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Zusammenfassung
In der Vielteilchenquantenmechanik bezeichnet der Begriff des Fluchs der
Dimensionalität das exponentielle Wachstum des Hilbertraums mit der Sys-
temgröße. Numerische Methoden, die Quantenvielteilchensysteme simulieren,
können anhand ihres Umgangs mit diesem Problem zwei Klassen zugeteilt wer-
den: (A) Manche Methoden verwenden einen niedrigdimensionalen Ansatz, der
aufgrund physikalischer Überlegungen gewählt wird. Ein Beispiel dafür sind
Tensornetzwerkmethoden. (B) Andere Methoden umgehen dieses Problem,
indem sie es vermeiden, quantenmechanische Zustände explizit darzustellen.
Diese Arbeit beschäftigt sich mit Methoden beider Art.

Die Parquet-Gleichungen und die Funktionalrenormierungsgruppe, die im
ersten Teil dieser Arbeit eingeführt werden, sind der Klasse (B) zuzuordnen.
Statt expliziter Behandlung der Wellenfunktionen verwenden diese Methoden
exakte Zusammenhänge zwischen Korrelatoren, wodurch sie im Vergleich zur
Klasse (A) weniger empfindlich gegenüber der Dimensionalität des Systems
und unbeeinflusst vom Wachstum der Verschränkung mit Systemgröße sind.
Dadurch ist es möglich, die Methode der mehrschleifigen Pseudofermionen-
Funktionalrenormierungsgruppe auf das J1–J2–J3–Heisenbergmodell auf ei-
nem kubischen Gitter anzuwenden. Die Implementierung der Mehrschleifen-
Gleichungen erfordert einige Verbesserungen des vorherigen Stands der Tech-
nik, die ebenfalls im ersten Teil vorgestellt werden.

Der zweite Teil der Arbeit befasst sich mit Tensornetzwerkmethoden. Die-
se gehören Klasse (A) an, da sie einen Ansatz für die Wellenfunktion wäh-
len, etwa einen Matrixproduktzustand. Dieser Ansatz lässt sich auf beliebige
Funktionen vieler Variablen verallgemeinern, und wird dann Tensorzug ge-
nannt. Tensorzüge erzeugen wir mittels der Tensor Cross Interpolation, eines
Algorithmus des aktiven maschinellen Lernens, der die Zielfunktion nur stich-
probenartig auswertet. Die Anzahl der benötigten Funktionsauswertungen
skaliert hier mit der Größe der komprimierten Darstellung, die viel kleiner
sein kann als die unkomprimierte Darstellung auf einem dichten Gitter. So
wird die exponentiell teure Auswertung der Funktion auf allen Gitterpunkten
vermieden. Besonders nützlich ist die Verbindung der Tensorzugdarstellung
mit der Quantics-Darstellung, in der die Funktion durch die binären Ziffern
der Funktionsargumente parametrisiert wird. Falls die Funktion kompressibel
ist, skaliert der Rechenaufwand für die Erzeugung und Verarbeitung ihrer
komprimierten Darstellung logarithmisch mit der Größe des Gitters. Opera-
tionen mit Funktionen in Tensorzugdarstellung, beispielsweise Multiplikation,
Fourier-Transformation oder Faltung, können mit etablierten Tensornetzwerk-
methoden aus der Vielteilchenquantenmechanik ausgewertet werden.

Somit ist es möglich, ganze Simulationsalgorithmen aus der Vielteilchen-
quantenmechanik in der Quantics-Tensorzugdarstellung durchzuführen. Der
dritte Teil dieser Arbeit stellt eine so implementierte Selbstkonsistenziteration
zum Lösen der Parquetgleichungen vor, und verbindet damit die Ansätze der
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Klassen (A) und (B). Anwendung auf das Hubbard-Atom und das Anderson-
Störstellenmodell zeigen, dass dieser Algorithmus so schnell konvergiert wie
eine Implementierung mit dichten Gittern, dabei aber sehr viel weniger Ar-
beitsspeicher benötigt. Dieses Ergebnis zeigt auf, wie komplexere Modelle mit
mehreren Orbitalen und Impulsabhängigkeiten mittels der Parquetgleichungen
simuliert werden können, was bisher unerreicht ist.
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Abstract
In the field of many-body quantum physics, the term curse of dimensionality
refers to the exponential growth of the Hilbert space with system size. Numer-
ical methods for simulating quantum many-body systems can be divided into
two classes according to how they approach this problem: some methods (A)
rely on a low-dimensional ansatz chosen for physical reasons, such as in tensor
network methods, while others (B) avoid explicit representation of quantum
mechanical states entirely, thus sidestepping the problem. This thesis is about
methods in both classes.

The parquet equations and the functional renormalization group, intro-
duced in the first part, both belong to class (B). Instead of computing wave
functions, they rely on exact relations between correlators, which makes them
less sensitive to the dimensionality of the system and agnostic of the scaling
of the entanglement entropy compared to many methods of class (A). This
enables us to apply the multiloop pseudofermion functional renormalization
group scheme to the J1–J2–J3 Heisenberg model on a cubic lattice. Imple-
menting the multiloop equations requires numerous technical improvements
over the previous state of the art, which are shown as well.

The second part of the thesis is based on tensor network methods. They
belong to class (A), as they choose an ansatz, such as a matrix product state,
for the wave function. This ansatz can be generalized to represent general func-
tions of many variables, and is then called a tensor train. To construct a tensor
train, we use the tensor cross interpolation algorithm, which samples the target
function in an active machine learning scheme. The number of samples scales
with the size of the compressed representation, which may be much smaller
than the full tensor. Thus, the exponential cost of generating all components of
the full tensor is avoided. The tensor train format is particularly useful when
combined with the quantics representation, where a function is parameterized
in a binary representation of its variables. Provided a function is compressible,
the corresponding tensor train can then be constructed and operated on at a
logarithmic cost in the number of discretization points. Operations on func-
tions in tensor train representation, such as multiplication, Fourier transform,
and convolution, can be evaluated using known tensor network algorithms that
were originally formulated for many-body quantum physics.

Thus, quantics tensor trains offer enough versatility to perform entire
many-body physics algorithms within this format. The third part of this
thesis presents a self-consistent parquet solver implemented in this way, thus
combining approaches of class (A) and (B). Benchmarks on the Hubbard atom
and single-impurity Anderson models show that the quantics tensor trains
converge as quickly as a solver based on dense grids, with much smaller memory
consumption. This puts simulation of more complex models including multiple
orbitals and momentum dependence with the parquet equations, which had
hitherto been unfeasible, within reach.
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Chapter One

Introduction

‘More is different’, wrote Anderson in his seminal essay against reductionism [1].
What he expressed very succinctly is the principle of emergence: A system
comprised of many parts may behave in ways that are very different to the
behavior one of its constituents shows in isolation. Such emergent phenom-
ena in systems comprised of quantum particles are the main object of study
of quantum many-body physics. In some particularly fascinating cases, an
emergent macroscopic phenomenon necessarily requires the underlying, micro-
scopic constituents to be quantum objects. Thus, the quantum mechanical
nature of atoms and electrons leaves a uniquely identifiable, macroscopic fin-
gerprint. Well-known instances of such emergent phenomena in condensed
matter physics are superconductivity and magnetism.

A paradigmatic example from field of quantum magnetism are quantum
spin liquids (QSL) [2]. It has been hypothesized for a long time that certain
systems of quantum spins may show interesting quantum mechanical entan-
glement in the ground state. This can be induced by frustrated interactions,
i.e. interactions that do not permit a classical state to be locally optimal ev-
erywhere at the same time. The prototypical example is an antiferromagnetic
interaction on a triangular lattice: there is no configuration of classical spins
on a triangle in which all neighbors are antiparallel. Although the ground
state of this model in particular turns out not to be a QSL, slight variations
of the interactions or the lattice do induce QSL physics. Characteristic for
QSL are long-range entanglement between spins, and collective excitations
described by an emergent lattice gauge theory. When testing real materials
for QSL states, it is very difficult to probe these properties. It is therefore
necessary to identify model systems that host a stable QSL phase, and to
predict observables in that phase on the theory side.

Precisely the characteristic properties of a QSL system also pose difficulties
when studying these systems with numerical methods. Long-range correlations
and entanglement are problematic for both exact diagonalization and tensor
network methods. The former are very limited in the system sizes that can be

1



1. Introduction

accessed [3–5], the latter rely on area-law scaling of the entanglement entropy
for efficient representation of the wave function [6–8]. In Monte Carlo methods,
frustrated interactions often induce a sign problem, leading to extremely slow
convergence of results with the number of Monte Carlo samples [9, 10]. These
difficulties can be circumvented using methods that rely on exact relations
between correlators, such as the parquet equations [11, 12] and the closely
related functional renormalization group [13, 14]. Chapter 2 shows how to set
up these schemes for a lattice of quantum spins, and an application to the
J1–J2–J3 Heisenberg model on the cubic lattice in publication [P1].

Though the correlators are much simpler to represent than full wave func-
tions, four-point and higher correlators still have complicated dependencies
on multiple frequency, momentum, spin or orbital variables in general. For
the Heisenberg model considered in publication [P1], the four-point vertex has
one site index, one spin index, and three frequency indices. There, the vertex
was parameterized on a specially designed adaptive discretization grid. When
implementing these methods for other models, considerable effort is required
to design such specific solutions. A more flexible and adaptable approach to
representing correlators is therefore highly desirable.

Here, we take inspiration from a different class of numerical methods in
condensed matter physics: tensor networks. The celebrated density matrix
renormalization group (DMRG) algorithm [15, 16] relies on a matrix product
state representation of quantum states [8]. This efficient representation exploits
the area-law entanglement structure of the state: Partitioning the system into
two subsystems, the entanglement entropy obtained from the reduced density
matrix of one subsystem scales with the area of the partition, not the volume
of the subsystem [8]. The underlying linear algebra structure can be applied
more generally to represent functions of many variables, also if they are not
wave functions in a Hilbert space.

In the applied mathematics community, this structure is called a tensor
train (TT) [17]. The most obvious way to construct a TT is by repeated
singular value decomposition of a dense tensor representation of a function.
The amount of memory necessary to represent this dense tensor scales expo-
nentially with the number of tensor legs, even in cases where it is strongly
compressible. This curse of dimensionality can be avoided by constructing the
TT with the tensor cross interpolation (TCI) algorithm, which optimizes the
TT iteratively based on samples of the original tensor [17]. Being an active
machine learning algorithm, the number of samples required may be much
smaller than the size of the original tensor, depending on its structure [P2,
P3, 18–22]. With an analogous shift of perspective, many of the established
tensor network algorithms for wave functions can be generalized to operations
on tensor train representations of functions [P3]. The aforementioned DMRG,
for instance, can then be considered an algorithm to find the lowest eigenvalue
and the corresponding eigenvector of a Hermitian linear operator.
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When dealing with continuous functions, there are many ways of converting
the function to a tensor with discrete indices. For functions of many variables
with moderate resolution requirements in each variable, the domain may be
discretized in each variable separately, and the tensor indices defined as simply
enumerating the discretization points. For functions of few variables, where
high resolution is required in each variable, it is advantageous to use the so-
called quantics representation, where each index corresponds to a binary digit
of the discretized variable [18]. If the function in question is compressible in
this representation, combining quantics and TCI can generate a corresponding
TT at logarithmic cost with respect to the number of discretization points
[P2, 18]. Functions that require a very fine resolution, yet are compressible
due to their structure, are very common in physics, engineering, and other
fields applying mathematical representations, such as turbulence in hydrody-
namics [23–26], options pricing in financial mathematics [27], and orbitals in
quantum chemistry [28]. These representations are presented in chapter 3,
including detailed description of the involved algorithms on a technical level
and various applications in two publications [P2, P3].

Correlators in quantum many-body physics, such as the 4-point vertex
introduced earlier, are also representable as compressed quantics TT [29–32].
In combination with tensor network algorithms that correspond to operations
such as basis transforms, integrals, and convolutions, the entire parquet for-
malism can be implemented in a TT-based solver, as shown in chapter 4 and
publication [P4]. A step beyond the parquet approximation is to use a local
vertex computed using dynamical mean-field theory (DMFT) as an input to
the parquet equations, in a scheme known as DΓA [33, 34]. DΓA can equally be
regarded as a diagrammatic extension of DMFT. Publication [P5] presents an
implementation of the multipoint numerical renormalization group (mpNRG)
scheme [35–37], which directly obtains the vertex in QTT format.
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Chapter Two

Functional renormalization
group methods for spin
systems

2.1 Introduction
Condensed matter systems showing emergent macroscopic excitations that
can only be described as collective quantum mechanical behavior are one of
the fascinating consequences of the inherently quantum mechanical nature of
electrons. One example for such systems are the proposed quantum spin liquid
(QSL) phases in quantum magnetism. Simulating QSL systems is challenging
due to several of its characteristic properties: The frustrated interactions that
are typical for these systems induce a sign problem in quantum Monte Carlo
methods, which leads to slow convergence [3, 9, 10]. The entanglement entropy
of QSL states scales with volume, not surface area. This poses a problem for
the density matrix renormalization group (DMRG), since it relies on area-law
scaling of entanglement for its compressed representation of states [6, 8]. One
way to sidestep these problems is to work with exact relations of correlators,
and thereby avoid explicit representation of the wave function. This is the
general strategy of the parquet approach [11, 12], and the closely related
functional renormalization group (fRG) [13, 14].

This chapter introduces the parquet equations in Sec. 2.2 and uses them as
a starting point to derive fRG for in Sec. 2.3. Different ways of applying fRG to
spin systems, with emphasis on the pseudofermion fRG (pffRG) are presented
in Sec. 2.4. Thereafter, publication [P1] explains how to implement pffRG in
an error-controlled way to obtain reproducible fRG flows. It is followed by a
discussion of the strengths and limitations of the approach in Sec. 2.6.
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2. Functional renormalization group methods for spin systems

2.2 Parquet equations
2.2.1 Fermionic action and correlators
Consider a fermionic action

S[ψ̄, ψ] = −
∑
1′
,1

ψ̄1′ [G0]−1(1′, 1)ψ1 − 1
4

∑
1′
,2′
,1,2

Γ0(1′, 2′, 1, 2) ψ̄1′ψ̄2′ψ2ψ1, (2.1)

where ψ̄ and ψ are Grassmann variables and the indices 1′, 2′, 1, 2 subsume
parameters such as imaginary time or frequency, position or momentum ar-
guments, and orbital indices. Here, the model is defined through the bare
propagator G0 and the bare two-particle interaction Γ0, closely related to
the interaction term in the Hamiltonian. In graphical notation, these are
represented as a dashed line and a filled square, respectively:

G0(1′, 1) = ; Γ0(1′, 2′, 1, 2) = .

Time-ordered correlators can be expressed through a path integral

〈
ψ̄1′ . . . ψ̄n′ψ1 . . . ψn

〉
=

∫
D[ψ̄, ψ] ψ̄1′ . . . ψ̄n′ ψ1 . . . ψn e

−S[ψ̄,ψ]∫
D[ψ̄, ψ] e−S[ψ̄,ψ]

. (2.2)

The two simplest such correlators are
1. the two-point correlator,〈

ψ̄1′ψ1
〉
≡ G(1′, 1) ≡ , (2.3)

denoted as an arrow connecting its two indices 1′, 1 in diagrammatic
notation, and

2. the four-point correlator,

〈
ψ̄1′ψ̄2′ψ1ψ2

〉
≡ G(4)(1′, 2′, 1, 2) ≡ , (2.4)

denoted as an astroid or flying squirrel shape in diagrammatic notation,
with its four indices 1′, 2′, 1, and 2 on its four corners [38].

These correlators are the building blocks of a set of self-consistent relations,
the so-called parquet equations [11, 12], which we will recapitulate in this
section. To this end, we decompose them into trivial and correlated parts.
Dyson’s equation decomposes the propagator G into the bare propagator G0
and a part related to the self energy Σ,

G(1′, 1) = G0(1′, 1) +
∑
2,3

G0(1′, 2) Σ(2, 3)G(3, 1). (2.5)
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2.2. Parquet equations

In diagrammatic notation, Σ is denoted with a circle,

Σ(1′, 1) = . (2.6)

Thus, Dyson’s equation can be expressed as

= + . (2.7)

Points at which two correlators meet denote a contraction over an index: a
frequency integral, a summation over Matsubara indices, or other summations
and integrals as appropriate for the respective variable.

The four-point correlator can be decomposed into three parts in a so-called
tree expansion,

G(4)(1′, 2′, 1, 2) = G(1′, 1)G(2′, 2)−G(1′, 2)G(2′, 1)
+

∑
3,4,5,6

G(1′, 3)G(2′, 4) Γ(3, 4, 5, 6)G(5, 1)G(6, 2), (2.8a)

which defines the four-point vertex Γ as the fully connected part of the four-
point correlator, with amputated legs. In graphical notation, this is

= − + , (2.8b)

where the vertex Γ is denoted as a square.

2.2.2 Two-particle reducibility and the parquet equation
The vertex Γ can be expanded further in a perturbation series in the bare
interaction Γ0, which can be depicted using diagrams. We now organize all
diagrams in this series according to their two-particle reducibility: A diagram
is two-particle reducible if cutting two propagators results in two disconnected
parts.1 Each of the two resulting disconnected parts is attached to a pair of
external legs, and there are three distinct divisions of the four legs into two
pairs. We group each diagram into one of three classes based on this property
[12, 39].
a-channel: Cutting two anti-parallel lines of an a-channel diagram results in

disconnected parts connected to external legs (1′, 2) and (2′, 1), respec-
tively. The sum of all diagrams in the a-channel is the a-reducible vertex,
γa.

p-channel: Similarly, cutting two parallel lines of an p-channel diagram re-
sults in disconnected parts connected to external legs (1′, 2′) and (1, 2),
and the sum of these diagrams is the p-reducible vertex, γp.

1In discrete mathematics terms, a two-particle reducible diagram is a 2-edge-connected
graph.
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2. Functional renormalization group methods for spin systems

t-channel: Diagrams reducible in the t-channel are disconnected when cutting
two transverse lines, and the disconnected parts are connected to external
legs (1′, 1) and (2′, 2), respectively. Their sum is the t-reducible vertex,
γt.

No diagram can be two-particle reducible in more than one channel, but there
are diagrams that are not reducible in any of the three channels [12]. These
are called two-particle irreducible, and their sum is denoted R. Since the
classification by reducibility assigns each diagram to exactly one class, the
sum of all three reducible vertices and R then recovers the full vertex Γ,

Γ = γa + γp + γt +R, (2.9a)

or, in graphical notation,

= + + + . (2.9b)

This equation is known as the parquet decomposition or as the parquet equation.
The two-particle irreducible vertex R contains the bare vertex Γ0, and further
diagrams starting with the so-called envelope diagram at fourth order in the
interaction [39]:

= + + o
(
(Γ0)4)

. (2.10)

2.2.3 Bethe–Salpeter equations
Each of the three reducibility classes r ∈ {a,p, t} in the parquet equation
fulfills a corresponding Bethe–Salpeter equation (BSE) of the form

γr = Γ ◦Πr ◦ Ir, (2.11)

where Πr is a propagator bubble in channel r, Ir = Γ− γr, and the products
◦ are to be understood as channel-specific matrix products [40]. In graphical
notation,

= , (2.12a)

= 1
2 , (2.12b)

= − . (2.12c)

8



2.3. Functional renormalization group

The propagator bubble in each equation corresponds to a frequency integral or
Matsubara frequency sum, and evaluation of these integrals or sums accounts
for the majority of computational effort required to solve the parquet equations.

2.2.4 Schwinger–Dyson equation
The self energy Σ is related to the vertex Γ via the Schwinger–Dyson equation,

= − − 1
2 . (2.13)

Thus, the self energy Σ can be obtained from a known vertex Γ, and in turn,
the propagator G obtained from Σ via Dyson’s equation (2.5). This newly
obtained propagator can then be inserted into the Bethe–Salpeter equations
(2.12) and the parquet decomposition (2.9) to obtain a new vertex Γ, thus
forming a set of exact self-consistent relations known as the parquet equations.
This set is complete except for one quantity: the irreducible vertex R.

2.2.5 The irreducible vertex R

The irreducible vertex R cannot be obtained from the parquet equations, and
is considered an external input. One common approximation is the so-called
parquet approximation, which sets

R = Γ0, (2.14)

thereby neglecting all non-trivial irreducible diagrams, starting with the enve-
lope diagram. Alternatively, it is possible to use an external input for R, such
as a local vertex obtained from DMFT, in an approach known as dynamical
vertex approximation (DΓA) [34, 41]. Thus, the parquet approach can be
used as a diagrammatic extension of DMFT, similar to DMFT+GW [42] and
related approaches [33].

With an input for R, a self-consistent solution to the parquet equations can
be found in principle. In practice, it is a often very difficult to converge to a
solution. Even if convergence is reached, there is no guarantee that the solution
is physical. Indeed, it is known that self-consistent systems of diagrammatic
equations may have multiple branches, which allows convergence to unphysical
solutions [43]. Recently, some techniques to force convergence to the physical
branch have been developed, which are outside the scope of this work [44].

2.3 Functional renormalization group
2.3.1 Introduction
Instead of solving the parquet equations using a self-consistency iteration or
a root-finding algorithm, it is possible to use the known solution of a simpler

9



2. Functional renormalization group methods for spin systems

reference system, and then transport that solution to the target system. This
is the idea of the functional renormalization group (fRG) approach. There, a
flow parameter Λ interpolates between a reference and a target system. Taking
the derivative with respect to Λ of the parquet equations generates a set of
equations, the so-called flow equations, that describe how the solution evolves
with Λ. Integrating these equations then allows us to transport solutions from
the reference to the target system.2

This is a somewhat unorthodox way of motivating fRG. Usually, the fRG
is derived from a generating functional approach [14], which yields equivalent
flow equations except for so-called multiloop terms. Historically, the multiloop
terms were introduced as extensions of the fRG, with the goal of enforcing
certain properties that the exact solution is known to fulfill, among them the
parquet equations and the Mermin–Wagner theorem [45, 46].

2.3.2 Flow parameter and regulator
There are many ways of introducing a flow parameter Λ to the parquet equa-
tions; in this thesis, it is chosen to be an artificial energy cutoff in the bare
Green’s function

GΛ
0 (ω) = ΘΛ(ω)G0(ω) (2.15)

where we choose a smooth cutoff function for the regulator Θ,

ΘΛ(ω) = 1− e−ω2
/Λ2

. (2.16)

It is worth noting that there is considerable freedom in these choices. Oth-
ers have used different regulators, including the sharp heaviside function
ΘΛ(ω) = θ(ω − Λ) [47]. The flow parameter does not necessarily have to
be an energy cutoff; other parameters, such as an artificial momentum cutoff
or even physical parameters such as the temperature have been used as flow
parameters in other contexts [48, 49]. The interpretation of an fRG flow as an
interpolation between a reference and target system is perhaps most intuitive
if a physical parameter is used as flow parameter. In combination with some
approximations to the fRG flow, the choice of regulator may in general affect
the physical observables at the end of the fRG flow. This is a major limita-
tion of this method, which can be mitigated in part using the multiloop flow
described below.

With a cutoff-dependent propagator, the self-energy Σ, the full propagator
G, as well as the two-particle quantities Γ and γr become cutoff-dependent
as well. If Λ→∞, i.e. Λ is much larger than all energy scales in the system,
all quantities are equal to those of the reference system. For our choice of
regulator (2.16), the bare propagator vanishes. This in turn implies that all

2The more recent finite difference parquet approach by Lihm et al. [37] implements
this idea more directly, by considering the difference between the two-particle quantities
describing a reference and target system.

10



2.3. Functional renormalization group

two-particle reducible vertices γr vanish, and therefore Γ = R, which is equal
to Γ0 in the parquet approximation. This is the starting point of the fRG flow.
An alternative is to use a local vertex and self energy obtained from DMFT
as reference system, in an approach known as DMF2RG [50].

2.3.3 Flow equations
The flow equations specify how to transport this solution to smaller values of Λ.
These equations are obtained by inserting the propagator GΛ into the parquet
equations (2.9), (2.12) and (2.13), then taking the derivative with respect to
Λ. We denote these derivatives by adding a dot to the corresponding quantity,
i.e., Ẋ = ∂

∂ΛX. After some algebraic manipulation (see Refs. [13, 51]), we
obtain the flow equations for the reducible vertices as a series of contributions
ordered by loop order ℓ:

γ̇r =
∞∑
ℓ=1

γ̇(ℓ)
r . (2.17a)

The first term is the one-loop contribution, which correpsonds to the flow
equations in fRG derived from the generating functional approach [14],

γ̇(1)
r = Γ ◦ Π̇r ◦ Γ. (2.17b)

Again, the matrix products should be understood as sums over shared indices
in accordance with channel r. All further terms are defined recursively in
terms of lower order contributions,

γ̇(2)
r = γ̇

(1)
r̄ ◦Πr ◦ Γ + Γ ◦Πr ◦ γ̇

(1)
r̄ , where γ̇(ℓ)

r̄ = ∑
r

′ ̸=r γ̇
(ℓ)
r

′ , (2.17c)

γ̇(ℓ)
r = γ̇

(ℓ−1)
r̄ ◦Πr ◦ Γ + Γ ◦Πr ◦ γ̇

(ℓ−2)
r̄ ◦Πr ◦ Γ + Γ ◦Πr ◦ γ̇

(ℓ−1)
r̄ , ℓ ≥ 3.

(2.17d)

Whereas the series in Eq. (2.17a) is infinite, it has to be truncated at some
finite order ℓmax in practice. These terms can be evaluated efficiently in order
from ℓ = 1 to ℓmax, inserting results for smaller ℓ in the equation for larger ℓ.

Analogously, the self energy flow is obtained from a derivative of the
Schwinger–Dyson equation. After some algebra, this can be shown to be [51]

Σ̇(1′, 1) = −
∑
2,3

Γ(1′, 2; 1, 3) Ġ(3, 2)

Σ̇t̄(1′
,1)︷ ︸︸ ︷

−
∑
2,3

γ̇t̄,C(1′, 2; 1, 3)G(3, 2)

−
∑

2,3,4,5
Γ(1′, 2; 1, 5)G(3, 2) Σ̇t̄(4, 3)G(5, 4), (2.18)

where γ̇t̄,C = ∑
r∈{a,p} Γ ◦Πr ◦ γ̇r ◦Πr ◦ Γ. The standard (one-loop) fRG flow

contains only the first term, and the other two terms are only non-zero for
ℓmax ≥ 3.
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2. Functional renormalization group methods for spin systems

Integrating the flow equations (2.17) and (2.18) from the large initial value
of Λ to some final Λ → 0 then gives a solution for the physical model.3 If
there is a phase transition to an ordered phase at some value of Λcrit, this
will induce a divergence in the corresponding susceptibility. The continuous
fRG flow can only approach Λcrit asymptotically. Close to the transition, the
diverging components of generalized two-particle susceptibilities of the form
χ ∼ ⟨ψ̄ψ̄ψψ⟩ correspond to the order parameter of the phase behind the
transition point. This allows identifying the ordered phase without explicitly
crossing the transition.4 There is also an alternative approach described
in Ref. [55], where a Hubbard–Stratonovich transform corresponding to the
unstable susceptibility component allows continuation of the transformed flow
into the ordered phase.

2.3.4 Limitations and scope of applicability
In practice, it is not always possible to reach convergence in loop order ℓmax
due to excessive requirements on memory and computation time. Even at
convergence, there are some more general limitations to this approach. As we
remarked earlier, the parquet equation may have multiple solution branches,
and a solution obtained from fRG is not guaranteed to be on the physical
branch. If the parquet approximation, i.e. R = Γ0, is used, fRG neglects some
diagrams starting at fourth order in the interaction, and this truncation of
the diagrammatic series is only justified at small interaction strengths. At
strong interactions, fRG results may not reproduce the correct behavior [56].
It is also not clear whether truncating at higher loop orders ℓmax > 1 is gener-
ally beneficial: for the x-ray edge problem, Diekmann and Jakobs [57] argue
that the one-loop flow contains exactly the leading order of divergences in the
particle-hole susceptibility, and all further loop orders constitute comparatively
arbitrary truncations of the diagrammatic series. On the other hand, Gievers
[38] recently demonstrated that subleading logarithmic corrections are neces-
sary to reproduce certain power laws in the particle-hole susceptibility. For
other models, where no such arguments are known, the general philopsophy
is to fulfill as many exact relations as possible by including these correction
terms to the extent that is feasible at a tolerable numerical cost.

The strength of fRG, on the other hand, mainly lies in a great flexibility
regarding the systems it can be applied to. Symmetries in the Hamiltonian
directly induce symmetries in the vertices, which can be exploited for symmetry

3In principle, the final value of the flow parameter is Λ = 0. In some cases, such as for
the pseudofermion Hamiltonian discussed later in this chapter, there is a divergence ∼ 1/Λ
in some susceptibilities, which prevents reaching exact Λ = 0. In this case, a small value of
Λ below all other energy scales of the system is sufficient to obtain all relevant physics.

4There are phases with higher-order order parameters that cannot be identified using
divergences in a two-particle susceptibility, such as the nematic order parameter in Ref. [52].
These phases can be identified indirectly by adding perturbations to the Hamiltonian, and
observing the effect of these perturbations on the two-particle susceptibilities [53, 54].
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2.4. Functional renormalization group for spin systems

reduction. For the pseudofermion systems discussed further below, this means
large lattices are accessible at comparatively small computational cost [58].
fRG does not impose any inherent restriction on the dimensionality of the
system, unlike tensor network methods. Two- and three-dimensional lattices
are thus accessible, though at an increased computational cost. Frustrated
interactions, which induce sign problems in Quantum Monte Carlo methods,
are unproblematic as well. Since wave functions are not represented explicitly,
the method does not have specific requirements on their structure, such as
the area-law scaling of the entanglement that DMRG relies on. This means
fRG can be applied to systems at quantum critical points, or indeed in phases
where a volume-law scaling is present. Quantum spin liquids are perhaps the
most prominent example of such wave functions [2].

2.4 Functional renormalization group for spin systems
Given these strengths, it seems natural to study frustrated spin systems using
fRG, targeting proposed quantum spin liquid phases. This is the idea of the
pseudofermion fRG (pffRG), which was originally formulated by Reuther and
Wölfle [58] (see also the review in Ref. [59]). We consider Hamiltonians of
spin-1/2 systems with two-spin interactions of the form

H =
∑
i,j

∑
µ,ν∈{x,y,z}

Jµνij S
µ
i S

ν
j , (2.19)

where Sµi is the µ component of the spin operator at site i. Since our derivation
of the fRG flow relies on a functional integral,5 we represent the spin operators
in terms of pseudofermions fiα using Abrikosov’s construction [61],

Sµi = 1
2

∑
αβ

σµαβf
†
iαfiβ, (2.20)

where σµ is the µth Pauli matrix. This is a faithful representation of the spin
operator if ∑

α

f †
iαfiα = 1 ∀i. (2.21)

This constraint is necessary to restrict local Hilbert space of the pseudofermions,
which has dimension 4, to the two-dimensional subspace of states that corre-
sponds to the physical spin states. In this representation, the Hamiltonian
is

H = 1
4

∑
i,j

∑
µ,ν∈{x,y,z}

Jµνij
∑
αβγδ

σµαβσ
ν
γδf

†
iαfiβf

†
jγfjδ. (2.22)

5There is an alternative derivation of the fRG formalism for spin systems that does not
rely on a functional integral, and encodes the spin algebra into more complicated initial
conditions [60].
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2. Functional renormalization group methods for spin systems

We construct an fRG flow in the imaginary frequency Matsubara formalism
at zero temperature, using the same procedure as for usual fermions. Because
there is no kinetic term, the fermions are immobile and the bare propagator
is simply

G0(i′1, iω′
1, α

′
1; i1, iω1, α1) = (iω1)−1δi′1i1

δα′
1α1

δ(iω′
1 − iω1). (2.23)

Physical observables are obtained at the end of the flow, at Λ→ 0, by trans-
lating the observable’s expectation value to expectation values of the auxiliary
operators.

Enforcing the pseudofermion constraint (2.21) is, in theory, possible using a
method by Popov and Fedotov, effectively introducing a purely imaginary term
into the action [62, 63]. The parquet approximation introduces inaccuracies
to the fRG flow starting at fourth order in the interaction, which leads to a
violation of the exact constraint by approximately 30%–40% at the end of the
flow [64]. In our implementation, the constraint is only enforced on average,
i.e.,

〈∑
α f

†
iαfiα

〉
= 1. This generally leads to a similar violation of the exact

constraint by approximately 30%–40% at the end of the flow [64, 65].
There is alternative way to reformulate the spin Hamiltonian for construct-

ing a functional integral, which uses Majorana fermions as auxiliary particles
[66]. A similar doubling of the Hilbert space is resolved differently there, in
that the local space with dimension 4 is split into two disconnected copies of a
physical two-dimensional Hilbert space [66]. At low temperatures, this artifi-
cial degeneracy, coupled with the truncation of the diagrammatic series in the
fRG flow equations, causes unphysical divergence to appear in the correlators.

For our zero-temperature study of QSLs in the J1–J2–J3 model on the
cubic lattice, we therefore rely on pseudofermion fRG. Publication [P1] in
this chapter is a detailed description of the technical aspects of implementing
pseudofermion fRG for spin systems at zero temperature. In particular, it
shows how stable and reproducible fRG flows can be reached through careful
use of error-controlled numerical algorithms.

2.5 Publication 1: Benchmark calculations of multiloop pseudo-
fermion fRG

In this section, the following publication is reprinted:
P1 Benchmark calculations of multiloop pseudofermion fRG,

Marc K. Ritter, Dominik Kiese, Tobias Müller, Fabian B. Kugler, Ronny
Thomale, Simon Trebst, Jan von Delft,
The European Physical Journal B 95, 102 (2022),
doi:10.1140/epjb/s10051-022-00349-2.
Reprinted on pages 14–28.
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Abstract. The pseudofermion functional renormalization group (pffRG) is a computational method for
determining zero-temperature phase diagrams of frustrated quantum magnets. In a recent methodological
advance, the commonly employed Katanin truncation of the flow equations was extended to include mul-
tiloop corrections, thereby capturing additional contributions from the three-particle vertex (Thoenniss
et al. https://arxiv.org/abs/2011.01268; Kiese et al. https://arxiv.org/abs/2011.01269). This development
has also stimulated significant progress in the numerical implementation of pffRG, allowing one to track
the evolution of pseudofermion vertices under the renormalization group flow with unprecedented accu-
racy. However, cutting-edge solvers differ in their integration algorithms, heuristics to discretize Matsubara
frequency grids, and more. To lend confidence in the numerical robustness of state-of-the-art multiloop
pffRG codes, we present and compare results produced with two independently developed and algorithmi-
cally distinct solvers for Heisenberg models on three-dimensional lattice geometries. Using the cubic lattice
Heisenberg (anti)ferromagnet with nearest and next-nearest neighbor interactions as a generic benchmark
model, we find the two codes to quantitatively agree, often up to several orders of magnitude in digital
precision, both on the level of spin-spin correlation functions and renormalized fermionic vertices for vary-
ing loop orders. These benchmark calculations further substantiate the usage of multiloop pffRG solvers
to tackle unconventional forms of quantum magnetism.

1 Introduction

A fascinating phenomenon in the study of frustrated
quantum magnets is the interplay of unconventional
forms of magnetic order and the possible emergence
of quantum spin liquid states near zero temperature
[3]. The successful description of such low-energy states
of quantum spin systems has, however, remained chal-
lenging, especially in the presence of competing inter-
actions, geometric frustration, and in higher spatial
dimensions.

Since its inception more than a decade ago [4],
the pseudofermion functional renormalization group
(pffRG) has become a powerful and flexible approach to
map out the zero-temperature phase diagrams of vari-
ous quantum spin models, both in two [4–20] and three
spatial dimensions [16,21–29]. Although the problem
obtained after representing the spin operators by com-
plex fermions is treated approximately, one of the strik-
ing features of pffRG is its ability to track competing
instabilities in different interaction channels, allowing
one to discriminate putative spin-liquid phases from

a e-mail: ritter.marc@physik.uni-muenchen.de (corre-
sponding author)

long-range ordered magnetic ground states. This ability
can be traced back [30,31] to the inclusion of leading-
order 1/S and 1/N diagrams (the former promoting
classical magnetic order, the latter quantum fluctua-
tions), which are treated on equal footing in pffRG by
means of the routinely employed Katanin truncation
[32].

Recently, the multiloop truncation scheme of the infi-
nite hierarchy of fRG flow equations [33–35], previ-
ously used in the context of the Hubbard [36,37] and
Anderson impurity model [38], was applied to the zero-
temperature pffRG by some of us [1,2]. The convergence
in the number of loops over a wide range of energy
scales attested to the inner consistency of the pffRG
method, despite being used in the strong-coupling limit.
These developments were accompanied and facilitated
by substantial improvements of the numerical imple-
mentation that remedy many shortcomings of previ-
ous studies. Yet, some of these advances, such as the
employed integration routines and adaptive Matsubara
frequency grids [1,2], rely on certain numerical heuris-
tics, affecting, e.g., the minimal grid spacing and largest
Matsubara frequencies considered. Therefore, quanti-
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tative agreement between different implementations is,
although highly desired, not guaranteed a priori.

In the present work, we provide evidence for the
numerical robustness of pffRG by benchmarking two
independent state-of-the-art solvers, one provided by a
research group at LMU Munich (dubbed code #1 in the
following), and one by a Cologne–Würzburg collabora-
tion (denoted by code #2) with an open-source release
[39]. As a test case, we consider ferro- and antiferromag-
netic Heisenberg models on the simple cubic lattice and
compare our results both on the level of renormalized
couplings (i.e. fermionic vertex functions) as well as for
the (post-processed) spin-spin correlation functions.

The remainder of the paper is structured as follows.
We begin by providing a brief overview of the multi-
loop pffRG in Sect. 2. This is followed by an in-depth
comparison of the numerical results produced by the
two codes at hand in Sect. 3. Finally, in Sect. 4, tech-
nical aspects of the implementation, such as the choice
of frequency grids, integration routines and differential
equation solvers are discussed, with special emphasis
devoted to their influence on the numerical stability
and accuracy of the two codes.

2 Multiloop pseudofermion fRG

Within the pffRG approach, one can study generic spin-
1/2 Hamiltonians with bilinear spin couplings, i.e.,

H = 1
2

∑

ij

Jμν
ij Sμ

i Sν
j . (1)

Here, the spin operators Sμ
i live on the sites i of an

arbitrary lattice, and the exchange matrices Jμν
ij are

assumed to be real. The spin operators are represented

in terms of complex pseudofermions f
(†)
iα with α ∈ {↑, ↓}

as

Sμ
i = 1

2

∑

α,β

f†
iασμ

αβfiβ , (2)

where σμ
αβ for μ ∈ {x, y, z} are the Pauli matrices.

This yields a purely quartic Hamiltonian which can be
treated by established functional RG techniques.

Note that the pseudofermion representation of the
spin algebra comes with an artificial enlargement of
the local Hilbert space dimension, which must be
dealt with by an additional particle number constraint∑

α f†
iαfiα = 1 on every lattice site. In practice, this

constraint is not enforced, but holds on average due to
particle-hole symmetry [1,2,4]. Nevertheless, the influ-
ence of fluctuations can be quantitatively gauged by
explicitly computing the variance of the number oper-
ator, which can be expressed through the equal-time
spin-spin correlation function 〈Sμ

i Sμ
i 〉 [1]. Although

fluctuations are not fully suppressed, even if a local
level repulsion term ASμ

i Sμ
i (with A < 0) is employed,

recent studies [1,19,23,30] pointed out that observables

extracted from pffRG flows are qualitatively unaffected
by the unphysical Hilbert space sectors.

An alternate decomposition of the spin operators
into Majorana instead of Abrikosov fermions allows one
to circumvent the problem of unphysical states in the
fermionic representation at the cost of redundant copies
of physical Hilbert-space sectors [40]. For moderately
high temperatures, the latter approach was recently
shown to enable an accurate calculation of thermody-
namic observables [41], such as the free energy and spe-
cific heat. However, the approach was also found to suf-
fer from unphysical divergencies when approaching the
T → 0 limit, which we consider here (for the Abrikosov
fermion decomposition).

Since kinetic contributions are absent in the pseudo-
sfermion representation of Eq. (1), the free propagator
assumes the simple form

G0(1
′|1) = (iω1)

−1δi1′ i1δα1′ α1
δ(ω1′ − ω1) , (3)

diagonal in all indices. To successively integrate out
high-energy modes and thus provide an effective low-
energy description of a given model, a cutoff parameter,
here denoted as Λ, is introduced in the bare propaga-
tor. The fRG equations then govern the flow of the n-
particle vertices from the UV limit Λ → ∞, where the
regularized bare propagator vanishes, to the infrared
limit Λ → 0, where one recovers the physical theory. As
such, there is a certain degree of freedom in the cutoff
implementation. A popular choice for the regulator in
pffRG is a Heavyside step function, which sharply sup-
presses frequency contributions |ω| < Λ. This choice
is very useful for analytical treatments of pffRG in the
large-S and large-N limit, where the flow equations can
be solved exactly and reproduce mean-field gap equa-
tions [30,31]. However, if numerical calculations are
employed away from these limits, a non-analytic reg-
ulator spoils the smoothness of the right-hand side of
the flow equations, and therefore limits the applicabil-
ity of higher-order integration routines. For this reason,
we consider a smooth regulator

RΛ(ω) = 1 − e−ω2/Λ2

, (4)

throughout this manuscript, and implement the cutoff
as GΛ

0 (ω) = RΛ(ω)G0(ω), with G0(ω) ≡ (iω)−1.
To make the infinite hierarchy of fRG flow equations

amenable to further calculations, a truncation is neces-
sary. Usually, this is done by neglecting all n-particle
vertices of n = 3 and higher [32]. However, to capture
the physics of interest in pffRG, one must already go
beyond that using the Katanin truncation, which feeds
the Λ derivative of the self-energy ΣΛ back into the
flow of the two-particle vertex ΓΛ [4]. Within this trun-
cation, the flow equations schematically read

d

dΛ
ΣΛ = −

[
ΓΛ ◦ SΛ

]
Σ

, (5)
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d

dΛ
ΓΛ =

∑

c

γ̇Λ
c = −

∑

c

[ΓΛ ◦ ∂Λ(GΛ × GΛ) ◦ ΓΛ]c .

(6)

Here, we introduced the loop function [Γ ◦ G]Σ and the
single-scale propagator SΛ ≡ − d

dΛGΛ|ΣΛ=const.. We cat-
egorized the contributions to the flow of Γ into three
distinct channels c: the particle-particle (s) channel,
the direct particle-hole (t) channel, and the crossed
particle-hole (u) channel. Each “bubble” term, with the
general form [Γ ◦ (G × G′) ◦ Γ′]c, describes the flow of
a two-particle reducible vertex γc. As all self-energies,
vertices, and related correlators are Λ-dependent, we
refrain from writing this dependence explicitly in the
following.

The multiloop fRG (mfRG) flow [33–35], recently
employed within pffRG [1,2], is an attempt to go
beyond the Katanin truncation and capture even more
contributions from n-particle vertices with n ≥ 3. It can
be derived from the parquet approximation [42], which
self-consistently connects one- and two-particle corre-
lation functions via the Schwinger–Dyson (SDE) and
Bethe–Salpeter equations (BSE), and as such the inher-
ent dependence of the Λ → 0 fRG result on the specific
choice of regulator is eliminated [34]. This approxima-
tion includes all those contributions to the flow of the
two-particle vertex which can be efficiently calculated,
i.e., with the same cost as the one-loop flow in Eqs. (5)
and (6). Summarized briefly: To obtain the mfRG flow
of γc, one iteratively computes multiloop corrections to
the one-loop (� = 1) result, using bubble functions with
undifferentiated propagators but differentiated vertices.
In a similar fashion, one can recover equivalence to the
SDE, by feeding back the so-determined vertex correc-
tions into the self-energy flow.

