.

E. Generic incommensurate fillings,
locally helical metal

The remaining case of generic filling, Eq.(7), is the
most promising for transport because rotated fermions
are gapped only in one helical sector, e.g. {R̃↓, L̃↑},
and the second helical sector, {R̃↑, L̃↓}, remains gap-
less, see Eq.(11) and Fig.1. The semiclassically broken
helical symmetry is restored by the fluctuations: The ro-
tating matrix field g(x, τ) slowly changes in space and
time around the underlying spin spiral and, therefore,
the global helicity cannot appear, see Fig.1. Hence, one
can describe properties of the new phase only in terms
of the local helicity. Simultaneously, there are no sectors
of the physical fermions, {Rσ, Lσ}, which can be found
from the inverse of the rotation Eq.(8), which are either
gapless or globally helical. To emphasize the underlying
locally helical spin configuration, we refer to this phase
as “locally-helical metal” (lHM).

Since neither the spins nor the physical charge carriers
in the lHM possess the global helicity, one can surmise
that they are not a platform for a protected transport.
This is, however, incorrect since the most significant
property of the lHMs is that they inherit protection of
the ballistic transport from those HMs where SU(2) sym-
metry is broken and the global helicity emerges [66, 67].
The absence of the global helicity in lMHs is reflected in
the gapped nature of the spin excitations [69]

F. Origin of protection

Let us explain the physics of the seemingly counterin-
tuitive protected transport in the lHMs. The density and
backscattering operators are invariant under g-rotation:
R†R = R̃†R̃, L†L = L̃†L̃, R†L = R̃†L̃. The low energy
physics is governed by fields whose correlation functions
decay as power law. To obtain them, we project the fields
on the gapless sector, i.e., average over the high energy
gapped modes. For example, components of the charge
density are:

ρ(0) = R̃†↑R̃↑ + L̃†↓L̃↓ ;

ρ(4kF ) ∼ e−4ikF xR̃†↑〈R̃
†
↓L̃↑〉L̃↓ + h.c.
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ρ(2kF ) is absent because it would correspond to a single
particle elastic backscattering between the gapless and
gapped fermions which is not allowed. This is the direct
consequence of the (local) spin helix which gaps out only
one helical fermionic sector. Thus, the HM is the 4kF -
CDW phase. This fact has two important consequences:
(i) the (local) spin helix shifts the Friedel oscillations of
the charge density from 2kF to 4kF , which is indistin-
guishable from 4(kF − π/2ξ) due to the lattice period-
icity; (ii) even more importantly, it drastically reduces
backscattering caused by spinless disorder.

To illustrate the 2nd statement, we introduce a random
potential of spinless backscattering impurities which cou-
ples to the 2kF -component of density Ldis = V2kF R̃

†L̃+
h.c. Here V2kF is a smooth 2kF -component of the random
potential. Since the charge response function of lHM at
the 2kF wave-vector is non-singular, backscattering can
occur only via many particle processes with much smaller
amplitude. Averaging over the gapped fermions, we find:

〈Ldis〉 ' 2
(
V 2
2kF

/∆(gen)
)
R̃†↑L̃↓ + h.c. see Suppl.Mat. E.

If the helical gap is large enough, ∆(gen) = J̃ � V2kF ,
backscattering and all disorder effects are parametrically
suppressed.

V. QUANTUM THEORY FOR SMOOTH SPIN
VARIABLES AND SELF-CONSISTENCY CHECK

To complete the theory of the magnetically doped
quantum wires, one must consider quantum fluctuations
of smooth spin variables e1,2. They are described by us-
ing the heavy field-theoretical machinery of the nonlinear
σ-model (nLSM). Its derivation is a lengthy task which is
described in detail in Ref.[69]. Here, we very briefly reca-
pitulate main steps of the derivation, give final answers,
and argue that the fully quantum mechanical theory does
not violate separation of scales, see Sect.III. The latter
is especially important since it confirms validity of our
approach and validates results described in the previous
Section at the simplified and transparent semiclassical
level.