One of the most important ingredients to achieve
sufficient numerical accuracy throughout the multi-
loop flow is an appropriate treatment of the frequency
dependence of the two-particle vertex. In Ref. [43],
a parametrization in terms of one bosonic and two
fermionic frequencies (the fourth frequency argument
is fixed by energy conservation) for each two-particle
reducible vertex was put forward. This parametrization
captures the non-trivial high frequency asymptotics of
the vertices while being numerically efficient. Code #1
uses precisely the proposal of Ref. [43], and the dia-
grams contributing to each channel are grouped into
four asymptotic classes Kn as

γc(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (7)

where we displayed only frequency arguments for
brevity. Here, ωc, νc and ν′

c, denote the natural fre-
quency arguments for diagrams reducible in channel c
(see Ref. [1] for the conventions used). The Kn asymp-
totically decay to zero in each frequency, allowing one
to reduce the necessary number of arguments when

summing up the asymptotic classes to obtain γc. Code
#2 chooses a slightly different approach, by defining
asymptotic classes Qn [44] as

Q1,c(ωc) = K1,c(ωc)

Q2,c(ωc, νc) = K1,c(ωc) + K2,c(ωc, νc)

Q2′,c(ωc, ν
′
c) = K1,c(ωc) + K2′,c(ωc, ν

′
c)

Q3,c(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (8)

with the respective choice of natural frequency argu-
ments outlined in Ref. [2]. Since the Kn classes decay
to zero for large frequencies, the Qn (at least for
n > 1) are projected to a lower class. For instance,
Q3,c(ωc, νc, ν

′
c) = Q2,c(ωc, νc) if |ν′

c| → ∞. Let us
emphasize that both parametrizations contain the same
information about the asymptotic structure of the two-
particle vertices, as the Kn and Qn parametrizations
can be exactly transformed into each other. For an
appropriate choice of numerical frequency grids, both
parametrizations are therefore equally valid and differ
only in numerical performance. The former approach
allows for a more fine-grained adjustment of dis-
crete frequencies to the asymptotic decay of individ-
ual classes, while the latter reduces the cost of evoking
a two-particle vertex from a summation of up to four
classes Kn to loading just a single Qn.

The central observable computed from the pffRG
equations is the flowing spin-spin correlation function,

χμν
ij (iω = 0) =

∫ ∞

0

dτ〈TτSμ
i (τ)Sν

j (0)〉 , (9)

where we omit indication of the Λ-dependence for
brevity. In all models considered here, the interactions
in the Hamiltonian are diagonal and SU(2)-symmetric.
This leads to spin-spin correlations that are symmetric
as well, and we thus define χij ≡ χxx

ij = χyy
ij = χzz

ij .
The spin-spin correlations can be used to identify

transitions into phases with broken symmetries; there,
the flow becomes unstable at some ΛT and must be
stopped. For long-range ordered states, the momentum
k for which the structure factor

χ(k, iω) =
1

Nsites

∑

ij

eik·(Ri−Rj)χij(iω) (10)

(i.e. the Fourier transform of χij) is most dominant
gives an indication of the emergent magnetic order,
as exemplified in Fig. 1. A smooth flow down to the
infrared Λ → 0 is, on the other hand, associated with
non-magnetic phases, such as spin liquids, dimerized,
or plaquette-ordered states.
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Fig. 1 Momentum-resolved structure factors within the
first Brillouin zone of the cubic lattice for (a, b) the fer-
romagnetic case at Λ/J = 0.8 and (c, d) the paramagnetic
case at Λ/J = 0.3, computed for (a, c) � = 1 and (b, d)
� = 3 using code #2. The ferromagnet shows a sharp peak at
the Γ point, without visible difference between the two loop
orders. The putative paramagnet shows a broadened distri-
bution of spectral weight centered around soft maxima at
the M points in � = 1 calculations, while the structure fac-
tor peaks more distinctively for � = 3, signalling the onset
of magnetic order instead

3 Results

To benchmark the two codes, we calculate the spin-spin
correlations and pseudofermion vertices of an extended
Heisenberg model on the cubic lattice with a maximum
correlation length ξ = 5 in units of the lattice spacing
[1]. The corresponding three-dimensional cluster con-
tains N = 515 sites, small enough to efficiently compare
the two codes but large enough to produce the (qual-
itatively) correct physics. The corresponding Hamilto-
nian with up to third-neighbor interactions (see inset
in Fig. 2) reads

H = J1

∑

〈ij〉
Sμ

i Sμ
j + J2

∑

〈〈ij〉〉
Sμ

i Sμ
j + J3

∑

〈〈〈ij〉〉〉
Sμ

i Sμ
j ,

(11)

where we fix J ≡
√

J2
1 + J2

2 + J2
3 as the unit of energy.

We focus on two choices of these interaction parameters
to highlight differences between fRG flows in different
phases:

J1 < 0, J2 = 0, J3 = 0, (12)

J1 > 0, J2/J1 = 0.6, J3/J1 = 0.25, (13)

Fig. 2 Inverse spin-spin correlation function for the fer-
romagnet as a function of Λ. Shown here is a comparison
of the � = 1 and � = 3 flows obtained from both codes.
The dotted line is a Λ−1 fit [χC = CJ/(Λ − ΛC)] to the
data at Λ/J ∈ [1.0, 4.0]. The transition to a ferromagnet-
ically ordered phase is visible as a sharp downturn away
from Curie–Weiss behavior. Inset: Definition of the first,
second, and third nearest-neighbor interaction, J1 (green),
J2 (purple), and J3 (yellow)

where Eq. (12) yields a nearest-neighbor ferromagnet
and the setup of Eq. (13) was previously reported to
result in a paramagnetic ground state [21].

Rewriting each spin operator Sμ in the Hamiltonian
in terms of pseudofermions leads to an expression pro-

portional to f†
α′fαf†

β′fβ , with interactions proportional

to
∑

μ σμ
α′ασμ

β′β . Exploiting this SU(2) symmetry (the
interactions are diagonal and of equal magnitude in
every spin direction), the flowing pseudofermion vertex
Γ (and each of its two-particle reducible parts γc) can
be decomposed into a spin component Γs, proportional
to the latter combination of Pauli matrices, and a den-
sity component Γd proportional to δα′αδβ′β [4,45]. Note
that the density component, although initially vanish-
ing for any typical spin model, becomes finite away from
the UV limit and is essential for tracking the evolution
of all symmetry-allowed couplings under the RG flow.

3.1 Ferromagnetic phase

With pure nearest-neighbor ferromagnetic interactions,
the zero-temperature ground state is intuitively expec-
ted to be a ferromagnet. Therefore, in the context of
pseudofermion fRG, there should be a transition at
some finite ΛT > 0 from a paramagnetic regime at
large Λ > ΛT to the ferromagnetic phase at Λ < ΛT.
Approaching the transition, the spin-spin correlator χij

is expected to diverge, similar to a finite-temperature
phase transition. In this case, a peak will form at the Γ
point in reciprocal space, as is visible Fig. 1, since the
correlations are uniform and positive in a ferromagnet.

Close to the transition, the flow is supposed to visi-
bly deviate from its paramagnetic Curie–Weiss behav-
ior χii ≈ CJ/(Λ − ΛC) at large Λ 
 ΛT. For this
reason, it is convenient to plot the inverse correlator
1/χii as a function of Λ to locate the transition, as
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shown in Fig. 2. Here, the 1/Λ behavior appears as a
straight line with slope 1/C displaced horizontally by
ΛC/J and the transition to the ferromagnetic phase is
visible as a sharp turn down to a smaller inverse cor-
relation function at Λ/J ≈ 0.76. The structure factor
at Λ close to ΛT, shown in Figs. 1 and 3, has a single

Fig. 3 Structure factor for the ferromagnet along a high-
symmetry path of the cubic lattice Brillouin zone. The
results are in excellent agreement between both codes, both
for � = 1 and � = 3, showing dominant ferromagnetic corre-
lations indicated by a sharp peak around the Γ point. Inset:
Zoom into the path segment connecting the X ,M , and R
point

peak at the Γ point, signifying an instability towards
ferromagnetic order. This, as well as the Curie–Weiss fit
parameters, are consistent across both considered loop
orders � = 1, 3 and both codes, while ΛT differs slightly.

Since both implementations obtain the spin-spin cor-
relations by post-processing the vertices, any discrep-
ancy therein originates from differences in the vertices.
Therefore, a more detailed examination of the 1/χii-
deviations between the codes for � = 1 will follow once
the flow of the vertex components has been discussed.
Moreover, even if the flows for the χij agree perfectly
(as, e.g., in the regime Λ > ΛT), discrepancies in the
vertices cannot be fully excluded, as post-processing
spin-spin correlations from pseudofermion vertex data
amounts to integrating a combination of several prop-
agators and the vertex over two frequencies [1]. Hence,
this additional step might hide potential differences in
the vertex data.

To investigate this further, we focus on the t-
reducible vertex γt plotted in Fig. 4 at various values
of Λ: Its spin component γs

t (second and third column)
is responsible for the transition and becomes sharply
peaked at small bosonic frequencies ω ≈ 0. Its density
component γd

t (last column) with its extended struc-
tures and peaks at non-zero fermionic frequencies ν is
particularly difficult to resolve and thus most likely to
contain numerical artifacts. Comparing γt, as well as
the the self-energy Σ between the codes, we find quan-

Fig. 4 Frequency structure of self-energy and t-reducible vertex for the ferromagnet at different values of Λ/J for � = 3
flows. The self-energy is purely imaginary and antisymmetric in frequency space, while all vertex components are real and
symmetric along the directions plotted here. We show two cuts through the three-dimensional structure of γΛ,μ

t,〈ij〉(ω, ν, ν′):
A cut along the bosonic frequency axis ω, with both fermionic frequencies set to ν = ν′ = 0, and a cut with equal fermionic
frequencies ν = ν′, where the bosonic frequency was set to ω = 0. The first cut is not shown for γd

t as γd
t,〈ij〉(ω, 0, 0) = 0

due to symmetry [1,2]. The most prominent structure in the t-reducible vertex is a peak around zero bosonic frequency
ω = 0 that grows in magnitude and becomes sharper as Λ is decreased. This indicates ferromagnetic correlations that grow
stronger as the ordering phase transition is approached. In all components, there is quantitative agreement between the two
codes
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Fig. 5 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex for the

ferromagnet into asymptotic classes K1,t, K2,t, K3,t (first,
second, third row) for the � = 3 flows at Λ/J = 0.8. Fre-
quency axes shown here are the same as in Fig. 4. As the
flow is close to the ordering phase transition at this value of
Λ, strong ferromagnetic correlations are present as a peak
around ω = 0 in K1,t. The other classes are at least one
order of magnitude smaller. In all classes, both codes show
quantitative agreement

titative agreement also on this very detailed level of
inspection.

As outlined in Sect. 2, both codes use a decomposi-
tion of the reducible vertices γs, γt, γu into four asymp-
totic classes each. The decomposition into asymptotic
classes Kn is shown for γs

t at Λ/J = 0.8 in Fig. 5, where
we omit Ks

2′,t, as it is equal to Ks
2,t by crossing sym-

metry [1,2]. Note that, while these vertices can directly
be extracted from code #1, an additional transforma-
tion is applied to the Qn decomposition of code #2 [see
Eq. (8)]. The peak in γs

t at small bosonic frequencies
in Fig. 4 is found to stem from the K1 contribution,
which is an order of magnitude larger than the other
classes. In K2 and K3, extended structures with mul-
tiple maxima and minima exist. It is thus crucial to
use a frequency mesh with enough mesh points in an
extended region around the origin to control numerical
interpolation errors (see Sect. 4).

Though the codes implement the vertex decom-
position differently (see Sect. 2) and use different
approaches to build appropriate frequency meshes (see
[1,2] for a detailed description), all components of the
vertex are consistent with each other. This demon-
strates that it is possible to gain control over said inter-
polation errors by a careful adaptive implementation
that places enough mesh points where they are needed.

Since the numerical error incurred by interpolation
of the continuous frequency structure from a discrete
mesh is particularly relevant whenever sharp struc-
tures are present in the vertex, different choices of fre-

Fig. 6 Flows with rescaled frequency meshes. Compari-
son of the flow of inverse static on-site spin correlations
1/χii(iω = 0) obtained using frequency meshes with dif-
ferent scaling factors κ. The dotted line is a Λ−1 fit to the
data at Λ/J ∈ [1.0, 4.0]. For all values of κ, a transition
to a ferromagnet is visible as a sharp turn down. The pre-
dicted transition point as well as the slope of χ in the region
Λ/J < 0.8 differs, while the behavior at large Λ > J remains
identical

quency meshes have strong effects close to phase transi-
tions, where some couplings are expected to diverge. For
instance, in the ferromagnetic setup discussed above,
the transition was induced by a peak in the spin com-
ponent of the t-reducible vertex that grows quickly and
starts to diverge, as can be seen in the second column of
Fig. 4. As the transition is approached, this peak pro-
gressively becomes sharper and thus more difficult to
resolve using discrete meshes. Thus, minor differences
in mesh spacing can induce differences in the flow at
the transition, though the qualitative, physical results
remain unchanged.

To investigate the effects of changes in the mesh spac-
ing explicitly, we compared results obtained from both
codes with artificially modified meshes. Both implemen-
tations make use of adaptive frequency grids where,
during the flow, the mesh spacing is adjusted according
to the frequency structure of the vertex. The simplest
way to manipulate the meshes is to rescale them by
an artificial scaling factor κ. In Fig. 6, we show the
effect of such a rescaling on the � = 1 flow from Fig. 2.
Above Λ/J ≈ 0.8, all frequency structures in the ver-
tex are fairly broad and easy to resolve. Consequently,
rescaling the frequency grid has little effect and values
κ = 0.5 . . . 3.0 result in the same flow and also the same
Curie–Weiss fit parameters. Below that point, the flows
differ more and more as structures become sharper and
ultimately predict slightly different transition points
ΛT/J . Nevertheless, all flows predict a transition to the
same ferromagnetic phase, which can be identified by a
peak in the structure factor at the Γ point.

3.2 Paramagnetic phase

For the second set of parameters, Eq. (13), all interac-
tions up to the third neighbor are antiferromagnetic.
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Fig. 7 Inverse spin-spin correlation function for the puta-
tive paramagnet as a function of Λ. Shown here is a com-
parison of the � = 1 and � = 3 flow obtained from both
codes. The dotted line is a fit of a Λ−1 power law to the
data at Λ/J ∈ [1.0, 4.0]. For Λ/J ≥ 0.5, the Λ−1 behavior
is followed almost perfectly. At smaller Λ/J , the � = 1 and
� = 3 flows disagree: The � = 1 curve smoothly approaches
Λ = 0 (staying above the power law), indicating antiferro-
magnetic correlations. By contrast, the � = 3 curve displays
a downward cusp, similar to Fig. 2, and thus predicts an
ordered state

Consistent with prior work using one-loop fRG [21],
both codes find a paramagnetic ground state for � = 1,
indicated by a smooth and regular flow down to Λ = 0
in Fig. 7.

Remarkably, the � = 3 data predicts a qualitatively
different phase: There is a divergence in the spin cor-
relations at ΛT/J ≈ 0.24, indicating an ordering tran-
sition at a scale roughly three times lower than for the
ferromagnetic ordering instability discussed in the pre-
vious section. Such a reduced ordering scale is not unex-
pected for an exchange-frustrated spin system when
compared to an unfrustrated one, but sometimes hard
to establish.

Probing the structure factor in the vicinity of the
divergence reveals a strong enhancement of magnetic
correlations compared to the � = 1 flow, as indicated by
sharpened Bragg peaks around the M = (0, π, π) points
in Figs. 1 and 9. These correspond to antiferromagnetic
correlations between planes orthogonal to the vector
connecting the second nearest-neighbors along diago-
nals of the faces in the cubic unit cell (shown in purple
in Fig. 2). Our result is consistent with earlier observa-
tions of long-range (0, π, π) order neighboring the para-
magnetic phase [21]. Yet, the mfRG flows obtained from
both codes suggest a rather strong modification of the
respective phase boundaries as the coupling parameters
investigated here were previously predicted to be deep
in the non-magnetic regime.

In the vertex (see Fig. 8) and self-energy, there is
again very good quantitative agreement between both
codes. At Λ/J = 0.05, small quantitative differences
between code #1 and #2 appear in the density com-
ponent γd

t of the t-reducible vertex, consistent with the
earlier remark that it is the most difficult component
to resolve well.

The � = 1 and � = 3 flows are very similar down
to Λ/J ≥ 1. Contributions of � > 1 terms become sig-
nificant at Λ/J ≈ 1 and eventually lead to an order-
ing instability induced by a peak in the γs

t component
that diverges at Λ/J ≈ 0.24. In contrast to the fer-
romagnetic case, this peak is negative, indicating anti-
correlation. Along the fermionic ν frequency axis, the
vertex shows an extended structure with multiple peaks
of similar magnitude to the one on the bosonic axis.
Since the K1 class has no fermionic frequency, this
means that, remarkably, other classes reach an order
of magnitude comparable to K1, as shown explicitly in
Fig. 10. Consequently, vertex structures along fermionic
frequency axes, in contrast to the ferromagnetic transi-
tion, become sizeable. It is therefore crucial to resolve
the full three-dimensional frequency structure in K3.
Though numerically expensive, a large number of mesh
points is necessary to ensure sufficient accuracy, as inad-
equate resolution of features along the fermionic fre-
quency axes can strongly affect the fRG flow. This is
even more important for multiloop flows, where inter-
polation errors might accumulate during the iteration
over loop orders.

4 Technical aspects

To conclude our benchmark calculations, we discuss
some of the particularly relevant technical aspects (see
Table 1) which are needed to obtain confidence that we
have sufficient degree of control over numerical errors.
In doing so, we will also connect to the existing litera-
ture and scrutinize some of the algorithmic approaches
which are routinely employed in the pffRG community.

4.1 Frequency grids

Both the self-energy and two-particle vertices are func-
tions of Matsubara frequencies, which are continuous
in the zero-temperature limit. A numerical implemen-
tation has to sample these functions on a finite grid and
interpolate their values in between the sampling points.
In many previous works (see e.g. Refs. [4,19,46]), the
same frequency grid was chosen for the self-energy and
all reducible vertices, usually featuring logarithmically
increasing distances between adjacent grid points start-
ing from some small but finite frequency. The inten-
tion behind such a choice of frequencies was to resolve
the structure around zero frequency with high accu-
racy while coarse-graining high-frequency tails. More-
over, each vertex component was parametrized in terms
of the three bosonic transfer frequencies, instead of
the channel-specific mixed bosonic-fermionic frequency
treatment utilized by codes #1 and #2.

Although most of the structure of the two-particle
vertex is indeed centered around zero frequency, its pre-
cise extent strongly depends on the cutoff scale Λ (see,
e.g., Figs. 4 and 8) and a static frequency grid will there-
fore fail to faithfully resolve the evolution of frequency
structures under the fRG flow. Furthermore, multipeak
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Fig. 8 Frequency structure of self-energy and t-reducible vertex for the putative paramagnet at different values of Λ/J for
� = 1 and 3 flows. As the � = 3 flow diverges at Λ/J ≈ 0.24, only � = 1 is shown at Λ/J = 0.05. The same cuts through the
three-dimensional frequency structure of the vertices are shown as in Fig. 4. Again, a peak in the γs

t,〈ij〉 component (second
column) indicates strong correlations that become stronger as Λ is further decreased. In contrast to the ferromagnetic case,
this peak is negative, indicative of antiferromagnetic correlations, and there is a sizeable contribution of γs

t for nonzero
fermionic frequencies ν, ν′ (third column), particularly for � = 3

structures that are present in several vertex components
will in general not be captured by logarithmic sampling.

To address both shortcomings, codes #1 and #2
introduce hybrid frequency meshes using linear spac-
ing around zero frequency augmented by an algebraic
(code #1) or logarithmic (code #2) part to capture
the high-frequency behavior in the asymptotic classes
Kn or Qn. The parameters of these meshes are then
independently rescaled for different vertex components
making use of sophisticated scanning routines (see [1,2]
for further details).

4.2 Evaluation of bubble integrals

Having fixed the frequency discretization, the evalua-
tion of frequency integrals in loop and bubble func-
tions necessitates the use of a quadrature rule. In earlier
implementations, a trapezoidal quadrature was used,

with integration points coinciding with the frequency
mesh of the vertex. As discussed above, this procedure
yields good resolution around the origin of the integra-
tion variable. For 1� calculations, the bubble function
consists of a single-scale and a full propagator, the for-
mer being more strongly peaked than the latter. As the
integration variable was usually shifted such that the
origin coincided with the more important pole of the
single-scale propagator, at least the dominant contri-
bution was accounted for in previous implementations.

In higher loops, however, both propagators enter the
bubble on equal footing, necessitating adaptive routines
to deal with the enriched frequency structure. This is
illustrated in Fig. 11, where we compare the results of
integrating the bare susceptibility

χΛ
0 (ω) =

1

4π

∫
dν GΛ

0 (ν + ω
2 )GΛ

0 (ν − ω
2 ) ,

123



Eur. Phys. J. B (2022) 95 :102 Page 9 of 13 102

Fig. 9 Structure factor for the paramagnetic setup along a
high-symmetry path of the cubic lattice Brillouin zone. The
results are in good agreement between both codes, both for
� = 1 and � = 3, showing that correlations are strongest
around the M point. Here, the peak sharpens with increas-
ing loop order, and the � = 3 flow predicts enhanced long-
range correlations

Fig. 10 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex in the

paramagnetic setup as in Fig. 5, for the � = 3 flows at
Λ/J = 0.3. Here, all asymptotic classes are of the same
order of magnitude, and structures with multiple peaks are
present along the fermionic frequency cut (second column)

Fig. 11 Evaluation of bubble integrals. Comparison of the
bare susceptibility χΛ

0 (ω) = 1
4π

∫
dν GΛ

0 (ν + ω
2
) GΛ

0 (ν − ω
2
)

obtained numerically via adaptive and static quadrature.
The adaptive method utilizes the Simpson rule, while the
static method applies a trapezoidal rule to a fixed loga-
rithmic frequency discretization (see main text for more
details). For frequencies larger than the scale set by the cut-
off Λ, the non-adaptive integration becomes unstable and is
plagued by rapid oscillations. By contrast, the adaptive rou-
tine yields stable results even beyond the small frequency
regime and is therefore crucial to obtain accurate results for
the vertex functions and their asymptotic behavior

i.e., the simplest bubble-like integral encountered dur-
ing the fRG flow. Using trapezoidal quadrature over
a fixed set of 60 logarithmically distributed integration
points between νmin = 10−3J and νmax = 250J , we find
strong deviations for frequencies ω/Λ � 1 ∼ 10 com-
pared to the results produced with the adaptive routine
of code #2 (see Ref. [2] for further details). Moreover,
at small cutoffs Λ/J � 1, the non-adaptive result is
plagued by rapid oscillations, rendering it numerically
unstable and thus inapplicable. Analytically, an asymp-
totic falloff with a power law ω−2 is expected, and this
is reproduced perfectly by the adaptive integrator.

We emphasize that the test case considered here
merely constitutes the simplest version of a bubble-like
integral computed within the pffRG flow. In general,
the propagators in bubble functions are dressed with
self-energy insertions and additionally contracted with
two-frequency dependent vertices. One should, there-
fore, expect even larger numerical errors for full fRG
calculations that utilize non-adaptive quadrature.

Table 1 Technical summary of the algorithmic choices in code #1 and #2

Code #1 Code #2

Vertex decomposition K1, K2, K3 Q1, Q2, Q3

Frequency mesh Adaptive linear and algebraic Adaptive linear and logarithmic
Integration rule Adaptive 21-point Gauss–Kronrod rule Adaptive Simpson rule + Richardson extrapolation
ODE solver 5th order Cash–Carp 3rd order Bogacki–Shampine
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(a) (b)

(d)(c)

Fig. 12 Scaling of relative runtime with numerical parameters. Median computational runtime of 60 samples of a single
calculation of the right-hand side of the flow equation for Λ/J = 1 relative to the runtime of the fastest computation in
each series. Calculations start from a parquet solution to make the code integrate over non-trivial frequency structures. The
numerical parameters for all plots are fixed to Nω = 50, Nν = 30, ξ = 4 and � = 1, if not varied. The asymptotic behavior
expected analytically is achieved in all cases (dashed red lines)

4.3 Flow integration

The integration of the RG flow can, in principle, be
performed using any standard solver for ordinary dif-
ferential equations. While earlier works used an Euler
scheme with decreasing step-sizes (see, e.g., Ref. [46]),
we employ higher order solvers in the Runge–Kutta
family with adaptive step-size control to achieve max-
imum accuracy while being numerically efficient to
operate. It is of particular importance to implement
an error-controlling method near ordering instabilities
such as the ferromagnetic setup in Sect. 3, as otherwise
numerical errors may become unacceptably large even
at scales Λ ≈ J .

4.4 Initial condition

The final ingredient to set up the pffRG flow is an
appropriate initial condition. In the UV limit Λ → ∞,
the pseudofermion vertex is given by the bare spin
coupling, which, in numerical calculations, is naturally
implemented using J as the initial condition at a large
but finite value of Λ. The mfRG flow will, by con-
struction, reproduce a solution to the parquet equa-
tions [33–35], given an initial condition consistent with
them. Therefore, we solve the regularized parquet equa-
tions iteratively for an initial scale Λ/J = 5 and use
the resulting self-energy and reducible vertices as a
dynamic, i.e., frequency-dependent starting point for
the fRG flow [1].

4.5 Scaling analysis

Most of the runtime needed to evaluate the right-
hand side of the flow equations is spent calculating

the derivative of the high-dimensional two-particle ver-
tex as given in Eq. (6). In comparison, the computa-
tion time spent for the self-energy derivative of Eq. (5)
is negligible. Consequently, the (asymptotic) computa-
tional complexity is given by

O
(
N2

ξ × NωN2
ν × �

)
,

where Nξ is the number of (symmetry reduced [1,2])
lattice sites, Nω (Nν) the number of bosonic (fermionic)
frequencies, and � denotes the number of loops. The
total number of sites, in turn, is expected to follow a
O(ξd) dependence, where ξ is the maximal correlation
length considered and d is the spatial dimensionality of
the underlying lattice, with d = 3 for the simple cubic
lattice at hand.

To demonstrate that we indeed reach this asymp-
totic algorithmic scaling also in numerical implemen-
tations we show, in Fig. 12, the median runtime data
for 60 evaluations of the right-hand side of the fRG
equations obtained using code #2. For the number of
bosonic and fermionic frequencies, the expected linear
and quadratic behavior, respectively, is achieved over
the whole parameter range. Note that, due to the adap-
tive integration and parallelization used, slight devia-
tions from the theoretical scaling are to be expected.
Similarly, the scaling in the maximal correlation length
ξ is achieved for the whole parameter range. In the num-
ber of loops, the linear scaling sets in at � = 5, while
for smaller � a steeper slope is found. We attribute this
behavior to the contributions of higher loops becoming
successively smaller, leading to faster converging adap-
tive loop integrals for given absolute and relative toler-
ances. That way, the initial overhead of computing two

123



Eur. Phys. J. B (2022) 95 :102 Page 11 of 13 102

Table 2 Number of (symmetry reduced) vertex flow equa-
tions for Heisenberg models on the cubic lattice as a function
of the maximum correlation length ξ. The number of posi-
tive frequencies is fixed to 60 (50) for the bosonic (fermionic)
Matsubara axis

Max. correlation length ξ No. flow equations

3 9 183 600
5 24 795 720
7 53 264 880
9 101 019 600

11 167 141 520
13 258 059 160

(three) loop corrections, which require twice (thrice)
the number of integrals to be evaluated compared to
� = 1, diminishes with increasing loop number and the
analytically expected scaling, linear in �, is recovered.

As a final remark, we mention that the number of
vertex flow equations, another measure of algorithmic
complexity, grows rapidly as one increases the maximal
correlation length considered for a given lattice model.
This is summarized in Table 2.

5 Conclusions

We benchmarked two state-of-the-art codes for solving
pseudofermion functional renormalization group equa-
tions. Our analysis considered both physical observ-
ables, i.e. spin-spin correlation functions and struc-
ture factors, as well as fermionic vertex functions (self-
energy and two-particle vertex) for ferro- and antifer-
romagnetic models on the simple cubic lattice.

For the nearest-neighbor ferromagnet, both codes
were in quantitative agreement at least until Λ/J �
0.76, where they consistently predicted a breakdown of
the RG flow, indicated by a sharp peak (for � = 1) or a
divergence (for � = 3) in the spin-spin correlations. The
energy scale ΛT associated with this numerical insta-
bility slightly differed, which necessitated an in-depth
comparison of the influence of the numerical frequency
grid on the obtained results. We found that both fRG
solvers, due to the emergence of a singular peak in the t
reducible vertex functions, become sensitive to the pre-
cise mesh spacing and thus predict marginally different
critical scales, although the physical conclusion drawn
from the RG flow, i.e. the onset of long-range ferromag-
netic order, remains the same.

For the antiferromagnetic setup, the � = 1 results
obtained by both codes were in agreement with one
another and previous studies [21], predicting a para-
magnetic state, signified by a regular RG flow down
to the infrared. For � = 3, similar numerical agreement
between the two codes was found. However, the physical
results changed qualitatively: the flow of the spin-spin
correlator diverged around Λ/J ≈ 0.24, accompanied
by sharp Bragg peaks at the M points indicating the
formation of antiferromagnetic order at low tempera-

tures. This reinstantiates the importance of including
higher loop corrections in pffRG to avoid overestimat-
ing the extent of paramagnetic phases and to obtain
more accurate predictions of ground states in frustrated
quantum magnets.

We also elaborated on the importance of employing
adaptive numerical algorithms to obtain robust results
at all stages of the flow. More explicitly, there are
extended structures with multiple peaks in the three-
dimensional frequency dependence of several vertex
components. As these structures are sizable, it is cru-
cial to resolve them in an accurate manner. We found
fixed logarithmic frequencies to be insufficient for struc-
tures not centered at zero frequency, and rely instead on
adaptive frequency meshes that have been specifically
optimized for pffRG vertices. Furthermore, we demon-
strated that the commonly employed quadrature of a
trapezoidal rule over a static, logarithmic mesh fails to
produce the analytically expected behavior of bare bub-
ble integrations at large frequencies. It is thus unsuit-
able for providing the essential Matsubara integrals for
error-controlled fRG flows. By contrast, the implemen-
tations presented and benchmarked here solve these
problems using highly accurate, yet efficient adaptive
routines (see Table 1). We thus believe that, moving
forward, they will be widely used for unbiased calcu-
lations of (multiloop) ground-state phase diagrams of
frustrated magnets from pffRG.
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Rev. B 100, 085139 (2019). https://doi.org/10.1103/
PhysRevB.100.085139

28. P. Ghosh, Y. Iqbal, T. Müller, R.T. Ponnaganti,
R. Thomale, R. Narayanan, J. Reuther, M.J.P. Gin-
gras, H.O. Jeschke, NPJ Quant. Mater. 4(1), 63 (2019).
https://doi.org/10.1038/s41535-019-0202-z

29. S. Chillal, Y. Iqbal, H.O. Jeschke, J.A. Rodriguez-
Rivera, R. Bewley, P. Manuel, D. Khalyavin, P. Steffens,
R. Thomale, A.T.M.N. Islam, J. Reuther, B. Lake, Nat.
Commun. 11(1), 2348 (2020). https://doi.org/10.1038/
s41467-020-15594-1

30. M.L. Baez, J. Reuther, Phys. Rev. B 96, 045144 (2017).
https://doi.org/10.1103/PhysRevB.96.045144

31. F.L. Buessen, D. Roscher, S. Diehl, S. Trebst, Phys.
Rev. B 97, 064415 (2018). https://doi.org/10.1103/
PhysRevB.97.064415

32. A.A. Katanin, Phys. Rev. B 70, 115109 (2004). https://
doi.org/10.1103/PhysRevB.70.115109

33. F.B. Kugler, J. von Delft, Phys. Rev. B 97, 035162
(2018). https://doi.org/10.1103/PhysRevB.97.035162

34. F.B. Kugler, J. von Delft, Phys. Rev. Lett. 120,
057403 (2018). https://doi.org/10.1103/PhysRevLett.
120.057403

35. F.B. Kugler, J. von Delft, New J. Phys. 20(12), 123029
(2018). https://doi.org/10.1088/1367-2630/aaf65f

123



Eur. Phys. J. B (2022) 95 :102 Page 13 of 13 102

36. A. Tagliavini, C. Hille, F.B. Kugler, S. Andergassen,
A. Toschi, C. Honerkamp, SciPost Phys. 6, 9 (2019).
https://doi.org/10.21468/SciPostPhys.6.1.009

37. C. Hille, F.B. Kugler, C.J. Eckhardt, Y.Y. He, A.
Kauch, C. Honerkamp, A. Toschi, S. Andergassen, Phys.
Rev. Res. 2, 033372 (2020). https://doi.org/10.1103/
PhysRevResearch.2.033372

38. P. Chalupa-Gantner, F.B. Kugler, C. Hille, J.
von Delft, S. Andergassen, A. Toschi, Phys. Rev.
Research 4, 023050 (2022). https://doi.org/10.1103/
PhysRevResearch.4.023050

39. PFFRGSolver.jl repository. https://github.com/
dominikkiese/PFFRGSolver.jl

40. N. Niggemann, B. Sbierski, J. Reuther, Phys. Rev.
B 103(10) (2021). https://doi.org/10.1103/PhysRevB.
103.104431

41. N. Niggemann, J. Reuther, B. Sbierski, SciPost Phys.
12, 156 (2022). https://doi.org/10.21468/SciPostPhys.
12.5.156

42. B. Roulet, J. Gavoret, P. Nozières, Phys. Rev. 178, 1072
(1969). https://doi.org/10.1103/PhysRev.178.1072

43. N. Wentzell, G. Li, A. Tagliavini, C. Taranto, G.
Rohringer, K. Held, A. Toschi, S. Andergassen, Phys.
Rev. B 102, 085106 (2020). https://doi.org/10.1103/
PhysRevB.102.085106

44. G. Li, N. Wentzell, P. Pudleiner, P. Thunström, K. Held,
Phys. Rev. B 93, 165103 (2016). https://doi.org/10.
1103/PhysRevB.93.165103

45. F.L. Buessen, V. Noculak, S. Trebst, J. Reuther, Phys.
Rev. B 100, 125164 (2019). https://doi.org/10.1103/
PhysRevB.100.125164

46. F.L. Buessen, A functional renormalization group per-
spective on quantum spin liquids in three-dimensional
frustrated magnets. Ph.D. thesis, University of Cologne
(2019). https://kups.ub.uni-koeln.de/9986/

123



2. Functional renormalization group methods for spin systems

2.6 Discussion and outlook on pseudofermion fRG
This section discusses pseudofermion fRG from a more general perspective
based on our results that have been published in publication [P1], the preprint
of Ref. [65], my master’s thesis [67], as well as Gün Günal’s master’s thesis
[68]. A general review is available in Ref. [59].

As mentioned before, the pffRG offers great versatility concerning the sys-
tems it can be applied to. It is often used to map out phase diagrams of
models that are problematic for other methods, notably frustrated systems
hosting putative QSL phases, such as Heisenberg models with antiferromag-
netic interactions on the Kagome [65] and pyrochlore lattices [67]. The lack
of a kinetic term in the pseudofermion Hamiltonian (2.22) corresponds to an
infinite interaction limit, U/t → ∞, of a Hubbard-like Hamiltonian. It is a
priori unclear why a method based on weak-coupling expansion, such as fRG,
is applicable.

This issue can in part be investigated by systematically raising the loop
order in a multiloop pffRG scheme, thus introducing more diagrams into
the truncated flow equations. Ground states with classical order induce a
divergence of some susceptibility component, though the presence of this
divergence may depend on loop order [P1]. For disordered states, reaching
Λ = 0 is likewise not possible, since the susceptibility tends to slowly diverge
with decreasing Λ [P1, 69]. In this case, different loop orders tend to differ
more as Λ is decreased [65, 69], and it should be noted that statements about
loop convergence in pffRG can only be made with respect to a minimum
value of Λ, beyond which higher loop orders are necessary for convergence.
Obtaining results that are converged in loop order for disordered phases at
small values of Λ is therefore numerically expensive. It should be emphasized
that the weak-coupling nature of the fRG is not overcome by multiloop terms,
which only improve the fRG flow within the parquet approximation.

As was already pointed out in publication [P1], evaluating the flow equa-
tions close to a phase transition or at small values of Λ in an error-controlled
way requires careful implemented of all numerical algorithms. For instance, an
ODE solver without error control may cross a phase transition and emit quali-
tatively inaccurate data, which has to be rejected for physical reasons. In this
situation, an ODE solver with step size control decreases the step size, such
that the phase transition is approached in a controlled manner. Both at small
values of Λ and close to a divergence, the vertex develops very sharp features
in frequency space. These features can be parameterized with an adaptive
frequency grid, as was done in our publications [P1, 65, 67, 68]. Since some
numerical parameters of the grid have to be carefully adjusted for each model,
considerable effort is required to set up pffRG calculations for each new model.
This motivated a search for a more flexible and robust parameterization of
vertices and other correlators. In the next two chapters, we show that quantics
tensor trains (QTT) are able to fill this role.

28



2.6. Discussion and outlook on pseudofermion fRG

Even with these technical improvements, pffRG is still inherently limited
by its ill-justified truncation of a weak-coupling expansion, and the only ap-
proximate fulfillment of the pseudofermion constraint (2.21). It is therefore
doubtful if the pffRG can be improved to a quantitatively accurate method.
Within the current state of the art, pffRG is more suitable for qualitative
exploration of phase diagrams of quantum magnetic systems, supplementing
mean-field approaches, as demonstrated by e.g., Ref. [70].
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Chapter Three

Compressed tensor train
representations of functions

3.1 Introduction to tensor networks
Tensor networks are a family of numerical methods in quantum many-body
physics and the study of strongly correlated electron systems. These meth-
ods rely on a formalism where quantum mechanical states and operators are
represented by tensors, i.e. multilinear operators respecting certain transfor-
mation properties [71]. Multilinear algebra is then used to obtain approximate
eigenstates of a Hamiltonian, which lives in an exponentially large Hilbert
space.

This section introduces matrix product states and the density matrix renor-
malization group (DMRG), two concepts that are necessary to understand
publications [P2] and [P3]. It also explains the graphical notation which is
extensively used in both publications, as well as in the tensor networks litera-
ture.

3.1.1 Matrix product states and the curse of dimensionality
The state space of a quantum system grows exponentially with the number
of particles. This well-known property forms the basis for the theoretical
advantage that quantum computing would offer. Conversely, it becomes a
computational and practical problem when trying to simulate a quantum
system on a classical computer. In condensed matter physics, the systems to
be simulated are typically given by second-quantized lattice Hamiltonians on
N sites, where N is on the order of 1023. Now, if each site admits d states,
the full many-body state space is dN -dimensional. How can we encode a state
|Ψ⟩ in such a high-dimensional space? The naive approach is to expand the
state in an orthonormal single-particle basis {|1⟩ , . . . , |d⟩} as

|Ψ⟩ = ∑d
σ1=1 · · ·

∑d
σN =1A

σ1,...,σN |σ1⟩ ⊗ · · · ⊗ |σN ⟩ (3.1)
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3. Compressed tensor train representations of functions

which then requires keeping dN coefficients Aσ1,...,σN in memory. In the same
spirit, linear operators such as the Hamiltonian are matrices with dN × dN

entries. Even with sophisticated numerical techniques, exact diagonalization
of the Hamiltonian is feasible only up to N ≈ 40 in the current state of the art
[4]. This exponential growth of computational complexity with dimensionality
is known as the curse of dimensionality [20].

Given the enormous gap between exactly solvable N = 40, and desired
system size N = 1023, we have to accept approximate solutions in exchange
for larger systems. One way to do so is to truncate the Hilbert space to some
subspace, and approximate |Ψ⟩ using only that subspace. The simplest such
subspace is the space of product states1

|Ψ⟩ ≈ |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩ . (3.2)

The single-particle states |ψj⟩ can be expanded as

|ψj⟩ = ∑d
σ=1 a

σ
j |σ⟩ , where aσj = ⟨σ|ψj⟩ , (3.3)

and therefore

|Ψ⟩ ≈
[∑

σ1
a
σ1
1 |σ1⟩

]
⊗

[∑
σ2
a
σ2
2 |σ2⟩

]
⊗ · · · ⊗

[∑
σN
a
σN
N |σN ⟩

]
= ∑

σ1
· · ·

∑
σN
a
σ1
1 · · · a

σN
N |σ1⟩ ⊗ · · · ⊗ |σN ⟩ . (3.4a)

Observe that instead of the dN coefficients that would be necessary to encode
an arbitrary state within the N -particle Hilbert space, there are only N × d
coefficients: we have now limited ourselves to a N × d-dimensional subspace.
Computations such as diagonalization of the Hamiltonian are now feasible
within that subspace, which is the basis of the Hartree–Fock approach.

The price for truncating the state space is a loss of expressiveness:2we have
neglected all entanglement between particles, and all associated correlations.
In many systems, such as the quantum magnetic systems considered in the pre-
vious chapter, it is precisely those states that are their most interesting feature.
Restricting the Hilbert space to product states is equivalent to approximating
the exponentially large tensor Aσ1,...,σN using a product of scalars,

Aσ1,...,σN ≈ aσ1
1 · · · a

σN
N . (3.5)

A small step towards more complexity, without losing the ability to easily
manipulate an explicit representation of states, is to promote the scalar coeffi-
cients aσj to χ× χ matrices Mσ

j :

Aσ1,...,σN ≈Mσ1
1 · · ·M

σN
N ; (3.6a)

1Some complications arise from the (anti-)symmetry of wave functions of indistinguish-
able particles here, which will be ignored in this brief overview. A discussion of how to
implement these symmetries in tensor networks can be found in Ref. [72].

2The term expressiveness is lifted from the machine learning literature. In intuitive
terms, a more expressive model is able to model a larger class of functions compared to a
less expressive one.
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3.1. Introduction to tensor networks

|Ψ⟩ ≈
∑
σ1

· · ·
∑
σN

M
σ1
1 · · ·M

σN
N |σ1⟩ ⊗ · · · ⊗ |σN ⟩ . (3.6b)

This is known as a matrix product state (MPS) [8], and χ is called the bond
dimension.

Matrix product states thus constitute a middle ground between the sim-
plicity of product states and complexity of the full state space. The benefit
of this additional complexity is mainly the ability of MPS to efficiently en-
code states with area-law entanglement [7, 8]. When a system in a state with
area-law entanglement is partitioned into two subsystems, the entanglement
entropy between the subsystems scales with the area of the dividing surface
[6, 8]. Although these states form only a small part of the full Hilbert space,
ground states of Hamiltonians with local interactions and gapped excitations
fall into this category. Finding the ground state of such a Hamiltonian is
a very common problem in condensed matter physics. This is the basis for
the tremendous success of MPS-based methods, most famously the DMRG
introduced below.

3.1.2 Graphical notation
To discuss more advanced tensor network methods, it is worthwhile to first
introduce a graphical notation for tensors and their contractions. This graph-
ical notation serves to overcome some weaknesses of the usual mathematical
notation of tensors: When considering a contraction of multiple tensors, it is
necessary to identify those indices attached to different tensors that have the
same name if one tries to understand the structure of the contraction pattern.
Index names are arbitrary and carry little meaning; it is the property of being
shared between different tensors and being summed over that is important.
Therefore, it is much more convenient to draw a tensor contraction pattern
as a graph, where the vertices represent tensors and edges are indices. Two
tensors being contracted then correspond to two vertices connected by an edge,
and dangling edges only connected to one vertex correspond to open indices.
This way, the graph’s topology immediately corresponds to the underlying
contraction pattern in an intuitive way.

It is customary to draw tensors as filled circles or polygons, and to attach
edges at different points on the polygon according to the meaning of the index.
For example, a tensor Mσ

ab might be drawn as follows:

Mσ
ab =: (3.7)

Thus, an MPS corresponds to the following graph:

Aσ1...σN ≈
1∑

a0=1

χ∑
a1=1
· · ·

χ∑
aN−1=1

1∑
aN =1

[
M

σ1
1

]
a0a1

[
M

σ2
2

]
a1a2
· · ·

[
M

σN
N

]
aN−1aN

(3.8a)
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≈ (3.8b)

The indices a0 . . . aN are unnamed graphical notation, and their summation
range is implicitly given by the dimension of the tensors being contracted.
Here and in the following, indices named σ, τ, . . . are always external indices,
and indices named α, β, or a, b, . . . are always internal (contracted) indices.

3.1.3 Density matrix renormalization group
Tensor networks are the basis for a plethora of algorithms for classical simula-
tion of many-body quantum physics, the most famous of which is the density
matrix renormalization group (DMRG) mentioned earlier [8, 15, 16]. DMRG
can be described as a variational optimization of an MPS ansatz for the wave
function [7, 8]. In a similar way, operators such as the Hamiltonian can be
decomposed into a matrix product operator (MPO), given by

H =
∑
σ1

∑
σ

′
1

· · ·
∑
σN

∑
σ

′
N

H
σ

′
1σ1

1 · · ·Hσ
′
NσN

N |σ′
1⟩ ⟨σ1| ⊗ · · · ⊗ |σ

′
N ⟩ ⟨σN | , (3.9)

where each H
σℓσ

′
ℓ

ℓ is a matrix [8]. For a system with N = 7 sites, this is

H
σ

′
1σ1

1 H
σ

′
2σ2

2 H
σ

′
3σ3

3 H
σ

′
4σ4

4 H
σ

′
5σ5

5 H
σ

′
6σ6

6 H
σ

′
7σ7

7 =

(3.10)
in graphical notation. Then, the energy expectation value to be optimized is

⟨Ψ|H|Ψ⟩ =
∑
σ1

∑
σ

′
1

· · ·
∑
σN

∑
σ

′
N

[
M

σ
′
1

1 · · ·M
σ

′
N

N

]∗
H
σ

′
1σ1

1 · · ·Hσ
′
NσN

N

[
M

σ1
1 · · ·M

σN
N

]
(3.11a)

= . (3.11b)

Complex conjugation is denoted graphically by mirroring the MPS on the
horizontal axis. Now, the energy expectation value can be optimized site-by-
site, solving the eigenvalue problem

− λ
[ ]

= 0 (3.12)

on each site [8]. This is known as a 1-site update. The update equation
(3.12) can be evaluated very efficiently by exploiting isometry structures in
the MPS tensors Mℓ [7, 8]. Successive 1-site updates to each tensor Mℓ,
alternating between forward sweeps ℓ ← 1, 2, 3, . . . , N and backward sweeps
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ℓ ← N, . . . , 3, 2, 1, then lead to an iterative global optimization in the ideal
case. In practice, this simplistic optimization with 1-site update is prone to
get stuck in local minima, and more advanced update schemes are necessary,
such as 2-site updates or the controlled bond expansion scheme [73].

The DMRG algorithm is an example of a general strategy commonly used
when working with tensor networks [7, 71]: A tensor network that represents
some wave function is set up formally, but not initially contracted, since that
would be exponentially expensive. Instead, single tensors within the tensor
network are optimized with respect to some cost function, in this case, the
energy expectation value ⟨Ψ|H|Ψ⟩. The computational effort necessary for
this optimization step is minimized by exploiting structures in the tensors as
much as possible, most importantly the order in which the necessary tensor
contractions are evaluated. Some of these techniques are also shown in this
chapter, mainly in publication [P3].

3.2 Function representation with tensor trains
From a more general point of view, the tensor network methods introduced
in the previous section are useful because one is only interested in the low-
energy states of the system. For a state to have low energy, it has to satisfy
some properties imposed by the Hamiltonian, which imply certain structures
dependent on that Hamiltonian. States with this structure typically form a
manifold that has a much smaller dimensionality than the full Hilbert space,
which permits a compressed, yet highly accurate representation. In the case
of MPS, the structure being exploited for compression is the aforementioned
area-law entanglement induced by local Hamiltonians [6–8].

High-dimensional function spaces that contain a small subset of interesting
functions are commonly encountered in physics, other natural sciences, engi-
neering, and applied mathematics. Finding a parameterization of this subset
is therefore a problem for which many solutions have been developed, amongst
them the aforementioned MPS and tensor network techniques. Though our
choice of representation is based on the physics of the system, the linear alge-
bra operations that decompose a tensor into an MPS on the technical level do
not require the full tensor to be a quantum mechanical wave function. Can
an MPS represent functions other than wave functions, and if yes, which func-
tions are representable efficiently? A structurally equivalent scheme known as
a tensor train (TT) has indeed been used in applied mathematics to compress
functions [20, 21]. The two publications in this chapter, [P2] and [P3], are a
partial answer to this question in the physics context. Publication [P2] focuses
on one specific variant, where a function is regarded as a tensor with indices
corresponding to binary digits of its function argument. A TT decomposition
of this tensor is generated using only very few samples of the function with
a machine learning algorithm, the so-called tensor cross interpolation (TCI).
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3. Compressed tensor train representations of functions

Publication [P3] describes TCI more generally, including new variants and
improvements. It also presents a variety of different applications, as well as
an open-source library that can be used to perform such decompositions.

3.3 Publication 2: Quantics tensor cross interpolation for high-
resolution, parsimonious representations of multivariate
functions

In this section, the following publication is reprinted:
P2 Quantics tensor cross interpolation for high-resolution, parsimonious

representations of multivariate functions,
Marc K. Ritter, Yuriel Núñez Fernández, Markus Wallerberger, Jan
von Delft, Hiroshi Shinaoka, and Xavier Waintal,
Physical Review Letters 132, 056501 (2024),
doi:10.1103/PhysRevLett.132.056501.
Reprinted on pages 36–43.
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Multivariate functions of continuous variables arise in countless branches of science. Numerical
computations with such functions typically involve a compromise between two contrary desiderata:
accurate resolution of the functional dependence, versus parsimonious memory usage. Recently, two
promising strategies have emerged for satisfying both requirements: (i) The quantics representation, which
expresses functions as multi-index tensors, with each index representing one bit of a binary encoding of one
of the variables; and (ii) tensor cross interpolation (TCI), which, if applicable, yields parsimonious
interpolations for multi-index tensors. Here, we present a strategy, quantics TCI, which combines the
advantages of both schemes. We illustrate its potential with an application from condensed matter physics:
the computation of Brillouin zone integrals.

DOI: 10.1103/PhysRevLett.132.056501

Introduction.—Let f be a multivariate function of n
continuous real variables ui (i ¼ 1;…; n):

f∶ U ⊂ Rn → C; u ¼ ðu1;…; unÞ ↦ fðuÞ: ð1Þ

Such functions arise in essentially all branches of science.
In physics, e.g., they could stand for the fields used in
classical or quantum field theories, with u ¼ ðx; tÞ or u ¼
ðk;ωÞ representing space-time or momentum-frequency
variables in n ¼ Dþ 1 dimensions, respectively; or for
m-point correlation functions of such fields, with u ¼
ðx1; t1;…;xm; tmÞ and n ¼ mðDþ 1Þ, etc.
Often such functions have structure (peaks, wiggles,

divergences, even discontinuities) on length scales, time-
scales, or momentum or frequency scales differing by
orders of magnitude. Then, their numerical treatment
is challenging due to two contrary requirements: On the
one hand, accurate resolution of small-scale structures
requires a fine-grained discretization grid, while large-scale
structures require a large domain of definition U; and, on
the other hand, memory usage should be parsimonious,
hence a fine-grained grid cannot be used throughout U. In
practice, compromises are needed, sacrificing resolution
and/or restricting U to limit memory costs, or using
nonuniform grid spacings to resolve some parts of U more
finely than others.
Very recently, in different branches of physics, it was

pointed out that if the structures in f exhibit scale
separation, in a sense made precise below, they can be

encoded both accurately and parsimoniously, on both small
and large scales [1–5]. This is done using a representation
first discussed in the context of quantum information [6–9],
independently introduced in the mathematics literature by
Oseledets [10], and dubbed the quantics representation by
Khoromskij [11]: it encodes each variable ui through R
binary digits, or bits, and expresses fðuÞ as a multi-index
tensor fσ1…σL, with L ¼ nR, where each index represents a
bit. If f exhibits scale separation, this tensor is highly
compressible, i.e., it can be well approximated by a tensor
train (TT) of fairly low rank. These previous works found
the TT via singular value decomposition (SVD) of the full
tensor, demonstrating that low-rank quantics TT (QTT)
representations exist. It remains to design more practical
algorithms to find them, since the computational costs of
the SVD approach grow exponentially with L.
In an unrelated very recent development [12], TT repre-

sentations were used for multivariate correlation functions
arising in diagrammatic Monte Carlo methods (albeit
without using the quantics encoding). It was found that
these TTs are not only highly compressible, but that the
compression can be achieved very efficiently using the
tensor cross interpolation (TCI) algorithm. This technique,
pioneered by Oseledets and coworkers [13–15] and
improved byDolgov and Savostyanov [16,17], is computa-
tionally exponentially cheaper than SVDs (albeit theoreti-
cally less optimal, though with controlled errors [16]).
The purpose of this Letter is to point out that quantics

TTs and TCI can be combined. This leads to a strategy that
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we call quantics tensor cross interpolation (QTCI). It has
several highly desirable properties: (i) Arbitrary resolution
via an exponentially large grid with 2R points for each
variable, obtained at a cost linear in R. (ii) Efficient
construction of the QTCI at cost linear in L ¼ nR.
(iii) Access to many ultrafast algorithms once the QTCI
has been obtained [1,5,18–20]; for instance, integrals,
convolutions, and Fourier transforms can be computed at
OðLÞ costs (i.e., exponentially cheaper than standard fast
Fourier transforms) [21]. (iv) More generally, TT repre-
sentations yield access to a whole range of matrix product
states or matrix product operators (MPS=MPO) algorithms
which were devised in the context of many-body physics [18]
and have spawned the mathematical field of TTs.
We illustrate the power of QTCI by using it to resolve

the momentum dependence of functions defined on the
Brillouin zone of the celebrated Haldane model [29]. We
construct QTCIs for its noninteracting Green’s function and
Berry curvature, and compute the Chern number of a band
with topological properties.
Quantics tensor trains.—For the quantics representation

of fðuÞ, each variable ui is rescaled to lie within the unit
interval I ¼ ½0; 1Þ, then discretized on a grid of 2R points
and expressed as a tuple of R bits [10,11],

ui ¼
XR
b¼1

σib
2b

↦ ðσi1…σiRÞ; σib ∈ f0; 1g: ð2Þ

Here, σib resolves the variable ui at the scale 2−b.
Arbitrarily high resolution can be achieved by choosing
R sufficiently large. Thus, u is represented by a tuple of
L ¼ nR bits. To facilitate scale separation, the bits are
relabled [10] as σl ¼ σib, using a single index
l ¼ iþ ðb − 1Þn∈ 1;…;L. This interleaves them such
that all bits σib describing the same scale 2−b have
contiguous σl labels. Then, f can be viewed and graphi-
cally depicted as tensor of degree L:

ð3Þ

Alternatively, all same-scale bits can be fused together as
σ̃b ¼

P
n
i¼1 2

i−1σib ∈ f0;…; 2n − 1g, yielding the fused
representation fσ̃ ¼ fðuÞ, σ̃ ¼ ðσ̃1;…; σ̃RÞ. It employs
only L̃ ¼ R indices, each of dimension d ¼ 2n [30].
Any tensor can be unfolded as a TT [11,13,15,31],

graphically depicted as a chain of l sites connected by
bonds representing sums over repeated indices:

ð4Þ

Each site l hosts a three-leg tensor Ml with elements
½Ml�σlαl−1αl . Its “local” and “virtual” bond indices, σl and
αl−1,αl, have dimensionsd ¼ 2 andDl−1,Dl, respectively,
with D0 ¼ DL ¼ 1 for the outermost (dummy) bonds.
If fσ is full rank, exact TT unfoldings have exponential

bond growth towards the chain center, Dl ¼ 2minfl;L−lg,
implying exponential memory costs, Oð2L=2Þ. However,
tensors fσ with lower information content admit accurate
TT unfoldings with lower virtual bond dimensions. Such
unfoldings are obtained via iterative factorization and
truncation of bonds with low information content.
Usually, this is done using a sequence of SVDs, discarding
all singular values smaller than a specified truncation
threshold ϵ. The largest Dl value so obtained, Dmax, is
the rank of the ϵ-truncated TT. SVD truncation is provably
optimal [15], yielding the smallest possible Dmax for
specified ϵ. If Dmax ≪ 2L=2, fσ is strongly compressible,
implying that it has internal structure. Building on the
pioneering studies of Oseledets [13,31] and Khoromskij
[11], Refs. [2–5] argued that for quantics tensors fσ ¼ fðuÞ,
strong compressibility reflects scale separation: structures
in fðuÞ occurring on different scales are only “weakly
entangled,” in that the virtual bonds connecting the
corresponding sites in the TT do not require large
dimensions.
This perspective is informed by the study of one-

dimensional quantum lattice models using matrix product
states (MPSs)—many-body wave functions of the form (4)
[18]. In that context, σl labels physical degrees of freedom
at site l, and the entanglement of sites l and lþ 1 is
characterized by an entanglement entropy bounded by 2Dl.
By analogy, if a quantics TT is strongly compressible,
requiring only small Dmax, the sites representing different
scales are not strongly entangled—indeed, Dmax quantifies
the degree of scale separation inherent in fðuÞ.
The SVD unfolding strategy requires knowledge of the

full tensor fσ : it uses 2L function calls, implying exponen-
tially long runtimes, even if fσ is strongly compressible.
Thus, this strategy is optimally accurate but exponentially
inefficient: it uncovers structure in fσ , but does not exploit
it already while constructing the unfolded TT.
Tensor cross interpolation.—The TCI algorithm

[12,13,15,17] solves this problem. It serves as a black
box that samples fσ at some clever choices of σ and
iteratively constructs the TT from the sampled values. TCI
is slightly less accurate than SVD unfoldings, requiring a
slightly larger Dmax for a specified error tolerance ϵ. But it
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is exponentially more efficient, needing at most OðD2
maxLÞ

function evaluations and a run-time of at most OðD3
maxLÞ.

We refer to [12] for details about TCI in general and its
actual implementation. Here, we just sketch the main idea.
TCI achieves the factorization needed for unfolding by
employing matrix cross interpolation (MCI) rather than
SVD. Given a matrix A, the MCI formula approximates it
as A ≈ CP−1R ¼ Ã, graphically depicted as follows:

Here, the column, row and pivot matrices C, R, and P, are
all constructed from elements of A: C contains D columns
(red), R contains D rows (blue), and P their intersections,
the pivots (purple). The resulting Ã exactly reproduces all
elements of A contained inC andR; the remaining elements
are in effect interpolated from the “crosses” formed by
these (hence “cross interpolation”). The accuracy of the
interpolation depends on the number and choice of pivots;
it can be improved systematically by adding more pivots. If
D ¼ rankðAÞ, one can obtain an exact representation of the
full matrix, A ¼ Ã [15].
Tensors can be unfolded by iteratively using MCI while

treatingmultiple indices (e.g., σ2…σL) as a single composite
index, e.g., fσ1σ2…σL ≈ ½C1�σ11β1 ½P−1

1 �β1α1 ½R1�σ2…σL
α1 . Iterative

application ofMCI to each new tensor on the right ultimately
yields a fully unfolded TT, fσ ≈ fQTCIσ :

[A TT of the form (4) is obtained by definingMl¼ClP−1
l ,

] This naive algorithm is inefficient, but
illustrates how the interpolation properties of MCI
carry over to TCI. In practice, it is more efficient to
use a sweeping algorithm, successively sampling more
function values fσ and adding pivots to each tensor until
the relative error ε, which decreases during sweeping,
drops below a specified tolerance ϵ [21]. We define ε as
maxσ ∈ SjfQTCIσ − fσ j=maxσ ∈ Sjfσj, where S is the set of all σ
index values sampled while constructing fQTCIσ .
Integration.—The integral over a function f in QTT

form is easily accessible in OðD2
maxLÞ steps [12,15]. It can

be approximated by a Riemann sum since the quantics grid
is exponentially fine, and all σl sums can be performed
independently due to the TT’s factorized form:

Z
In
dnufðuÞ ≈ 1

2L

X
σ

fσ ≈
1

2L

Y
l

X
σl

½Ml�σl : ð5Þ

1D example.—We first demonstrate QTCI for comput-
ing the integral I½f� ¼ R lnð20Þ

0 dx fðxÞ of the function

fðxÞ ¼ cosðx=BÞ cosðx=4 ffiffiffi
5

p
BÞe−x2 þ 2e−x with B ¼

2−30 ≈ 10−9. This function, shown in Fig. 1(a), involves
structure on widely different scales: rapid, incommensurate
oscillations and a slowly decaying envelope. A standard
representation thereof on an equidistant mesh would
require much more than Oð1=BÞ sampling points, as
would the computation of the integral I½f� ¼ ð19=10Þþ
Oðe−1=ð4B2ÞÞ. By contrast, for a quantics representation, it
suffices to choose R somewhat larger than 30 (ensuring
2−R ≪ B); and since the information content of fðxÞ is not
very high, fσ is strongly compressible. We unfolded it
using QTCI with ϵ ¼ 10−8 and R ¼ 50 (quite a bit larger
than 30, just to demonstrate the capabilities of TCI).
Figure 1(b) shows the resulting profile ofDl vs l, revealing
the scale separation inherent in fðxÞ: the initial growth of
the bond dimension,Dl ∼ el, quickly stops at a fairly small
maximum, Dmax ¼ 15, confirming strong compressibility;
thereafter,Dl decreases steadily with l, becomingOð1Þ for
l larger than 30, since fðxÞ has very little structure at scales
below 2−30. Remarkably, although fσ has 250 ≈ 1015

elements, the TCI algorithm finds the relevant structure
using only 8706 samples, i.e., roughly 1 sample per 59000
oscillations. Nevertheless, it yields an accurate representa-
tion of fðxÞ: the in-sample error, the out-of-sample error
(defined as maximum error over 2000 random samples) [32],
and the error for the integral I½f�, computed via Eq. (5), all
decrease exponentially with Dmax [Fig. 1(c)]. The runtimes
for computing I½f� using QTCI or adaptive Gauss-Kronrod
quadrature are 44 ms vs 6 h on an Intel Xeon W-2245
processor, illustrating the efficiency of QTCI vs conventional
approaches.
Haldane model.—As an example with relevance in

physics, we apply QTCI to the Green’s function and
Berry curvature of the well-known Haldane model [29].

FIG. 1. QTCI representation of a rapidly oscillating function,
for L ¼ R ¼ 50 with tolerance ϵ ¼ 10−8. (a) Plot of fðxÞ (see
text). Left: the interval x∈ ½0; 2−23�; red dashed: the actual
function, blue: its QTCI representation. Right: the envelope
structure up to x ¼ logð20Þ ≈ 3; the rapid oscillations are not
resolvable on this scale. (b) Virtual bond dimensions Dl of the
QTT, for R ¼ 30, 40, 50. Gray lines indicate how DR¼50

l would
grow without any truncation. (c) Relative error estimates as a
function of Dmax ¼ maxðDlÞ, for R ¼ 50.
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It is one of the simplest models with topological properties,
yet produces nontrivial structure with multiple peaks and
sign changes in reciprocal space. Its Bloch Hamiltonian is

HðkÞ ¼
X3
i¼1

h
σ1 cosðk · aiÞ þ σ2 sinðk · aiÞ

i

þ σ3
�
m − 2t2

X3
i¼1

sinðk · biÞ
�
; ð6Þ

where σμ are Pauli matrices, k ¼ ðkx; kyÞ, while a1;2;3
connect nearest neighbors and b1;2;3 next-nearest neighbors
of a honeycomb lattice. Compared to Haldane’s more
general version of the model, we fix his parameters
ϕ ¼ ðπ=2Þ, t1 ¼ 1 and set t2 ¼ 0.1. The parameterm tunes
the model through two phase transitions: jmj < mc ¼
t23

ffiffiffi
3

p
yields a Chern insulator with Chern number

C ¼ −1, and jmj > mc a trivial phase with C ¼ 0 [29].
At m ¼ �mc, a single Dirac point appears at k ¼
ð∓ 4

3
π; 0Þ and symmetry-related k; there, the Chern num-

ber is C ¼ − 1
2
[34].

Green’s function in reciprocal space.—To illustrate
QTCI for the Haldane model, we study the momentum
dependence of the Green’s function, Gðk; iω0Þ ¼ Tr½ðiω0−
HðkÞ þ μÞ−1�, with ω0 ¼ π=β the lowest fermionic
Matsubara frequency and Tr traces over the 2 × 2 space ofH.
Figure 2(a) shows an intensity plot of the QTCI

representation of G in reciprocal space; Fig. 2(b) shows
that the relative error with respect to the exact value is
below 10−5 throughout, hence the momentum dependence
is captured accurately. There are small Fermi surfaces
around k ¼ ð− 4

3
π; 0Þ and symmetry-related k. To con-

struct QTTs, we define fσ ¼ Gðk; iπ=βÞ, where σ encodes
k and β is fixed. Figure 2(c) shows the relative in-sample
error as a function ofDmax for TTs constructed with R ¼ 10
for β ¼ 16, 64, 512, using either SVD or TCI. For both, the
error decreases exponentially as Dmax increases. Moreover,
TCI is nearly optimal, achieving the same error as SVD for
a Dmax that is only a few percent larger.
Figure 2(d) shows how SVD and TCI runtimes depend

on the number of bits, R, for a fixed Dmax at large
β ¼ 512, where the features in G are sharp. The times,
including function evaluations, were measured on a
single CPU core of AMD EPYC 7702P. The SVD
runtimes become prohibitively large for R > 10 due to
exponential scaling; by contrast, the TCI runtimes depend
only mildly on R.
Figure 2(e) shows how TCI profiles of Dl vs l depend

on R, for β ¼ 512 and a specified error tolerance ϵ ¼ 10−5.
The bond dimension initially grows as Dl ∼ 2l, reaches a
maximum near l ≈ 20, then decreases back to 1. The
curves for R ¼ 20 and 30 almost coincide, indicating that a
good resolution of the sharp features at β ¼ 512 requires
R > 20—well beyond the reach of SVD unfoldings.

The low computational cost of TCI allows us to
investigate the β dependence of Dmax, easily reaching
β ¼ 214 ¼ 16384. Figure 2(f) suggestsDmax ∝ βα with α ≈
1=2 for large β. Remarkably, this growth is slower than that,
Dmax ∝ β, conjectured for a scheme based on SVD and
patching [5]. A detailed analysis for general models and
higher spatial dimensions is an interesting topic for future
research.
Chern number.—Finally, we consider the Chern

number, C, for the Haldane model at μ ¼ 0 and β ¼ ∞.
To avoid cumbersome gauge-fixing procedures, we use the
gauge-invariant method described in Ref. [35]. First, we
discretize the Brillouin zone (BZ) into 2R × 2R plaquettes.
Then, the Chern number can be obtained from a sum
over plaquettes, C ≈ ð1=2πiÞPk∈BZ FðkÞ, where FðkÞ ≈
−i argðhψk1

jψk2
ihψk2

jψk3
ihψk3

jψk4
ihψk4

jψk1
iÞ is the

Berry flux through the plaquette with corners k1…k4,
and jψki are valence band wave functions.
Close to the transition, for small δm ¼ m −mc, the band

gap is 2δm. This induces peaks of width ∼δm in the Berry
flux FðkÞ, shown in Figs. 3(a) and 3(b) for δm ¼ 10−5.
There, we used a fused quantics representation with
R ¼ 20, ensuring a mesh spacing 2−R well smaller than
δm. Whereas a calculation of C via direct summation or
SVD unfolding would require 22R ≈ 1012 function evalu-
ations, QTCI is much more efficient: for a relative tolerance
of ϵ ¼ 10−10, it needed only 4 × 105 samples (and 20 s

FIG. 2. Green’s functionGðkÞ of the Haldane model, computed
with error tolerance ϵ ¼ 10−5 throughout. (a),(b) QTCI of the jGj
and its relative error, jGQTCI − Gj=jGj, for β ¼ 512, R ¼ 10.
(c),(d) Comparison of QTT unfoldings via SVD and TCI,
showing (c) the relative error vs the maximum bond dimension
for R ¼ 10 and β ¼ 16, 64, 512; and (d) runtimes vs R for
β ¼ 512. (e),(f) QTCI bond dimensions for R ¼ 10, 20, 30,
showing (e) Dl vs l for β ¼ 512; and (f) Dmax vs β.
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runtime on a single core of an Apple M1 processor). It
yielded a QTTwith maximum bond dimension Dmax ¼ 50,
and a Chern number within 10−6 of the expected value
C ¼ −1 (see Figs. 3(c) and 3(d)). When plotted as a
function of δm, C shows a sharp step from −1 to 0 at δm ¼
0 if computed using R ¼ 20 (Fig. 3(e)), beautifully
demonstrating that the k mesh is fine enough. For smaller
R the mesh becomes too coarse, incorrectly yielding a
plateau at −1=2 instead of a sharp step.
For benchmarking purposes, we deliberately chose a

model that is analytically solvable. However, our prior
knowledge of the peak positions of the Berry curvature was
not made available to TCI. This demonstrates its reliability
in finding sharp structures, provided enough quantics bits
are provided to resolve them. Random sampling misses
these sharp structures, which is why in Fig. 3(c) the out-of-
sample error, obtained from 2000 random samples, lies
well below the in-sample error.
Outlook.—We have shown that the combination of the

quantics representation [1–11] with TCI [12,13,15,17] is a
powerful tool for uncovering low-rank structures in expo-
nentially large, yet very common objects: functions of few
variables resolved with high resolution. Numerical work
with such objects always involves truncations—the radi-
cally new perspective opened up by QTCI is that they can
be performed at polynomial costs by discarding weak

entanglement between different scales. Once a low-rank
QTT has been found, it may be further used within one of
the many existing MPO/MPS algorithms [1,5,18–20].
We anticipate that the class of problems for which QTCI

can be instrumental is actually very large, reaching well
beyond the scope of physics. Intuitively speaking, the only
requirement is that the functions should entail some degree
of scale separation and not be too irregular (since random
structures are not compressible). Thus, a large new research
arena, potentially connecting numerous different branches
of science, awaits exploration. Fruitful challenges: establish
criteria for which types of multivariate functions admit low-
rank QTT representations; develop improved algorithms
for constructing low-rank approximations to tensors;
and above all, explore the use of QTCI for any of the
innumerable problems in science requiring high-resolution
numerics. The initial diagnosis is easy: simply use SVDs or
QTCI [28] to check whether the functions of interest are
compressible or not.
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Abstract

The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for de-
composing low-rank, high-dimensional tensors into tensor trains/matrix product states
(MPS). TCI learns a compact MPS representation of the entire object from a tiny train-
ing data set. Once obtained, the large existing MPS toolbox provides exponentially fast
algorithms for performing a large set of operations. We discuss several improvements
and variants of TCI. In particular, we show that replacing the cross interpolation by the
partially rank-revealing LU decomposition yields a more stable and more flexible algo-
rithm than the original algorithm. We also present two open source libraries, xfac in
Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these im-
proved algorithms, and illustrate them on several applications. These include sign-
problem-free integration in large dimension, the “superhigh-resolution” quantics repre-
sentation of functions, the solution of partial differential equations, the superfast Fourier
transform, the computation of partition functions, and the construction of matrix prod-
uct operators.
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1 Introduction

Tensor networks, widely used in quantum physics, are increasingly being used also in other
areas of science. They offer compressed representations of functions of one or more variables.
A priori, a tensor of degree L, Fσ1···σL

, with indices σℓ = 1, . . . , d, requires exponential re-
sources in memory and computation time to be stored and manipulated, since it contains dL

elements—a manifestation of the well-known curse of dimensionality. However, just as a ma-
trix (a tensor of degree 2) can be compressed if it has low rank, a tensor of higher degree
can be strongly compressed if it has a low-rank structure. Then, exponential reductions in
computational costs for performing standard linear algebra operations are possible, allowing
the curse of dimensionality to be evaded.
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Figure 1: Schematic depiction of key ingredients of the standard MPS toolbox. (a)
Colored shapes with legs represent tensors with indices. (b) Tensors connected by
bonds, representing sums over shared indices, form tensor networks. (c) Tensors
and linear operators acting on them represent large vectors (green, red) and large
matrices (yellow) in higher-dimensional vector spaces. (d) Common calculations in
these spaces include computing inner productsΦ†Ψ, solving linear problems HΨ = Φ,
computing a few eigenvalues HΨ = λΨ, and more. (e) Tensors representing large
vectors or linear operators can be unfolded into MPS or tensor train operators (MPO),
respectively. (f) The standard MPS toolbox includes algorithms for performing cal-
culations with MPS and MPO. If these have have low rank, such calculations can be
performed in polynomial time, even for exponentially large vector spaces. The xfac
and TCI.jl libraries expand the MPS toolbox by providing tools for unfolding ten-
sors into MPS using exponentially fast tensor cross interpolation (TCI) algorithms,
for expressing functions as MPO, and for manipulating the latter.

In physics, functions describing physical quantities and the tensors representing them in-
deed often do have a hidden structure. A prominent example is the density matrix renormal-
ization group (DMRG), the method of choice for treating one-dimensional quantum lattice
models [1]. There, quantum wavefunctions and operators are expressed as tensor networks
that in the physics community are called matrix product states (MPSs) and matrix product op-
erators (MPOs), respectively, or tensor trains in the applied mathematics community. (In this
work, “MPS” and “tensor train” will be used interchangeably.) Many algorithms for manipulat-
ing such objects have been developed in the quantum information and many-body communi-
ties [2–5]. We collectively refer to them as the “standard MPS toolbox” [6,7]; Figure 1 depicts
some of its ingredients using tensor network diagrams. These algorithms achieve exponential
speedup for linear algebra operations (computing scalar products, solving linear systems, diag-
onalization, ...) with large but compressible vectors and matrices. Although initially developed
for many-body physics, the MPS toolbox is increasingly being used in other, seemingly unre-
lated, domains of application. It appears, indeed, that many common mathematical objects
are in fact of low rank.

4



SciPost Phys. 18, 104 (2025)

A crucial recent development is the emergence of a new category of algorithms that allow
one to detect low-rank properties and automatically construct the associated low rank tensor
representations. They are collectively called tensor cross interpolation (TCI) algorithms [8–
12], the subject of this article. Based on the cross interpolation (CI) decomposition of matrices
instead of the singular value decomposition (SVD) widely used in standard tensor network
techniques, TCI algorithms construct low-rank decompositions of a given tensor. Their main
characteristic is that they do not take the entire tensor as input (in contrast to SVD-based
decompositions) but request only a small number of tensor elements (the “pivots”). Their
costs thus scale linearly with L, even though the tensor has exponentially many elements. In
this sense, TCI algorithms are akin to machine learning: they seek compact representations
of a large dataset (the tensor) based on a small subset (the pivots). Moreover, they are rank-
revealing: for low-rank tensors they rapidly find accurate low-rank decompositions (in most
cases, see discussions below); for high-rank tensors they exhibit slow convergence rather than
giving bad decompositions. TCI has been used recently, e.g., as an efficient (sign-problem-
free) alternative to Monte Carlo sampling for calculating high-dimensional integrals arising
in Feynman diagrams for the quantum many-body problem [13]; to find minima of functions
[14]; to calculate topological invariants [15]; to calculate overlaps between atomic orbitals
[16]; to solve the Schrödinger equation of the H+2 ion [16]; and, in mathematical finance, to
speed up Fourier-transform-based option pricing [17].

Among the many applications of tensor networks, the so-called quantics [18–20] repre-
sentation of functions of one or more variables has recently gained interest in various fields,
including many-body field theory [21–25], turbulence [26–28], plasma physics [29], quantum
chemistry [16], and denoising in quantum simulation [30]. Quantics tensor representations
yield exponentially high resolution, and often have low-rank, even for functions exhibiting
scale separation between large- and small-scale features. Such representation can be effi-
ciently revealed using TCI [21]. Moreover, it can be exploited to perform many standard
operation on functions (e.g. integration, multiplication, convolution, Fourier transform, ...)
exponentially faster than when using naive brute-force discretizations. For example, quantics
yields a compact basis for solving partial differential equations, similar to a basis of orthogonal
(e.g. Chebyshev) polynomials.

This article has three main goals:

• We present new variants of TCI algorithms that are more robust and/or faster than pre-
vious ones. They are based on rank-revealing partial LU (prrLU) decomposition, which is
equivalent to but more flexible and stable than traditional CI. The new variants offer useful
new functionality beyond proposing new pivots, such as the ability to remove bad pivots,
to add global pivots, to compress an existing MPS.

• We showcase various TCI applications (both with and without quantics), such as integrat-
ing multivariate functions, computing partition functions, integrating partial differential
equations, constructing complex MPOs for many-body physics.

• We present the API of two open source libraries that implement TCI and quantics al-
gorithms as well as related tools: xfac, written in C++ with python bindings; and
TensorCrossInterpolation.jl (or TCI.jl for short), written in Julia.

Below, Sec. 2 very briefly describes and illustrates the capabilities of TCI, serving as a
minimal primer for starting to use the libraries. Readers interested mainly in trying out TCI
(or learning what it can do) may subsequently proceed directly to Secs. 5–7, which present
several illustrative applications. Sec. 3 describes the formal relation between CI and prrLU
at the matrix level, Sec. 4 presents our prrLU-based algorithms for tensors of higher degree.
Finally Sec. 8 discusses the API of the xfac and TCI.jl libraries. Several appendices are
devoted to technical details.
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2 An introduction to tensor cross interpolation (TCI)

In this section, we present a quick primer on TCI algorithms without details, to set the scene
for exploring our libraries and studying the examples in Section 5 and beyond.

2.1 The input and output of TCI

Consider a tensor F of degree L, with elements Fσ labeled by indices σ = (σ1, . . . ,σL), with
1 ≤ σℓ ≤ dℓ. For simplicity, we will denote the dimension d = dℓ if all the dimensions dℓ are
equal. Our goal is to obtain an approximate factorization of F as a matrix product state (MPS),
that we denote eFσ. An MPS has the following form and graphical representation:

Fσ ≈ eFσ =
L∏
ℓ=1

Mσℓ
ℓ
= [M1]

σ1
1a1
[M2]

σ2
a1a2
· · · [ML]σL

aL−11 , (1)

. . . . . . Lσ1σ 2σ �σ

F ≈
. . . . . .1σ 2σ

σ
�σ

1 11χ 2χ �χ

1a 2a �a
Lσ

0a La

1M 2M �M LM
.

Implicit summation over repeated indices (Einstein convention) is understood and depicted
graphically by connecting tensors by bonds. Each three-leg tensor Mℓ has elements [Mℓ]

σℓ
aℓ−1aℓ ,

and can also be viewed as a matrix Mσℓ
ℓ

with indices aℓ−1, aℓ. The external indices σℓ have
dimensions dℓ. The internal (or bond) indices aℓ have dimensions χℓ, called the bond dimen-
sions of the tensor. By convention, we use χ0=χL=1 to preserve a matrix product structure.
We define χ ≡maxℓχℓ as the rank of the tensor.

The approximation (1) can be made arbitrarily accurate by increasing χℓ, potentially ex-
ponentially with L like χℓ ∼ min{dℓ, dL−ℓ}. A tensor is said to be compressible or low-rank if
it can be approximated by a MPS form with a small rank χ.

TCI algorithms aim to construct low-rank MPS approximations (actually interpolations)
for a given tensor F using a minimal number of its elements. They are high-dimensional gen-
eralizations of matrix decomposition methods, like the cross interpolation (CI) decomposition
or the partially rank-revealing LU decomposition (prrLU) [31]. Indeed, they progressively
refine the eF approximation, increasing the ranks, by searching for pivots (high-dimensional
generalizations of Gaussian elimination pivots), using CI or prrLU on two-dimensional slices
of the tensor. TCI algorithms come with an error estimate ε(χℓ), which can be reduced be-
low a specified tolerance τ by suitably increasing χℓ. Moreover, they are rank-revealing: if a
given tensor F admits a low-rank MPS approximation, the algorithms will almost always find
it; if the tensor is not of low rank (e.g. a tensor with random entries), the algorithms fail to
converge and the computed error remains large.

Concretely, TCI algorithms take as input a tensor F in the form of a function returning the
value Fσ for any σ; they explore its structure by sampling (in a deterministic way) some of its
elements; and they return as output a list of tensors M1, . . . , ML for the MPS approximation eF .
Importantly, TCI algorithms do not require all dL tensor elements of F but can construct eF by
calling Fσ only O(Ldχ2) times. The TCI algorithms have a time complexity O(Ldχ3) [12],
that is exponentially smaller than the total number of elements. The TCI form is fully specified
by O(Lχ2) pivot indices, which are sufficient to reconstruct the whole tensor at the specified
tolerance. Furthermore, the TCI form allows an efficient evaluation of any tensor element.

Since TCI algorithms sample a given tensor F in a deterministic manner to construct a
compressed representation eF , they can be viewed as machine learning algorithms. We will
discuss the analogy with neural networks learning techniques in Section 4.8.
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2.2 An illustrative application: Integration in large dimension

TCI algorithms allow new usages of the MPS tensor representation not contained in other ten-
sor toolkits, for example integration or summation in large dimensions [8,12]. Consider a func-
tion f (x), with x = (x1, . . . , xL). We wish to calculate the L-dimensional integral

∫
dLx f (x).

We map f onto a tensor F by discretizing each variable xℓ onto a grid of d distinct points
{p1, p2, . . . , pd}, e.g. the points of a Gauss quadrature or the Chebyshev points. Then, the
natural tensor representation F of f on this grid is defined as

Fσ = f (pσ1
, pσ2

, . . . , pσL
) =

. . .1σ 2σ

=
Lσ

, (2)

with σℓ = 1, . . . , d. This can be given as input to TCI. The resulting eF yields a factorized
approximation for f when all its arguments lie on the grid,

f (x1, . . . , xL)≈ M1(x1)M2(x2) · · ·ML(xL) =
. . .

1M 2M LM

L1 2x x x

, (3)

for xℓ ∈ {p1, p2, . . . , pd}, with Mℓ(pσℓ) ≡ Mσℓ
ℓ

. The notation Mℓ(x) reflects the fact that the
approximation can be extended to the continuum, i.e. for all x (see the discussion in App. A.4,
as well as Eqs. (7–9) of Ref. [13]). When eF is low rank, f is almost separable (it would be
separable if the rank χ = 1). The integral of the factorized f is straightforward to compute
as [8,12,13]

∫
dLx f (x)≈
∫

d x1 M1(x1)

∫
d x2 M2(x2) · · ·
∫

d xL ML(xL) , (4)

i.e. one-dimensional integrals followed by a sequence of matrix-vector multiplications. Since
TCI algorithms can compute the compressed MPS form with a “small” number of evalua-
tions of f (one for each requested tensor element), the integral computation is performed
in O(Ldχ2)≪ O(dL) calls to the function f (x). In practice, this method has been shown to
be very successful, even when the function f is highly oscillatory. For example, it was recently
shown to outperform traditional approaches for computing high-order perturbative expan-
sions in the quantum many-body problem [13,32]. Quite generally, TCI can be considered as
a possible alternative to Monte Carlo sampling, particularly attractive if a sign problem (rapid
oscillations of the integrand) makes Monte Carlo fail.

As an illustration, we compute a 10-dimensional integral with an oscillatory argument,

I = 103

∫

[−1,+1]10

d10x cos
�
10
∑10
ℓ=1 x2

ℓ

�
exp
h
−10−3
�∑10

ℓ=1 xℓ
�4i

, (5)

using TCI with Gauss–Kronrod quadrature rules. As shown in Fig. 2, TCI converges approxi-
mately as 1/N4

eval, where Neval is the number of evaluations of the integrand. For comparison,
Monte Carlo integration would converge as O(1/

p
Neval) and encounter a sign problem due

to the cosine term in the integrand.
In practice, our xfac/TCI.jl libraries take a user-defined, real- or complex-valued func-

tion f (x) as input and construct a tensor train representation eFσ with a user-specified tolerance
τ or rank χ. Our TCI toolbox contains algorithms to decompose a tensor F or to recompress
a given MPS decomposition. After a MPS form of F has been obtained, it can be used directly
or transformed into one of several canonical forms (cf. Sec. 4.5) and used with other standard
tensor toolkits such as ITensor [33]. In Sections 5 and beyond, we present various examples
of applications. Readers interested mainly in these may prefer to the upcoming two Sections
3 and 4, which are devoted to the details of the algorithms.
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Figure 2: Convergence of the 10-dimensional integral I of Eq. (5). I(Neval) is com-
puted using TCI with 15, 21, 41 and 61-point Gauss–Kronrod quadrature in each
dimension, and Neval is the number of evaluations of the integrand. With 41- and
61-point quadrature, the value converges to I = −5.4960415218049. Convergence
of the lower-order quadrature rules is limited by the number of discretization points.

3 Mathematical preliminaries: Low-rank decomposition of matri-
ces from a few rows and columns

The original TCI algorithm [8–10] is based on the matrix cross interpolation (CI) formula,
which constructs low rank approximations of matrices from crosses formed by subsets of their
rows and columns. In this paper, we focus on a different but mathematically equivalent strat-
egy for constructing cross interpolations, based on partial rank-revealing LU (prrLU) decom-
positions. This offers several advantages, in particular in term of stability.

A low-rank matrix is strongly compressible. Indeed, if A= (a1, . . . ,an) is an m×n matrix with
column vectors a j and (low) rank χ, each column can be expressed as a linear combination of
a subset of χ of them (a j =

∑χ
i=1 biCi j). Denoting the m×χ submatrix B = (b1, . . . ,bχ), we

have A= BC . It is sufficient to store B and C , i.e. χ(m+ n) elements instead of mn, which is
a large reduction when the rank is small (χ ≪min(m, n)).

The compressibility extends to matrices which are approximately of low rank. Using the
SVD decomposition, a matrix A is rewritten as A= U DV † with D a diagonal matrix of singular
values, which can be truncated at some tolerance to yield a low-rank approximation eA of A.
While SVD is optimal (it minimizes the error ∥A− eA∥F in the Frobenius norm), this comes at
a cost: the entire matrix A is required for the decomposition. Here, we are interested in CI
and prrLU, two low-rank approximations techniques which require only a subset of rows and
columns of the matrix. Both are well-known and in fact intimately related [34].

This section is organized as follows: after recalling CI in Section 3.1, we review some
standard material on Schur complements, prrLU and its relationship with CI. This section
focuses exclusively on matrices; we generalize to tensors in the next section.

3.1 Matrix cross interpolation (CI)

Let us first recall the matrix cross interpolation (CI) formula [11, 35–42], cf. section III of
Ref. [13] for an introduction.

8
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Let A be a m×n matrix of rank χ. We write I= {1, . . . , m} and J= {1, . . . , n} for the ordered
sets of all row or column indices, respectively, and I = {i1, . . . , ieχ} ⊂ I and J = { j1, . . . , jeχ} ⊂ J
for subsets of eχ row and column indices. Following a standard MATLAB convention, we write
A(I,J ) for the submatrix or slice containing all intersections of I-rows and J -columns (i.e.
rows and columns labeled by indices in I and J , respectively), with elements

[A(I,J )]αβ ≡ Aiα, jβ , (6)

∀α,β ∈ {1, . . . , eχ}. In particular, A(I,J) = A. In the following, we assume eχ ≤ χ, with I and
J chosen such that the matrix A(I,J ) is non-singular. We define the following slices of A:

P = A(I,J ) , C = A(I,J ) , R= A(I,J) . (7)

P = A(I,J ) is the pivot matrix. Its elements are called pivots, labeled by index pairs
(i, j) ∈ I ×J . These index pairs are called pivots, too (a common abuse of terminology), and
the index sets I, J specifying them are called pivot lists. In other words, the slice C = A(I,J )
gathers all columns containing pivots, the slice R= A(I,J) gathers all rows containing pivots,
and P contains their intersections (thus it is a subslice of both).