Derivation of the nLSM requires several steps:

• One (i) integrates out gapped fermions and expo-
nentiates the fermionic determinant; (ii) derives the
Jacobian of the SU(2) rotation by the matrix g;
(iii) selects smooth contributions from the Wess-
Zumino term for the spin field [71]. The commen-
surate spin configurations generate also the topo-
logical term (see Ref.[46], Sect.16 of the book [71],
and references therein).

• The total Lagrangian, which is obtained by sum-
ming up the exponentiated fermionic determinant,
the Jacobian, the Wess-Zumino contributions and
the topological terms, is expanded in gradients
of the matrix g and in small fluctuations of |m|
around its classical value m0 = 0. The commensu-

rate spin configuration, which corresponds to 1/4-
filling, requires also the expansion in fluctuations
of α.

• Finally, fluctuations of |m| (and of α, if needed)
are integrated out in the Gaussian approximation.

These steps result in the quantum mechanical nLSM in
(1+1) space-time dimensions which describes the smooth
spin degrees of freedom. Our approach is self-consistent
if typical scales of the quantum theory remain large, ≥
vF /J̃ � k−1F . The nLSM is different in different phases.
Commensurate insulators and collinear metals: The

action of the nLSM describing fluctuations of the spin
variables in a commensurate insulator and in a collinear
metal takes the following form:

S(f) =

∫
dτdxL(f) + Stop, Stop = (2s− 1)iπk ; (17)

L(f) =
1

2gf

[
(∂τe1)2

cf
+ cf (∂xe1)2

]
.

Here f = 1/2 at (or close to) the half-filling and f = 1/4
at (or close to) the quarter-filling; small dimensionless

coupling constants, g1/2 ' (4π/s)ϑ0ξJ̃

√
log
(
D/|J̃ |

)
�

1 and g1/4 ' g1/2/
√

8� 1, determine small renormalized
velocities of the spin excitations, cf = vF gf/4π � vF .
Smallness of gf and cf reflects the coupling between spins
and gapped (localized) fermions. The integer k marks
topologically different sectors of the theory.

The action S(f) corresponds to the well-known O(3)-
symmetric nLSM in (1+1) dimensions with the topolog-
ical term. It is exactly solvable [71–73] and possesses

a characteristic energy Ef ∼ |J̃ |g−1f exp(−2π/gf ) which

governs a large spatial scale: cf/Ef � vF /J̃ � k−1F . The
latter inequality confirms validity of our approach.
Locally-Helical metals: The Largangian of the nLSM

describing fluctuations of the spin variables in a lHM
takes the following form:

L(hel) =
1

2ghel


[
Ω

(z)
τ

]2
chel

+ cheltr(∂xg
+∂xg)

 ; (18)

with ggen ' g1/4/4 � 1, cgen = vF ggen/π � vF , and

Ω
(z)
τ ≡ itr[σzg

−1∂τg]/2. This theory is anisotropic and
has the SU(2)-symmetry, g → Mg,M ∈ SU(2). The
time derivative is present only in the Ωz term. This
points to a relatively short bare correlation length of spins
which coincides with the UV cut-off of the theory. The
latter is ∼ vF /J̃ in our approach and does not violate

the self-consistency requirement because vF /J̃ � ξ. The
actual shortest scale of the theory is expected to be much
larger if the anisotropy is irrelevant and L(gen) flows in
the IR limit to the well-known SU(2)×SU(2)-symmetric
nLSM. An example of such a behaviour is provided by
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the RG equations derived in Ref.[74] for the (2+1) di-
mensions. There is no counterargument against the irrel-
evance of the anisotropy in the (1+1) dimensions. There-
fore, we arrive at a conclusion that the shortest spatial
scale generated by L(hel) is � vF /J̃ � k−1F .

This concludes the self-consistency check of our ap-
proach and justifies qualitative results described in
Sect.IV at the semiclassical level.