The CI formula gives a rank-eχ approximation eA of A [38] that can be expressed in the
following equivalent forms:

A ≈ C P−1R= eA , (8)

A(I,J) ≈ A(I,J ) P−1A(I,J) = eA(I,J) , (9)

.

,
II JJ

≈
IJ

I I JJ
i′i′i ′j′j j

=′j′iA

The third line depicts this factorization diagrammatically through the insertion of two pivot
bonds. There, the external indices i′ ∈ I and j′ ∈ J are fixed, represents P−1, and the two
internal bonds represent sums

∑
j∈J
∑

i∈I over the pivot lists I, J . The fourth line visualizes
this for eχ = 3, with J -columns colored red, I-rows blue, and pivots purple.

The CI formula (9) has two important properties: (i) For eχ = χ, Eq. (9) exactly reproduces
the entire matrix, eA = A (as explained below). (ii) For any eχ ≤ χ it yields an interpolation,
i.e. it exactly reproduces all I-rows and J -columns of A. Indeed, when considering only the
I-rows or J -columns of eA(I,J) in Eq. (9), we obtain

: eA(I,J) = A(I,J) , since A(I,J )P−1 = 1 , (10a)

: eA(I,J ) = A(I,J ) , since P−1A(I,J ) = 1 , (10b)

where 1 denotes a eχ × eχ unit matrix.
The accuracy of a CI interpolation depends on the choice of pivots. Efficient heuristic strate-

gies for finding good pivots are thus of key importance. They will be discussed in Sec. 3.3.2.

3.2 A few properties of Schur complements

This section discusses an important object of linear algebra, the Schur complement. Of primary
importance to us are two facts that allow us to make the connection between CI and prrLU.

9
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First, the Schur complement is essentially the error of the CI approximation. Second, the Schur
complement can be obtained iteratively by eliminating (in the sense of Gaussian elimination)
rows and columns of the initial matrix one after the other and in any order. With these two
properties, we will be able to prove that the prrLU algorithm discussed in the next section
actually yields a CI approximation.

3.2.1 Definitions and basic properties

Let us consider a matrix A made of 4 blocks

A=

�
A11 A12
A21 A22

�
, (11)

with A11 assumed square and invertible. The Schur complement [A/A11] is defined by

[A/A11]≡ A22 − A21(A11)
−1A12 . (12)

The matrix A can be factorized as
�

A11 A12
A21 A22

�
=

�
111 0

A21A−1
11 122

��
A11 0
0 [A/A11]

��
111 A−1

11 A12
0 122

�
. (13)

This leads to the Schur determinant identity

det A= det A11 det[A/A11] , (14)

and (by inverting (13), see also Appendix A.1) to the relation
�
A−1
�

22= [A/A11]
−1 . (15)

3.2.2 The quotient property

When used for successively eliminating blocks, the Schur complement does not depend on the
order in which the different blocks are eliminated. This is expressed by the quotient property
of the Schur complement [43]. We illustrate this property on a 3× 3 block matrix,

A=




A11 A12 A13
A21 A22 A23
A31 A32 A33


 , B ≡
�

A11 A12
A21 A22

�
, (16)

where B is a submatrix of A. We assume that A11 and A22 are square and invertible. Then the
quotient formula reads

�
[A/A11]/[B/A11]

�
=
�
A/B
�
=
�
[A/A22]/[B/A22]

�
. (17)

A simple explicit proof of this property is provided in Appendix A.1, see also [44].
As the order of block elimination does not matter, we will use a simpler notation

�
[A/1]/2
�
=
�
[A/2]/1
�
=
�
A/(1, 2)
�

, (18)

where /1 or /2 denotes the elimination of the 11- or 22 block, and /(1, 2) the elimination of
the square matrix containing both. Let us also note that permutations of rows and columns
in the 11- and 22-blocks can be taken before or after taking the Schur complement [A/(1, 2)]
without affecting the result [44]. For matrices involving a larger number of blocks, iterative
application of the Schur quotient rule to successively eliminate blocks 11 to x x reads

���
[A/1]/2
�

. . .
�
/x
�
=
�
A/(1, 2, . . . , x)
�

. (19)

10
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3.2.3 Relation with CI

The error in the matrix cross interpolation formula is directly given by the Schur complement
to the pivot matrix.

To see this, let us permute the rows and columns of A such that all pivots lie in the first eχ
rows and columns, labeled I1 = J1 = {1, . . . , eχ}, with I2 = I \I1 and J2 = J \J1 labeling the
remaining rows and columns, respectively. Then, the permuted matrix (again denoted A for
simplicity) has the block form

A(I,J) =

�
A(I1,J1) A(I1,J2)
A(I2,J1) A(I2,J2)

�
=

�
A11 A12
A21 A22

�
, (20)

and the pivot matrix is P = A11 = A(I1,J1). The CI formula (9) now takes the form

eA=
�

A11
A21

�
(A11)

−1
�
A11 A12
�
=

�
A11 A12
A21 A21(A11)−1A12

�
, (21)

A− eA=
�

0 0
0 [A/A11]

�
. (22)

The interpolation is exact for the 11-, 21- and 12-blocks, but not for the 22-block where the
error is the Schur complement [A/A11]. Since the latter depends on the inverse of the pivot
matrix, a strategy for reducing the error is to choose the pivots such that |det A11| is maximal
—a criterion known as the maximum volume principle [35,41]. Finding the pivots that satisfy
the maximum volume principle is in general exponentially difficult but, as we shall see, there
exist good heuristics that get close to this optimum in practice.

3.2.4 Relation with self-energy

In physics context, the Schur complement is closely related to the notion of self-energy, which
appears in a non-interacting model by integrating out some degrees of freedom. Consider a
Hamiltonian matrix

H = H0 + V =

�
H11 0
0 H22

�
+

�
0 H12

H21 0

�
. (23)

The Green’s function at energy E is defined as G(E) = (E−H)−1. Its restriction to the 22-block
is given by the Dyson equation,

[G(E)]22 = (E −H22 −Σ)−1 , (24)

where Σ= H21(E −H11)−1H12 is the so-called self-energy. The Dyson equation can be proven
by applying Eq. (15) to [G(E)]22 = [(E − H)−1]22 and inserting the definition of the Schur
complement, Eq. (12):

[G(E)]22 = [(E −H)−1]22 = [(E −H)/(E −H)11]
−1

=
�
(E −H)22 −H21[(E −H)11]

−1H12︸ ︷︷ ︸
Σ

�−1
. (25)

3.2.5 Restriction of the Schur complement

A trivial, yet important, property of the Schur complement is that the restriction of the Schur
complement to a limited numbers of rows and columns is equal to the Schur complement of
the full matrix restricted to those rows and columns (plus the pivots). More precisely, if I1

11
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and J1 are the lists of pivots specifying the Schur complement and I2 and J2 are lists of rows
and columns of interest, one has

[A(I,J )/A(I1,J1)](I2,J2) = [A(I1 ∪ I2,J1 ∪J2)/A(I1,J1)] , (26)

where I1,I2 ⊆ I and J1,J2 ⊆ J . This property follows directly from the definition of the
Schur complement.

3.3 Partial rank-revealing LU decomposition

In this section, we discuss partial rank-revealing LU (prrLU) decomposition. While mathemat-
ically equivalent to the CI decomposition, it is numerically more stable as the pivot matrices
are never constructed nor inverted explicitly.

A matrix decomposition is rank-revealing when it allows the determination of the rank of
the matrix: the decomposition A= X DY is rank-revealing if both X and Y are well-conditioned
and D is diagonal. The rank is given by the number of non-zero entries on the diagonal of D.
A well-known rank-revealing decomposition is SVD.

3.3.1 Default full search prrLU algorithm

The standard LU decomposition factorizes a matrix as A= LDU , where L is lower-triangular,
D diagonal and U upper-triangular [31]. It implements the Gaussian elimination algorithm for
inverting matrices or solving linear systems of equations. The prrLU decomposition is an LU
variant with two particular features: (i) It is rank-revealing: the largest remaining element,
found by pivoting on both rows and columns, is used for the next pivot. (ii) It is partial:
Gaussian elimination is stopped after constructing the first eχ columns of L and rows of U ,
such that LDU is a rank-eχ factorization of A.

The prrLU decomposition is computed using a fully-pivoted Gaussian elimination scheme,
based on Eq. (13), which we reproduce here for convenience.
�

A11 A12
A21 A22

�
=

�
111 0

A21A−1
11 122

��
A11 0
0 [A/A11]

��
111 A−1

11 A12
0 122

�
. (27)

Note that the right side has a block LDU structure. The algorithm utilizes this as follows. First,
we permute the rows and columns of A such that its largest element (in modulus) is positioned
into the top left 11-position, then apply the above identity with a 11-block of size 1×1. Next,
we repeat this procedure on the lower-right block of the second matrix on the right of Eq. (27)
(hereafter, the “central” matrix), i.e. on [A/1]. We continue iteratively, yielding [A/(1,2)],
[A/(1,2, 3)], etc., thereby progressively diagonalizing the central matrix while maintaining
the lower- and upper-triangular form of L and U . Before each application of Eq. (27) we
choose the largest element of the previous Schur complement as new pivot and permute it
to the top left position of that submatrix. This strategy of maximizing the pivot improves the
algorithm’s stability, since it minimizes the inverse of the new pivot, which enters the left and
right matrices [35,41] and corresponds to the maximum volume strategy over the new pivot,
see Appendix B2 of [13]. After eχ steps we obtain a prrLU decomposition of the form

A=

�
L11 0
L21 122

��
D 0
0 [A/(1, . . . , eχ)]

��
U11 U12
0 122

�
. (28)

Here, L11 and U11 have diagonal entries equal to 1 and are lower- or upper-triangular, re-
spectively, and D (shorthand for D11) is diagonal [31, 42]. The block subscripts 11, 12, 21,
22 label blocks with row and column indices given by I1 = J1 = {1, . . . , eχ}, I2 = I \ I1, and
J2 = J\J1, where these indices refer to the pivoted version of the original A. When the Schur
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CI prrLU

Figure 3: Equivalence between CI and prrLU. The prrLU decomposition provides all
the matrices of the CI. Top: Eqs. (22) and (30); middle: Eqs. (32a-32c); bottom:
Eqs. (32d-32e). White portions of matrices are equal to 0.

complement becomes zero, after χ steps, the scheme terminates, identifying χ as the rank of
A.

Now, note that (for any eχ ≤ χ) Eq. (28) can be recast into the form

A= LDU +

�
0 0
0 [A/(1, . . . , eχ)]

�
, L =

�
L11
L21

�
, U =
�
U11 U12
�

. (29)

This precisely matches the CI formula (22). Again the Schur complement [A/(1, . . . , eχ)] is the
error in the factorization. Thus, prrLU actually yields an CI [34,42], given by

eA= LDU =

�
L11
L21

�
D
�
U11 U12
�

. (30)

Explicit relations between the CI and prrLU representations are obtained from Eq. (30):
�

A11
A21

�
(A11)

−1
�
A11 A12
�
=

�
L11DU11
L21DU11

�
(L11DU11)

−1
�
L11DU11 L11DU12

�
, (31)

where, abusing notation, Ax y = A(Ix ,Jy) now denote blocks of the pivoted version of the
original A. This yields the following identifications, depicted schematically in Fig. 3:

A11 = P = L11DU11 , (32a)

A21 = L21DU11 , (32b)

A12 = L11DU12 , (32c)�
A11
A21

�
(A11)

−1 =

�
111

L21 L−1
11

�
, (32d)

(A11)
−1
�
A11 A12
�
=
�
111 U−1

11 U12
�

. (32e)

The main advantage of prrLU over a direct CI is numerical stability, as we avoid the con-
struction and inversion of ill-conditioned pivot matrices [31]. In our experience, prrLU is also
more stable than the QR-stabilization approach to CI used in [13]. Furthermore, prrLU is
updatable: new rows and columns can be added easily.

Let us note that the maximal pivot strategy of prrLU eliminates the largest contribution
to the next Schur complement, hence reducing the CI error. Hence, it is a simple, greedy
algorithm for constructing a near-maximum volume submatrix [42,45].
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3.3.2 Alternative pivot search methods: Full, rook or block rook

The above algorithm uses a full search for the pivots, i.e. it uses the information of the entire
matrix A and scales as O(mn). It provides a quasi-optimal CI approximation but is expensive
computationally as each new pivot is searched on the entire Schur complement [A/(1, . . . , eχ)].

Rook search is a cheaper alternative, first proposed in [46, 47]. (See Algorithm 2 of [12]
and Ref. [13, Sec. III.B.3], where it was called alternating search). It explores the Schur com-
plement [A/(1, . . . , eχ)] by moving in alternating fashion along its rows and columns, similar
to a chess rook. It searches along a randomly chosen initial column for the row yielding the
maximum error, along that row for the column yielding the maximal error, and so on. The
process terminates when a “rook condition is established”, i.e. when an element is found that
maximizes the error along both its row and column; that element is selected as new pivot.
Compared to full pivoting, rook pivoting has the following useful properties: (i) computa-
tional cost reduced to O[max(m, n)] from O(mn); (ii) comparable robustness [48]; (iii) almost
as good convergence of the CI in practice.

Algorithm 1: Block rook pivoting search. Given pivot lists I, J , the algorithm up-
dates the lists I, J in place by alternating between searching for better pivots along
the rows and columns in even or odd iterations, respectively. In each iteration, the
pivot lists I, J are updated with new, improved pivots (the ‘rook move’) from a prrLU
decomposition with tolerance ε (line 8). The algorithm terminates when either the
rook condition is met, i.e. when there are no better pivots along the available rows
and columns, or when a maximum depth of nrook iterations has been reached (typi-
cally nrook ≤ 5). Upon exiting the algorithm, the updated lists I and J are of equal
size.

Input: A matrix function A with row indices I and column indices J, initial pivot lists
I ⊆ I,J ⊆ J with χ elements each, and tolerance τ.

Output: Updated pivot lists I,J for the prrLU of A with up to 2χ elements each.

1 J ′← J ∪ {χ new random column indices ∈ J \J }
2 for t ← 1 to nrook do
3 if t is odd then
4 search among the columns: set B← A(I,J ′)
5 else
6 search among the rows: set B← A(I ′,J)
7 end
8 find new pivots: (I ′,J ′)← pivots of prrLUε(B)
9 if I ′ = I and J ′ = J then rook condition has been established.

10 return I,J
11 else
12 update the pivots: (I,J )← (I ′,J ′)
13 end
14 end

We now introduce block rook search. It is a variant of rook search which searches for all
pivots simultaneously. It is useful in the common situation that a CI of a matrix A(I,J) has
been obtained and then this matrix is extended to a larger matrix A(I′,J′) by adding some
new rows and columns. One needs to construct a new set of pivots I ′ and J ′. The previous
set of pivots I and J is a very good starting point that one wishes to leverage on to construct
this new set. Block rook search is described in Algorithm 1.
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To find pivots, the algorithm uses a series of prrLU, applied to a subset of rows and columns
in alternating fashion. It starts with a set of columns made of previously found pivots and some
random ones. It then LU factorizes the corresponding sub-matrix to yield new pivot rows and
columns. The algorithm is repeated, alternatingly on rows and columns, until convergence
(or up to nRook times). In practice, we observe that nRook = 3 is often sufficient to reach
convergence. At convergence, the pivots satisfy rook conditions as if they had been sequentially
found by rook search (see App. A.2 for a proof). The algorithm requires O(nRookχ

2 max(m, n))
to factorize the matrix A.

4 Tensor cross interpolation

We now turn to the tensor case. After introducing the TCI form of an MPS, we present the
TCI algorithm and its variants. Although this section is self-contained, it is somewhat compact
and we recommend users new to TCI to read a more pedagogical introduction first, such as
section III of [13]. Important proofs can also be found in the appendices of [13] and/or in the
mathematical literature [8–12,18,19,49,50].

The algorithm used by some of us previously (e.g. in [13,15,16]) will be referred to as the
2-site TCI algorithm in accumulative mode. Below, we introduce a number of new algorithms
that evolved from this original one. Our default TCI (discussed first, in section 4.3.1) is the 2-
site TCI algorithm in reset mode. We also introduce a 1-site TCI, a 0-site TCI and a CI-canonical
algorithm and explain their specific use cases.

4.1 TCI form of tensor trains

Tensor trains obtained from TCI decompositions of an input tensor Fσ have a very particular,
characteristic form, called TCI form. It is obtained, e.g., through repeated use of the CI ap-
proximation, as discussed informally in Sec. III.B.1 of [13]. Its defining characteristic is that
it is built only from one-dimensional slices of Fσ (on which all tensor indices σℓ but one are
fixed). Furthermore, TCI algorithms construct the TCI form using only local updates of these
slices, as discussed in later sections.

The most difficult part of implementing TCI algorithms lies in the book-keeping of various
lists of indices. This is facilitated by the introduction of the following notations.

• An external index σℓ (ℓ ∈ {1,2, . . . ,L}) takes dℓ different values from a set Sℓ.

• Iℓ = S1 × · · · × Sℓ denotes the set of row multi-indices up to site ℓ. An element i ∈ Iℓ is a
row multi-index taking the form i = (σ1, . . . ,σℓ).

• Jℓ = Sℓ× · · · × SL denotes the set of column multi-indices from site ℓ upwards. An element
j ∈ Jℓ is a column multi-index taking the form j = (σℓ, . . . ,σL).

• IL = J1 is the full configuration space. A full configuration σ ∈ IL takes the form
σ = (σ1, . . . ,σL).

• iℓ ⊕ jℓ+1 ≡ (σ1, . . . ,σL) denotes the concatenation of complementary multi-indices.

For each ℓ, we define a list of “pivot rows” Iℓ ⊆ Iℓ and a list of “pivot columns” Jℓ ⊆ Jℓ. We
also define I0 = JL+1 = {()}, where () is an empty tuple. Note that Iℓ and Jℓ are lists of
lists of external σ indices. Through the pivot rows and pivot columns, we define zero-, one-,
and two-dimensional slices of the tensor F , where a k-dimensional slice has k free indices, as
follows.
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• A pivot matrix Pℓ is a zero-dimensional slice of the input tensor F :

[Pℓ]i j = Fi⊕ j =
F

i j
I J

(33a)

for i ∈ Iℓ and j ∈ Jℓ+1, or in Matlab notation, Pℓ = F(Iℓ,Jℓ+1). The two pivot lists have
the same number of elements; Pℓ is a square matrix of dimension χℓ = |Iℓ| = |Jℓ+1| and
we will choose the pivots such that det Pℓ ̸= 0.

• A 3-leg T-tensor Tℓ is a one-dimensional slice of F :

[Tℓ]iσ j ≡ Fi⊕(σ)⊕ j =
F

σi j
JSI

(33b)

for i ∈ Iℓ−1, σ ∈ Sℓ and j ∈ Jℓ+1, or Tℓ ≡ F(Iℓ−1,Sℓ,Jℓ+1). For specified σ, the matrix Tσ
ℓ

is defined as [Tσ
ℓ
]i j ≡ [Tℓ]iσ j .

• A 4-leg Π-tensor Πℓ is a two-dimensional slice of F :

[Πℓ]iσσ′ j ≡ Fi⊕(σ,σ′)⊕ j =
σi j

F

′σ
SSI J

(33c)

for i ∈ Iℓ−1, σ ∈ Sℓ, σ′ ∈ Sℓ+1 and j ∈ Jℓ+2, or Πℓ ≡ F(Iℓ−1,Sℓ,Sℓ+1,Jℓ+2).

With these definitions, the TCI approximation eF of F is defined as

Fσ ≈ eFσ = Tσ1
1 P−1

1 · · · Tσℓ
ℓ

P−1
ℓ Tσℓ+1

ℓ+1 · · · P−1
L−1TσL

L , (34)

Lσ1σ

F

˜

≈ eFσ =
L

L

σ1σ �σ

1L−�T �
1−P

II J

3J

JJ II I
1i �i1−�i2j +1�j

J
+2�j Lj 1L−i

=
+1�σ

+1�T

0i +1Lj

J

with independent summations over all iℓ ∈ Iℓ and all jℓ+1 ∈ Jℓ+1, for ℓ= 1, . . . ,L−1. Here,
represents P−1

ℓ
, the inverse of a pivot matrix, and represents a T -tensor Tℓ. Such a tensor

cross interpolation is entirely defined by the T and P tensors, i.e. by slices of F . In other
words, if one (i) knows the pivot lists {Iℓ,Jℓ+1|ℓ = 1, . . . ,L− 1} and (ii) can compute Fσ for
any given σ, then one can construct eF . Equation (34) defines a genuine tensor train with rank
χ =maxχℓ. Its form matches Eq. (1) with the identification TℓP

−1
ℓ
= Mℓ.

Equation (34) defines the TCI form, which is fully specified by two ingredients: (i) the sets
of rows Iℓ and columns Jℓ, and (ii) the corresponding values (slices) Tℓ and Pℓ of the input
tensor Fσ. Any tensor train can be converted exactly to a TCI form (see Sec. 4.5.1).

4.2 Nesting conditions

TCI algorithm relies on an important property of the pivot lists Iℓ and Jℓ that we now discuss,
the nesting conditions. By definition, for any ℓ:

• Iℓ is nested with respect to Iℓ−1, denoted by Iℓ−1 < Iℓ, if Iℓ ⊆ Iℓ−1 × Sℓ, or equivalently, if
removing the last index of any element of Iℓ yields an element of Iℓ−1. Iℓ−1 < Iℓ implies
that the pivot matrix Pℓ is a slice of Tℓ.

• Jℓ is nested with respect to Jℓ+1, denoted by Jℓ > Jℓ+1, if Jℓ ⊆ Sℓ×Jℓ+1, or equivalently, if
removing the first index of any element of Jℓ yields an element of Jℓ+1. Jℓ > Jℓ+1 implies
that the pivot matrix Pℓ−1 is a slice of Tℓ.
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Table 1: Example for a fully nested configuration of the pivot lists Iℓ and Jℓ for a
TCI with 5 local indices σ1, . . . ,σ5 ∈ {0, 1}. Pivot lists that belong to the same bond
are shown in the same row.

ℓ Iℓ Jℓ+1

1 I1 = ((1)) J2 = ((1, 0, 0, 1))
2 I2 = ((1, 0), (1, 1)) J3 = ((0, 0, 1), (1, 0,1))
3 I3 = ((1, 1,0), (1,0, 1)) J4 = ((0, 1), (1, 1))
4 I4 = ((1, 1,0, 0)) J5 = ((1))

We say that the pivots are:

• left-nested up to ℓ if
I0 < I1 < · · ·< Iℓ , (35)

• right-nested up to ℓ if
Jℓ > Jℓ+1 > · · ·> JL+1 , (36)

• fully left-nested if they are left-nested up to L−1, fully right-nested if they are right-nested
up to 2. When the pivots are both fully left- and right-nested they are said to be fully nested,
i.e. one has

I0 < I1 < · · ·< IL−1 , J2 > Jℓ+2 > · · ·> JL+1 . (37)

The importance of nesting conditions stems from the fact that they provides some interpo-
lation properties. We refer to Ref. [13] or Appendix A.3 for the associated proofs. In particular,
if the pivots are left-nested up to ℓ− 1 and right-nested up to ℓ+ 1 (we say nested w.r.t. Tℓ)
then the TCI form is exact on the one-dimensional slice Tℓ:

eFi⊕(σ)⊕ j = [Tℓ]iσ j = Fi⊕(σ)⊕ j , ∀i ∈ Iℓ−1 , σ ∈ Sℓ , j ∈ Jℓ+1 . (38)

It follows that if the pivots are fully nested, then the TCI form is exact on every Tℓ and Pℓ, i.e.
on all slices used to construct it. Hence, it is an interpolation.

An example for a fully nested configuration of the pivot lists Iℓ and Jℓ for a TCI with 5
local indices σ1, . . . ,σ5 ∈ {0, 1} is shown in Table 1. Full nesting could be broken for example
by adding (0,0) to I2, or by adding (1,1, 0) to J3.

4.3 2-site TCI algorithms

The goal of TCI algorithms is to obtain a TCI approximation of a given tensor F at a specified
tolerance ∥F−eF∥∞ < τ (over the maximum norm), by finding a minimal set of suitable pivots.
In this section, we present various 2-site TCI algorithms and discuss their variants and options.
They are all based on the fact that the TCI form (34) (with fully nested pivots) is exact on all
one-dimensional slices Tℓ but not on the two-dimensional slices Πℓ. All 2-site TCI algorithms
thus aim to iteratively improve the representation of the Πℓ slices.

4.3.1 Basic algorithm

We start by presenting a TCI algorithm in a version based on LU factorization. In Sec. 4.3.2
we will describe its connection to the algorithm based on CI factorizations presented in prior
work [12,13]. The algorithm proceeds as follows:

(1) Start with an index σ̂ for which Fσ̂ ̸= 0, and construct initial pivots from it:
Iℓ = {(σ̂1, . . . , σ̂ℓ)} and Jℓ+1 = {(σ̂ℓ+1, . . . , σ̂L)} for all ℓ.
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(2) Sweeping back and forth over ℓ= 1, . . . ,L−1, perform the following update at each ℓ:

– Construct the Πℓ tensor (33c).

– View the tensor Πℓ as a matrix F(Iℓ−1 × Sℓ,Sℓ+1 ×Jℓ+2) and perform its prrLU decom-
position which approximates it as Πℓ ≈ eΠℓ with

[Πℓ]iℓ−1σℓσℓ+1 jℓ+2
≈ [T ′σℓ

ℓ
]iℓ−1 j′

ℓ+1
(P ′ℓ)

−1
j′
ℓ+1 i′

ℓ

[T ′σℓ+1
ℓ
]i′
ℓ
jℓ+2

, (39)

+1�σ�σ
1−�i +2�j

I

=
�Π ≈

J I

≈
+1�σ�σ

1−�i +2�j

I

�
′T �

1′−P +1�
′T

�
′i+1�

′j
,

where i′
ℓ
∈ I ′

ℓ
⊂ Iℓ−1 × Sℓ and j′

ℓ+1 ∈ J ′
ℓ+1 ⊂ Sℓ+1 ×Jℓ+2 are the new pivots.

– Replace the old pivot lists Iℓ, Jℓ+1 by the new ones I ′
ℓ
, J ′
ℓ+1. By construction, the nesting

conditions Iℓ−1 < I ′
ℓ
, J ′

ℓ+1 > Jℓ+2 are satisfied. The matrices Pℓ, Tℓ and Tℓ+1 are also
updated along with the pivots, according to their definitions (33a, 33b). Note that this
step may break the full nesting condition: one may have Iℓ < Iℓ+1 but not I ′

ℓ
< Iℓ+1;

similarly, one may have Jℓ > Jℓ+1 but not Jℓ > J ′
ℓ+1.

(3) Iterate step (2) until the specified tolerance is reached, or a specified number of times.

When pivots are left-nested up to ℓ − 1 and right-nested up to ℓ + 2 — a property that
our algorithm actually preserves — (we say that the tensor train is nested w.r.t. Πℓ), then the
following crucial relation holds (for a proof, see [13, App. C.2], or our App. A.3):

�
Πℓ − eΠℓ
�

iℓ−1σℓσℓ+1 jℓ+2
=
�
F − eF�iℓ−1σℓσℓ+1 jℓ+2

, (40)

for allσℓ,σℓ+1. Thus, the error made by approximating the local tensorΠℓ by its prrLU decom-
position eΠℓ is also the error, on this two-dimensional slice, of approximating Fσ by the TCI de-
composition eFσ. By construction, the TCI form (34) (with fully nested pivots) is exact on one-
dimensional slices, Iℓ−1×Sℓ×Jℓ+1, but not on the two-dimensional slices Iℓ−1×Sℓ×Sℓ+1×Jℓ+2.
Hence, the algorithm chooses the pivots in order to minimize the error on the latter.

The algorithm presented in this section deviates significantly from the one used by some of
us in Ref. [12,13]: there, new pivots could be added but they were never removed in order to
maintain the full nesting condition. However, a close examination of [13, App. C.2] shows that
partial nesting is sufficient to ensure Eq. (40). We use this fact to use an update strategy where
the pivots I ′

ℓ
, J ′
ℓ+1 are reset at each step (2) of the algorithm. The ability to discard “bad” pivots

(e.g. ones found in early iterations that later turn out to be suboptimal) significantly improves
the numerical stability of the present TCI algorithm compared to the original one [12]. This
point will be discussed further in Sec. 4.3.3. If desired, full nesting can be restored at the end
using 1-site TCI, discussed in Sec. 4.4.

4.3.2 CI vs prrLU

The TCI algorithm as described in this paper is also different from the standard TCI algorithm
[12,13] in that it uses prrLU instead of the CI decomposition for the Πℓ tensor. While CI and
prrLU are equivalent, as shown in Sec. 3.3, the prrLU yields a more stable implementation, as it
avoids inverting the pivot matrices P, which may become ill-conditioned. We emphasize again
that we have found prrLU to be more efficient and stable than the alternative QR approach
used in Appendix B of [13] to address the conditioning issue of the pivot matrices.
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For convenience, we explicitly rewrite the correspondence between CI and LU factorization
shown in Eqs. (32) as appropriate for the update of eΠℓ:

eΠℓ = Tℓ(Pℓ)
−1Tℓ+1 = LDU =

�
Pℓ L11DU12

L21DU11 L21DU12

�
, (41a)

Pℓ = L11DU11 , (41b)

Tℓ =

�
L11DU11
L21DU11

�
, TℓP

−1
ℓ =

�
1

L21 L−1
11

�
, (41c)

Tℓ+1 =
�
L11DU11 L11DU12

�
, P−1

ℓ Tℓ+1 =
�
1 U−1

11 U12
�

. (41d)

Since U11 and L11 are triangular matrices, the two terms involving a matrix inversion can be
computed in a stable manner using forward/backward substitution.

4.3.3 Pivot update method: Reset vs accumulative

In order to update the pivots in the TCI algorithm, we can use two different methods, which
we call reset and accumulative.

• In reset mode, we recompute the full prrLU decomposition of Πℓ at each ℓ, hence recon-
structing new pivots Iℓ, Jℓ+1. This version was presented in Sec. 4.3.1.

• In accumulative mode, we update the pivot lists Iℓ, Jℓ+1 by only adding pivots. Typically,
pivots are added one at a time, thereby increasing χℓ to χℓ+1. Once a pivot has been added,
it is never removed. This strategy preserves full nesting, thus ensuring the interpolation
property of the TCI approximation. This is the method presented in Ref. [12, algorithm
#5].

The main advantage of reset mode is that it eliminates bad pivots which are almost linearly
dependent, thereby leading to poorly conditioned P matrices. These occur when the algorithm
first explores configurations where Fσ is small and only later discovers other configurations
with larger values of Fσ′ . In such cases, the late pivots correspond to a much larger absolute
value of F than the first, leading to ill-conditioned Pℓ. Therefore, in accumulative mode, it
is crucial to choose as an initial pivot a point where F is of the same order of magnitude
as its maximum. In reset mode, the bad pivots are automatically eliminated, which yields
a better TCI approximation and very stable convergence. On the other hand, accumulative
mode requires a (slightly) smaller number of values of F , as the exploration of configurations
for finding pivots is kept to a minimum.

The runtime of both approaches scales as O(χ3). Accumulative mode requires O(χ2) per
update and χ updates to reach a rank of χ. Reset mode requires O(χ3) for each update, but
typically converges within a small number of updates independently of χ.

We note that the pioneering work of Ref. [10] used a method similar to reset mode, recal-
culating the pivots at each step. MPS recompression was performed very differently, however,
using a combination of SVD and the maximum volume principle, which led to slower scaling.
Here, pivot optimization is done entirely within the LU decomposition.

4.3.4 Pivot search method: Full, rook or block rook

A crucial component of 2-site TCI algorithms is the search for pivots, as the largest elements
of the error tensor |Πℓ − eΠℓ|. As discussed in Sec. 3.3.2, three different search modes are
available: Full search is the simplest and most stable mode, but also most expensive, scaling
as O(d2). Rook search is a cheaper alternative, scaling as O(d) (since rows and columns are
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explored alternatingly), and is almost as good in practice. Rook search is well adapted to
accumulative mode [12] and is advantageous when the dimension d is large.

Block rook search is especially useful when used with reset pivot update mode. Indeed, it
allows reusing previously found pivots and therefore reusing previously computed values of F .
This is particularly useful when Fσ is an expensive function to evaluate on σ. The algorithm
requires O(nRookχ

2d) function evaluations to factorize a Π tensor.

4.3.5 Proposing pivots from outside of TCI

In its normal mode, TCI constructs new pivots by making local updates of existing pivots. In
several situations, it is desirable to enrich the pivot search by proposing a list of values of the
indices σ which the TCI algorithm is required to try as pivots. It is a way to incorporate prior
knowledge about F into TCI. We call such values of σ global pivots. This section discusses our
strategy to perform this operation in a stable way.

Given a list of global pivots, we split each index σ as σ = iℓ ⊕ jℓ+1 for all ℓ = 1, . . .L− 1,
and iℓ and jℓ+1 are added to the corresponding pivot lists Iℓ and Jℓ+1. This operation pre-
serves nesting conditions. Next, we perform a prrLU decomposition of the pivot matrices Pℓ
to remove possible spurious pivots. Last, we perform a few sweeps using 2-sites TCI in reset
mode to stabilize the pivots lists. We provide a simple example of global pivot addition in
Appendix B.3.5.

Global pivot proposals can be useful in several situations. First, the TCI algorithm can
experience some ergodicity issues as discussed in Sec. 4.3.6, which can be solved by adding
some pivots explicitly. The construction of the Matrix Product Operators discussed in Section 7
belongs to this category. Second, the TCI decomposition of a tensor F2 close to another F1 for
which the TCI is already known, e.g. due to an adiabatic change of some parameter, can benefit
from initialization with the pivots of eF1. Third, global pivot proposal can be used to separate
the exploration of the configuration space (the way these global pivots are constructed) from
the algorithm used to update the tensor train. For instance, one could use a separate algorithm
to globally look for pivots where the TCI error is large using a separate global optimizer; then
propose these pivots to TCI; and iteratively repeat the process until convergence.

The above algorithm, which we call StrictlyNested, works well but suffers from one (albeit
relatively rare) problem: it occasionally discards perfectly valid proposed global pivots. This
may happen when χℓ depends on ℓ in such a manner that the MPS has a “constriction”, i.e.
a bond with a smaller dimension χℓ than all others. Upon sweeping through this bond, some
pivots will be deleted (which is fine), but that deletion will propagate upon continuing to
sweep (which is a weakness of the algorithm).

A simple fix is to construct an enlarged tensor Π̄ℓ that extends Πℓ with additional rows and
columns containing deleted pivots, thus retaining these for consideration as potential pivots.
Concretely, denoting pivots obtained in a previous sweep by Īℓ and J̄ℓ, we define

Π̄ℓ = F([Iℓ−1 × Sℓ]∪ Īℓ , [Sℓ+1 ×Jℓ+2]∪ J̄ℓ+1) , (42)

and use Π̄ℓ instead of Πℓ for the prrLU decomposition. We note that such enlargements can
break nesting conditions, i.e. this is an UnStrictlyNested mode. However, we have not observed
this to cause any problems in our numerical experiments.

4.3.6 Ergodicity

The construction of tensor trains using TCI is based on the exploration of configuration space.
In analogy with what can happen with Monte Carlo techniques, this exploration may encounter
ergodicity problems, remaining stuck in a subpart of the configuration space and not visiting
other relevant parts. Examples where this may occur include: very sparse tensors Fσ, where
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TCI might miss some nonzero entries (see the Matrix Product Operator construction section
7 for an example); tensors with discrete symmetries, where the exploration may remain in
one symmetry sector (relevant for the partition function of the Ising model, see Sec. 5.3); or
multivariate functions with very narrow peaks.

All ergodicity problems that we have encountered so far could be fixed by proposing global
pivots, as described in Sec. 4.3.5. For sparse tensors, one feeds the algorithm with a list of
nonzero entries. For discrete symmetries, one initializes the algorithm with one configuration
per symmetry sector. One could also consider more elaborate strategies that use a dedicated
algorithm to explore new configurations, in analogy to the construction of complex moves
when building a Monte Carlo algorithm. In fact, existing Monte Carlo algorithms could be
used directly as way to propose global pivots. Such an algorithm would separate entirely the
pivot exploration strategy from the way the tensor train is updated.

Let us illustrate the above ideas with a toy example. Consider a fermionic operator c (c†)
that destroys (creates) an electron on a unique site ({c, c}= {c†, c†}= 0; {c, c†}= 1). We want
to factorize

Fσ = 〈aσ1
· · · aσL

〉 , (43)

into a tensor train, where a0 = c and a1 = c† and the average is taken with respect to the state
1p
2
|0〉+ 1p

2
c†|0〉. For even L, this tensor has only two non-zero elements, namely Fσ = 1/2

for σ1 = (1, 0,1,0, . . . , 1, 0) and σ2 = (0, 1, 0,1, . . . , 0, 1). This is due to the fermionic algebra,
which implies a0a0 = cc = 0 and a1a1 = c†c† = 0. Using TCI in a standard way with one
of the two elements as the starting pivot, TCI fails to find the second one. The reason is that
the TCI updates are local, thus TCI quickly (wrongly) concludes that it correctly describes all
configurations, whereas it correctly describes only the configurations that it has seen. A simple
cure is to propose bothσ1 andσ2 as global pivots. This works and is the easiest solution when
the important configurations are known. An alternative cure is to enlarge the configuration
space to obtain a larger but less sparse tensor. This idea is analogous to the concept of worms
in Monte Carlo, where the configuration space is enlarged to remove constrains and allow
for non-local updates. Here, we enlarge the local dimension from d = 2 to d = 3 by adding
identity as a third operator, a2 = 1. The new tensor is much less sparse and is correctly
reconstructed using TCI with (2, 2, . . . , 2) as initial pivot. Restricting the resulting tensor train
to σi ∈ {0,1} yields the correct factorization.

4.3.7 Error estimation: Bare vs. environment

In the prrLU decomposition of the Πℓ tensor described in Sec. 4.3.1 above, each new pivot is
chosen in order to minimize the bare error |Πℓ − eΠℓ|iℓ−1σℓσℓ+1 jℓ+2

. An alternative choice is to
define an environment error whose minimization aims to find the best approximation of the
“integrated” tensor

∑
σ Fσ, i.e. summed over all external indices (see Sec. III.B.4 of Ref. [13]).

The environment error has the form |Liℓ−1
R jℓ+2
||Πℓ − eΠℓ|iℓ−1σℓσℓ+1 jℓ+2

, with left and right envi-
ronment tensors defined as

Liℓ−1
=
∑

σ1, ...,σℓ−1

[Tσ1
1 P−1

1 · · · Tσℓ−1
ℓ−1 P−1

ℓ−1]1iℓ−1
, R jℓ+2

=
∑

σℓ+2,...,σL

[P−1
ℓ+1Tσℓ+2

ℓ+2 · · · P−1
L−1TσL

L ] jℓ+21 . (44)

Minimization of the environment error can be very efficient for the computation of integrals
involving integrands with long tails. An example of improved accuracy using this environment
mode is given in Fig. 7 of Ref. [13].

4.4 The 1-site and 0-site TCI algorithms

In this section, we propose two more algorithms complementing 2-site TCI: the 1-site and 0-
site TCI algorithms. The names reflect the number σ-indices of the objects decomposed with
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LU: Π, T or P tensors with 2, 1 or 0 σ-indices, respectively. The 2-site algorithms described
above are more versatile, and only they can increase the bond dimension χℓ, so they are almost
always needed during the initial learning stage (unless global pivots are used to start with a
large enough rank). However, the 1-site and 0-site TCI algorithms are faster than 2-site TCI,
and the former can also be used to achieve full nesting.

4.4.1 The 1-site TCI algorithm

The 1-site TCI algorithm sweeps through the tensor train and compresses its T tensors using
prrLU. In a forward sweep we view Tℓ as a matrix with indices (Iℓ−1 × Sℓ,Jℓ+1), regrouping
the σℓ index with the left index iℓ−1. Using prrLU, we obtain new pivots I ′

ℓ
, J ′

ℓ+1 to replace
Iℓ, Jℓ+1, satisfying I ′

ℓ
> Iℓ−1 and J ′

ℓ+1 ⊆ Jℓ+1, and update Tℓ, Pℓ and Tℓ+1 accordingly. After
the forward sweep, the pivots are fully left-nested, i.e. I0 < · · ·< IL−1.

In a backward sweep, Tℓ is viewed as a matrix with indices (Iℓ−1,Sℓ × Jℓ+1), so prrLU
yields new pivots I ′

ℓ−1 ⊆ Iℓ−1, J ′
ℓ
> Jℓ+1, and corresponding updates of Tℓ, Pℓ−1 and Tℓ−1.

After the backward sweep, the pivots are fully right-nested, i.e. J2 > · · · > JL+1, and all
bond dimensions meet the tolerance (i.e. are suitable for achieving the specified tolerance).
However, the backward sweep preserves left-nesting only if taking the subset I ′

ℓ−1 ⊆ Iℓ−1 does
not remove any pivots, i.e. if actually I ′

ℓ−1 = Iℓ−1. To achieve full nesting, left nesting can be
restored by performing one more forward sweep at the same tolerance. This preserves right-
nesting, because all bond dimensions already meet the tolerance, thus the last forward sweep
removes no pivots from Jℓ+1 for ℓ= 1, . . . ,L−1. For a related discussion in a different context,
see Sec. 4.5.

1-site TCI can be used to (i) compress a TCI to a smaller rank; (ii) restore full nesting; (iii)
improve the pivots at lower computational cost than its 2-site counterpart.

4.4.2 The 0-site TCI algorithm

The 0-site TCI algorithm sweeps through the pivot matrices Pℓ, prrLU decomposing each to
yield updated pivot lists I ′

ℓ
, J ′

ℓ+1 that replace Iℓ, Jℓ+1. 0-site TCI breaks nesting conditions. Its
main usage is to improving the conditioning of Pℓ, by removing “spurious” pivots. For example,
if a very large list of global pivots has been proposed, 0-site TCI can be used as a first filter
to keep only the most relevant ones. It does not require new calls to F tensor elements and
hence can be used even when F is no longer available.

4.5 CI- and LU-canonicalization

The MPS form Fσ = Mσ1
1 Mσ2

2 · · ·MσL
L of a tensor is not unique. Indeed one can always re-

place Mℓ ← MℓNℓ and Mℓ+1 ← N−1
ℓ

Mℓ+1 for any ℓ and invertible matrix Nℓ of appropriate
dimension (χℓ × χℓ). This is known as the gauge freedom. One can exploit this freedom
to write the MPS into canonical forms. A standard way is to express it as a product of left-
and right-unitary matrices around an orthogonality center, using the SVD decomposition [2]
(the SVD-canonical form). In this section, we show how an arbitrary MPS can be put in TCI
form, described uniquely in terms of pivot lists and corresponding slices of F . We call the
corresponding algorithm CI-canonicalization. LU-canonicalization is a variant thereof.

The different canonical forms offer different advantages for subsequent operations on the
tensor train. The SVD-canonical form is widely used in the tensor network community to
improve performance of certain contractions by exploiting the unitarity properties of the MPS
matrices. It is also very useful for algorithms such as DMRG as it provides a degree of non-
locality to an otherwise local optimization. The CI-canonical form, on the other hand, is made
up entirely of slices of the original MPS, i.e. a selection of values of the function through the
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index sets Iℓ and Jℓ. These set of points may have a value by themselves, e.g. as the starting
point of a multi-variate optimization or to perform transformations (rotations, translations) in
the case of quantics. Bringing a tensor into CI-canonical form is also a necessary step to enable
the application of other TCI algorithms, such as TCI optimization (Sec. 4.3) or global pivot
insertion (Sec. 4.3.5), which rely on the property that all core tensors of the MPS are defined
through Iℓ and Jℓ. LU canonicalization is a minor modification of CI canonicalization, and
is mentioned here for completeness. The authors are not currently aware of any application
unique to the LU-canonical form.

A simple way to put the MPS in a TCI form would be to apply the 2-site TCI to Fσ, con-
sidered as a function of σ. However, we present here a specific and direct CI-canonicalization
algorithm to achieve this, based on the MPS structure. This algorithm has several advan-
tages over the 2-site TCI: first, it is faster, taking only O(χ3) operations (like the usual SVD-
canonicalization) instead of O(χ4);1 second, it bypasses all the potential issues of the 2-site TCI
algorithm discussed above, like ergodicity. Let us emphasize that while the CI-canonicalization
algorithm can seem similar to the 1-site TCI algorithm, the two algorithms are actually differ-
ent, as the former directly exploits the MPS structure of Fσ.

4.5.1 CI-canonicalization.

Let us consider a MPS of the form

Fσ = [M
σ1
1 ]1a1

[Mσ2
2 ]a1a2

· · · [MσL
L ]aL−11 =

1M 2M LM
. . .

1σ Lσ
1a

2σ
2a 1L−a1 1

. (45)

Here, the indices aℓ are ordinary MPS indices, not multi-indices iℓ or jℓ from pivot lists. CI-
canonicalization is a sequence of exact transformations that convert the MPS to the TCI form
of Eq. (34), built from Tℓ and Pℓ tensors that are slices of F carrying multi-indices iℓ, jℓ and
that constitute full-rank matrices. We achieve this through three half-sweeps, involving exact
(i.e. at machine precision) CI decompositions. A first forward sweep introduces left-nested
lists bIℓ of row pivot multi-indices ı̂ℓ. Then, a backward sweep introduces right-nested lists Jℓ
of column pivot multi-indices jℓ and matching subsets Iℓ ⊂ bIℓ of row pivots iℓ (no longer left-
nested). Finally, a second forward sweep restores left-nesting of row pivots. Important here is
tracking the conversion from regular indices (aℓ) to row (iℓ, ı̂ℓ) and column ( jℓ) multi-indices.
We thus display these indices explicitly below.

First forward sweep. We start with an exact CI decomposition (8) of M1:

[Mσ1
1 ]1a1

= [C1]σ1 â1
[bP−1

1 ]â1 ı̂1[R1]ı̂1a1
, =

1R1C1M

1 1a 1a
1σ 1σ

1 1â 1ı̂

1
1−P̂

. (46)

Here, ı̂1 ∈ bI1 ⊆ {σ1} are new multi-indices labeling pivot rows. The hat on bP1 emphasizes that
it is not a slice of F , since the â1 are not multi-indices. Defining matrices Cσ1

1 with elements
[Cσ1

1 ]1â1
≡ [C1]σ1 â1

we obtain

Fσ =
�
Cσ1

1
bP−1

1 R1Mσ2
2 Mσ3

3 · · · MσL
L
�

11 =
1C

1σ
1

2M LM

2σ Lσ
2a

3M
. . .

3σ
3a 1L−a 11a

1R

1â 1ı̂

1
1−P̂

. (47)

1The complexity of using TCI for this purpose splits into O(χ2) evaluations of the MPS which require O(χ2)
operations each. There is a possibility to cache the partial contractions of the MPS to bring the global cost down
to O(χ3) but the resulting algorithm is still inferior to the CI-canonicalization algorithm.
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For ℓ ≥ 2 we iteratively define eMσℓ
ℓ
= Rℓ−1Mσℓ

ℓ
and group σℓ with ı̂ℓ−1 to reshape eMℓ into a

matrix which we factorize exactly with CI:

[Rℓ−1Mσℓ
ℓ
]ı̂ℓ−1aℓ = [ eMℓ](̂ıℓ−1,σℓ)aℓ = [C

σℓ
ℓ
]ı̂ℓ−1 âℓ[bP−1

ℓ ]âℓ ı̂ℓ[Rℓ]ı̂ℓaℓ , (48)

�σ �σ �σ
�a �a

�C �R�M

�a
==

�M̃1−�R

1−�a �â1−�ı̂ 1−�ı̂ 1−�ı̂ �ı̂

�
1−P̂

.

The tensor Cℓ can be viewed as a matrix Cσℓ
ℓ

with elements [Cσℓ
ℓ
]ı̂ℓ−1 âℓ = [Cℓ](̂ıℓ−1,σℓ)âℓ . The

new row pivots are left-nested, ı̂ℓ ∈ bIℓ > bIℓ−1.
In practice, we do not calculate Cℓ and bPℓ separately. Instead, the prrLU decomposition

directly yields the combination Aσℓ
ℓ
= Cσℓ

ℓ
bP−1
ℓ

:

[Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ = [C

σℓ
ℓ
]ı̂ℓ−1 âℓ[bP−1

ℓ ]âℓ ı̂ℓ , �A

�σ

�C

�σ

=
1−�ı̂ 1−�ı̂�ı̂ �ı̂�â

�
1−P̂

. (49)

By construction, see Eq. (10a), this product collapses to [Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ = δı̂ℓ−1⊕(σℓ),̂ıℓ whenever

ı̂ℓ−1⊕(σℓ) ∈ bIℓ (see also App. A.3).
After a full forward sweep to the very right we arrive at a tensor train of the form

Fσ =
�
Aσ1

1 · · · AσL−1
L−1
eMσL
L
�

11 =
LM

Lσ
1

˜
1A

. . .

1σ
1

1L−A

1L−σ

L−

1L−ı̂2L−ı̂1ı̂
. (50)

Here, the row pivots are by construction all left-nested as bI0 < · · · < bIL−1. This ensures the
following important property: for any ℓ ≤ L− 1, the product A1 · · ·Aℓ collapses telescopically
(starting from A1A2) if evaluated on any pivot ı̄ℓ = (σ̄1, . . . , σ̄ℓ) ∈ bIℓ (cf. Eq. (A.12)):

. . .
1A

1

2A

1σ̄ 2σ̄ �σ̄

�A

1ı̂ 2ı̂ 1−�ı̂ �ı̂
= [Aσ̄1

1 Aσ̄2
2 · · ·Aσ̄ℓℓ ]1ı̂ℓ = δı̄ℓ ı̂ℓ if ı̂ℓ ∈ bIℓ . (51)

If Eq. (50) is evaluated on pivot configurations of eML, having ı̄L−1 ∈ bIL−1, we find via Eq. (51)
that Fı̄L−1⊕(σL) = [ eM

σL
L ]ı̄L−1,1. Thus, eML is a slice of F , namely eML = F(bIL−1,SL). All Cℓ and

bPℓ have full rank when viewed as matrices [Cℓ](̂ıℓ−1,σℓ)âℓ and bP̂ıℓ âℓ . However, Cℓ and eML may
still be rank-deficient when viewed as matrices [Cℓ]ı̂ℓ−1(σℓ,âℓ) or [ eML]ı̂L−1σL

.

Backward sweep. Starting from Eq. (50), we sweep backward to generate right-nested col-
umn multi-indices jℓ. The CI factorizations are analogous to those of the forward sweep, with
two differences: they group σℓ with column (not row) indices prior to factorization; the re-
sulting Pℓ and Rℓ matrices are slices of F , thus revealing the bond dimensions of F .

We initialize the backward sweep by factorizing eMσL
L exactly as CL−1P−1

L−1RσL
L :

[ eMσL
L ]ı̂L−11 = [CL−1]ı̂L−1 jL[P

−1
L−1] jL iL−1

[RL]iL−1σL
, =

R

1

L

Lσ Lσ
1 Lj

1L−C 1L−
1−PLM̃

1L−ı̂ 1L−ı̂ 1L−i
. (52)

Here, jL ∈ JL ⊆ {σL} are multi-indices labeling pivot columns; iL−1 ∈ IL−1 ⊆ bIL−1 are row
pivots. Note that RL and PL−1, being subslices of eML, are slices of F , namely RL = F(IL−1,SL)
and PL = F(IL−1,JL). We thus make the identification TL = RL.

For ℓ≤ L− 1 we iteratively define eNσℓ
ℓ
= Aσℓ

ℓ
Cℓ and factorize it as Cℓ−1P−1

ℓ−1Rσℓ
ℓ

:

[Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ[Cℓ]ı̂ℓ jℓ+1

= [eNℓ]ı̂ℓ−1(σℓ, jℓ+1) = [Cℓ−1]ı̂ℓ−1 jℓ[P
−1
ℓ−1] jℓ iℓ−1

[Rσℓ
ℓ
]iℓ−1 jℓ+1

, (53)

�σ �σ �σ

�C �R
==

+1�j+1�j +1�j�j

1−�C 1−�
1−P�A �Ñ

1−�i1−�ı̂ 1−�ı̂1−�ı̂ �ı̂
.
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Here, the new column multi-indices are right-nested, jℓ ∈ Jℓ > Jℓ+1, while the row multi-
indices are a subset of the previous ones, iL−1 ∈ IL−1 ⊆ bIL−1 (thus possibly breaking left-
nesting, Iℓ−1 ̸< Iℓ). We show below that Rℓ is a slice of F , thus we rename it Tℓ = Rℓ, and that
Pℓ−1, too, is a slice of F . We also define Bσℓ

ℓ
= P−1

ℓ−1Tσℓ
ℓ

,

[Bσℓ
ℓ
] jℓ jℓ+1

= [P−1
ℓ−1] jℓ iℓ−1

[Tσℓ
ℓ
]iℓ−1 jℓ+1

,
�σ

+1�j�j

�B

�σ
=

+1�j�j

1−�
1−P �T

1−�i
. (54)

Via Eq. (10b) it collapses to [Bσℓ
ℓ
] jℓ, jℓ+1

= δ jℓ,(σℓ)⊕ jℓ+1
if (σℓ)⊕ jℓ+1 ∈ Jℓ. Importantly, the inner

summation for Bℓ now involves multi-indices iℓ−1 (for Aℓ it still involved âℓ indices).
Sweeping backward up to site ℓ, and then all the way to the very left, we obtain

Fσ =
�
Aσ1

1 · · · Aσℓ−1
ℓ−1
eNσℓ
ℓ

Bσℓ+1
ℓ+1 · · · B

σL
L
�

11 =
. . .. . .

1
1σ

1

LB

Lσ
Lj

�σ
+2�j+1�j

1A 1−�A +1�B

+1�σ

�Ñ

1−�σ
1−�ı̂2−�ı̂1ı̂

(55)

= [eNσ1
1 Bσ2

2 · · · BσL
L ]11 =

Lσ
Lj 1

. . .1σ 2σ
2j1

L−

. . .
2B LB1 1Ñ

. (56)

In Eq. (55), the column pivots are by construction all right-nested as Jℓ+1 > · · · > JL+1, and
in Eq. (56) they are fully right-nested, J2 > · · ·> JL+1. Importantly, this ensures that for any
ℓ≥ 2 the product Bℓ · · ·BL collapses telescopically (starting from BL−1BL) if it is evaluated on
any pivot ȷ̄ℓ = (σ̄ℓ, . . . , σ̄L) ∈ Jℓ (cf. Eq. (A.12b)):

...
1

Lσ̄

LB

Lj

1L−B

1L−j
1L−σ̄

�B

�j +1�j
�σ̄

= [Bσ̄ℓ
ℓ
· · ·Bσ̄L−1

L−1 Bσ̄L
L ] jℓ1 = δ jℓ ȷ̄ℓ , ∀ ȷ̄ℓ ∈ Jℓ . (57)

Consider Eq. (55) with ℓ > 1. If evaluated on pivot configurations of eNℓ, having ı̄ℓ−1 ∈ bIℓ−1
and ȷ̄ℓ+1 ∈ Jℓ+1, it collapses telescopically via Eqs. (50) and (57) to Fı̄ℓ−1⊕σℓ⊕ ȷ̄ℓ+1

= [eNσℓ
ℓ
]ı̄ℓ−1 ȷ̄ℓ+1

.
Therefore, eNℓ is a slice of F , namely eNℓ = F(bIℓ−1,Sℓ,Jℓ+1). It follows that the same is
true for its subslices, Tℓ = Rℓ = F(Iℓ−1,Sℓ,Jℓ+1) and Pℓ−1(Iℓ−1,Jℓ), as announced above.
Therefore, the CI factorization of eNℓ reveals the bond dimension of F for bond ℓ−1, namely
χℓ−1 = |Iℓ−1|= |Jℓ|. The latter is an intrinsic property of F and will remain unchanged under
arbitrary gauge transformations (e.g. exact SVDs or CIs) on its bonds. A telescope argument
shows that eN1 in (56) is a slice of F , too, thus we identify T1 = eN1 = F(S1,J2).

Using Bσℓ
ℓ
= P−1

ℓ−1Tσℓ
ℓ

in Eq. (56), we obtain a tensor train in the TCI form of Eq. (34),
namely Fσ = [T

σ1
1 P−1

1 Tσ2
2 · · · P−1

L−1TσL
L ]11. Here, all ingredients are slices of F , labeled by

multi-indices, and each Tℓ is full rank for both ways of viewing it as a matrix, [T](iℓ−1,σℓ) jℓ+1
or

[T]iℓ−1(σℓ, jℓ+1). The column pivots are fully right-nested. However, the row pivots are not fully
left-nested, since the backward sweep dropped some row pivots.

Second forward sweep. To obtain a tensor train in fully nested TCI form, we perform a
second exact forward sweep, using the 1-site TCI algorithm of Sec. 4.4.1. This generates fully
left-nested row pivots. Moreover, since all bond dimensions have already been revealed during
the backward sweep, no column pivots are lost during the second forward sweep, thus the
column pivots remain fully right-nested. More explicitly: during the second forward sweep,
the rank of [Tℓ](iℓ−1,σℓ)iℓ is equal to the number of its columns, χℓ = |Ii|, hence this matrix
has full rank. Therefore, its exact CI decomposition retains all columns, loosing none. The
resulting tensor train is fully nested, as desired.
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Table 2: Computational cost of the main TCI algorithms in xfac / tci.jl.

action variant calls to Fσ algebra cost

iterate

rook piv. 2-site O(χ2dnrookL) O(χ3dnrookL)
full piv. 2-site O(χ2d2L) O(χ3d2L)
full piv. 1-site O(χ2dL) O(χ3dL)
full piv. 0-site 0 O(χ3L)

achieve full nesting O(χ2dL) O(χ3dL)
add np global pivots O

�
(2χ + np)npL
�

O
�
(χ + np)3L
�

compress tensor train
SVD

0 O(χ3dL)LU
CI

CI-canonicalization with compression. CI-canonicalization can optionally be combined
with compression at the cost of an extra half-sweep. Then, the sequence becomes: (i) An
exact forward sweep builds row indices {̂ıℓ}. (ii) A backward sweep with compression builds
column indices { jℓ} according to a specified tolerance τ and/or rank χ, while possibly reduc-
ing row indices from {̂ıℓ} to {iℓ}. (iii) A forward sweep with compression finalizes row indices
according to the specifications while possibly further reducing column indices; this yields a
proper TCI form with the specified τ and/or χ. (iv) A final optional backward sweep without
compression restores full nesting.

4.5.2 LU-canonicalization

LU-canonicalization proceeds in a similar manner, but instead of the CI decomposition C P−1R
it iteratively uses the corresponding LU decomposition LDU , where L is lower-triangular, U
upper-triangular and D diagonal. Forward sweeps generate LLL · · · products while absorbing
DU factors rightwards; backward sweeps generate · · ·UUU products while absorbing LD fac-
tors leftwards. In this manner, one can express F in the form L1 · · · Lℓ−1 eNℓUℓ+1 · · ·UL, for any
ℓ= 1, . . . ,L, if desired.

4.6 High-level algorithms

We have now enlarged our toolbox with several flavors of TCI algorithms and canonical forms
with various options and variants. These algorithms can be combined in numerous ways to
provide more abstract, high-level algorithms for different tasks. The best combination will
depend on the intended application, and we provide some rough practical guidelines below.
The corresponding computational costs are listed in Table 2.

• 2-site TCI in accumulative plus rook pivoting mode is the fastest technique. It requires the
least pivot exploration and very often provides very good results on its own. The accuracy
can be improved, if desired, by following this with a few (cheap) 1-site TCI sweeps to reset
the pivots.

• 2-site TCI in reset plus rook pivoting mode is marginally more costly than the above but
more stable. It is a good default. For small d, one should use the full search, which is even
more stable and involves almost no additional cost if d ≤ 2nrook.

• If good heuristics for proposing pivots are available or ergodicity issues arise, one should
consider switching to global pivot proposal followed by 2-site TCI.

• To obtain the best final accuracy at fixed χ, one can build a TCI with a higher rank χ ′ > χ,
then compress it using either SVD or CI recompression.
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• For calculations of integrals or sums, we recommend the environment mode. In some
calculations, we have observed it to increase the accuracy by two digits for the same com-
putational cost.

4.7 Operations on tensor trains

The various TCI algorithms can be combined with other MPS algorithms [2,9] in various ways.
Let us mention a few examples.

Function composition. Given a TCI eFσ approximating a function f , its composition with
another function g( f (x)), can be performed by constructing another TCI, eGσ ≈ g(eFσ). The
repeated evaluations of eFσ required for this can be accelerated by caching partial contractions
of the tensor train. This gives a runtime complexity of O(χeFχ3

eGdL), where χeF and χeG are

the ranks of eF and eG. Since the tensors Tℓ are slices of eF , the new TCI eG can be initialized
by applying g to each element of Tℓ. For simple, monotonically increasing functions g, the
subsequent optimization typically converges very quickly.

Element-wise tensor addition. Given two tensor trains, eF = M1M2 · · ·ML and
eF ′ = M ′1M ′2 · · ·M ′L, their element-wise sum eF ′′σ = eFσ + eF ′σ can be computed by creating block
matrices,

M ′′σℓ
ℓ
=

�
Mσℓ
ℓ

0
0 M ′σℓ

ℓ

�
, (58)

and recompressing the resulting tensor train eF ′′σ = Tr(M ′′σ1
1 M ′′σ2

2 · · ·M ′′σL
L ) using the CI-

canonicalization algorithm. The total runtime complexity is dominated by that of the recom-
pression, namely O

�
(χ + χ ′)3dL
�
, where χ and χ ′ are the ranks of eF and eF ′. An advantage

over the conventional SVD-based recompression is that the resulting MPS is truncated in terms
of the maximum norm rather than the Frobenius norm, which can be more accurate for certain
applications (see Sec. 7 for an example).

Matrix-vector contractions. Consider the contraction Gσ′σFσ in a dL-dimensional space.
If G and F are compressible tensors, TCI can be used to approximate them by an MPO and
MPS, respectively, where the former is of the form

Gσ′σ ≈ eGσ′σ = [W1]
σ′1σ1

1i1
[W2]

σ′2σ2

i1 i2
· · · [WL]σ

′
LσL

iL−11 =
1σ 2σ Lσ...

...
1
′σ 2

′σ L
′σ

1i 2i 1L−i . (59)

Their contraction yields another MPS:

Gσ′σFσ ≈ eGσ′σ eFσ = 1σ 2σ Lσ =

...
1
′σ 2

′σ L
′σ

1
′σ 2

′σ L
′σ...

. (60)

The MPO-MPS contraction can be computed exactly by performing the sum
∑
σ, yielding an

MPS with bond dimensions χℓ,eGχℓ,eF . The standard, SVD-based MPS toolbox offers two ways to
obtain a compressed version of this result: (i) Fitting the exact result to an MPS with reduced
bond dimensions; or (ii) zip-up compression, where the MPO-MPS contraction is performed
one site at a time, followed by a local compression before proceeding to the next site [51–53].
TCI in principle offers further options, e.g. zip-up compression as in (ii), but performing all
compressions using CI instead of SVD. The computational times of all these options areO(χ4L)
for χeG = χeF = χeGeF = χ. The potential advantages of TCI- or CI-based contractions are two-
fold: the resulting MPS is truncated in terms of the maximum norm; and we can use the rook
search, which can be efficient for large local dimensions d. To what extent TCI-based MPO-
MPS contraction schemes have a chance of outperforming SVD-based ones will depend on
context and is a question to be explored in future work.

27



SciPost Phys. 18, 104 (2025)

4.8 Relation to machine learning

In this section we briefly compare and contrast TCI with other learning approaches such as
deep neural network approaches.

TCI unfolding algorithms construct MPS representations eF for F by systematically learning
its structure. Learning the tensor F in the traditional machine learning sense would amount to
the following sequence: (1) draw a training set of configurations/values {σ, Fσ}; (2) design a
model eFσ (typically a deep neural network); (3) fit the model to the training set by minimizing
the error ∥F−eF∥, measured w.r.t. to some norm (typically using a variant of stochastic gradient
descent); and (4) use the model to evaluate eFσ for new configurations. TCI implements this
program with a few very important differences:

(1) TCI does not work with a given data set; instead, it actively requests the configurations
that are likely to bring the most new information on the tensor (active learning).

(2) The model is not a neural network but a tensor train, i.e. a tensor network (a highly
structured model). If F has a low-rank structure it can be accurately approximated by
a low-rank tensor train eF , with an exponentially smaller memory footprint. For TCI to
learn eF , the number of samples of Fσ requested by TCI will be≪ dL.

(3) The actual TCI algorithm used to minimize the error ∥F − eF∥ is conceptually very different
from gradient descent. It guarantees that the error is smaller than a specified tolerance τ
for all known samples.

(4) Once eF has been found, its elements eFσ can be computed for all configurations σ. This
by itself may not seem like progress, since we had assumed that one could call any Fσ to
begin with. Nevertheless, access to any eFσ may be useful in cases where accessing Fσ is
computationally expensive (e.g. the result of a complex simulation), or possible only in a
limited time window (e.g. while collecting experimental data). Much more importantly,
the tensor train structure of eF permits subsequent operations (such as computing

∑
σ Fσ

over all configurations) to be performed exponentially faster.

5 Application: Computing integrals and sums

We now turn to practical illustrations of TCI in action. The following three sections give exam-
ples of various TCI applications, together with code listings illustrating how they can be coded
using xfac or TCI.jl libraries.

The present section deals with the most obvious application of TCI: computing large in-
tegrals and sums. The basic idea has already been briefly introduced in Sec. 2.2. Here, we
provide more details, a further example and the code listing used to compute it.

For historical reasons the xfac library implements two sets of algorithms corresponding
to two classes TensorCI1 and TensorCI2. The former is based on CI in accumulative mode and
will eventually be deprecated while the latter is based on prrLU and supports many different
modes. The Julia package TCI.jl follows closely the implementation of TensorCI2.

5.1 Quadratures for multivariate integrals

Consider a multi-dimensional integral,
∫

D dNx f (x), with x = (x1, . . . , xN ), over a domain
D = D1× · · ·×DN . (We here denote the number of variables by N (not L), for notational
consistency with Sec. 6 and Refs. [13, 15].) For each variable xℓ ∈ Dℓ we choose a grid of
discretization points {xℓ(σℓ)}, enumerated by an index σℓ = 1, . . . , dℓ, and an associated grid
of quadrature weights {wℓ(σℓ)}, such that its 1D integral is represented by the quadrature
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rule
∫

Dℓ
d xℓ f (xℓ) ≈
∑dℓ
σℓ=1 wℓ(σℓ) f
�
xℓ(σℓ)
�
. A typical choice would be the Gauss–Kronrod

or Gauss–Legendre quadrature. Then, we use the natural tensor representation F (Eq. (2)) of
f and its TCI unfolding eF to obtain a factorized representation of the function,

f
�
x(σ)
�
= Fσ ≃ eFσ =

N∏
ℓ=1

Mσℓ
ℓ

. (61)

Since eF does not incorporate quadrature weights, this is called an unweighted unfolding. The
N -fold integral over f can thus be computed as [8,12,13]

∫

D
dNx f (x)≈
∑
σ

� N∏
ℓ=1

wℓ(σℓ)
�

f
�
x(σ)
�≈

N∏
ℓ=1

� dℓ∑
σℓ=1

wℓ(σℓ)M
σℓ
ℓ

�
. (62)

The first approximation ≈ refers to the error of the quadrature rule (controlled by the num-
ber of points dℓ in the discretization of each variable). The second ≈ is the factorization error
(controlled by the rank χ) of the unfolding (61). Thus, the computation of one N -dimensional
integral has been replaced by Nχ2 exponentially easier problems, namely 1-dimensional in-
tegrals that each amount to performing a sum

∑
σℓ

.
An alternative to unweighted unfolding is weighted unfolding, which unfolds the weighted

tensor
�∏N

ℓ=1 wℓ(σℓ)
�

f
�
x(σ)
�
= Fσ ≃ eFσ =
∏N
ℓ=1 Mσℓ

ℓ
. Then, the integral is given by

∫

D
dNx f (x)≈
∑
σ

� N∏
ℓ=1

wℓ(σℓ)
�

f
�
x(σ)
�≈

N∏
ℓ=1

� dℓ∑
σℓ=1

Mσℓ
ℓ

�
. (63)

The weighted tensor has the same rank as the unweighted one since the weights form a rank-1
MPS. The weighted unfolding can sometimes be more efficient than unweighted unfolding—
achieving higher accuracy for a givenχ—since the error estimation during the TCI construction
includes information about the weights. The weighted unfolding is typically combined with the
use of the environment error that directly targets the best error for the calculation of integrals.

5.2 Example code for integrating multivariate functions

Next, we illustrate how TCI computations of multivariate integrals can be performed using the
xfac toolbox. For definiteness, we consider a toy example from Ref. [54] for which the result
is known analytically: the computation of the following integral over a hypercube:

I (N ) =

∫

[0,1]N
d x1 · · · d xN f (x) , f (x) =

2N

1+ 2
∑N
ℓ=1 xℓ

. (64)

For N = 5, the analytical solution of above integral is

I (5) = [−65205 log(3)− 6250 log(5) + 24010 log(7) + 14641 log(11)]/24 . (65)

1 import xfacpy
2 from math import log
3

4 N = 5 # Number of dimensions
5

6

7 def f(x): # Integrand function
8 f.neval += 1
9 return 2**N / (1 + 2 * sum(x))
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10

11

12 f.neval = 0
13

14 # Exact integral value in 5 dimensions
15 i5 = (- 65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
16

17 # Gauss-Kronrod abscissas (xell) and weights (well)
18 xell, well = xfacpy.GK15(0, 1)
19

20 # TCI1 Tensor factorization, no environment
21 tci = xfacpy.CTensorCI1(f, [xell] * N)
22

23 # Estimate integral and error
24 for hsweep in range(14):
25 tci.iterate()
26 # calculate the integal over the hypercube
27 itci = tci.get_TensorTrain().sum([well] * N)
28 print("hsweep= {}, neval= {}, I_tci= {:e}, |I_tci - I_exact|= {:e}, in-sample err= {:e}"
29 .format(hsweep+1, f.neval, itci, abs(itci - i5), tci.pivotError[-1]))

Listing 1: Python code to numerically compute the integral I (N=5) (Eq. (64)) using
the xfac package with TensorCI1. The script performs 14 half-sweeps using continuous
TCI on a 15 point Gauss–Kronrod grid. For each half-sweep (hsweep), the number of
function evaluations (neval), the approximate integral value (itci), the absolute error
with respect to the exact integral value (i5) from Eq. (65) and the in-sample error
(insample err) is printed. These values are shown in Figs. 4(a-c).

The Python script to perform the integration numerically using the Python bindings of
xfac (package xfacpy) is shown in code Listing 1; see Listing 11 for an equivalent Julia code
using TCI.jl. Both codes can be trivially adapted to compute the integral of any function
which is known explicitly by just modifying the definition of f (x).

In the Python code, lines 1 and 2 import the packages xfacpy and the log function (needed
for comparison with Eq. (65)). Lines 7–9 define the user-supplied function f ; line 8 defines
an (optional) attribute of f , neval, counting the number of times the integrand is called; line 9
defines the integrand. Here x is a list of floats or a numpy array. For each argument xℓ, the
user specifies a grid {xℓ(σℓ)} of dℓ quadrature nodes, enumerated by an index σℓ, and an
associated grid of quadrature weights {wℓ(σℓ)} (cf. Sec. 5.1). Here, we use the nodes and
weights of the Gauss–Kronrod quadrature, with dℓ = 15 for all ℓ. For convenience, the Gauss–
Kronrod quadrature is included in xfac so that the GK15 function in line 18 returns two lists,
xell and well, containing the quadrature nodes {xℓ(σℓ)} and weights {wℓ(σℓ)}, respectively
(chosen the same for all ℓ).

The CTensorCI() object created in line 21 is the basic object used to perform TCI on a con-
tinuous function, discretized as Fσ = f

�
x(σ)
�
. This class performs the factorization in accu-

mulative mode. Note that CTensorCI() is a thin wrapper over the corresponding discrete class
TensorCI() that creates Fσ from f (x) and the grids xℓ(σℓ). To instantiate the class, two argu-
ments must be provided: the function f, and the grid on which the function will be called,
[xell] * N. For N = 5, the latter is equivalent to [xell, xell, xell, xell, xell], i.e. five copies
of the GK15 grid (a list of list of points).

The loop in lines 24–29 performs a series of half-sweeps, alternating left-to-right and
right-to-left, 14 in total (i.e. 7 full sweeps), to iteratively improve the TCI approximation
eFσ of the tensor Fσ. In line 25, tci.iterate() performs one half-sweep, and in line 27,
tci.get_TensorTrain().sum([well] * N) calculates the integral according to Eq. (62). Finally,
lines 28 and 29 print the results: the number of half-sweeps, hsweep; the number of calls to
f , neval; the calculated value of the integral, itci; its error with respect to the exact calcula-
tion, |I (N )−eI (N )|; and the “in-sample error”, in-sample err, defined as the maximum difference
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Figure 4: Performance metrics for the TCI computation of the N -dimensional inte-
gral I (N ) =
∫

dNx f (x) of Eq. (64) using the natural tensor representation (2), for
N = 5,10, 20. (a–c) The relative error for the integral |1 − I (N )/eI (N )| (solid lines
with circles), the maximum (over all sampled pivots) of the relative in-sample error
|1 − Fσ/eFσ|∞ (dashed lines with crosses), and (d–f) the number of function calls,
all plotted versus the number of half-sweeps. The TCI computation of eI (N ) has been
performed on a 15-point Gauss–Kronrod grid (i.e. dℓ = 15), either in the no envi-
ronment mode (“no env”, blue) or in the environment mode (“env”, orange). (g)
The final bond dimension χℓ plotted vs. ℓ ∈ [1,N ], for N = 5, 10, 20. The growth
of χℓ with increasing ℓ or N − ℓ flattens off at rather small values of χ = max{χℓ},
indicating that the function f (x) is strongly compressible. [Code: Listing 1 (Python),
11 (Julia)]

|Fσ − eFσ| during the half-sweep (a “training set error”, albeit a very conservative one because
the algorithm is actively looking for points with large errors). The code above performs the
bare variant (no environment) of the factorization of Fσ. For comparison, we have also com-
puted the factorisation in environment mode (see Sec. B.1.1 for the corresponding syntax).

Figure 4 shows the two errors (upper panel) and number of function calls (lower panel)
as a function of the number of half-sweeps for N = 5, 10, and 20. The convergence of the
integral is very fast and depends only weakly on the number of dimensions. It turns out that,
in this example, the environment mode (orange) does not bring much advantage over the
bare mode (blue). To highlight the strength of TCI we note that for N = 5 (or N = 20) the
14 half-sweeps needed to reach an absolute error below 10−10 (or 10−8) required roughly 104

(or 105) function calls, hence the ratio of the number of sampled points to all points of Fσ was
only 104/155 ≈ 10−2 (or 105/1520 ≈ 10−19). In general, if the rank of the MPS unfolding of
the integrand remains roughly constant as the number of dimensions increases, then the gain
in favor of TCI increases exponentially.

Finally, let us state that the method presented above only works if the chosen quadrature
model (e.g. the Gauss–Kronrod quadrature) is suitable for the integrand in question. A variant
of this method using the quantics representation is presented in section 6.3.2.

5.3 Example of computation of partition functions

Our second example is very similar to the previous one except that we now consider an object
that is already a (discrete) tensor, without any need to perform a discretization. This example
was implemented in C++, and the code used to generate all data can be found in Listing 10
in App. B.2.1.
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Figure 5: Unfolding the Boltzmann distribution function for the inverse square Ising
chain via 2-site TCI in reset mode. The first three panels show the evolution of (a) the
number of function calls, (b) pivot errors, and (c) magnetization with TCI full-sweeps
for L= 64 for β = 0.1, 0.6 and 1.1. (d) The free energy density, (e) specific heat, and
(f) the second-order moment, for L = 16, 64 and 256, computed for temperatures
in the vicinity of the phase transition at βc ≈ 0.62. [Code: Listing 10 (C++)]

We consider the calculation of a classical partition function of the form Z =
∑
σWσ, where

Wσ = e−βEσ and Eσ are the Boltzmann weight and energy, respectively, of a configuration
σ = (σ1, . . . ,σL) and β = 1/T is the inverse temperature of the system. Once the Boltz-
mann weight has been put in TCI form, Wσ ≃fWσ =

∏L
ℓ=1 Mσℓ

ℓ
, the partition function can be

expressed in factorized form, allowing its evaluation in polynomial time:

Z =
∑
σ

Wσ ≈
∑
σ

fWσ =
∑
σ

L∏
ℓ=1

Mσℓ
ℓ
=
L∏
ℓ=1

∑
σℓ

Mσℓ
ℓ

. (66)

This direct access to Z stands in contrast to Monte Carlo approaches: these typically evaluate
ratios of sums, giving easy access only to observables such as magnetization but not directly to
the partition function itself. From Z , one can calculate the free energy per site, F = (βL)−1lnZ ,
and the specific heat, C = β2 ∂ ln Z

∂ β2 (evaluated through finite differences). Other quantities can
also be calculated directly using appropriate weights.

Our example is a ferromagnetic Ising chain with a long-range interaction decaying as the
inverse square of the distance. The energy of a configuration reads

Eσ = −
∑
ℓ<ℓ′

Jℓℓ′σℓσℓ′ , (67)

where σℓ = ±1 is a classical spin variable at site ℓ and Jℓℓ′ = |ℓ− ℓ′|−2 the coupling constant
between sites ℓ and ℓ′. This system is sufficiently complex to display a Kosterlitz-Thouless
transition [55–57] at βc ≈ 0.62. Beyond the free energy, we also calculate the magnetization
M =
∑L
ℓ=1σℓ/L and its variance, using suitably modified versions of Eq. (66).

In Figs. 5(a–c), we first inspect the accuracy of the TCI at three different temperatures with
L = 64. Fig. 5(a) shows the accumulated number of function calls to the Boltzmannn weight
Wσ over several sweeps. The total number of function calls initially grows exponentially, then
the growth slows down significantly once the TCI’s pivot error [Fig. 5(b)] approaches conver-
gence. In Fig. 5(c), we see that irrespective of β , the average of the on-site magnetization
reduces to almost zero (smaller than 10−8) when the TCI’s pivot error is sufficiently small.
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This is due to symmetry since we did not use a (small) magnetic field to break the global Z2
symmetry of the problem. To preserve this symmetry during TCI, we start the algorithm with
two global pivots: σ = (1,1, . . . , 1) and (−1,−1, . . . ,−1). This is very important at low tem-
perature. Indeed, if we use only a single global pivot, then the pivot exploration gets stuck
in the corresponding sector and we obtain the same result as if we had broken the symmetry
with a small magnetic field. Even though the initial pivots correspond to fully polarized con-
figurations (β →∞), TCI converges well at all temperatures, including in the paramagnetic
phase. This is a indication of the robustness of the algorithm.

Figures 5(d–f) compare physical observables, such as the free energy, the specific heat,
and the second magnetic moment, for L= 16, 64 and 256. The smoothness of the free energy
curve versus β [Fig. 5(d)] rules out the possibility of a first-order transition. Yet a phase
transition is clearly seen in Fig. 5(e), as the specific heat develops an increasingly sharp peak
when increasing the system size. Figure 5(f), showing the second magnetic moment, likewise
indicates that a phase transition occurs at β ≈ 0.62, where the three sets of data points for
different system sizes intersect.

6 Application: Quantics representation of functions

When working with functions f (x) for which a very high resolution of the variables x is desired,
e.g. functions having structures with widely different length scales, using the quantics tensor
representation [18,19] can be advantageous. It achieves exponential resolution by representing
the function variables x through binary digits σ. The resulting binary representation of the
function can be viewed as a tensor, Fσ = f (x(σ)). Many functions are represented by a low-
rank tensor, including some functions involving vastly different scales [15,21,49]. This section
discusses various applications of quantics TCI.

6.1 Definition

We begin by discussing the quantics representation of a function of one variable, f (x). The
variable is rescaled such that x ∈ [0,1) and discretized on a uniform grid x(m) = m/M , with
M = 2R and m = 0,1, . . . , M − 1. We express the grid index m in binary form using R bits
σr ∈ {0,1} as follows (the second expression is standard binary notation)

m(σ1, . . . ,σR) = (σ1σ2 · · ·σR)2 ≡
R∑

r=1

σr2
R−r . (68)

We define σ = (σ1, . . . ,σR) and x(σ) = x(m(σ)). Bit σr now resolves x at the scale 2−r .
Thus, the discretized function f is a tensor Fσ = f (x(σ)), the quantics representation of f . It
has L=R indices, each of dimension d = 2.

For a function of N variables, f (x) = f (x1, . . . , xN ), we rescale and discretize each variable
as xn(mn) = mn/M = mn/2

R, then express mn through R bits σnr ∈ {0,1} as

mn(σn1, . . . ,σnR) = (σn1σn2 · · ·σnR)2 =
R∑

r=1

σnr2
R−r . (69)

The vector x is represented by a tuple of L = NR bits, where bit σnr resolves xn at the scale
2−r . The rank of the tensor train eFσ obtained by unfolding Fσ can strongly depend on the way
we order the different bits. In the interleaved quantics representation, we group all the bits that
address the same scale together and relabel the bits as σ = (σ1, . . . ,σL), with σℓ(n,r) = σnr
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and ℓ= n+(r−1)N = 1, . . . ,L, such that

. . . . . . . . . . . .11σ 12σ

. . . . . .1σ 2σ
σ

�σ

= =σ

= .

1Nσ 2Nσ 1Rσ RNσ

Lσ

)
)σ(xfF

(70)

If the variables at the same scale are strongly entangled, which is the case in many physical
applications, using the interleaved quantics representation can lead to a more compressible
tensor [15, 18, 19, 21]. An alternative is the fused quantics representation, Fσ̃ = f

�
x(σ̃)
�
,

where we “fuse” all bits for scale 2−r into a single variable

σ̃r = (σN r · · ·σ2rσ1r)2 =
N∑

n=1

2n−1σnr , (71)

taking the values 0, . . . , 2N−1, and arrange these variables as σ̃ = (σ̃1, . . . , σ̃R). One can also
group together all bits addressing a given variable xn, as done in the natural representation.

Once a quantics representation F of f has been defined, TCI can be applied to F to obtain
a tensor train eF interpolating f with exponential resolution. We dub this algorithm quantics
TCI (QTCI), and the resulting tensor train a quantics tensor train (QTT) [18–20].

Some simple analytic functions are approximated well as a QTT with χ < 10. For instance,
a pure exponential, f (x) = eλx , has χ = 1, since its quantics tensor factorizes completely,
Fσ =
∏R

r=1 eλσr 2R−r
. Similarly, sine and cosine functions have χ = 2, since they can be

expressed as sums of two exponentials, i.e. sums of two rank-1 tensors. Some discontinuous
functions likewise have low-rank in quantics representations, such as the Dirac delta (χ = 1)
and Heaviside step function (χ = 2) [19]. By contrast, random noise is incompressible and
leads to χ ∼ dL/2. More generally, if a function has low quantics rank χ, the sites representing
different scales are not strongly “entangled”. In this sense, the quantics rank of a function
quantifies the degree of scale separation inherent in the function [15,21].

An interesting example of low-rank analytic functions of two variables is the Kronecker
delta function f (m1, m2) = δm1m2

defined on a discrete 2D grid. Its matrix representation, the
2R×2R unit matrix, is incompressible (in the sense of SVD) because all its singular values are
1. In the quantics representation, f (m1, m2) = δσ11σ21

· · · δσ1rσ2r
· · · δσ1R,σ2R

, which can be
regarded as a rank-1 MPS by fusing σ1r and σ2r .

Other examples for functions of multiple variables that can be approximated as a low-rank
QTT are multivariate analogues of the 1D examples above, with x ∈ RN : a single exponential
f (x) = exp(v · x) with arbitrary v has bond dimension χ = 1; a Dirac delta δ(x) reduces to
the Kronecker delta above and therefore has bond dimension χ = 1 as well; a step function
f (x) = θ (v · x− b) for given v and b has bond dimension χ = 2. In all examples mentioned
here, the small bond dimension is due to separability of length scales. An example where
length scales are not separable is the function f (x) = θ (1− ∥x∥2), which is equal to 1 inside
the unit sphere and 0 outside. Since the surface of the sphere is curved, the maximum bond
dimension, χmax, needed to represent this function with a QTT will depend on the resolution
with which the surface is resolved, increasing as the resolution is refined. This is illustrated in
Fig. 6 for the case N = 2.

6.2 Operating on quantics tensor trains

Given a function represented by a quantics tensor train, various operations on these functions
can be performed within the tensor train form. In the following, we describe how to calculate
integrals, convolutions and symmetry transforms within the quantics representation; quantics
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Figure 6: (a) The function f (x) = θ (1− ∥x∥2), in N = 2 dimensions. (b) The bond
dimension χℓ of a QTT representation of f with interleaved index ordering, plotted
for several values of R. Along the chain, the bond dimension scales as χℓ ∼ 2ℓ/2.
Intuitively, this is because each additional pair of bits σ1r ,σ2r doubles the number of
points close to the circle, which are those that contain additional information. (c) The
maximal bond dimension, χmax, increases exponentially with R, as χmax ≈ 22(R+1)/3.
This behavior is independent of the specified tolerance, because the step function
changes abruptly. If the step function is broadened, the maximum bond dimension
decreases significantly, in a manner depending on the tolerance.

Fourier transforms are described in detail in Sec. 6.2. In addition, the methods for element-
wise operations and addition of tensor trains that have already been introduced in Sec. 4.7
work just as well here. These basic ‘building blocks’ can be combined to formulate more
complicated algorithms entirely within the quantics tensor train form.

Integrals are approximated as Riemann sums, then factorized over the quantics bits as

∫

[0,1]N
dNx f (x)≈ 1

2L

∑
σ

f
�
x(σ)
�
=

1
2L

∑
σ

Fσ ≈
1

2L

∑
σ

eFσ = 1
2L

L∏
ℓ=1

� 2∑
σℓ=1

Mσℓ
ℓ

�
, (72)

where 1/2L is the integration volume element. Since the number of discretization points is
exponential in L, the discretization error of this integral decreases as O(1/2L), whereas the
cost of the factorized sum is O(χ2dL), i.e. linear in L.

Matrix products of the form f (x,z) =
∫

D dNyg(x,y)h(y,z) can be performed as follows.
We use quantics representations for each of the variables x, y and z, e.g. x = x(σx) with
σx = (σ1x , . . . ,σLx) and L=NR. We unfold the tensors for g and h as MPOs,

eGσxσ y
=

x1σ x2σ

y1σ y2σ

xLσ

yLσ

...

...
, eHσ yσz

=
y1σ y2σ yLσ

z1σ z2σ zLσ

...

...
, (73)

with indices at matching scales, (σℓx ,σℓy) or (σℓy ,σℓz), assigned to the same site ℓ.
We then approximate the integral

∫
dNy by a factorized sum over each σℓy , cf. (72),

f (x,y) ≈ 2−L
∑
σ y
eGσxσ y
eHσ yσz

, which can be computed and compressed in several ways,
see Sec. 4.7.