VI. POSSIBLE NUMERICAL AND
EXPERIMENTAL TEST OF OUR THEORY

An important task for the subsequent research is to
reliably detect different metallic phases in the 1D KLs
(numerically) and in the magnetically doped quantum
wires (experimentally). This requires to tune the band
filling and the Kondo coupling. The key features dis-
tinguishing CM and lHM in numerics and experiments
are as follows. The conductance of the CM is equal to
the quantum G0 = 2e2/h while the lHM must show only
G0/2 conductance due to the helical gap. The CM is a
spinful TLL whose charge and spin response functions
have a peak at 2k∗F ; k∗F is the shifted Fermi momentum
predicted by general theorems [75, 76]. The lHM is the
4kF -CDW and has singular response in the charge sector.
Since 4kF and 4k∗F are indistinguishable on the lattice the
response of the lHM does not show the shift kF → k∗F .
Unlike systems with broken SU(2) symmetry [66, 67], the
lHM, which we have considered, does not have singular
response in the spin sector. Inasmuch as the CM re-
sponds to scalar potentials at 2k∗F and the lHM - at 4kF ,
the spinless disorder potential has a profound difference
with respect to transport in the CM and lHM phases.
Namely, localization is parametrically suppressed in the
lHM.

Detecting the CM is not difficult because it is generic at
relatively large JK and filling away from 1/2, 1/4. The
heavy TLL, which is formed by the interactions in the
CM, has been observed in numerical results of Ref.[65].
However, JK was too large for finding the HM. The KL
studied in Ref.[61] exhibits an unexpected 2kF -peak at
small JK . Yet, the peak was detected in the spin suscep-
tibility of 6 fermions distributed over 48 sites. So small
KL cannot yield a conclusive support or disproof of our
theory. A more comprehensive study of the larger KLs is
definitely needed.

The thorough control of the system parameters is pro-
vided by the experimental laboratory of cold atoms where
1D KL was recently realized [77]. Experiments in cold
atoms are, probably, the best opportunity to test our
theory. However, modern solid-state technology also al-
lows one to engineer specific 1D KL even in solid state
platforms. It looks feasible to fabricate 1D KL in clean
1D quantum wires made, e.g., in GaAs/AlGaAs by using
cleaved edge overgrowth technique [78] or in SiGe [79].
Magnetic adatoms can be deposited close to the quantum
wire by using the precise ion beam irradiation. One can

tune parameters of these artificial KLs by changing the
gate voltage, type and density of the magnetic adatoms
and their proximity to the quantum wire. Such a nano-
engineering of 1D KL is essentially similar to the success-
ful realization of topological superconductivity in atomic
chains [80], in carbon nanotubes [81], and in Bi [82]. The
experiments should be conducted at low temperatures,
T � ∆, E , where destructive thermal fluctuations are
weak.

VII. CONCLUSIONS

We have studied the physics of quantum wires func-
tionalized by magnetic adatoms with a high density and
a small coupling between the itinerant electrons and local
magnetic moments of the ad-atoms, |JK | � EF . Their
physics is determined by the RKKY interaction between
the ad-atoms which results in a quite rich phase diagram.
It includes: (i) the insulating phase which appears at spe-
cial commensurate band filling, either 1/2, or 1/4, 3/4;
(ii) spinful interacting metals which exist in the vicinity
of that commensurate fillings; and (iii) the novel metallic
phase at generic band fillings, see Fig.1.