Quantics Fourier transform can be performed using a simple MPO-MPS contraction, where
the MPO is of surprisingly low rank (χ ≈ 11 for machine precision in one dimension) [21,
58]. This means that taking the Fourier transform of a function that has a low-rank quantics
tensor train can be done exponentially faster than with FFT. Calculating f̂ (k) =

∫
dx f (x)e−ik·x
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on a quantics tensor train representing f (x) is equivalent to the quantum Fourier transform
algorithm ubiquitous in quantum computing [18].

Consider a discrete function fm ∈ CM , e.g. the discretization, fm = f (x(m)), of a one-
dimensional function f (x) on a grid x(m). Its discrete Fourier transform (DFT) is

f̂k =
M−1∑
m=0

Tkm fm , Tkm =
1p
M

e−i2πk·m/M . (74)

For a quantics grid, M = 2R is exponentially large and the DFT exponentially expensive to
evaluate. We seek a quantics tensor train representing T , because then f̂ = T f can be com-
puted by simply contracting the tensor trains for T and f and recompressing [18,19,21].

We start by expressing m and k in their quantics form

m(σ) = (σ1σ2 · · · σR)2 =
R∑
ℓ=1

σℓ2
R−ℓ , k(σ′) = (σ′1σ

′
2 · · · σ′R)2 =

R∑
ℓ′=1

σℓ′2
R−ℓ′ . (75)

Then, T has the quantics representation

Tµ = Tσ′σ = Tk(σ′)m(σ) =
1p
M

exp
�
−i2π
∑
ℓℓ′

2R−ℓ
′−ℓσ′ℓ′σℓ
�

, (76)

where we introduced the fused index µ = (µ1, . . .µR), with µℓ = (σ′R−ℓ+1,σ
ℓ
). We thereby

arrangeσ′ andσ indices in scale-reversed order [21], so that σ′R−ℓ+1, describing the scale 2ℓ−1

in the k domain, is fused with σℓ, describing the scale 2R−ℓ in the m domain, in accordance
with Fourier reciprocity (small k scales match large m scales and vice versa):

. . .. . .

=

1µ 2µ 1R−µ Rµ�µ

µT . . .1σ 2σ . . . Rσ1R−σ�σ

. . . . . .
1R−

′σR
′σ 1

′σ2
′σ+1�R−

′σ

. (77a)

The tensor Tµ turns out to have a remarkably low rank [21,58]: when unfolded as a MPO eTµ,

. . .. . .

=

1µ 2µ 1R−µ Rµ�µ

. . .1σ 2σ . . . Rσ1R−σ�σ
µT̃

. . . . . .
1R−

′σR
′σ 1

′σ2
′σ+1�R−

′σ

, (77b)

a rank of χ = 11 suffices to yield machine precision, i.e. errors |Tµ − eTµ|∞/|Tµ|∞ < 10−10,
irrespective of R [21,58]. By contrast, if a scale-reversed order is not used (i.e., µℓ = (σ′ℓ,σℓ)),
the resulting tensor Tµ has exponentially large rank [59]. An intuitive explanation for the scale-
reversed order is given in Appendix A.5, which also verifies through numerical experiment that
the small-rank representation is found by TCI.

It follows that for a 1D function with rank χ ′ in quantics representation, the DFT can be
obtained in O(χ2χ ′2R) = O(χ2χ ′2 log M) operations, where M = 2R is the number of points
in the grid. This is exponentially faster than the O(M log M) of the fast Fourier transform [21,
58,60].

6.3 Example: High-resolution compression of functions

In this section we illustrate the use of quantics TCI for representing functions in 1, 2 and 3
dimensions, and for computing multi-dimensional integrals.
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Figure 7: (a-c) The function f (x) of Eq. (78) (solid blue) and its quantics repre-
sentation (orange dashed) with R = 40 for χ = 1, 5 and 12. Although the TCI is
performed on 240 ≈ 1012 points, only a small fraction are actually shown in the plot.
(d) Bond dimension χℓ as a function of ℓ, for χ = 1, 5,12. (e) Error on the integral
I =
∫ 10
−10 dx f (x) calculated from its QTCI approximation, eI . The plot shows the rel-

ative error εI = |eI/I − 1|, plotted versus the rank χ of the QTCI approximation, for
R= 10, 20, 30, 40. [Code: Listing 2 (Python), 3 (Julia)]

6.3.1 Oscillating functions in 1, 2 and 3 dimensions

1d oscillating function As a first example, we consider a simple function with large oscilla-
tions:

f (x) = sinc(x) + 3e−0.3(x−4)2 sinc(x − 4)− cos(4x)2 − 2 sinc(x + 10)e−0.6(x+9)

+ 4cos(2x)e−|x+5| +
6

x − 11
+
Æ
(|x |)arctan(x/15) , (78)

where sinc(x) = sin x/x is the sinus cardinal and x ∈ [−10,10].
The code of Listing 2 discretizes the function on a quantics grid of 240 points {x(σ)}, de-

fines the tensor Fσ = f
�
x(σ)
�

and uses xfac to TCI it, eFσ ≈ Fσ. Listing 3 shows TCI.jl code
performing the same task. Figs. 7(a–c) show the resulting QTCI approximation: it converges
very quickly with increasing χ. Fig. 7(d) shows the bond dimension χℓ as a function of ℓ. It
remains small (≤ 10), hence the function is strongly compressible. Figure 7(e) shows that
the integral I =

∫ +10
−10 dx f (x) converges rapidly with increasing χ even though the function is

highly oscillatory.

1 import xfacpy
2 import numpy as np
3

4 # Grid parameters
5 R = 40 # Number of bits <@$\cR$@>
6 M = 2**R # Number of grid points <@$M$@>
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7 xmin, xmax = -10.0, +10.0 # Domain of function <@$f$@>
8

9

10 def m_to_sigma(m): # Convert grid index <@$m$@> to quantics multi-index
<@$\bsigma(m)$@>

11 return [int(k) for k in np.binary_repr(m, width=R)]
12

13

14 def sigma_to_x(sigma): # Convert quantics multi-index <@$\bsigma$@> to grid point
<@$x(\bsigma)$@>

15 ind = int(''.join(map(str, sigma)), 2)
16 return xmin + (xmax-xmin)*ind/M
17

18

19 def f(x): # Function of interest <@$f(x)$@>
20 return (np.sinc(x)+3*np.exp(-0.3*(x-4)**2)*np.sinc(x-4)-np.cos(4*x)**2 -
21 2*np.sinc(x+10)*np.exp(-0.6*(x+9))+4*np.cos(2*x)*np.exp(-abs(x+5)) +
22 6*1/(x-11)+abs(x)**0.5*np.arctan(x/15))
23

24

25 def f_tensor(sigma): # Quantics tensor <@$F_\bsigma$@>
26 return f(sigma_to_x(sigma))
27

28

29 # Set first pivot to <@$\bar\bsigma=(0, \ldots, 0)$@> and initialize TCI <@$\tF_\bsigma$@>
30 p = xfacpy.TensorCI1Param()
31 p.pivot1 = [0 for ind in range(R)]
32 f_tci = xfacpy.TensorCI1(f_tensor, [2]*R, p)
33

34 # Optimize <@$\tF_\bsigma$@>
35 for sweep in range(12):
36 f_tci.iterate() # Perform a half sweep
37

38 f_tt = f_tci.get_TensorTrain() # Obtain the TT <@$M_1 M_2 \ldots M_\scR$@>
39 # Print a table to compare <@$f(x)$@> and <@$\tF_\bsigma$@> on some regularly spaced

points
40 print("x\t f(x)\t f_tt(x)")
41 for m in range(0, M, 2**(R-5)):
42 sigma = m_to_sigma(m)
43 x = xmin + (xmax-xmin)*m/M
44 print(f"{x}\t{f(x)}\t{f_tt.eval(sigma)}")

Listing 2: Python code using xfac to compute construct a quantics tensor train for
the function f (x) of Eq. (78), shown in Fig. 7, using 240 grid points. Note that this
code could also have used pre-defined functions that are part of xfac to generate
quantics grids x(σ) and convert between x , m, and σ, see App. B.1.3.

2d oscillating function The above construction generalizes straightforwardly to more than
one dimension. Let us consider the following simple 2d function with features at vastly differ-
ent scales:

f (x , y) = 1+ e−0.4(x2+y2) + sin (x y) e−x2
+ cos (3x y) e−y2

+ cos (x + y) (79)

+ 0.05 cos
�
102 · (2x − 4y)
�
+ 5 · 10−4 cos
�
103 · (−2x + 7y)

�
+ 10−5 cos
�
2 · 108 x
�

.

We use a quantics unfolding of f (x , y) with R = 40, which discretizes f on a 1012 × 1012

grid. The corresponding quantics tensor Fσ has L = 2R indices, interleaved so that even
indices σ2ℓ encode x and odd indices σ2ℓ+1 encode y . A tensor train approximation is then
obtained using standard TCI, which yields an efficient low-rank representation that rapidly
converges, as shown in Fig. 8 (a–d). At rank χ ≈ 110, the MPS becomes a numerically exact
(within machine precision) representation of the original function at all scales. It requires
only 105 numbers (∼ 1 MB of RAM), which is trivial to store in memory, and 19 orders of
magnitude smaller than needed for a naive regular grid (∼ 1013 TB of RAM). Furthermore,

38



SciPost Phys. 18, 104 (2025)

1 using QuanticsTCI
2 import QuanticsGrids as QG
3

4 R = 40 # Number of bits <@$\cR$@>
5 M = 2ˆR # Number of discretization points <@$M$@>
6 xgrid = QG.DiscretizedGrid{1}(R, -10, 10) # Discretization grid <@$x(\bsigma)$@>
7

8 function f(x) # Function of interest <@$f(x)$@>
9 return (

10 sinc(x) + 3 * exp(-0.3 * (x - 4)ˆ2) * sinc(x - 4) - cos(4 * x)ˆ2 -
11 2 * sinc(x + 10) * exp(-0.6 * (x + 9)) + 4 * cos(2 * x) * exp(-abs(x + 5)) +
12 6 * 1 / (x - 11) + sqrt(abs(x)) * atan(x / 15))
13 end
14

15 # Construct and optimize quantics TCI <@$\tF_\bsigma$@>
16 f_tci, ranks, errors = quanticscrossinterpolate(Float64, f, xgrid; maxbonddim=12)
17 # Print a table to compare <@$f(x)$@> and <@$\tF_\bsigma$@> on some regularly spaced

points
18 println("x\t f(x)\t\t\t f_tt(x)")
19 for m in 1:2ˆ(R-5):M
20 x = QG.grididx_to_origcoord(xgrid, m)
21 println("$x\t$(f(x))\t$(f_tci(m))")
22 end

Listing 3: Julia code using TCI.jl to construct a quantics tensor train for f (x) of
Eq. (78), plotted in Fig. 7. The function quanticscrossinterpolate includes code to
convert f to quantics form, see Sec. 8.3. The xgrid object constructed on line 6 is a
lazy object that does not create an exponentially large object.

it can be manipulated exponentially faster than for the regular grid, including most common
operations such as Fourier transform, convolution or integration.

3d integral Figure 9 shows the last example of this series: the computation of the 3D integral

I =
∫
R3 d3xe−

p
x2+y2+z2 using the quantics representation. TCI in both accumulative and reset

mode converges exponentially fast towards the exact integral I = 8π, almost reaching machine
precision, an indication of excellent numerical stability.

6.3.2 Quantics for multi-dimensional integration

Let us return in this section to the example of the multi-dimensional integral from Sec. 5.2.
In the initial approach, a quadrature has been choosen in order to factorize the function on
the quadrature grid, and then, in a second step, to perform the one-dimensional integrations.
Here, we consider the interleaved quantics representation described in Sec. 6.1, with L=NR
legs of dimension d = 2. After obtaining the QTT from TCI, the integral can be evaluated
efficiently by a factorized sum over the MPS tensors, as shown in Eq. (72). This corresponds
to a Riemann sum with exponentially many discretization points. The results are shown in
Fig. 10. In this example, we observe a fast convergence of the results. Note that using the
fused instead of interleaved representation here would lead to d = 2N , which quickly becomes
prohibitive for large N .

Listing 8 in App. B.1.3 contains the python code (using xfac) yielding the results shownin
Fig. 10. The code is very similar to Listing 1, but replaces the Gauss–Kronrod helper functions
with corresponding functions for a quantics grid. A more detailed discussion can be found in
App. B.1.3. Listing 13 contains an equivalent code using TCI.jl.
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Figure 8: Quantics TCI (QTCI) representation of the function f (x , y) defined in
Eq. (79). (a–d) Approximations obtained for 4 different values of the MPS rank
χ using R = 40 plotted on a coarse grid of 300 × 300 points. (e–h) From left to
right, the panels show different levels of zoom into the QTCI at χ = 50 from coarse
to very fine. At this rank, the compressed representation is numerically exact at all
scales. [Code: Listing 7 (Python), 12 (Julia)]

6.4 Example: Heat equation using superfast Fourier transforms

In this section, we show how the different operations described earlier can be combined for
a nontrivial application: solving a partial differential equation on a grid with exponentially
many grid points [20].

Our example is the solution of the heat equation in 1D,

∂tu(x , t) = ∂ 2
x u(x , t) , (80)

with a billion grid points and a complex initial condition with features at different scales. Since
its solution is trivial in Fourier space, u(k, t) = e−k2 tu(k, 0), our strategy is simple: put u(x , 0)
in quantics form using TCI, Fourier transform it (in ultrafast way), evolve it up to time t and
Fourier transform back to real space.

We discretize the spatial variable as x(m) = xmin+mδ with δ = (xmax− xmin)/M , M = 2R.
Then, we view u as a vector with components um(t) = u(x(m), t), satisfying the equation

∂tum(t) =
�
um−1 − 2um + um+1

�
/δ2 . (81)

Taking the discrete Fourier transform of this equation using uFT = Tu one obtains

∂tu
FT
k (t) = −(2/δ)2 sin2(πk/M)uFT

k (t) . (82)

For a given initial condition um(0), with Fourier transform uFT
k (0), this can be solved as

uFT
k (t) = gk(t)u

FT
k (0) , gk(t) = exp

�−(2/δ)2 sin2(πk/M)t
�

. (83)

The algorithm to solve the heat equation using the quantics representation is now straightfor-
ward. It is summarized through the following mappings:

um(0)
QTCI−−→ eUσ(0) , gk(t)

QTCI−−→ eGσ′(t) , Tkm
QTCI−−→ eTσ′σ , (84a)

eUσ(0)
×eTσ′σ−−−→ eU FT

σ′(0)
×eGσ′ (t)−−−−→ eU FT

σ′(t)
×eT−1
σσ′−−−→ eUσ(t) . (84b)
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Figure 9: Consider the 3D integral I =
∫
R3 d3x e−

p
x2+y2+z2 = 8π. We use xfac to

compute its QTCI approximation, eI , on a uniform grid of 23R points with R= 30 in
the cube [−40, 40]3. The plot shows the error εI = |eI/I−1| (solid lines with symbols)
and the pivot error (dashed lines) as function of the MPS rank χ, computed using
accumulative mode (blue) and reset mode (orange).

By Eq. (84a), we first QTCI all relevant objects; by Eq. (84b), we then Fourier transform the
initial condition, time-evolve it in momentum space, and then Fourier transform it back to
position space. The third step of Eq. (84b) involves element-wise multiplication of two tensor
trains, eU FT

σ′(t) = eGσ′(t)eU FT
σ′(0), performed separately for every σ′. Note that the application of

the tensor train operators eT and eT−1 are understood to each be followed by TCI recompres-
sions.

We consider an initial condition with tiny, rapid oscillations added to a large, box-shaped
background described by Heaviside θ -functions:

u(x , 0) = 1
100 [1+ cos(120x) sin(180x)] + θ

�
x − 7

2

� �
1− θ �x − 13

2

��
. (85)

Figure 11 shows the subsequent solution u(x , t) at several different times. With increasing
time, the initial oscillations die out (see inset) and in the long-time limit diffusive spreading is
observed, as expected. The computation was performed forR= 30, implying a very dense grid
with M = 230 points, beyond the reach of usual numerical simulation techniques. Remarkably,
however, the computational costs scale only linearly (not exponentially!) withR. Indeed, even
though the grid has around one billion points, obtaining the solution for one value of the time
takes about one second on a single computing core.

The python code used to produce the data for Fig. 11 is shown in listing 9, App. B.1.4.

7 Application: Matrix product operators (MPOs)

A linear tensor operator Hσ′σ can be unfolded into a matrix product operator (MPO) (also
known as tensor train operator) using TCI. This is done by grouping the input and output
indices together, µℓ = (σ′ℓ,σℓ), and performing TCI on the resulting tensor train Fµ ≡ Hσ′σ.
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Figure 10: Performance metrics for the TCI2 computation of the integral I (N ) of
Eq. (64), for N = 5, 10,20, (left, middle, right). In all panels, the relative error
|1− I (N )/eI (N )| (straight lines with circles) and the relative in-sample error |1−Fσ/eFσ|
(dashed lines with crosses) is plotted versus the number of function evaluations.
The TCI2 computation of eI (N ) has been obtained using R = 40 quantics bits per
variable in interleaved representation and a maximal bond dimensionχ = 30. [Code:
Listing 8 (Python), 13 (Julia)]

One obtains an MPO, H ≈ eH =∏Lℓ=1 Wℓ, with tensor elements of the form

[H]σ′σ ≈
� L∏
ℓ=1

Wℓ

�
σ′σ
= [W1]

σ′1σ1

1i1
[W2]

σ′2σ2

i1 i2
· · · [WL]σ

′
LσL

iL−11 =
1σ 2σ Lσ...

... L
′σ1

′σ 2
′σ

1i 2i 1L−i . (86)

In this section, we discuss a specific algorithm to perform this unfolding for the construction
of the Hamiltonian MPO for quantum many-body problems. This construction is the first step
of a DMRG many-body calculation. For this application, the Hamiltonian H is very sparse
and a naive usage of TCI may fail there due to the ergodicity problem discussed in section
4.3.6. To avoid this issue, the algorithm and associated code (C++ header autompo.h) discussed
below generates a MPO representation from a sum of rank-1 terms using element-wise tensor
addition.

7.1 Formulation of the problem

Consider an L-site quantum system whose many-body Hamiltonian is the sum of NH rank-1
MPOs Ha,

H =
NH∑

a=1

Ha , Ha =
L∏
ℓ=1

Haℓ , (87)

where each Haℓ is a local operator acting non-trivially only on site ℓ (see Eqs. (91) or (93)
below for examples). Each term Ha in the sum is, by construction, a MPO of rank 1, but their
sum
∑

a Ha is not. The number of terms in the sum typically is exponentially smaller than
the size of the Hilbert space in which the Hamiltonian lives, hence the operator of interest is
very sparse. For instance, in quantum chemistry applications involving, say, L spin-orbitals,
the number of terms is O(L4) while the size of the Hilbert space is 2L. Naively, H is an MPO
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Figure 11: Solution of the heat equation (80) using quantics TCI. The plot shows
u(x , t) versus x for different times. We used a 1D grid with M = 2R points and
R= 30, at a computational cost of O(R). The inset shows a zoom close to x = 5.

of rank NH as one may express it as
∏L
ℓ=1 Wℓ, with

W1 = (H1L, . . . , HNHL) , W1<ℓ<L =




H1ℓ 0 . . . . . .
0 H2ℓ 0 . . .

. . . . . . . . . . . .

. . . . . . 0 HNHℓ


 , WL =




H1L
H2L
. . .

HNHL


 . (88)

However, in many situation the actual rank is much smaller.
The problem of generating a compressed MPO from a sum of products of local operators

is as old as the field of tensor networks itself. There are essentially three standard approaches
to perform this task (see [61–64] for an in-depth discussion):

• Manual construction of the MPO, in particular using complementary operators. This
method, pioneered in DMRG, is suitable for simple problems but not for general ones.

• Symbolic compression of the naive-sum MPO, in particular using bipartite graph theory.
This powerful, automatic approach is exact. However, this approach makes implementing
approximate compression (within a certain tolerance) rather complex and does not exploit
specific relations between the values of matrix elements (all that matters is whether a term
is present or not).

• Compression of the naive-sum MPO using SVD. This approach is widely used but has a
well-known stability issue for large systems due to a numerical truncation error.2

The stability issue of the SVD compression can be understood as arising from the fact that
SVD finds the best low-rank approximation of an N ×N matrix A with respect to the Frobenius
norm |A|F = (
∑

i j |Ai j|2)1/2. When A is the sum of terms having very different Frobenius norms,
numerical truncation errors may lead the algorithm to wrongly discard those with small norms.
As an illustration, consider A = 1+ψψ† where 1 is the identity matrix and ψ a normalized
vector (ψ†ψ = 1). Here, we have |A|F = N + 3. When N is very large (as in many-body
problems, where N ≈ 2L), the O(1) contribution from ψψ† may be lost in numerical noise.
By contrast, the prrLU does not suffer from this problem since it optimizes a different target
norm (the maximum norm of the Schur complement).

2In Ref. [64], it is shown that this issue can be resolved for certain local Hamiltonians in the DMRG context by
exploiting their specific structure.
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7.2 MPO algorithm for quantum many-body problems

We propose to compress the naive-sum MPO using prrLU instead of SVD. Very importantly,
in this approach, the full naive-sum MPO is never built. Our auto-MPO algorithm follows a
divide-and-conquer strategy:

(1) Collect a fixed number Na≪ NH of terms Ha.

(2) Construct the naive MPO of their sum using Eq. (88).

(3) Compress the resulting tensor train using CI canonicalization.

(4) Repeat steps (1-3) until all NH terms have been processed.

(5) Sum and pairwise compress (formally in a binary tree) the NH/Na partial sums from (4).

The validity of the final MPO can be checked explicitly making use of the fact that H is a
sparse matrix. Considering Fµ = Hσ′σ as a large vector, the tensor eFµ is a correct unfolding of
Fµ if and only if ∑

µ

F∗µeFµ =
∑
µ

|Fµ|2 =
∑
µ

|eFµ|2 (89)

(this guarantees that |F − eF |F = 0 hence F = eF). This translates into

NH∑
a=1

�∑
µ

[Ha]
∗
µ
eFµ
�
=

NH∑
a,a′=1

�∑
µ

[H∗a′]µ[Ha]µ

�
=
∑
µ

|eFµ|2 . (90)

Computing these expressions involves O(NH) MPS contractions for the left side, enumerating
the nonzero elements of the sparse matrices for the central part, and taking the trace of an
MPO-MPO product for the right side. The same approach can be applied to the compression
obtained by SVD or to compare the results of SVD and prrLU compressions.

We have tested the above algorithm against the same divide-and-conquer approach but
with prrLU replaced by SVD, for the example A = Id + ψψ† where ψ is the rank-1 MPS
ψσ1···σL

=
∏
ℓδσℓ,1. We found that SVD yields the correct rank-2 MPO for L < 103 but

fails for larger values of L, incorrectly yielding a rank-1 MPO (the identity MPO). By contrast,
the prrLU variant is stable for all values of L (up to 1000) that we have tested.

7.3 Illustration on Heisenberg and generic chemistry Hamiltonians

We illustrate the auto-MPO algorithm with two iconic Hamiltonian examples here: the Heisen-
berg Hamiltonian for a spin chain and a generic quantum chemistry Hamiltonian. The full code
can be found in the folder example/autoMPO/autoMPO.cpp of the xfac library.

We start with the spin-1
2 Heisenberg Hamiltonian for an L-site ring of spins:

H =
L∑
ℓ=1

Sz
ℓS

z
ℓ+1 +

1
2

L∑
ℓ=1

�
S+ℓ S−ℓ+1 + S−ℓ S+ℓ+1

�
, (91)

Sαℓ = 1⊗1⊗ · · · ⊗1︸ ︷︷ ︸
ℓ−1 times

⊗sα ⊗1⊗ · · · ⊗1︸ ︷︷ ︸
L−ℓ times

. (92)

Here, the matrices 1=
�1 0

0 1

�
, sz = 1

2

�1 0
0 −1

�
, s+ =
�0 1

0 0

�
, s− =
�0 0

1 0

�
represent the single-site identity

and spin operators for a spin-1
2 Hilbert space, while Sα=z,±

ℓ
represent site-ℓ spin operators for

the full Hilbert space of the L-site chain, acting non-trivially only on site ℓ. We use periodic
boundary conditions, defining SαL+1 = Sα1 . Listing 4 shows a C++ code that first constructs the
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Hamiltonian as a sum of local operators (an instance of the polyOp class), then generates the
MPO (using the to_tensorTrain() method).

Our second example is a fully general quantum chemistry Hamiltonian of the form

H =
∑
ℓ1ℓ2

Kℓ1ℓ2
c†
ℓ1

c
ℓ2
+
∑

ℓ1<ℓ2,ℓ3<ℓ4

Vℓ1ℓ2ℓ3ℓ4
c†
ℓ1

c†
ℓ2

c
ℓ3

c
ℓ4

. (93)

The fermionic operators c†
ℓ

(c
ℓ
) create (destroy) an electron at spin-orbital ℓ. They satisfy stan-

dard anti-commutation relations, which we implement using a Jordan-Wigner transformation.
We take all the coefficients Kℓ1ℓ2

and Vℓ1ℓ2ℓ3ℓ4
as random numbers for our benchmark (in a real

application, the number of significant Coulomb elements would be smaller, typically L3 in-
stead of L4 here). The example code is given in Listing 5 below. Table 3 shows the obtained
ranks for up to L= 50 orbitals which match the theoretical expectation. Note that the number
of terms NH for the larger size is greater than 106, hence a naive approach would fail here.

1 #include <xfac/tensor/auto_mpo.h>
2

3

4 using namespace std;
5 using namespace xfac;
6 using namespace xfac::autompo;
7

8

9 /// Heisenberg Hamiltonian (periodic boundary condition)
10 polyOp HeisenbergHam(int L)
11 {
12 auto Sz=[=](int i) { return prodOp {{ i%L, locOp {{-0.5,0},{0,0.5}} }}; };
13 auto Sp=[=](int i) { return prodOp {{ i%L, locOp {{0 ,0},{1,0}} }}; };
14 auto Sm=[=](int i) { return prodOp {{ i%L, locOp {{0 ,1},{0,0}} }}; };
15

16 polyOp H;
17 for(int i=0; i<L; i++) {
18 H += Sz(i)*Sz(i+1) ;
19 H += Sp(i)*Sm(i+1)*0.5 ;
20 H += Sm(i)*Sp(i+1)*0.5;
21 }
22 return H;
23 }
24

25

26 int main() {
27 int len=50;
28 auto H=HeisenbergHam(len);
29 TensorTrain mpo=H.to_tensorTrain();
30

31 cout<< "|1-<mpo|H>/<mpo|mpo>|=" << abs(1-H.overlap(mpo)/mpo.norm2()) << endl;
32

33 return 0;
34 }

Listing 4: C++ code to generate the MPO of the periodic Heisenberg Hamiltonian
of Eq. (91). Lines 1–6 load the xfac library and namespaces. Lines 12–14 construct
the spin operators of Eq. (92); note that only the single-site 2×2 matrices need to
be specified explicitly. Lines 16–20 construct the sum

∑L
ℓ=1 over all chain sites of

the Hamiltonian Eq. (91). The maximun bond dimension obtained is 8 as it should
be. This listing showcases the close similarity between formulae and corresponding
code, which was one of the design goals of the xfac library.
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Our C++ implementation is found in the namespace xfac::autompo. We define three classes:
locOp, prodOp, and polyOp, corresponding to a local operator (i.e. a 2×2 matrix), a direct prod-
uct of locOp, and a sum of prodOp, respectively. Our prodOp is a std::map going from int to
locOp, while polyOp contains a std::vector of prodOp. The operators * and += are conveniently
overloaded. Each of the classes prodOp and polyOp possesses the methods to_tensorTrain() (the
actual algorithm to construct the MPO) and overlap(mpo) (to compute the left hand side of
Eq. (89)).

1 polyOp ChemistryHam(arma::mat const& K, arma::mat const& Vijkl)
2 {
3 auto Fermi=[=](int i, bool dagger)
4 {
5 locOp create={{0,1},{0,0}};
6 auto ci=prodOp {{ i, dagger ? create : create.t() }};
7 for(auto j=0; j<i; j++) ci[j]=locOp {{1,0},{0,-1}}; // fermionic sign
8 return ci;
9 };

10

11 auto L=K.n_rows;
12 polyOp H;
13

14 for(auto i=0u; i<L; i++)
15 for(auto j=0u; j<L; j++)
16 if (fabs(K(i,j))>1e-14)
17 H += Fermi(i,true)*Fermi(j,false)*K(i,j); // kinetic energy
18

19 for(auto i=0; i<L; i++)
20 for(auto j=i+1; j<L; j++)
21 for(auto k=0; k<L; k++)
22 for(auto l=k+1; l<L; l++)
23 if (fabs(Vijkl(i+j*L,k+l*L))>1e-14)
24 H += Fermi(i,true)*Fermi(j,true)*Fermi(k,false)*
25 Fermi(l,false)*Vijkl(i+j*L,k+l*L);
26 return H;
27 }

Listing 5: C++ code to generate the MPO of the quantum chemistry Hamiltonian of
Eq. (93).

Table 3: Performance of our Auto-MPO construction for the quantum chemistry
Hamiltonian of Eq. (93), for L orbitals, computed with an error tolerance of
τ = 10−9. The third column is the bond dimension found with our approach. As
a check, the fourth column gives the expected bond dimension obtained via the
complementary-operator approach [63]. A naively constructed MPO would have
bond dimension equal to the number of terms (2nd column), making it practically
impossible to compress using SVD for L= 50. [Code: Listing 5 (C++)]

L number of terms bond dimension L2/2+ 3L/2+ 2

10 2125 67 67
30 190125 497 497
50 1503125 1327 1327
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Table 4: Features supported by the main algorithms in xfac/TCI.jl.

TensorCI1 TensorCI2
feature 0-site 1-site 2-site
update mode accumulative accumulative & reset
pivot search full & rook full full full & rook
nesting condition full no full partial
environment error supported no no planned support
recompression not supported supported supported supported
global pivots not supported supported supported supported

8 API and implementation details

We have presented a variety of use cases for our libraries xfac/TCI.jl in the examples above.
After reading the present section, prospective users should be able to use our libraries in their
own applications. In Sec. 8.1, we overview common features of the xfac/TCI.jl libraries.
In Secs. 8.2 and 8.3 we provide language-specific information for C++ and Julia, respectively.
We refer the reader to the tensor4all website [65] for the full documentation of the libraries.

Code for most examples contained in this paper is shown in Appendix B, and can be used
as a starting point for implementations of new use cases. For more advanced use cases, it may
be necessary to refer to the online documentation. We also encourage the readers to directly
read the code of the library, in either language. It is indeed rather compact and often conveys
the algorithms more transparently than lenghty explanations.

8.1 Implementation

For legacy reasons, xfac/TCI.jl contain two main classes for computing TCIs: TensorCI1

and TensorCI2. TensorCI1 is a variation of algorithm 5 of Ref. [12] and has been discussed in
great detail in Ref. [13, Sec. III] (for a summary, see Sec. S-2 of the supplemental material of
Ref. [15]). It is based on the conventional CI formula [38] and iteratively adds pivots one by
one without ever removing any pivots (accumulative mode). TensorCI2 is based on the more
stable prrLU decomposition and implements 2-, 1- and 0-site TCI as described in this paper.

The numerical stability of the prrLU decomposition is inherited by TensorCI2, which often
shows more reliable convergence. It is therefore used as a default in our codes. Neverthe-
less, since all TCI algorithms involve sampling, none of them is fully immune against missing
some features of the tensor of interest, as already discussed above. Therefore, it may be nec-
essary to enrich the sampling by proposing relevant global pivots before or during iteration
(see Sec. 4.3.5). For instance, for the results shown in Fig. 9, we proposed 8 initial pivots ac-
cording to the symmetry of the problem. Because of their different sampling patterns, it may
also happen that TensorCI1 finds much better approximations than TensorCI2. We have found
at least one example where this was the case, and manual addition of some global pivots dur-
ing initialization of TensorCI2 solved the issue. There are minor differences in other features
supported by TensorCI1 and TensorCI2, which are summarized in Table 4. Most importantly,
0-site and 1-site optimization is only available in TensorCI2. Therefore, we offer convenient
conversion between both classes.

General tensor trains, possibly obtained from an external source, are represented by a class
TensorTrain. It supports related algorithms that are agnostic to the specific index structure of
a TCI, such as evaluation, summation or compression using LU, CI or SVD. It also serves as an
interface to other tensor network algorithms, such as those implemented in ITensor [33], to al-
low for quick incorporation of the TCI libraries into existing code. A TensorCI1/TensorCI2 object
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Table 5: Features supported by the main TCI algorithms in xfac. In the code, ci1 is a
TensorCI1, ci2 is a TensorCI2, p is a TensorCIParam used to build a TensorCI, and tt is a
TensorTrain. The method iterate(nIter, nSite) receives the number of iterations nIter
to perform and the number of physical sites nSite to use for the matrix CI (can be 0,
1, or 2).

Section feature variant example C++ code

4.2 nesting
no ci2.iterate()

full
ci1.iterate()

ci2.makeCanonical()

4.3.3 pivot update
accumulative ci1.iterate()

reset ci2.iterate()
4.3.7 environment active if p.weight=...

4.3.4 pivot search
rook p.fullPiv=false
full p.fullPiv=true

4.3.5 global pivots ci2.addGlobalPivots(...)

4.4
0-site ci2.iterate(1,0)
1-site ci2.iterate(1,1)

4.5 compression
SVD tt.compressSVD()
LU tt.compressLU()
CI tt.compressCI()

4.5 conversion
tci1→ tci2 to_tci2(tci1)
tci2→ tci1 to_tci1(tci2)

can be trivially converted to a TensorTrain object. Conversion in the inverse direction is done
by making the TensorTrain CI-canonical using the algorithm described in Sec. 4.5, resulting in
a TensorCI2 object.

8.2 C++ API (xfac)

The file “readme.txt” explains the installation procedure and how to generate the detailed doc-
umentation. The main components of the library are represented in Figure 12. As mentioned
above, the classes TensorCI1 and TensorCI2 build a TCI of an input function. The main output
is the tensor train, stored in the class TensorTrain, which represents a list of 3-leg tensors.

Below, we summarize the C++ API especially focusing on TensorCI2; the API for TensorCI1 is
similar and can be found in the documentation. A TensorCI2 can be constructed from a tensor
function f : (x1, x2, . . . , xL)→C and its local dimensions {dℓ}where the index xℓ ∈ {1, . . . , dℓ}
with ℓ= 1,2, . . . ,L. This is the main constructor:

1 TensorCI2(
2 function<T(vector<int>)> f,
3 vector<int> localDim,
4 TensorCI2Param param={}
5 );
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TensorCI1
param
pivotError
iterate(nIter)

TensorCI2
param
pivotError
iterate(nIter, ...)
addPivotsAllBonds( )

TensorTrain
eval( )
integral(), sum1()
save(filename)
load(filename)
compressSVD( , )
compressLU( , )
compressCI( , )
norm2()
overlap(tt)
operator+(tt1, tt2)

.get_TensorTrain()

to_
tci2(tci1)to

_
tc
i1
(t
ci
2)

(constructor)

(constructor)

(constructor) .tt

Figure 12: Scheme of the main conversions implemented in xfac.

The parameters of the cross interpolation can be set in the constructor by the class
TensorCI2Param:

1 struct TensorCI2Param {
2 int bondDim=30; ///< max bond dimension of tensor train
3 double reltol=1e-12; ///< expected relative tolerance of CI
4 vector<int> pivot1; ///< first pivot (optional)
5 bool fullPiv=false; ///< whether to use full pivoting
6 int nRookIter=3; ///< number of rook pivoting iterations
7 vector<vector<double>> weight; ///< activates the ENV learning
8 function<bool(vector<int>)> cond; ///< cond(x)=false when x should not be a pivot
9 bool useCachedFunction=true; ///< whether to use internal caching

10 };

For TensorCI1, TensorCI1Param is used to set the parameters. We refer to the documentation for
more details.

To factorize a continuous function f : RL → R, xfac introduces the class CTensorCI2 (or
CTensorCI1). CTensorCI2 is a TensorCI2 that can be constructed from a multidimensional function
f by providing also the grid of points for each component:

1 CTensorCI2(
2 function<T(vector<double>)> f,
3 vector<vector<double>> const& xi,
4 TensorCI2Param param={}
5 );

The main output of CTensorCI2 is a continuous tensor train CTensorTrain, which can be evaluated
at any point in RL, including those outside the original grid (cf. App. A.4).

As discussed in Sec. 6.1, functions of continuous variables can also be discretized using
the quantics representation. For that, xfac introduces the helper class QTensorCI2, currently
available only for TensorCI2. It can be constructed from a multidimensional function f by
providing the quantics grid in addition to the parameters required for TensorCI2:

1 QTensorCI2(
2 function<T(vector<double>)> f,
3 grid::Quantics const& qgrid,
4 TensorCI2Param param={}
5 );
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Specifically, the grid::Quantics type represents an uniform grid on the hypercube [a, b)N

with 2RN points:

1 struct Quantics {
2 double a=0, b=1; ///< start and end points of interval
3 int nBit=10; ///< number of bits for each variable
4 int dim=1; ///< dimension of hypercube
5 bool fused=false; ///< whether to fuse the bits for the same scale (default:

false)
6 }

The main output of QTensorCI2 is a quantics tensor train QTensorTrain, which is a cheap
representation of the function that can be evaluated, and saved/loaded to file.

8.3 Julia libraries

The Julia implementation of TCI is subdivided into several parts:

• TensorCrossInterpolation.jl (referred to as TCI.jl) contains only TCI and associated
algorithms for tensor cross interpolation.

• QuanticsGrids.jl contains functionality to construct quantics grids, and to convert indices
between direct and quantics representations.

• QuanticsTCI.jl is a thin wrapper around TCI.jl and QuanticsGrids.jl to allow for conve-
nient quantics tensor cross interpolation in the most common use cases.

• TCIITensorConversion.jl is a small helper library to convert between tensor train objects
and MPS/MPO objects of the ITensors.jl library.

All four libraries are available through Julia’s general registry and can thus be installed by

1 import Pkg; Pkg.install("TensorCrossInterpolation")

and analogous commands. Below, we present only the main functionalities that were used for
the examples in this paper. A complete documentation can be found online [65].

8.3.1 TensorCrossInterpolation.jl

Similar to xfac, TCI.jl has classes TensorCI1 and TensorCI2 that build a TCI of an input func-
tion, as well as a general-purpose TensorTrain class. These three classes and their main func-
tions are shown in Fig. 13. Given a function of interest, f : (x1, x2, . . . , xL) → C and its
local dimensions {dℓ}, the most convenient way to obtain a TensorCI1/TensorCI2 is by calling
crossinterpolate1/crossinterpolate2. Since the algorithm based on prrLU is usually more stable,
we recommend using crossinterpolate2 as a default.

1 function crossinterpolate2(
2 ::Type{ValueType}, # Return type of f, usually Float64 or ComplexF64
3 f, # Function of interest: <@$f_\bsigma$@>
4 localdims::Union{Vector{Int},NTuple{N,Int}}, # Local dimensions <@$(d_1, \ldots,

d_\scL)$@>
5 initialpivots::Vector{MultiIndex}; # List of initial pivots <@$\{\hat\bsigma\}$@>.

Default: <@$\{(1, \ldots, 1)\}$@>
6 tolerance::Float64, # Global error tolerance <@$\tau$@> for TCI. Default:

<@$10^{-8}$@>
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7 pivottolerance::Float64, # Local error tolerance <@$\tau_{\mathrm{loc}}$@> for prrLU.
Default: <@$\tau$@>

8 maxbonddim::Int, # Maximum bond dimension <@$\chi_{\max}$@>. Default: no limit
9 maxiter::Int, # Maximum number of half-sweeps. Default: <@$20$@>

10 pivotsearch::Symbol, # Full or rook pivot search? Default: :full
11 normalizeerror::Bool, # Normalize <@$\varepsilon$@> by <@$\max_{\bsigma \in

\mathrm{samples}} F_\bsigma$@>? Default: true
12 ncheckhistory::Int # Convergence criterion: <@$\varepsilon < \tau$@> for how

many iterations? Default: 3
13 ) where {ValueType,N}

The three required positional arguments specify basic features of the tensor to be approxi-
mated. f is a function that produces tensor components when called with a vector of indices.
For instance, f([1, 2, 3, 4]) should return the value of f1234. If appropriate pivots are known
beforehand, they can be put in the list initialpivots, which is used to initialize the TCI. The
convergence of TCI is controlled by mainly by the arguments tolerance, which is the global
error tolerance τ of the TCI approximation, and pivottolerance, which determines the local
error tolerance during 2-site updates. Usually, it is best to set pivottolerance to tolerance or
slightly below tolerance. Both should be larger than the numerical accuracy, else the cross ap-
proximation may become numerically unstable. The maximum number of sweeps, controlled
by maxiter, can be chosen rather small in reset mode, as the algorithm requires only a few
sweeps.

After convergence, crossinterpolate2 returns an object of type TensorCI2 that represents
the tensor train, as well as two vectors: ranks contains the bond dimension χ, and errors

the error estimate ϵ, both as a function of iteration number. For example, a possible call to
crossinterpolate2 to approximate a complex tensor fσ1···σ4

with 4 indices σℓ ∈ {1, 2, . . . , 8} up
to tolerance 10−5 with TCI would be:

1 tci, ranks, errors = crossinterpolate2(ComplexF64, f, fill(8, 4); tolerance=1e-5)

TensorTrain{V, N}
N: number of local indices per site

TensorCI2{V}
crossinterpolate2(V, , , ...): tci2
optimize!(tt)
addglobalpivots!(tt, )

TensorCI1{V}
crossinterpolate(V, , , ...): tci1
addglobalpivot!(tt, )

AbstractTensorTrain{V}
V: type of tensor elements
sitedims(tt), sitedim(tt, ):
linkdims(tt), linkdim(tt, ):
rank(tt):

sitetensors(tt), sitetensor(tt, ):
evaluate(tt, ):
sum(tt):

Figure 13: Schematic of the relations between the most important types in
TensorCrossInterpolation.jl. Here, functions associated to types do not signify mem-
ber functions, but rather functions operating on these types. By convention, functions
ending with an exclamation mark ‘!’ modify the object, while all other functions leave
the object unchanged.
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Table 6: Features supported by the main TCI algorithms in TCI.jl. In the code, tci1
is a TensorCI1, tci2 is a TensorCI2, and tt is a TensorTrain.

Section feature variant example julia code

4.2 nesting
no crossinterpolate2(ValueType, f; ...)

full
crossinterpolate1(ValueType, f; ...)

makecanonical!(tci2, f; ...)

4.3.3 pivot update
accumulative crossinterpolate1(ValueType, f; ...)

reset crossinterpolate2(ValueType, f; ...)

4.3.4 pivot search
rook crossinterpolate2(..., pivotsearch=:rook, ...)
full crossinterpolate2(..., pivotsearch=:full, ...)

4.3.5 global pivots
addglobalpivot!(tci1, ...)
addglobalpivots!(tci2, ...)

4.4
0-site sweep0site!(tci2, ...)
1-site sweep1site!(tci2, ...)

4.5 compression
SVD compress!(tt, :SVD, ...)
LU compress!(tt, :LU, ...)
CI compress!(tt, :CI, ...)

4.5 conversion
tci1→ tci2 TensorCI1{ValueType}(tci2, f; ...)
tci2→ tci1 TensorCI2{ValueType}(tci1)

To evaluate the resulting TCI, call the object as a functor in the same way as the original func-
tion. For example, tci([1, 2, 3, 4]) should be approximately equal to f([1, 2, 3, 4]). This
is equivalent to a call evaluate(tci, [1, 2, 3, 4]). A sum over the TCI, e.g. to calculate an
integral, is obtained by calling sum(tci). If the only objective is to calculate an integral, it is
more convenient to use the function integrate(...), which calculates the integral of a func-
tion by building a weighted TCI on a Gauss–Kronrod grid and performing efficient weighted
summation. Alternatively, quantics schemes described in the next section can be used for this
task.

To apply more complicated tensor network algorithms to tci, it is useful to convert it into a
TensorTrain object, which gives access to functions that do not preserve the CI-canonical gauge,
such as SVD-based compression. With TCIITensorConversion.jl, all tensor train like objects can
also be converted to actual MPS and MPO objects of the ITensors.jl library, which contains much
more functionality [33].

8.3.2 Quantics grids and QTCI

Two associated libraries, QuanticsGrids.jl and QuanticsTCI.jl, offer convenient functionality to
perform computations in quantics representation. QuanticsGrids.jl offers conversion between
quantics indices, linear indices and function variables on (multidimensional) quantics grids.
For example, fused quantics indices for a R = 10 bit quantics grid on a hypercube [−1,+1]3

can be obtained using the following code:

1 import QuanticsGrids as QG
2 grid = QG.DiscretizedGrid{3}(10, (-1.0, -1.0, -1.0), (1.0, 1.0, 1.0);

unfoldingscheme=:fused)
3 sigma = QG.grididx_to_quantics(grid, (3, 4, 5)) # Translate <@$\vec{m} = (3, 4, 5)

\rightarrow \bsigma(\vec{m})$@>
4 m = QG.quantics_to_grididx(grid, sigma) # <@$\vec{m}(\bsigma)$@>
5 x = QG.quantics_to_origcoord(grid, sigma) # <@$\vec{x}(\bsigma)$@>
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To create a quantics TCI of a user-supplied function, these grids can be used together
with quanticscrossinterpolate(...) from QuanticsTCI.jl, which translates a given function
f (x1, . . . , xN ) to its quantics representation Fσ, and applies the crossinterpolate2 to Fσ in
a single call. The function signature is

1 function quanticscrossinterpolate(
2 ::Type{ValueType}, # Return type of f, usually Float64 or ComplexF64
3 f, # Function of interest <@$f(x)$@>
4 grid, # Discretization grid, as QuanticsGrids.Grid, Array, or Range
5 initialpivots::Vector{MultiIndex}; # List of initial pivots <@$\{\bar{\vec{m}}\}$@>.

Default: <@$\{(1, \ldots, 1)\}$@>
6 unfoldingscheme::Symbol, # Fused or interleaved representation? Default: :interleaved
7 kwargs... # All other arguments are forwarded to crossinterpolate2().
8 ) where {ValueType}

The vector initialpivots enumerates the pivots used to initialize the TCI, as indices into xvals

that are automatically translated to quantics form. Thus, this function takes care of all conver-
sions to quantics representation that the user would otherwise have to do manually. It returns
a QTCI, a vector of ranks, and a vector of errors, similar to crossinterpolate2, for example:

1 qtci, ranks, errors = quanticscrossinterpolate(Float64, f, grid, tolerance=1e-5)

Here, qtci is a QuanticsTensorCI2 object, a thin wrapper around TensorCI2 that translates between
regular indices and their quantics representation. Similar to TensorCI2, objects of this type can
be evaluated using function call syntax. For example, qtci(m) should be approximately equal to
f(QG.grididx_to_origcoord(grid, m)). The object’s components can be accessed as qtci.tci and
qtci.grid. For a complete documentation of all functionality, see the online documentation of
the respective libraries [65].

9 Perspectives

In this article, we have presented old and new variants of the tensor cross interpolation (TCI)
algorithm, their open source C++, python and Julia implementations as well as a wide range of
applications (integration in high dimension, solving partial differential equations, construction
of matrix product operators, . . . ).

TCI has a very peculiar position among other tensor network algorithms: it provides an
automatic way to map a very large variety of physics and applied mathematics problems onto
the MPS toolbox. Of course not all mathematical objects admit a low-rank representation.
But some problems do, and those will strongly benefit from being mapped onto the tensor
network framework. Progress in computational sciences often corresponds to exploiting a
particular structure of the problem. TCI belongs to the rare class of algorithms capable of
discovering such structures for us. We surmise that TCI and related tools will play a major
role in extending the scope of the MPS toolbox to applications beyond its original purpose of
manipulating many-body wavefunctions.

An interesting side aspect of TCI is that offers a simple Go/No-Go test for the feasibility
of speeding up computations using the MPS toolbox. Suppose, e.g., that one is in possession
of a solver for a partial differential equation. One can feed some typical solutions into TCI to
check whether they are strongly compressible—if so, a faster solver can likely be built using
MPS tools. Using this very simple approach, the authors of this article have already identified
numerous compressible objects in a wide range of contexts.
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A Proofs of statements in the main text

A.1 Proof of the quotient identity for the Schur complement

Below, we give a simple proof of the quotient identity (17), i.e. that taking the Schur com-
plement with respect to multiple blocks either simultaneously or sequentially yields the same
result. Consider two block matrices

A=




A11 A12 A13
A21 A22 A23
A31 A32 A33


 , B ≡
�

A11 A12
A21 A22

�
, (A.1)

where A11 and B are invertible submatrices of A. From (13), we factorize the B matrix as

B =

�
111 0

A21A−1
11 122

��
A11 0
0 [B/A11]

��
111 A−1

11 A12
0 122

�
,

which is easy to invert as

B−1 =

�
111 −A−1

11 A12
0 122

��
A−1

11 0
0 [B/A11]−1

��
111 0

−A21A−1
11 122

�
.

This implies that �
B−1
�

22= [B/A11]
−1 . (A.2)
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We then form the Schur complement

[A/B] = A33 − (A31, A32)B
−1
�

A13

A23

�
(A.3)

= A33 − (A31, A32)

�
111 −A−1

11 A12
0 122

��
A−1

11 0
0 [B/A11]−1

��
111 0

−A21A−1
11 122

��
A13

A23

�

= A33 −
�
A31, (A32 − A31A−1

11 A12)
��A−1

11 0
0 [B/A11]−1

��
A13

A23 − A21A−1
11 A13

�

= A33 − A31A−1
11 A13 − (A32 − A31A−1

11 A12)[B/A11]
−1(A23 − A21A−1

11 A13) .

On the other hand, the Schur complement [A/A11] has the explicit block form

[A/A11] =
�

A22 A23

A32 A33

�
−
�

A21

A31

�
(A11)−1(A12 A13)

=

�
[B/A11] A23 − A21A−1

11 A13
(A32 − A31A−1

11 A12) A33 − A31A−1
11 A13

�
. (A.4)

Taking the Schur complement of the above matrix with respect to its upper left block [B/A11]
yields an expression which we recognize as the last line of Eq.(A.3). This proves the Schur
quotient identity (17): �

[A/A11]/[B/A11]
�
= [A/B] . (A.5)

A.2 Convergence and rook conditions in block rook search

This section proves that the block rook search Algorithm 1 (see p. 14) converges, and that
upon convergence, the pivots satisfy rook conditions.

Definition: Block rook conditions Given lists I = (i1, . . . , iχ) and J = ( j1, . . . , jχ) of pivots,
the block rook search algorithm alternates between factorizing A(I,J ) and A(I,J), updat-
ing I and J after each factorization. In odd iterations, the block rook search obtains lists
I ′ = (i′1, . . . , i′χ) and J ′ = ( j′1, . . . , j′χ) from a prrLU factorization of A(I,J ). Since the ma-
trix A(I,J ) has more rows than columns, the new column indices J ′ are a permutation of
the old column indices J , whereas I ′ may contain new elements that are not in I. Dur-
ing a prrLU, we denote by Ar the pivot matrix after the inclusion of the first r pivots, i.e.
Ar = A((i′1, . . . , i′r), ( j

′
1, . . . , j′r)). These pivots satisfy,

(i′r , j′r) = argmax[A(I,J )/Ar−1] . (A.6)

For even iterations, one factorizes A(I,J), the new pivots satisfy

(i′r , j′r) = argmax[A(I,J)/Ar−1] , (A.7)

and I ′ is a permuation of I. After each prrLU, the pivots lists are updated I ← I ′,J ← J ′.
The process ends when I ′ = I and J ′ = J .

Definition: Rook conditions. The pivots generated by sequential rook search (i.e. the stan-
dard rook search algorithm known from literature) fulfill the following set of rook conditions:

ir = argmax([A/Ar−1](I, jr)) , (A.8)

jr = argmax([A/Ar−1](ir ,J)) , (A.9)

where Ar = A((i1, . . . , ir), ( j1, . . . , jr)).
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Statement 1. The pivots (i1, j1), . . . , (iχ , jχ) found by a converged block rook search satisfy
the rook conditions (A.8),(A.9). The proof follows from the restriction property of the Schur
complement. At convergence, (i′r , j′r) = (ir , jr) for each r = 1, . . . ,χ. Applying Eq. (26) to the
Schur complement of Eq.(A.6), one immediately gets Eq. (A.8). Similarly, one gets Eq. (A.9)
from Eq. (A.7).

Statement 2. The block rook search must converge in a finite number of steps. The proof can
be done iteratively. The search of (i1, j1) correspond to looking for the maximum of A(I,J )
(odd iterations) or A(I,J) (even iterations). For odd iterations i′1 = i1 unless new columns
(that have never been seen by the algorithm) have been introduced in the previous even iter-
ation. Since there are only a finite number of columns, this process must terminate in a finite
number of iterations. The same argument works for j1 and the even iterations.

To show that the search for (i2, j2) must terminate, one applies the same reasoning to
[A/A1] after (i1, j1) has converged. One continues the proof iteratively for all (ir , jr). In case
the matrix [A/(1, . . . , r − 1)] has multiple entries with the same maximum value, the am-
biguity must be lifted to guarantee that the algorithm terminates. A solution is to choose
(i′r , j′r) = (ir , jr) whenever the previously seen pivot (ir , jr) is among the maximum elements
of that matrix.

A.3 Nesting properties

Consider a tensor train eF in TCI form (34). If its pivots satisfy nesting conditions, the Tσ
ℓ

and
Pℓ matrices have certain useful properties, derived in Ref. [13, App. C] and invoked in the
main text. Here, we summarize them and recapitulate their derivations.

For each ℓ we define the matrices Aσ
ℓ
= Tσ

ℓ
P−1
ℓ

and Bσ
ℓ
= P−1

ℓ−1Tσ
ℓ

, with elements

[Aσℓ ]ii′ =
σ

�
1−P

i j
=

$i_{\ell-1} \oplus  \sigma_\ell  \in \mathcal{I}_{\ell}  \quad \Rightarrow$i�−1⊕σ�∈ I�⇒i�−1⊕σ�∈ I�⇒i�−1⊕σ�∈ I�⇒
�T

σ
i

�A

′i ′i
, [Bσℓ ] j′ j =

j
σ

=
1−�
1−P

i

�T

j
σ

�B

′j′j
, (A.10a)

for i ∈ Iℓ−1, i′ ∈ Iℓ, j′ ∈ Jℓ, j ∈ Jℓ+1, σ ∈ Sℓ. If the unprimed indices i ⊕(σ) or (σ)⊕ j are
restricted to Iℓ or Jℓ, respectively, we obtain Kronecker symbols, in analogy to Eq. (10):

[Aσℓ ]ii′ = δi⊕(σ),i′ , ∀ i⊕(σ) ∈ Iℓ , [Bσℓ ] j′ j = δ j′,(σ)⊕ j , ∀ (σ)⊕ j ∈ Jℓ . (A.11)

If the pivots are left-nested up to ℓ, and if ı̄ℓ = (σ̄1, . . . , σ̄ℓ) is an index from a row pivot list,
ı̄ℓ ∈ Iℓ, the same is true for any of its subindices, ı̄ℓ′ ∈ Iℓ′ for ℓ′ < ℓ. Hence, iterative use of
Eq. (A.11), starting from A1A2, yields a telescope collapse of the following product:

...
1

1σ̄

1A

�σ̄

�A

′i
= [Aσ̄1

1 · · ·Aσ̄ℓℓ ]1i′ = δı̄ℓ,i′ , ∀ ı̄ℓ ∈ Iℓ if I0 < I1 < · · ·< Iℓ . (A.12a)

Similarly, if the pivots are right-nested up to ℓ, and ȷ̄ℓ = (σ̄ℓ, . . . , σ̄L) ∈ Jℓ, we obtain

...
1

Lσ̄

�B

�σ̄
′j

LB
= [Bσ̄ℓ

ℓ
· · ·Bσ̄L

L ] j′1 = δ j′, ȷ̄ℓ , ∀ ȷ̄ℓ ∈ Jℓ if Jℓ > · · ·> JL > JL+1 . (A.12b)

We stress that such collapses do not apply for all configurations, only for pivots from left- or
right-nested lists, respectively. Thus, the As and Bs are not isometries:

∑
σ[A

σ†
ℓ

Aσ
ℓ
]ii′ ̸= δii′

and
∑
σ[B

σ
ℓ

Bσ†
ℓ
] j′ j ̸= δ j′ j , because the

∑
σ sums involve non-pivot configurations.
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The above telescope collapses are invoked in the following arguments:

• 1-Site nesting w.r.t. Tℓ: We say that pivots are nested w.r.t. Tℓ if they are left-nested up to
ℓ−1 and right-nested up ℓ+1. Then, if σ̄ is a configuration from the 1d slice on which Tℓ is
built, σ̄ ∈ Iℓ−1×Sℓ×Jℓ+1, the tensor train can be collapsed telescopically using Eqs. (A.12):

eFσ̄ =
�
Aσ̄1

1 · · · Aσ̄ℓ−1
ℓ−1 T σ̄ℓ

ℓ
Bσ̄ℓ+1
ℓ+1 · · · B

σ̄L
L
�

11 =
�
T σ̄ℓ
ℓ

�
ı̄ℓ−1 ȷ̄ℓ+1

= Fσ̄ , (A.13)I JJ J

... ...

...

11

�T
=

1σ̄ �σ̄

�T

�σ̄Lσ̄

L←

L
1−�ı̄ +1�̄

B1A

1−�σ̄

+1�B

+1�σ̄

1−�A
.

This proves that if the pivots of eF are nested w.r.t. Tℓ, then eF is exact on the slice Tℓ. It
follows that if the pivots of eF are nested w.r.t. all Tℓ, i.e. if they are fully nested (cf. Eq. (37)),
then eF is exact on all slices Tℓ (and their sublices Pℓ), i.e. on all configurations σ̄ from which
it was built. Hence, a fully nested eF is an interpolation of F .

• 0-Site nesting w.r.t. Pℓ: We say that the pivots are nested w.r.t. Pℓ if they are left-nested
up to ℓ and right-nested up ℓ+1. Then, Pℓ is a subslice of both Tℓ (since Iℓ−1 < Iℓ) and
Tℓ+1 (since Jℓ+1 > Jℓ+2), and eF is exact on both (by Eq. (A.13)), hence eF is exact on Pℓ.
Moreover, if we view eFσ, with σ = (iℓ, jℓ+1), as a matrix with elements [eF]iℓ jℓ+1

, then its
rank, say rℓ, equals the dimension of Pℓ, i.e. rℓ = χℓ. This matrix rank rℓ is an intrinsic
property of eF : it will stay fixed under all exact manipulations on eF , i.e. ones that leave its
values on all configurations unchanged, e.g. exact SVDs or exact TCIs.

• 2-Site nesting w.r.t. Πℓ: We say that pivots are nested w.r.t. Πℓ if they are left-nested up to
ℓ− 1 and right-nested up to ℓ+ 2. Then, if σ̄ is a configuration from the 2d slice Πℓ, i.e.
σ̄ ∈ Iℓ−1×Sℓ×Sℓ+1×Jℓ+2 so that Fσ̄ = [Πℓ]σ̄, the tensor train can be collapsed telescop-
ically to yield eFσ̄ =

�
T σ̄ℓ
ℓ

P−1
ℓ

T σ̄ℓ+1
ℓ+1

�
ı̄ℓ−1, ȷ̄ℓ+2

. On this slice the local error,
�
Πℓ − TℓP

−1
ℓ

Tℓ+1

�
σ̄

,

is therefore equal to the global error,
�
F − eF]σ̄, of the TCI approximation. A local update

reducing the local error will thus also reduce the global error (cf. Eq. (40)).

A.4 TCI in the continuum

This entire article is based on the cross interpolation of discrete tensors Fσ. In this appendix,
we briefly discuss how this concept can be extended to continuum functions f (x), as alluded
to in Sec. 2.2.

Consider the natural TCI representation of a function f (x). Following the notations of
Sec. 5.1, we suppose that f (x) has been discretized on a grid {x(σ)} and is represented by a
tensor Fσ = f (x(σ)). Its TCI approximation eFσ is constructed from tensors Tℓ that are slices
of Fσ, i.e. with elements [Tσ

ℓ
]iℓ−1 jℓ+1

given by function values of f (x(σ)),

[Tσℓ ]iℓ−1 jℓ+1
= f
�
x1(σ1), . . . , xℓ−1(σℓ−1), xℓ(σ), xℓ+1(σℓ+1), . . . , xL(σL)

�
. (A.14)

In order to extend the associated TCI form to the continuum, we can simply extend xℓ(σ) to
new values. In other words, one may perform the TCI on a grid and evaluate the obtained
MPS on another, larger, grid. Formally, one simply replaces the matrix Tσ

ℓ
by a matrix Tℓ(x)

defined as

[Tℓ(x)]iℓ−1 jℓ+1
= f
�
x1(σ1), . . . , xℓ−1(σℓ−1), x , xℓ+1(σℓ+1), . . . , xL(σL)

�
. (A.15)

The obtained MPS f̃ (x) = T1(x1)P−1
1 T2(x2)P−1

2 · · · Tn(xn) can be evaluated for any x in the
continuum. In practice, it may be convenient to write the matrices Tℓ(x) as an expansion over,
say, Chebychev polynomials. This can be readily done if the initial grid is constructed from the
corresponding Chebychev roots.
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Figure 14: Bond dimensions of the discrete Fourier transform in quantics representa-
tion. (a) Bond dimensionsχℓ along the MPS. Different colors signify different number
of bits 2R. Except at both ends of the MPS, the bond dimension χℓ is constant with
a value independent of R. (b) Dependence of the maximum bond dimension χ on
the tolerance τ. Bond dimensions increase logarithmically with decreasing tolerance
(gray curve), and are independent of R. The error bound from Ref. [66] is shown
for comparison (purple curve).

A.5 Small rank of the quantics Fourier transform

There is an intuitive explanation of the fact that we need to reverse the ordering of the indices
of k with respect to those of m: large-scale properties in real space (big shifts of m, associated
with changes of σℓ with ℓ≈ 1) correspond to the Fourier transform at small momentum k (i.e.
changes of σ′

ℓ
with ℓ≈R), and indices that relate to the same scales should be fused together.

More technically, the fact that the scale-reversed encodings (75) yield a tensor Tµ of low rank
stems from the factor 2R−ℓ

′−ℓ in its phase. This factor is an integer for R− ℓ′ ≥ ℓ and ≃ 0 for
R− ℓ′≪ ℓ, hence exp[−i2π2R−ℓ

′−ℓσ′
ℓ′σℓ] = 1 or ≃ 1, respectively, irrespective of the values

of σ′
ℓ′ and σ

ℓ
. Therefore, Tσ′σ has a strong dependence on the index combinations (σ′

ℓ′ ,σℓ)
only if neither of the above-mentioned inequalities apply, i.e. only if R− ℓ′ + 1 is equal to or
just slightly smaller than ℓ; in this sense, the dependence of Tσ′σ on |(R−ℓ′+1)−ℓ| is rather
short-ranged. This is illustrated in Figure 15 by the color-scale plot of (2R−ℓ

′−ℓ)mod 1 as a
function of ℓ and R− ℓ′ + 1: only a small set of coefficients is not close to an integer, namely
those on or slightly below the diagonal, where R− ℓ′ + 1 = ℓ or ≲ ℓ. This is the reason for
defining µℓ as (σ′R−ℓ+1,σ

ℓ
), not (σ′

ℓ
,σ
ℓ
). Then, tensor train unfoldings eTµ of Tµ involve, in

quantum information parlance, only short-range entanglement and have low rank [21,58].
To show explicitly that TCI is able to find this low-rank representation, numerical experi-

ments are shown in Fig. 14. The resulting tensor train has a rank of χ = 11 for a tolerance
of τ = 10−10, independent of R. With decreasing tolerance, we observe that the bond di-
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Figure 15: Fractional part of the phase factor of the Fourier transform.

58



SciPost Phys. 18, 104 (2025)

mension increases slightly slower than logarithmically. This is similar to the results found in
Refs. [21,58,59] for SVD-based truncation, and below the error bound obtained by Chen and
Lindsey in Ref. [66].

B Code listings of examples discussed in the text

All the examples discussed in the text are associated with a runnable script (in one or more lan-
guage) that can be found in the supplementary materials. Below, we show the most important
parts of these scripts.

B.1 Python scripts

B.1.1 Integration of multivariate functions in environment mode

In the environment mode discussed in section 4.3.7, the TCI factorization aims to minimize
the error of the integral (whereas with the usual bare mode, it aims to minimize the error on
the intergrand). In xfac, the environment mode is switched on when the CTensorCI() class is
instanciated with weights wℓ(σℓ). Providing these weights actually triggers two things: the
activation of the environment mode and the fact that one uses the weighted unfolding Eq. (63).
To perform the computation in environment mode, simply replace the call to CTensorCI() in line
19 of code Listing 1 by the lines of code in Listing 6.

1 # TCI1 Tensor factorization in "environment mode"
2 par = xfacpy.TensorCIParam()
3 par.weight = [well] * N
4 tci = xfacpy.CTensorCI(f, [xell] * N, par)

Listing 6: Python code snippet to perform a TCI factorization in environment
mode combined with weighted unfolding Eq. (63) with weights {wℓ(σℓ)}. To
activate environment mode, the weights are passed to the CTensorCI() class using
the attribute weights of the optional parameter par, which itself is an instance of class
xfacpy.TensorCIParam(). The weights well must be provided for each of the N legs of
the tensor. In this example we chose the weights to be identical for each leg (Gauss–
Kronrod weights) and use the shorthand notation [well] * N, to generate a list of N

lists of weights. Note that above code is generic and works similarly with all other
TCI classes.

B.1.2 Quantics for 2-dimensional integration

Listing 7 shows the quantics unfolding of the 2D function defined in Eq. (79) (see Fig. 8 in
Sec. 6.3.1). Here, the variables x and y are both discretized onto grids of M = 2R points each,
with R= 40. The corresponding MPS eFσ has L= 2R indices, interleaved so that even indices
σ2ℓ encode x and odd indices σ2ℓ+1 encode y . Lines 9–18 define conversions between grid
indices and interleaved quantics indices. Lines 21–28 then define the function from Eq. (79)
and the corresponding tensor in quantics representation, which is then TCI-unfolded using
xfac in lines 31–38.

1 import xfacpy
2 import numpy as np
3

4 R = 40 # number of bits
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5 M = 2**R # number of grid points per variable
6 xmin, xmax, ymin, ymax = -5, +5, -5, +5 # domain of function f
7

8

9 def m_to_sigma(m_x, m_y): # convert grid index (m_x,m_y) to quantics multi-index sigma
10 b1, b2 = np.binary_repr(m_x, width=R), np.binary_repr(m_y, width=R)
11 return np.ravel(list(zip(b1, b2))).astype('int')
12

13

14 def sigma_to_xy(sigma): # convert quantics multi-index sigma to grid point (x,y)
15 m_x, m_y = int(''.join(map(str, sigma[0::2])), 2), int(
16 ''.join(map(str, sigma[1::2])), 2)
17 x, y = xmin + m_x*(xmax-xmin)/M, ymin + m_y*(ymax-ymin)/M
18 return x, y
19

20

21 def f(x, y):
22 return (np.exp(-0.4*(x**2+y**2))+1+np.sin(x*y)*np.exp(-x**2) +
23 np.cos(3*x*y)*np.exp(-y**2)+np.cos(x+y))
24

25

26 def f_tensor(sigma): # quantics tensor
27 x, y = sigma_to_xy(sigma)
28 return f(x, y)
29

30

31 # load default parameters for initializing tci object T(1/P)T(1/P)T...
32 p = xfacpy.TensorCI1Param()
33 p.pivot1 = [0 for ind in range(2*R)] # set first pivot to sigma=(0,0,...0)
34 # use first pivot to initialize tci
35 f_tci = xfacpy.TensorCI1(f_tensor, [2]*2*R, p)
36

37 for sweep in range(40):
38 f_tci.iterate() # perform half-sweep
39

40 f_tt = f_tci.get_TensorTrain() # get a TT object MMMM...
41 print("x\t f(x)\t f_tt(x)")
42

43 # evaluate the approximation on some regularly spaced points
44 for m_x in range(0, M, 2**(R-5)):
45 for m_y in range(0, M, 2**(R-5)):
46 sigma = m_to_sigma(m_x, m_y)
47 x, y = xmin + (xmax-xmin)*m_x/M, ymin + (ymax-ymin)*m_y/M
48 print(f"{x}\t{y}\t{f(x,y)}\t{f_tt.eval(sigma)}")

Listing 7: Python code, using xfac and TensorCI1 to compute the quantics
approximation of the 2D-function f (x , y) of Eq. (79) for x and y between −5 and 5
using 240 × 240 grid points, plotted in Fig. 8.

B.1.3 Quantics for multi-dimensional integration

1 import xfacpy
2 from math import log
3

4 N = 5
5 xmin, xmax = 0.0, 1.0
6 R = 40 # Number of bits
7

8

9 def f(x): # Integrand function
10 f.neval += 1
11 return 2**N / (1 + 2 * sum(x))
12

13

14 f.neval = 0
15

16 # Exact integral value in 5 dimensions
17 i5 = (- 65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
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18

19 # Define the multidim quantics grid
20 grid = xfacpy.QuanticsGrid(a=xmin, b=xmax, nBit=R, dim=N, fused=False)
21

22

23 def fq(sigma): # Integrand function on quatics grid
24 return f(grid.id_to_coord(sigma))
25

26

27 # TCI2 Tensor factorization
28 tci = xfacpy.TensorCI2(fq, [grid.tensorLocDim] * grid.tensorLen)
29

30 # Estimate integral and error
31 for hsweep in range(14):
32 tci.iterate()
33 # calculate the integal over the hypercube
34 itci = tci.tt.sum1()*grid.deltaVolume
35 print("hsweep= {}, neval= {}, I_tci= {:e}, |I_tci - I_exact|= {:e}, in-sample err=

{:e}"
36 .format(hsweep+1, f.neval, itci, abs(itci - i5), tci.pivotError[-1]))

Listing 8: Python code to compute the integral I (N=5) of Eq. (64) numerically
using the multi-dimensional quantics integration from section 6.3.2. The integrand
is formally discretized on 240 points per variable xn, while the factorization is
performed on a multi-dimensional quantics representation using a tensor of 25×40

legs holding 2 sites each. The mapping between the original coordinate space x and
the quantics representation is performed with the helper class xfacpy.QuanticsGrid().
The maximal bond dimension is 30 (default value of xfacpy.TensorCI2).

Listing 8 contains the code to compute the multi-dimensional integral Eq. (64) using quan-
tics. The code is very similar to Listing 1, but replaces the Gauss–Kronrod helper functions with
corresponding functions for a quantics grid. The helper class xfacpy.QuanticsGrid() in line 16
performs the mapping between the original coordinate space (x1, . . . , xN ) and the quantics
representation. a=0 and b=1 specify the bounds of the integration interval, the dimension is
N = 5 and we have chosen R = 40 ≡ nBit. The last argument fused=False indicate that the
variable should not be fused, as described above.

The function fq(sigma) defined in line 18 and 19 evaluates the integrand function f(x) in
the quantics representation. The method QuanticsGrid.id_to_coord(sigma) provides the map-
ping from the index position σ in the interleaved representation, written in terms of a binary
number, onto the corresponding point (x1, . . . , xN ) in the original argument space of the func-
tion f(x). In our implementation σ is a Python list consisting of 2RN binary elements, each
either 0 or 1. The first or last element of σ represents the left-most or right-most bit, respec-
tively. The tensor is instantiated in line 22. We have chosen TCI2 in this example as opposed
to TCI1 in Listing 1, to demonstrate that both implementations of TCI1 and TCI2 are easily
interchanged as their interfaces are similar. The overall result will be similar in both cases.
The second argument of TensorCI2, namely [grid.tensorLocDim] * grid.tensorLen, creates a list
[2, 2, 2, ...] with 200 elements, where each element is equal to 2 (our tensor has NR= 200
legs, with dimension 2 per leg). The rest of the script is similar to Listing 1, printing the result
and the error for each iteration of the TCI algorithm.

B.1.4 Heat equation using superfast Fourier transforms

1 import numpy as np
2 import xfacpy
3

4 # Grid parameters
5 R = 30
6 M = 2**R
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7 xmin, xmax = 2., 8.
8

9 # Manipulation of indices and grid
10 def m_to_sigma(m): # convert grid index to quantics multi-index
11 return [int(k) for k in np.binary_repr(m, width=R)]
12

13 def sigma_to_m(sigma): # reversed transform
14 return int(''.join(map(str, sigma)), 2)
15

16 def sigma_to_x(sigma): # convert quantics multi-index to position
17 return xmin + (xmax-xmin) * sigma_to_m(sigma) / 2**R
18

19 # Contraction
20 def contract_tt_MPO_MPS(tt_mpo, tt_mps):
21 mpo = tt_mpo.core
22 mps = tt_mps.core
23 res = xfacpy.TensorTrain_complex(len(mpo))
24 for i in range(len(mpo)):
25 aux = np.reshape( mpo[i], (mpo[i].shape[0], 2, 2, mpo[i].shape[2]))
26 m = np.tensordot(mps[i], aux, axes=([1], [2]))
27 m = np.transpose(m, (0, 2, 3, 1, 4))
28 newshape = (mps[i].shape[0]*mpo[i].shape[0], 2,
29 mps[i].shape[2]*mpo[i].shape[2])
30 m = np.reshape(m, newshape)
31 res.setCoreAt(i, m)
32 res.compressSVD()
33 return res
34

35 # TCI
36 def build_TCI2_complex(fun, d, pivot1, pivots):
37 p = xfacpy.TensorCI2Param()
38 p.pivot1 = pivot1
39 p.useCachedFunction = True
40 p.fullPiv = True
41 ci = xfacpy.TensorCI2_complex(fun, [d]*R, p)
42 ci.addPivotsAllBonds(pivots)
43

44 nsweep = 3
45 for chi in [4,8,16,32,64]:
46 ci.param.bondDim = chi
47 for i in range(1, nsweep+1):
48 ci.iterate()
49 rank = np.max([x.shape[2] for x in ci.tt.core])
50 if (rank < chi) or (ci.pivotError[-1] < 1e-10):
51 break
52 return ci.tt
53

54

55 # Fourier transform MPOs
56 def qft(mu):
57 m1 = sigma_to_m( [mu[i]%2 for i in range(R)] )
58 m2_swapped = sigma_to_m(reversed( [mu[i]//2 for i in range(R)] ))
59 res = 1/(2**(R/2)) * np.exp(-1j * 2*np.pi * m1 * m2_swapped / 2**R)
60 return res
61 qft_mpo = build_TCI2_complex(qft, 4, pivot1=[3]*R, pivots=[])
62

63 def iqft(mu):
64 m1_swapped = sigma_to_m(reversed( [mu[i]%2 for i in range(R)] ))
65 m2 = sigma_to_m( [mu[i]//2 for i in range(R)] )
66 res = 1/(2**(R/2)) * np.exp(1j * 2*np.pi * m1_swapped * m2 / 2**R)
67 return res
68 iqft_mpo = build_TCI2_complex(iqft, 4, pivot1=[3]*R, pivots=[])
69

70

71 # Initial temperature distribution
72 def u0(x):
73 door = np.where(abs(x-5) <= 1.5, 1, 0)
74 oscillations = (1 + np.cos(120*x) * np.sin(180*x))
75 return door + 0.01 * oscillations
76

77 # Quantics representation of u0
78 def u0_tensor(sigma):
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79 return u0(sigma_to_x(sigma))
80 pivot1= [np.random.randint(2) for i in range(R)]
81 while u0_tensor(pivot1) == 0:
82 pivot1 = [np.random.randint(2) for i in range(R)]
83 pivots = [m_to_sigma(m) for m in [0, M//4, M//2-2, M//2, 3*M//4, M-1]]
84 u0_mps = build_TCI2_complex(u0_tensor, 2, pivot1, pivots)
85

86

87 # Time propagator of the Heat equation in Fourier Space
88 def heat_kernel(sigma,t):
89 k = sigma_to_m(reversed(sigma) ) # work with swapped bits in Fourier space
90 delta = (xmax - xmin) / M
91 g_k = np.exp(- (2/delta * np.sin(np.pi * k / M))**2 * t)
92 return g_k
93

94 # MPO representation of the Heat kernel
95 def build_mpo_heat_kernel(t):
96 # build a Quantics MPS
97 pivot1 = [0]*R
98 heat_kernel_t = lambda sigma : heat_kernel(sigma, t)
99 heat_mps = build_TCI2_complex(heat_kernel_t, 2, pivot1, pivots)

100 # convert to a diagonal MPO
101 heat_mps = heat_mps.core
102 res = xfacpy.TensorTrain_complex(R)
103 for i in range(R):
104 s = heat_mps[i].shape
105 aux = np.zeros((s[0],4,s[2]),dtype='complex')
106 aux[:,0,:] = heat_mps[i][:,0,:]
107 aux[:,3,:] = heat_mps[i][:,1,:]
108 res.setCoreAt(i,aux)
109 return res
110

111

112

113 # Time evolution
114 ft_u0 = contract_tt_MPO_MPS(qft_mpo,u0_mps)
115 ts = [5e-6, 0.0001, 0.01, 0.25, 1] # times list
116 samples_lists = []
117 m_list = [m for m in range(0,M,2**(R-4))]
118 x_list = [xmin + (xmax-xmin)/M * m for m in m_list]
119 for t in ts:
120 heat_k_mpo = build_mpo_heat_kernel(t)
121 ft_ut = contract_tt_MPO_MPS(heat_k_mpo, ft_u0)
122 ut = contract_tt_MPO_MPS(iqft_mpo, ft_ut)
123 samples_lists.append([np.real(ut.eval(m_to_sigma(m))) for m in m_list])
124

125 # print the evolution of temperature on some regularly spaced points
126 print(*(['x\t'] + [f'u(x,{t})' for t in ts]), sep='\t')
127 for i,x in enumerate(x_list):
128 print(*([f'{x:.3f}'] + [f'\t{samples_lists[j][i]:.3f}' for j in range(5)]),
129 sep='\t')

Listing 9: Python code using TensorCI2 and the quantics representation defined in
section 6 to build a superfast Fourier transform and solve the heat equation on a
billion points grid, as shown in Fig. 11.

Listing 9 shows the code to solve the heat equation (80) on a 230 points grid using quantics
and the ultrafast Fourier transform MPO representation, as described in section 6.2.

The contract_tt_MPO_MPS defined line 20 performs the contraction of an MPO with an MPS.
The build_TCI2_complex function defined line 36 calls TCI to build either a MPS when the second
argument is d = 2 or an MPO when d = 4. We define an MPO as a tensor with dimension 4
per leg by fusing the input an output indices σ,σ′ following: µ= 2σ′ +σ.

The Fourier and inverse Fourier transform MPO representations are defined line 56 and 63.
The initial temperature distribution (85) is defined line 72 and mapped to a quantics MPS. The
build_mpo_heat_kernel method line 95 builds the MPO representation of the heat kernel operator
(83) to perform time evolution in Fourier space for a given time t.

63



SciPost Phys. 18, 104 (2025)

The final temperature distribution is then computed at 5 different times following (84a)
and (84b). The code prints a temperature values on some regularly spaced grid points for
visualization.

B.2 C++ code
B.2.1 Computation of partition functions

Listing 10 shows the C++ code to compute the partition function using TCI2 for classical
Ising model with |ℓ− ℓ′|−2 interaction detailed in Eq. (66). We increase the maximum bond
dimension by incD (=5) step by step until the error is below the tolerance (=10−10).

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include <cmath>
5 #include "xfac/tensor/tensor_ci_2.h"
6

7 using namespace std;
8 using namespace xfac;
9

10 // function for compute energy for given spin configuration
11 double energy(vector<double> const& spin, vector<double> const& cpln, vector<int> const&

config){
12 const int len= config.size();
13 vector<double> vecS(len);
14 transform(config.begin(), config.end(), vecS.begin(), [&spin](int i) {return

spin.at(i);});
15

16 double sum2 = 0;
17 for (int ii=0; ii<len; ii++) {
18 const double si = vecS.at(ii);
19 for (int jj=ii+1; jj<len; jj++) {
20 const double sj = vecS.at(jj);
21 sum2 += -(si*sj) * cpln.at(jj-ii-1);
22 }
23 }
24 return sum2;
25 }
26

27 int main(int argc, char *argv[]){
28 vector<double> spin = {-1,1}; // down:-1; up:+1
29 const double beta = 0.6; // inverse temperature
30 const double len = 32; // system size
31

32 // cpln: coupling constant is |i-j|ˆ(-2)
33 vector<double> cpln(len-1);
34 iota(cpln.begin(), cpln.end(), 1);
35 for_each(cpln.begin(), cpln.end(), [] (double& val) {
36 val = pow(val,-2);
37 });
38

39 // TT parameters
40 const int niter = 100; // # of tci sweeps
41 const int minD = 5; // minimal bond dimension
42 const int incD = 5; // increment of bond dimension
43 const int dim = spin.size(); //dim of the local space
44

45 // Define partition function
46 long count = 0;
47 auto prob=[=,&spin,&beta,&count](vector<int> const& config) {
48 count++;
49 return exp( -beta * energy(spin, cpln, config) );
50 };
51

52 // Initialize TCI
53 TensorCI2Param pp;
54 pp.bondDim = minD;
55 auto tci = TensorCI2<double>(prob, vector(len,dim),pp);

64



SciPost Phys. 18, 104 (2025)

56

57 // Initialize PIVOTS
58 auto init1 = vector(len, 1);
59 auto init2 = vector(len, 0);
60 vector<vector<int>> seed = {init1,init2};
61 tci.addPivotsAllBonds(seed);
62

63 // TCI sweep
64 for (int iter=0; iter<niter; iter++){
65 tci.iterate();
66 cout << setw( 6) << fixed << iter << " "
67 << setw( 6) << fixed << tci.param.bondDim << " "
68 << setw(12) << fixed << count << " "
69 << setw(20) << scientific << setprecision(4) <<

tci.pivotError.back()/tci.pivotError.front() << " "
70 << endl;
71 if (tci.pivotError.back() / tci.pivotError.front() <1e-10) {
72 break;
73 }
74 tci.pivotError.clear();
75 tci.param.bondDim += incD;
76 }
77

78 // Measure local moments
79 vector<vector<double>> ones = vector(len, vector(dim,1.0));
80 vector<double> m2(dim);
81 transform(spin.begin(), spin.end(), m2.begin(), [&len](double i) {return pow(i,2);});
82 const double norm = tci.tt.sum(ones);
83 // compute <M>
84 double aM1 = 0;
85 for (int ss=0; ss<len; ss++){
86 auto tmp = ones;
87 tmp.at(ss) = spin;
88 aM1 = aM1 + tci.tt.sum(tmp);
89 }
90 // compute <Mˆ2>
91 double aM2 = 0;
92 for (int s1=0; s1<len; s1++){
93 for (int s2=s1+1; s2<len; s2++){
94 auto tmp = ones;
95 tmp.at(s1) = spin;
96 tmp.at(s2) = spin;
97 aM2 = aM2 + 2*tci.tt.sum(tmp);
98 }
99 }

100 for (int ss=0; ss<len; ss++){
101 auto tmp = ones;
102 tmp.at(ss) = m2;
103 aM2 = aM2 + tci.tt.sum(tmp);
104 }
105

106 // Print resutls
107 const double FE = log(norm)/len; //free energy
108 const double M1 = aM1/norm/len;
109 const double M2 = aM2/norm/len/len;
110 cout << "Beta: "
111 << setw( 6) << fixed << setprecision(2) << beta
112 << " | Free Energy: "
113 << setw(20) << fixed << setprecision(16) << FE
114 << " | M1: "
115 << setw(12) << fixed << setprecision(8) << M1
116 << " | M2: "
117 << setw(12) << fixed << setprecision(8) << M2
118 << " | # calls: " << setw(12) << fixed << count
119 << endl;
120 return 0;
121 }

Listing 10: C++ code to compute the partition function for classical Ising model with
|ℓ− ℓ′|−2 interactions; see Eq. (66).
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B.3 Julia scripts

B.3.1 TCI for high-dimensional Gauss–Kronrod quadrature

Listing 11 contains the Julia script for numerical integration of Eq. (64) using TCI for N = 5
using bare error estimate (refer to Sec. 4.3.7).

1 import TensorCrossInterpolation as TCI
2

3 N = 5 # Number of dimensions <@$\cN$@>
4 tolerance = 1e-10 # Tolerance of the internal TCI
5 GKorder = 15 # Order of the Gauss-Kronrod rule to use
6

7 f(x) = 2ˆN / (1 + 2 * sum(x)) # Integrand
8 integralvalue = TCI.integrate(Float64, f, fill(0.0, N), fill(1.0, N); tolerance, GKorder)
9

10 # Exact value of integral for <@$\cN = 5$@>
11 i5 = (-65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
12 error = abs(integralvalue - i5)
13

14 @info "TCI integration with GK$GKorder: " integralvalue i5 error

Listing 11: Julia code to numerically compute the integral I (N=5) of Eq. (64) using
TCI.jl. Results are shown in Figs. 4.

B.3.2 Quantics TCI for 2-dimensional integration

Listing 12 shows the Julia script for the Julia code to compute a quantics TCI of the 2D-
function f (x , y) of Eq. (79) for x and y between −5 and 5 using R= 40. In practice, we use
QuanticsTCI.jl, which is a thin wrapper around TCI.jl that provides a more user-friendly
interface for quantics TCI.

1 using QuanticsTCI
2 import QuanticsGrids as QG
3

4 R = 40 # Number of bits <@$\cR$@>
5 xygrid = QG.DiscretizedGrid{2}(R, (-5.0, -5.0), (5.0, 5.0)) # Discretization grid

<@$\vec{x}(\bsigma)$@>
6

7 function f(x, y) # Function of interest <@$f(x)$@>
8 return exp(-0.4*(xˆ2 + yˆ2)) + 1 + sin(x * y) * exp(-xˆ2) +
9 cos(3*x*y) * exp(-y ˆ 2) + cos(x+y)

10 end
11

12 # Construct and optimize quantics TCI <@$\tF_\bsigma$@>
13 f_tci, ranks, errors = quanticscrossinterpolate(Float64, f, xygrid; tolerance=1e-10)
14

15 # Print a table to compare <@$f(x)$@> and <@$\tF_\bsigma$@> on some regularly spaced
points

16 println("x\t y\t f(x)\t\t\t f_tt(x)")
17 for index in CartesianIndices((10, 10))
18 m = Tuple(index) .* div(2ˆR, 10)
19 x, y = QG.grididx_to_origcoord(xygrid, m)
20 println("$x\t$y\t$(f(x, y))\t$(f_tci(m))")
21 end
22

23 println("Value of the integral: $(integral(f_tci))")

Listing 12: Julia code to compute a quantics TCI of the 2D-function f (x , y) of
Eq. (79) for x , y ∈ [−5, 5) using 240 × 240 grid points, plotted in Fig. 8.
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B.3.3 Quantics TCI for multi-dimensional integration
Listing 13 shows the Julia script to compute the integral I (N=5) [Eq. (64)] numerically using
the multi-dimensional quantics integration from Sec. 6.3.2. The code is equivalent to the
Python script in Listing 8.