The third phase is our most important and intrigu-
ing finding. On one hand, the local spins form a slow
varying in space and time spiral, which can yield a lo-
cal helical gap of the electrons. On the other hand, the
global helicity is absent because the spin-rotation sym-
metry is not (and cannot) be broken. The latter can re-
sult in an erroneous conclusion that a helicity-protected
transport could not originate in these locally helical met-
als. That is not true: paradoxically, the locally helical
phase inherits protection of the ballistic transport from
those systems where the spin rotation symmetry is bro-
ken and the global helicity emerges. Protection of trans-
port in lHMs has a simple physical explanation because
they are the 4kF -CDW phase with the reduced 2kF re-
sponse. This reduction is the direct consequence of the
local helicity. It parametrically suppresses effects of a
spinless disorder and localization. Thus, we come across
the principally new type of emergent (partial) protection
of transport caused by the interactions without a need of
the global helicity. Our model and approach allow us to
uncover the promising possibility for engineering the HM
in the quantum wires and to identify the parameter range
where the HM is formed, see Fig.1. To the best of our
knowledge, this gives the firstever example of such a pro-
tection in the system where the spin-rotation symmetry
is not (and cannot be) broken. It would be interesting to
study in the future how the direct Heisenberg interaction
between the spins could modify out theory [83, 84].

We believe that detecting the lHMs in numerical sim-
ulations and real experiments is the task of a high im-
portance. Our results suggest how to tune the physical
parameters, in particular the band filling and the Kondo
coupling, such that the lHM could be realized. The fun-
damental sensitivity of the state and of the transport
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properties of the magnetically doped quantum wire to
the band filling is especially important. It allows one to
switch over normal and locally helical regimes of the con-
ductor by varying a gate voltage. This can be used for
creating fully controllable helical elements. Our theoret-
ical prediction, that the backscattering is suppressed in
the lHMs in spite of the absence of the global helicity,
can pave the way towards flexible engineering principally
new units of nano-electronics and spintronics with sub-
stantially improved efficiency.
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U. Schollwöck, Phys. Rev. B 83, 085111 (2011).
[62] R. Peters and N. Kawakami, Phys. Rev. B 86, 165107

(2012).
[63] J. Maciejko, Phys. Rev. B 85, 245108 (2012).
[64] P. Aynajian, E. H. d. S. Neto, A. Gyenis, R. E. Baum-

bach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yaz-
dani, Nature 486, 201 (2012).

[65] I. Khait, P. Azaria, C. Hubig, U. Schollwöck, and
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Supplemental Materials for the paper

“Transport in Magnetically Doped One-Dimensional Wires”

by A. M. Tsvelik and O. M. Yevtushenko

Suppl.Mat. A: Decomposition of a normalized vector field into constant and oscillating parts

Let us consider a unit-vector field, s with |s| = 1, and single out its zero mode and ±q components:

s = s0 + sc cos(qx+ θ) + ss sin(qx+ θ) . (A1)

Here θ is a constant phase shift; coefficients s0,c,s must be smooth functions on the scale of 1/q. The normalization
of s must hold true for arbitrary x. This always requires mutual orthogonality

(s0, sc) = (s0, ss) = (sc, ss) = 0 ; (A2)

and proper normalizations:

generic q : |sc| = |ss|, |s0|2 + |sc|2 = 1 ; (A3)

sin(qx+ θ) = 0 : |s0|2 + |sc|2 = 1 , or cos(qx+ θ) = 0 : |s0|2 + |ss|2 = 1 ; (A4)

ei(qx+θ) = ±1± i√
2

: |s0|2 +
|sc|2 + |ss|2

2
= 1 . (A5)

There are no other configurations which are compatible with decomposition Eq.(A1).

Suppl.Mat. B: Useful relations

Using the matrix identities  Â = A(j)σj , A(j) = 1
2 tr[σjÂ];

tr[σÂ−1σjÂ] tr[σÂ−1σj′Â] = 4δj,j′
j, j′ = x, y, z. (B1)

and re-parameterizing the (real) orthogonal basis e1,2,3 in terms of a matrix g ∈ SU(2):

e1,2,3 =
1

2
tr[σgσx,y,zg

−1] , e3 = [e1 × e2] ,
∑

a=1,2,3

(∂αea)2 = 4tr[∂αg
−1∂αg] ; (B2)

we can re-write a scalar product (σ, ej) as follows:

(σ, e1,2) =
1

2
gσx,yg

−1 ⇒ (σ, [e1 ± ie1]) = gσ±g
−1 ; σ± ≡ (σx ± iσy)/2. (B3)

One can also do an inverse step and express the SU(2) matrix via a unit vector

g = i(σ,n), g−1 = −i(σ,n) ; |n| = 1 ⇒ g−1∂αg = i
(
σ, [n× ∂αn]

)
. (B4)

Suppl.Mat. C: Ground state energy of the gapped 1D Dirac fermions

Consider 1D Dirac fermions with the inverse Green’s function:

[Ĝ(∆)]−1 =

(
∂+ ∆
∆ ∂−

)
FT−→

(
−iωn + vF k ∆

∆ −iωn − vF k

)
. (C1)
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Integrating out the fermions we find the partition function:

Z[∆] = Z0

det
(

[Ĝ(∆)]−1
)

det
(

[Ĝ0]−1
) = Z0 exp

(
−Tr

(
log
[
Ĝ−10 Ĝ(∆)

]))
' Z0 exp

(
−Tr

[
Ĝ−10 Ĝ(∆)− 1

])
. (C2)

Here Z0 ≡ Z[∆ = 0], Ĝ0 ≡ Ĝ[∆ = 0] and ∆ is assumed to be small. Using the expression for the free energy
F = −T log[Z], we find that the gain of the energy, which is caused by the gap opening, reads as

δEGS = T Tr
[
Ĝ−10 Ĝ(∆)− 1

]
(C3)

At T = 0 and in the continuous limit, this expression reduces to

δEGS = −2ξ

∫
d2{ω, q}

(2π)2
∆2

ω2 + (vF q)2 + ∆2
. (C4)

The UV divergence must be cut by the band width D. Thus, we obtain with the logarithmic accuracy:

δEGS ' −
ξ

πvF
∆2 log

(
D/|∆|) . (C5)

Suppl.Mat. D: Smoothly oscillating backscattering

The theory close to the special commensurate filling can be formulated in terms of Dirac fermions with a spatially
oscillating backscattering described by Lagrangian:

Losc =

(
∂+ Je−iQx

JeiQx ∂−

)
. (D1)

The wave vector Q is a deviation of 2kF from its special commensurate value. By rotating the fermions

R→ e−iQx/2R, L→ eiQx/2L, (D2)

we reduce Losc to the Lagrangian with the constant backscattering and with the shifted chemical potential:

L̄osc =

(
−iωn + vF k J

J −iωn − vF k

)
− vFQ

2
. (D3)

Backscattering opens the gap in the fermionic spectrum but at the energy level shifted from zero by vFQ/2. Thus,
the dispersion relation counted from the shifted chemical potential reads as

J 6= 0 ⇒ E±osc(k) = ±
√

(vF k)
2

+ J2
∣∣∣
vF |q|�|J|

' ±

(
|J |+ (vF k)

2

2|J |

)
. (D4)

Suppl.Mat. E: 4kF -response of the helical metal on spinless disorder

Consider a 4kF -response of the helical metal on the spinless backscattering potential. It requires a fusion of two
2kF -operators which is obtained in path integral by integrating out the high energy gapped modes. The effective
Lagrangian reads as:

〈Ldis〉 = −1

2

∫
dx′dτ ′ V

(
x+

x′

2

)
V

(
x− x′

2

)〈
R̃†↑

(
τ +

τ ′

2
, x+

x′

2

)
L̃↑

(
τ +

τ ′

2
, x+

x′

2

)
×

× R̃†↓

(
τ − τ ′

2
, x− x′

2

)
L̃↓

(
τ − τ ′

2
, x− x′

2

)〉
+ h.c. ≈

≈ 1

2
V 2(x)R̃†↑(x, τ)L̃↓(x, τ)×

∫
dx′dτ ′

〈
R̃†↓

(
τ − τ ′

2
, x− x′

2

)
L̃↑

(
τ +

τ ′

2
, x+

x′

2

)〉
+ h.c. ≈

≈ 2
V (x)2

∆(gen)
R̃†↑(x, τ)L̃↓(x, τ) + h.c. (E1)
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