1 import QuanticsGrids as QG
2 import TensorCrossInterpolation as TCI
3

4 N = 5 # Number of dimensions <@$\cN$@>
5 tolerance = 1e-10 # Tolerance of the internal TCI
6 R = 40 # Number of bits <@$\cR$@>
7

8 f(x) = 2ˆN / (1 + 2 * sum(x)) # Integrand <@$f(\vec{x})$@>
9

10 # Discretization grid with <@$2^{\scN \scR}$@> points
11 grid = QG.DiscretizedGrid{N}(R, Tuple(fill(0.0, N)), Tuple(fill(1.0, N)),

unfoldingscheme=:interleaved)
12 quanticsf(sigma) = f(QG.quantics_to_origcoord(grid, sigma)) # <@$f(\vec{x}(\bsigma))$@>
13

14 # Obtain the QTCI representation and evaluate the integral via factorized sum
15 tci, ranks, errors = TCI.crossinterpolate2(Float64, quanticsf, QG.localdimensions(grid);

tolerance)
16

17 # Integral is sum multiplied with discretization volumne
18 integralvalue = TCI.sum(tci) * prod(QG.grid_step(grid))
19

20 # Exact value of integral for <@$\cN = 5$@>
21 i5 = (-65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
22 error = abs(integralvalue - i5) # Error for <@$\cN = 5$@>
23

24 @info "Quantics TCI integration with R=$R: " integralvalue i5 error

Listing 13: Julia code to compute the integral I (N=5) of Eq. (64) numerically using
the multi-dimensional quantics integration from Sec. 6.3.2. The integrand is formally
discretized on 240 points per variable xn, the factorization is performed on a multi-
dimensional quantics representation of a tensor of 25×40 elements.

B.3.4 Compressing existing data with TCI

In the example below, we illustrate how to apply (Q)TCI to some existing typical datasets. Let
dataset be some pre-generated dataset (e.g. read from a file) in the form of an N -dimensional
array. Listing 14 shows a test for TCI compressibility. Listing 15 shows a similar test for QTCI
compressibility.

1 import TensorCrossInterpolation as TCI
2

3 # Replace this line with the dataset to be tested for compressibility.
4 grid = range(-pi, pi; length=200)
5 dataset = [cos(x) + cos(y) + cos(z) for x in grid, y in grid, z in grid]
6

7 # Construct TCI
8 tolerance = 1e-5
9 tt, ranks, errors = TCI.crossinterpolate2(

10 Float64, i -> dataset[i...], collect(size(dataset)), tolerance=tolerance)
11

12 # Check error
13 ttdataset = [tt([i, j, k]) for i in axes(grid, 1), j in axes(grid, 1), k in axes(grid, 1)]
14 errors = abs.(ttdataset .- dataset)
15 println(
16 "TCI of the dataset with tolerance $tolerance has link dimensions

$(TCI.linkdims(tt)), "
17 * "for a max error of $(maximum(errors))."
18 )

Listing 14: Julia code to test an existing dataset for TCI compressibility.
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1 using QuanticsTCI
2 import TensorCrossInterpolation as TCI
3

4 # Number of bits
5 R = 8
6

7 # Replace with your dataset
8 grid = range(-pi, pi; length=2ˆR+1)[1:end-1] # exclude the end point
9 dataset = [cos(x) + cos(y) + cos(z) for x in grid, y in grid, z in grid]

10

11 # Perform QTCI
12 tolerance = 1e-5
13 qtt, ranks, errors = quanticscrossinterpolate(
14 dataset, tolerance=tolerance, unfoldingscheme=:fused)
15

16 # Check error
17 qttdataset = [qtt([i, j, k]) for i in axes(grid, 1), j in axes(grid, 1), k in axes(grid,

1)]
18 error = abs.(qttdataset .- dataset)
19 println(
20 "Quantics TCI compression of the dataset with tolerance $tolerance has " *
21 "link dimensions $(TCI.linkdims(qtt.tci)), for a max error of $(maximum(error))."
22 )

Listing 15: Julia code to test an existing dataset for QTCI compressibility.

B.3.5 Adding global pivots

We provide a simple example demonstrating the ergodicity problem discussed in Sec. 4.3.5
and how to fix it by adding a global pivot. We consider a function that takes a finite value at
the first and last grid points, but is zero elsewhere (see Fig. 16):

fm = δm,0 +δm,M−1, (B.1)

where m= 0,1, · · · , M − 1 and M = 2R. When we interpolate this function using a 2-site TCI
in the quantics representation with an initial pivot σ = (0, 0, · · · , 0) (m= 0), the interpolation
fails to capture the function at the last grid point for R ≥ 3 [67]. We can fix this by adding a
global pivot at the last grid point. Listing 16 shows the Julia code to demonstrate this.

1 import TensorCrossInterpolation as TCI
2 import Random
3 import QuanticsGrids as QD
4 using PythonPlot: pyplot as plt
5 import PythonPlot
6 using LaTeXStrings
7

8 PythonPlot.matplotlib.rcParams["font.size"] = 15
9

10 # Number of bits
11 R = 4
12 tol = 1e-4
13

14 # f(q) = 1 if q = (1, 1, ..., 1) or q = (2, 2, ..., 2), 0 otherwise
15 f(q) = (all(q .== 1) || all(q .== 2)) ? 1.0 : 0.0
16

17 localdims = fill(2, R)
18

19 # Perform TCI with an initial pivot at (1, 1, ..., 1)
20 firstpivot = ones(Int, R)
21 tci, ranks, errors = TCI.crossinterpolate2(
22 Float64,
23 f,
24 localdims,
25 [firstpivot];
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26 tolerance=tol,
27 nsearchglobalpivot=0 # Disable automatic global pivot search
28 )
29

30 # TCI fails to capture the function at (2, 2, ..., 2)
31 globalpivot = fill(2, R)
32 @assert isapprox(TCI.evaluate(tci, globalpivot), 0.0)
33

34 # Add (2, 2, ..., 2) as a global pivot
35 tci_globalpivot = deepcopy(tci)
36 TCI.addglobalpivots2sitesweep!(
37 tci_globalpivot, f, [globalpivot],
38 tolerance=tol
39 )
40 @assert isapprox(TCI.evaluate(tci_globalpivot, globalpivot), 1.0)
41

42 # Plot the function and the TCI reconstructions
43 grid = QD.InherentDiscreteGrid{1}(R)
44 ref = [f(QD.grididx_to_quantics(grid, i)) for i in 1:2ˆR]
45 reconst_tci = [tci(QD.grididx_to_quantics(grid, i)) for i in 1:2ˆR]
46 reconst_tci_globalpivot = [tci_globalpivot(QD.grididx_to_quantics(grid, i)) for i in

1:2ˆR]
47

48 fig, ax = plt.subplots(figsize=(6.4, 3.0))
49 ax.plot(ref, label="ref", marker="", linestyle="--")
50 ax.plot(reconst_tci, label="TCI without global pivot", marker="x", linestyle="")
51 ax.plot(reconst_tci_globalpivot, label="TCI with global pivot", marker="+", linestyle="")
52 ax.set_xlabel(L"Index $m$")
53 ax.set_ylabel(L"f_m")
54 ax.legend(frameon=false)
55 plt.tight_layout()
56 fig.savefig("global_pivot.pdf")

Listing 16: Julia code demonstrating how to add a global pivot. We first construct a
TCI object using 2-site TCI with an initial pivot at the first grid index. This fails to
interpolate the function at the last grid index due to the local nature of 2-site TCI.
This is fixed by adding a global pivot at the last grid index.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Index m

0.0

0.5

1.0

f m ref
TCI without global pivot
TCI with global pivot

Figure 16: Comparison of the reference function (B.1), the result of TCI without an
added global pivot, and the result of TCI with an added global pivot. The global pivot
was added at the last grid index.
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Chapter Four

Implementing diagrammatic
methods with tensor trains

4.1 Introduction
As shown in Chapter 2, correlators such as the vertex can be highly complex
functions of many arguments. Diagrammatic method thus encounter a curse
of dimensionality problem, where the amount of memory required to represent
some correlators on a dense grid grows exponentially with the number of
arguments, which in turn scales with order in perturbation theory, number of
bands or orbitals in the Hamiltonian, or other physical quantities [74]. This
limits the scope of applicability of these methods. Since TCI is tailored to
these curse of dimensionality problems, it is a quite natural idea to apply it
to diagrammatic equations as well. This chapter shows how to perform a
self-consistent parquet calculation entirely within the quantics TCI formalism.

Prior attempts to reduce the computational complexity of correlator rep-
resentation below that of a naive dense grid approach are mainly based on
basis sets that are designed for the specific quantity to be represented. For
Matsubara frequencies, these are the closely related intermediate representa-
tion [74–76] and discrete Lehmann representation [77, 78]. The momentum
dependency can be expanded in form factors in the truncated unity fRG [79,
80]. Having expanded a particular dependency, it is then possible—and often
required—to truncate the basis set, and neglect coefficients that have small
values. Ideally, one would systematically increase the number of components
taken into account until convergence is reached up to some tolerance. In
many cases, this is unfeasible due to the limited amount of memory typically
available on current computing clusters. An example for this are vertices in
the Hubbard model, where it is typically necessary to approximate the fre-
quency dependence with < 10 components in order to converge the momentum
dependence in the number of form factors [79, 81].

This type of approach is often cumbersome due to its inflexibility: each
basis set can only be applied to a specific parameter dependence, and finding

119



4. Implementing diagrammatic methods with tensor trains

a new basis set for a different type of argument requires considerable effort.
If an algorithm such as fRG is to be set up in the new basis, it should also
be convenient to manipulate the functions and evaluate equations in the new
basis set. In comparison to basis sets, TT are much more flexible in their
applicability, and manipulations of TT correspond to tensor networks that
are often analogous to ones known from the tensor networks literature [P3,
30]. Prior to our work, Refs. [19, 30] showed that TT are a compact, flexible,
and practical representation of correlators. In this chapter, we show that
diagrammatic self-consistent equations can be solved with QTT. In parallel to
us, Refs. [31, 82] showed that DMFT and GW can be implemented efficiently
for non-equilibrium systems in the real-frequency Keldysh formalism.

4.2 Publication 4: Two-particle calculations with quantics ten-
sor trains: Solving the parquet equations

In this section, the following publication is reprinted:
P4 Two-particle calculations with quantics tensor trains: Solving the par-

quet equations,
Stefan Rohshap, Marc K. Ritter, Hiroshi Shinaoka, Jan von Delft,
Markus Wallerberger, and Anna Kauch,
Physical Review Research 7, 023087 (2025),
doi:10.1103/PhysRevResearch.7.023087.
Reprinted on pages 120–142.
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We present an application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution
of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show
that the steps needed to evaluate the equations (Bethe-Salpeter equations, parquet equation, and Schwinger-
Dyson equation) can be decomposed into basic operations on the QTT-TCI compressed objects. The repeated
application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative
scheme converges even for numerically demanding parameters. As examples, we take the Hubbard model in the
atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-
particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able
to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an
exponential increase of the number of grid points included in the calculations, and a corresponding exponential
reduction of the computational error, for a linear increase in computational cost.

DOI: 10.1103/PhysRevResearch.7.023087

I. INTRODUCTION

The understanding of many important excitations of
electronic systems—magnons, excitons, or other composite
objects—requires understanding correlations at the two-
particle level. Two-particle quantities—correlation functions
or scattering amplitudes (vertices)—are inherently large ob-
jects, with multiple dependencies: If we consider scattering
of two particles, the amplitude will depend on the energies,
momenta, and spin orbitals of two incoming and two out-
going particles. The number of independent variables can be
reduced using conservation laws, but each independent spin-
orbital combination still depends on three momenta and three
frequencies. Numerical representation of these multivariate
functions on uniform grids is very expensive due to the third
power scaling of memory in the number of discrete momenta
or energies. On the other hand, large ranges are required to
faithfully represent complicated structures which the vertices
show in all their dependencies [1–3]. When the vertices are
themselves variables in diagrammatic equations, as is the case
in parquet equations [4–6], the required computation time be-
comes prohibitive [7]. Several solutions to this problem have

*Contact author: stefan.rohshap@tuwien.ac.at
†Contact author: ritter.marc@lmu.de
‡Contact author: kauch@ifp.tuwien.ac.at

Published by the American Physical Society under the terms of the
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distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

been proposed so far, either based on partial reduction of the
number of frequency and/or momentum variables that need to
be treated on grids [8–12] or based on compact representation
of the frequency dependence in a suitable basis [13–16]. The
former still do not lead to true dimensional reduction of the
full parquet equation problem. The latter are very promising
and provide another path to dimensional reduction, alternative
to the one described in this paper. Recently, a wavelet-based
decomposition for efficiently compressing two-particle quan-
tities has also been proposed [17–19].

In this paper, we present a full computation of the self-
consistent solution of parquet equations in the quantics
tensor train (QTT) representation. This representation, based
on length or energy scale separation, leads to significant
dimensional reduction of the problem, removing memory bot-
tlenecks. The computational cost becomes logarithmic in grid
size and depends strongly only on the maximum bond dimen-
sion, which is small enough in many physics applications.
Hence, the overall computational cost is significantly reduced.

The QTT representation of multivariate functions has al-
ready been around for a decade or so [20–23], but it was only
recently applied to various fields of natural science such as
turbulence [24–28], plasma physics [29], quantum chemistry
[30], and quantum field theory of the many electron problem
[31]. For quantum field theories, the QTT representation pro-
vides a compact representation of the space-time dependence
of the correlation functions [31]. First many-body calcula-
tions of Feynman diagrams with the QTT representation in
imaginary time [32] and in nonequilibrium [33] already show
the potential of the method. A very favorable scaling of the
QTT representation with temperature has been conjectured
in Ref. [34]. In parallel, the tensor cross interpolation (TCI)
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method was applied to evaluations of diagrams in many-body
physics [35–38]. TCI can be combined with the quantics ten-
sor train representation to form QTT+TCI=QTCI, a powerful
approach with diverse applications [39].

To apply QTCI to parquet equations, we break down these
equations [Bethe-Salpeter equation (BSE), parquet equation,
and Schwinger–Dyson equation (SDE)] into basic operations
on QTTs, represented by matrix product operators (MPOs).
We use MPO-MPO contractions for matrix and elementwise
multiplications and construct a new MPO for affine transfor-
mations needed to perform channel transformations (variable
shifts) occurring in the parquet equation. Our approach scales
as O(D4

maxR), with maximum bond dimension of Dmax and
grid size 23R. The computational cost is only logarithmic in
grid size and the main bottleneck is shifted to the maxi-
mum bond dimension. We have verified this scaling in two
benchmark models: the Hubbard atom and the single impurity
Anderson model (SIAM). In both models, the two-particle
vertices are fully dynamical (dependent on three frequencies)
but local (independent of momentum). In both cases, we
empirically find that an overall accuracy <10−3 of the full
self-consistent solution can be achieved with a bond dimen-
sion up to 200 even for challenging parameters close to a
divergence line in the Hubbard atom.

This paper is organized as follows. In Sec. II, we introduce
the concrete Hamiltonians (Hubbard atom and single impu-
rity Anderson model) for which we will present the results.
Further, in Sec. III we first recall definitions of one- and two-
particle Green’s functions and vertices and set the notations
used in the paper. Then we provide in detail the full set of
parquet equations that we solve. Additional information on
the equations and notations is also provided in Appendix A. In
Sec. IV, we introduce quantics tensor trains, the tensor cross
interpolation method, and matrix product operators. These
techniques are used to construct efficient implementations of
the parquet equations in Sec. V and Appendixes B and C.
We also provide results for the compression of the vertices
and scaling of the bond dimension for each of the operations
needed to complete one loop of parquet equations in Sec. V.
More details and additional plots can be found in Appendixes
D and E. Next, in Sec. VI, we show results for the full self-
consistent iterative scheme and its technical limitations (with
details also in Appendix F). In the last section, Sec. VII, we
conclude and provide an outlook.

II. MODELS

In the current paper, we focus on the solution of equa-
tions for two-particle vertices in the (Matsubara) frequency
space. Although, in general, the vertices are also dependent
on momentum and orbital degrees of freedom, we limit our-
selves to simple models for which the vertices depend only
on frequency but not on momentum. We present results for
two benchmark models: the Hubbard atom, where exact ana-
lytical expressions for the vertex functions are known [40],
and the single impurity Anderson model [41], where high-
quality numerical data is available [3]. The treatment of the
frequency dependence of vertices presented in this paper can
be directly extended to models with additional orbital and

momentum dependencies. The possibility of such extensions
will be discussed in Appendix G.

A. Hubbard atom

The Hubbard atom is an extreme simplification of the
Hubbard model in which the hopping amplitudes of the elec-
trons between sites are put to zero. Although this is a drastic
change, the Hubbard atom represents many of the features of
the strong-coupling limit of the Hubbard model [40]. With-
out hopping, each atom is independent and described by the
following Hamiltonian:

Ĥ = Un̂↑n̂↓ − μ(n̂↑ + n̂↓), (1)

with n̂σ = ĉ†
σ ĉσ and the fermionic annihilation (creation) op-

erator ĉ(†)
σ that annihilates (creates) an electron with spin σ .

The on-site Coulomb repulsion between two electrons is given
by U and the chemical potential is set to μ = U

2 (half filling).
The only other energy scale beside U in this model is the
temperature T , which we define in the same units as U , setting
kB ≡ 1 and h̄ ≡ 1.

B. Single-impurity Anderson model

In the SIAM, the interacting atom is not isolated, but
coupled to a bath of non-interacting electrons. The SIAM
Hamiltonian is [41]

Ĥ =
∑
kσ

εkĉ†
k,σ

ĉk,σ
+

∑
kσ

(Vkĉ†
k,σ

d̂σ + V ∗
k d̂†

σ ĉk,σ
)

+ Un̂d,↑n̂d,↓ + εd (n̂d,↑ + n̂d,↓), (2)

where the impurity is described by the fermionic annihilation
(creation) operators d̂ (†)

σ , the number operator n̂d,σ = d̂†
σ d̂σ ,

the impurity one-particle energy level εd and the on-site re-
pulsion U . The bath is described by the kinetic term ĉ(†)

k,σ
with

one-particle energies εk. The hybridization between the impu-
rity and the bath is given by Vk. The bath parameters jointly
determine the frequency-dependent hybridization function:

�(ν) =
∑

k

|Vk|2
iν − εk

. (3)

In this paper, we use the following hybridization function:

�(ν) = − iV 2

D
arctan

(
D

ν

)
, (4)

which corresponds to a flat density of states of the bath elec-
trons ρ(ε) = θ (D − |ε|)/(2D) with bandwidth D and Vk = V .
We will present results for V = 2, D = 10, and half filling,
i.e., with εd = −U/2.

III. PARQUET EQUATIONS

The parquet equations are a set of exact relations be-
tween different classes of two-particle vertices and between
the self-energy and the full two-particle vertex [4,5]. A good
introduction to the formalism is provided in Ref. [6]. Here we
only recall the equations, using the notations of Refs. [1,42–
44]. Before we introduce the equations themselves, we first
recapitulate some definitions to set the notations.
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A. One-particle quantities

The one-particle Green’s function in the Matsubara fre-
quency space Gσ (ν) is defined as the Fourier transform of the
(imaginary-time ordered) two-point correlation function:

Gσ (ν) = −
∫ β

0
dτeiντ 〈Tτ ĉσ (τ )ĉ†

σ (0)〉, (5)

with τ denoting the imaginary time, β ≡ 1/T the inverse
temperature, and ν = (2n + 1)π/β, n ∈ Z denoting the (dis-
crete) fermionic Matsubara frequencies. Through the Dyson
equation, we further define the self-energy �σ (ν),

Gσ (ν) = 1

G−1
0,σ (ν) − �σ (ν)

, (6)

where G0,σ (ν) is the Green’s function of the noninteracting
system:

G0,σ (ν) = 1

iν + U
2 − �(ν)

, (7)

where we have set the following model-dependent parameters
to values corresponding to half filling: For the Hubbard atom,
�(ν) vanishes, and the chemical potential is μ = U/2. For the
single-impurity Anderson model, we set the chemical poten-
tial to μ = 0 and the one-particle energy level to εd = −U/2.

B. Two-particle quantities

The two-particle Green’s function in Matsubara frequen-
cies is the Fourier transform of the (imaginary time ordered)
four-point correlator:

Gν1ν2ν3
σ1...σ4

=
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3 eiν1τ1+iν2τ2+iν3τ3

× 〈Tτ ĉσ1 (τ1)ĉ†
σ2

(τ2)ĉσ3 (τ3)ĉ†
σ4

(0)〉. (8)

In the above definition of the Fourier transform, the two-
particle Green’s function is dependent on three fermionic
Matsubara frequencies ν1, ν2, ν3. In the context of Bethe-
Salpeter equations (defined below in Sec. III C), it is more
convenient to parametrize two-particle quantities as a function
of two fermionic frequencies ν, ν ′ and one bosonic Mat-
subara frequency ω = 2nπ

β
, n ∈ Z. There are three important

conventions of this parametrization: the particle-hole (ph)
channel notation, where ω = ν1 + ν2; the particle-particle
(pp) channel notation, where ω = ν1 + ν3; and the transversal
particle-hole (ph) channel notation, where ω = ν2 + ν3. In the
parquet approach, it is necessary to transform between these
conventions using the so-called channel transformations out-
lined in Appendix A. The reason, as we will see in Sec. III D,
is that the parquet equation mixes vertex functions that are
represented in different frequency channel parametrizations.

In this paper, we use the SU(2) symmetry of the discussed
models, which allows us, together with spin conservation,
to reduce the number of spin components that need to be
computed to the following: Gσσσ ′σ ′ , which we will denote
by Gσσ ′ , and Gσ (−σ )(−σ )σ , which can be shown to be equal
to Gσσ − Gσ (−σ ). Furthermore, since Gσσ ′ = G(−σ )(−σ ′ ), we
only need to compute G↑↑ and G↑↓. We will proceed in a
similar manner for the vertex F (see below). From here on,

we will also drop the spin index from the one-particle objects
G0, G, and �, since G↑ = G↓.

The full two-particle vertex F is the connected part of the
two-particle Green’s function with “amputated legs.” In the
particle-hole channel, it is related to the two-particle Green’s
function through

Gνν ′ω
σσ ′ = G(ν)G(ν ′)δω0 − G(ν)G(ν + ω)δνν ′δσσ ′

− G(ν)G(ν + ω)F νν ′ω
σσ ′ G(ν ′)G(ν ′ + ω). (9)

Apart from channels stemming from different frequency
parametrizations (ph, pp, and ph), it is convenient to in-
troduce also linear combinations of spin components. The
following spin combinations will be used for vertices in the
ph frequency channel:

Fd = F↑↑ + F↑↓,

Fm = F↑↑ − F↑↓, (10)

which physically correspond to the density (d) and magnetic
(m) spin components.

The same vertex F can be represented in the particle-
particle channel frequency parametrization: F pp (see Ap-
pendix A for details). In the pp channel, the convenient spin
combinations are the following:

Fs = F pp
↑↑ − F pp

↑↓ , Ft = F pp
↑↑ , (11)

physically corresponding to the singlet (s) and triplet (t) spin
components. In the following, we will predominantly use the
spin-component notation, i.e., d/m/s/t , assuming that the d
or m spin components are always in the ph frequency channel
notation and the s or t spin components are always in the pp
frequency channel notation.

As we will see later (in Sec. III C), in the above four spin
combinations the Bethe-Salpeter equations decouple in the
spin variable.

C. Bethe-Salpeter equations

The full vertex F contains all diagrams irrespective of their
two-particle reducibility. The Bethe-Salpeter equations relate
the full two-particle vertex to sets of two-particle irreducible
diagrams. This is analogous to Dyson’s equation (6), however,
in the two-particle case the notion of irreducibility is not
unique. Instead of one Dyson equation, we have independent
BSEs in particle-hole and particle-particle channels. In the
ph channel, we have the equations for density and magnetic
components:

F νν ′ω
d = �νν ′ω

d − 1

β2

∑
ν1ν2

�
νν1ω
d χ

ν1ν2ω
0,ph F ν2ν

′ω
d , (12a)

F νν ′ω
m = �νν ′ω

m − 1

β2

∑
ν1ν2

�νν1ω
m χ

ν1ν2ω
0,ph F ν2ν

′ω
m ; (12b)

in the pp channel, we have the equations for the singlet and
triplet components:

F νν ′ω
s = �νν ′ω

s + 1

β2

∑
ν1ν2

F νν1ω
s χ

ν1ν2ω
0,pp �ν2ν

′ω
s , (12c)

F νν ′ω
t = �νν ′ω

t − 1

β2

∑
ν1ν2

F νν1ω
t χ

ν1ν2ω
0,pp �ν2ν

′ω
t . (12d)
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The above equations define four irreducible vertices �r ,
r = d/m/s/t that are irreducible in either the ph channel (r =
d/m) or pp channel (r = s/t). We define vertices reducible in
these channels simply as

�νν ′ω
d/m = F νν ′ω

d/m − �νν ′ω
d/m , (13a)

�νν ′ω
s/t = F νν ′ω

s/t − �νν ′ω
s/t . (13b)

The χ0’s are products of two one-particle Green’s functions
and are defined as follows:

χνν ′ω
0,ph = −βG(ν)G(ν + ω)δνν ′ , (14a)

χνν ′ω
0,pp = −β

2
G(ν)G(−ν − ω)δνν ′ . (14b)

The pair propagators (also called bare generalized suscepti-
bilities) χ0’s are diagonal in ν, ν ′, which means that the sum in
Eqs. (12) runs over only one fermionic Matsubara frequency
index. For convenience of actual numerical evaluations, we,
however, keep the double fermionic frequency dependence in
χ0’s.

Due to convenient parametrization of the frequency depen-
dence of the vertices, i.e., the ph channel for d/m and pp
channel for s/t , the BSEs (12) are diagonal both in the bosonic
frequency ω and in the spin components d/m/s/t .

D. Parquet equation

Through Eqs. (12) and (13), we defined reducible vertices
�d/m and �s/t in ph and pp channels, respectively. These ver-
tices correspond to different physical processes that happen
in the ph and pp scattering channels and are generated by
the BSEs (12). The parquet equation mixes these processes,
allowing for balance between contributions generated by all
of the BSEs (12). In a simplified way, the parquet equation can
be represented as the following sum of terms:

F = � + �ph + �ph + �pp, (15)

where �ph denotes contributions coming from �d or �m,
�ph contributions coming from �d/m, but in the ph frequency
parametrization, and �pp contributions from �s or �t (more
details can be found in Appendix A or in Ref. [6]). The first
summand, �, contains so-called fully two-particle irreducible
diagrams, i.e., contributions which cannot be generated by the
two-particle BSEs.

Since in the BSEs the reducible vertices �r are in different
frequency channel parametrizations, to sum the contributions
we have to transform them into a common parametrization.
The explicit form of the parquet equation for Fd is then the
following [42]:

F νν ′ω
d = �νν ′ω

d + �νν ′ω
d − 1

2�
ν(ν+ω)(ν ′−ν)
d

− 3
2�ν(ν+ω)(ν ′−ν)

m + 1
2�νν ′(−ω−ν−ν ′ )

s

+ 3
2�

νν ′(−ω−ν−ν ′ )
t , (16)

where �d is the density component of the fully irreducible
vertex. �d cannot be obtained from the BSEs and has to be
provided from outside the parquet scheme. In the examples
presented in Sec. VI, we either use the exact expression (it
is known for the Hubbard atom) or we use a weak coupling

FIG. 1. Iterative parquet scheme.

approximation for it. Equation (15) can be used to generate
equations analogous to Eq. (16) for Fm, Fs, and Ft . We provide
them explicitly in Appendix A.

E. Schwinger-Dyson equation

The last equation that belongs to the set of parquet equa-
tions is the SDE that relates the two-particle vertex F to the
self-energy

�(ν) = Un

2
− U

β2

∑
ν ′ω

F νν ′ω
↑↓ G(ν ′)G(ν ′ + ω)G(ν + ω),

(17)

where n is the average particle density and F νν ′ω
↑↓ = 1

2 (F νν ′ω
d −

F νν ′ω
m ) [follows from Eq. (10)].

F. Iterative parquet scheme

Assuming we know the fully irreducible vertex � (or
have a good approximation for it), the parquet equation (15)
together with the BSEs (12) and the SDE (17), as well as
the Dyson equation (6), applied iteratively, will generate all
the vertices for the model given by the Hamiltonian and G0:
{Fd/m, Fs/t , �d/m, �s/t , �d/m, �s/t } as well as the self-energy
� and the Green’s function G. The iterations are repeated until
the difference between consecutive values falls below a given
tolerance.

The input quantity that does not change in the iterations,
namely, the fully irreducible vertex �, is known exactly (even
analytically [40]) for the Hubbard atom and we use this exact
expression. For the SIAM, we use the so-called parquet ap-
proximation which sets � equal to the bare interaction U (it is
the lowest order diagram in �, the next order appearing in the
diagrammatic expansion of � is U 4). Explicitly written out in
spin components, the parquet approximation reads

�d = U, �m = −U, �s = 2U, �t = 0. (18)

In Fig. 1, we show how the actual iterated loop is imple-
mented in this paper. In the first cycle of the iteration, we
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either set �r = �r, Fd = U, Fm = −U, Fs = 2U, Ft = �t or
use previous results for smaller values of βU . After initializa-
tion, the BSEs (12) are evaluated and the reducible vertices
�r are obtained. Then, from the parquet equation (16) (for
all channels), the new F is computed and the irreducible
vertices �r are updated from (13). From the new F , the
self-energy � can be obtained from SDE (17) and the one-
particle Green’s function from (6). The self-energy update
does not have to happen in each iteration—depending on the
value of U , it might be faster to update it every five or ten
iterations. With updated F , �r , and G, the cycle consisting of
the nine equations is repeated until convergence is reached.
In this paper, to keep things simple, we limit convergence
acceleration to a linear mixing update to the reducible vertex,
�n+1 = α�′

n + (1 − α)�n with mixing parameter α, where
�n is the reducible vertex in iteration n and �′

n is the result of
applying a single cycle to �n.

We conclude this section with some comments on con-
vergence issues. First, the iterative parquet scheme is not
guaranteed to converge. Second, there are cases where the
iterative scheme leads to a false solution. This is the case,
e.g., for the Hubbard atom for large βU beyond the first
divergence of the irreducible vertex [45]. In this paper, we
do not address such cases and focus on examples and pa-
rameter regimes where the parquet scheme should converge
to the physical solution. Nevertheless, convergence can also
be influenced by other factors. The first numerical solution
for the Hubbard model on a 4 × 4 cluster [7] showed the diffi-
culty of achieving convergence, particularly when the crossing
symmetry (see Appendix A) was not obeyed. An important
factor in improving stability of the iterative scheme turned
out to be the inclusion of vertex asymptotics, i.e., a prediction
for values of the vertex that fall beyond the frequency range
used, either by introducing so-called kernels [8,10,44,46] or
by removing the asymptotic parts of vertices altogether in the
single-boson exchange reformulation [3,12]. In this paper, we
do not use asymptotics and do not suffer from convergence
problems mainly because we are able to use very large grids.
In the future, it might be important to include asymptotic, as
in Refs. [8,10,44,46] or [3,12], to improve stability but also to
avoid some technical issues that are addressed in Appendix F.

IV. QUANTICS TENSOR TRAINS

Numerical solution of the iterative parquet scheme in-
troduced in the previous section suffers from the curse of
dimensionality: the vertex functions have multiple frequency
(and in general also momentum) arguments. Discretizing
these multivariate functions on naive grids requires a number
of grid points that grows exponentially with the number of
function arguments, which therefore becomes very expensive
already for a moderate number of grid points in each argu-
ment. The solution to this problem that we propose is (i)
to represent each variable through a set of binary numbers
(hence quantics) corresponding to different length and energy
scales and (ii) to factorize the dependence on each argument
at each length and energy scale into a tensor train (TT), also
known as a matrix product state (MPS). If the problem has
some kind of scale separation, the resulting QTT is expected
to have a small maximum bond dimension. Since this is the

FIG. 2. Quantics representation and quantics tensor train of a
univariate function.

case in many physical problems, such an approach is poten-
tially very powerful. It has already been shown to reduce
computational costs significantly in several applications with
high-dimensional functions [20,21,31,39,47].

In this section, we introduce the definition of the QTT rep-
resentation, then present a method for efficient compression of
multivariate functions into a QTT, namely, the TCI. Finally,
we also introduce MPOs that are needed for computations
with the QTTs. These methods are valid for any multivariate
function and not specific to two-particle vertices.

In the remainder of the paper, the so-called grid parameter
R will be of central importance, where the three-dimensional
Matsubara frequency grid will consist of 23R grid points.
Hence, this parameter governs the (exponential) number of
points of the discretized grid and exponentially different
length scales in the system and thus determines the length
of the resulting QTT. This will become more clear in the
following sections.

A. Quantics tensor train representation

Before discussing the three-dimensional Matsubara fre-
quency case, let us introduce the QTT formalism for the
one-dimensional case for educational purposes. In the quan-
tics representation, a discrete function f (m) with m ∈
{0, . . . , M − 1} on a one-dimensional grid with M = 2R grid
points is instead seen as a 2 × 2 × ... × 2 (R times) tensor
Fσ1,...,σR (see Fig. 2), where each tensor index σ1, . . . , σR cor-
responds to a bit in a binary representation of m:

m = (σ1σ2 . . . σR)2 =
R∑

�=1

2R−�σ�, σ� ∈ {0, 1}, (19)

with the discussed grid parameter R. Now, each bit corre-
sponds to a distinct length scale of the system. The first bit
σ1 represents the coarsest length scale which splits the system
in halves, while the last bit σR reflects the finest length scale.
Hence, for continuous variables m defined on a specific inter-
val the grid parameter, R determines how exponentially dense
the grid gets, while for discrete variables like Matsubara fre-
quencies, R determines how exponentially large the grid gets.
In both cases, R specifies the (exponential) number of grid
points and a linear increase in R corresponds to an exponential
increase in the number of grid points.

This representation can be generalized to functions of
N > 1 variables by applying the binary representation to each
variable separately. For instance, a function f (x, y, z) of three
variables is represented as a tensor depending on 3R binary
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indices

Fx1,y1,z1,x2,y2,z2,...,xR,yR,zR

= f ((x1 . . . xR)2, (y1 . . . yR)2, (z1 . . . zR)2), (20)

and the L = 3R indices are relabeled σ1 = x1, σ2 = y1, σ3 =
z1, σ4 = x2, . . . , σL = zR. Note that indices belonging to dif-
ferent variables are interleaved, which leads to an index
ordering where all indices describing large length scales are
grouped to the left, and all indices describing small length
scales are grouped to the right. This tensor can then be fac-
torized into a TT, also known as a MPS, of the form

Fσ1,...,σL ≈
L∏

�=1

Mσ�

� = [M1]σ1
1α1

[M2]σ2
α1α2

· · · [ML]σL
αL−11, (21)

with implied summation over repeated indices. Each M� is
a three-leg tensor with local binary index σ� and virtual in-
dices α�−1, α�, and we define the bond dimension D� as the
number of values that index α� is summed over. Hence, M�

is a D�−1 × 2 × D� tensor. Generally, the bond dimensions
D� are truncated either at a fixed maximum bond dimension
Dmax or such that the factorization satisfies a specified error
tolerance ε. This truncated TT factorization can be performed
using singular value decomposition (SVD) or using the TCI
algorithm (see the next Sec. IV B).

Overcoming the curse of dimensionality now depends
on the maximum bond dimension Dmax = max�(D�), as the
tensors M have O(D2

maxR) elements. The bond dimension
required to reach a specified error tolerance ε is strongly
dependent on the structure of F . If F is not compressible, e.g.,
a random tensor, bond dimensions will grow exponentially
with L as Dmax ≈ 2L/2 and the factorization will thus not result
in an efficiency gain. Fortunately, many functions in physics
contain low-rank structures when factorized in their length
scales. The interleaved representation groups bits correspond-
ing to the same length scale, resulting in a highly compressed
representation with small Dmax [37,39].

B. Tensor cross interpolation

The TCI-based factorization is performed by sampling a
subset of the elements of the full tensor F . To be more specific,
the TCI algorithm takes as input a tensor F in the form of
a function returning the value Fσ1,...,σL at any given index
(σ1, . . . , σL ) [35,37,39]. The algorithm explores its structure
by sampling in a deterministic way and constructs a low-rank
approximation F̃ in the form of an MPS. The algorithm in-
creases the number of samples and the bond dimensions of the
MPS adaptively until the estimated error ε in the maximum
norm,

ε = ‖F − F̃‖∞
‖F‖∞

, (22)

is below a specified tolerance. Here, ‖ · ‖∞ denotes the maxi-
mum norm.

TCI is more efficient than the SVD-based factorization,
especially when the full tensor does not fit into the avail-
able memory [35,37,39]. SVD-based factorization requires
reading all elements of the tensor, leading to an exponential
growth of the computation time in R. In contrast, if the target

(a)

(b)

FIG. 3. (a) Decomposition of a tensor in MPO form. (b) Contrac-
tion of two MPOs A and B.

tensor or function is low rank, the computation time of the
TCI-based factorization is linear in R, leading to an expo-
nential speedup over the SVD [39]. We refer the reader to
Refs. [37,39] for more technical details, e.g., for information
on how the sampling points in the TCI algorithm are chosen.
In the following computations, TCI will only be used for
compressing the initial input vertices and functions. On a
more technical note, the crossinterpolate2 algorithm in
the TensorCrossInterpolation.jl library was used for
compressing the objects. More details on this specific algo-
rithm can be found in Sec. 8.3.1 in Ref. [37].

C. Matrix product operators

We use MPOs to perform operations on QTTs. As illus-
trated in Fig. 3(a), an MPO of length L has two physical legs
on each tensor. The MPO can be regarded as the factorization
of a full tensor of order 2L or as a linear operator acting on an
MPS of length L.

As we will see in later sections, many operations in QTT
can be implemented as the contraction of two MPOs, illus-
trated in Fig. 3(b). The exact contraction will result in an MPS
of large bond dimension DADB, where DA and DB are the
bond dimensions of the two input MPOs, respectively. Thus,
the bond dimension of the resulting MPO must be truncated
to some Dmax. The computational cost of a naive SVD-based
contraction followed by truncation scales O(D3

AD3
B).

In the present paper, we will deal with two distinct cases:
(a) DA = O(1) 
 DB (channel transformation) and (b) DA =
DB = Dmax (Bethe-Salpeter equation). For the former case (a),
the naive approach is efficient enough, with scaling O(D3

BL).
However, a more efficient scheme is necessary for case

(b). We use two algorithms: the fit algorithm fits new MPOs
to the MPO-MPO contraction [48], and the zip-up algorithm
combines contraction of core tensors with truncation of the
bond dimensions [49]. We typically combine these using the
zip-up algorithm to generate an initial guess for the fit algo-
rithm. If the resulting MPO is truncated to bond dimension
Dmax = DA = DB, the computational cost of both algorithms
scales as O(D4

maxL). We want to emphasize that in the cur-
rent implementation the combination of the two algorithms is
still SVD- and not TCI-based. Thus, TCI is only used in the
compression of the input functions and not in the MPO-MPO
contractions. However, in future work we plan on using TCI
for MPO-MPO contractions as well, since this is expected to
be computationally more efficient.

023087-6



TWO-PARTICLE CALCULATIONS WITH QUANTICS … PHYSICAL REVIEW RESEARCH 7, 023087 (2025)

FIG. 4. QTT representation for full vertex function.

V. PARQUET EQUATIONS IN QTT FORMAT

To evaluate the full set of parquet equations completely
within the QTT representation, we need to (i) represent
the vertex functions in the QTT form and (ii) decompose
Eqs. (12)–(17) into operations on QTTs. The latter can be
implemented in a straightforward way by employing funda-
mental operations described in the previous section, namely,
MPO-MPO contractions. In the following subsections, we
describe the quantics representation of vertex functions, check
their compressibility to QTTs, and discuss the implementation
of each step in solving the parquet equations. Two operations
are particularly important:

(1) Affine transformations that are represented by an MPO
with maximum bond dimension of O(1), needed in the par-
quet equation Eq. (16) for frequency channel transformations
of vertex functions (Sec. V B).

(2) Elementwise and matrix multiplications of two QTT
vertex objects for solving the BSEs (12) and SDE (17). In this
case, auxiliary MPOs are introduced substituting the MPSs
and then MPO-MPO contractions are applied (Sec. V D).

A. Quantics representation and compression of two-particle
vertex functions

In this paper, all functions represented in QTT format
are functions of bosonic and fermionic frequencies, which
are parameterized as ν = (2m − 2R + 1)π/β and ω = (2m −
2R)π/β, respectively. The discrete index m ∈ {0, . . . , 2R − 1}
is then decomposed into quantics bits as in Eq. (19), and bits
corresponding to different variables are then interleaved as
illustrated in Fig. 4.

The first step in using the QTT framework for solving
the parquet equations is to investigate the compressibility of
vertex functions in the above representation. We use the full
vertex in the density channel (Fd ) of the Hubbard atom for nu-
merical demonstration. The fermionic frequency dependence
of Fd at ω = 0 is shown for various temperatures in Fig. 5.
Note that in the Hubbard atom the results are not separately
dependent on temperature and U but only on their ratio βU ,
since there are no other energy scales [40]. Before we focus
on the scaling of bond dimension with temperature, let us
first look at the bond dimension along the QTT at βU = 1
for different grid sizes and tolerances set in TCI as shown
in Fig. 6. Moving inward from the first and last bonds, the
bond dimension grows exponentially as D� = min(2�, 2L−�),
which is the maximum bond dimension of an uncompressed
factorization and represents maximum entanglement between

FIG. 5. Absolute value of the full vertex in the density channel
Fd at ω = 0,U = 1 for the 16 innermost fermionic Matsubara fre-
quencies ν (′) = (2n(′) + 1)π/β for β = 1, 5, 10, 50.

these exponentially different length scales. In between, the
bond dimension then saturates at a maximum bond dimen-
sion Dmax, therefore indicating that the vertex structures are
indeed compressible. The maximum bond dimension Dmax is
between 80 and 400 and increases with decreasing tolerance
ε. Importantly, Dmax is nearly independent of the grid param-
eter R, an exponential increase in the number of grid points
[O(2R)] can be achieved for linear cost [O(R)] in runtime and
memory. These findings are consistent with earlier results on
the compressibility of vertices in Ref. [31].

For large temperatures, such as βU = 1 in the above
example, the dominating structures are the diagonal and an-
tidiagonal part of the vertex. For small temperatures, i.e.,
large βU , the antidiagonal vanishes and an additional cross

FIG. 6. Bond dimension D� at bond � for different tolerances
set in the TCI construction of the QTT of Fd in the interleaved
representation for β = U = 1. The different values of R correspond
to different grid sizes (23R grid points). The black line indicates the
exponentially growing bond dimension of the full rank QTT without
any truncation for R = 11.
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FIG. 7. Maximum bond dimension Dmax of the QTT of Fd for
different grid sizes and various tolerances set in the TCI construction
as a function of βU .

structure appears for one of the Matsubara frequencies equal
to ±π/β. The source and physical meaning of different struc-
tures in two-particle vertices have been discussed in Ref. [1].
For large βU , the vertex is large even in some places where
both Matsubara frequency arguments are large, as can be seen
in Fig. 5(d). All in all, the structure of Fd seems to be much
simpler at large temperatures than at small ones, which leads
us to expect an increase in bond dimension in QTT represen-
tation with increasing βU .

In Fig. 7, we show Dmax of the QTT representation of Fd for
various values of βU , different tolerances set in TCI, and var-
ious grid sizes. As expected from earlier considerations, the
maximum bond dimension is quite low at high temperatures
and steeply grows with βU until βU ≈ 5.1, where it reaches
a maximum. Thereafter, the bond dimension decreases again,
which does not conform with our expectations. The maximum
can be related to the first global divergence of the irreducible
vertex �d [40,50–54], which occurs at βU = 5.13715 and is
indicated by a dashed line in the plot. Although the irreducible
vertex �d diverges at this value of βU , there is no phase
transition connected with the divergence and Fd remains finite.
The presence of a maximum in Dmax precisely at the first
global divergence of �d is very interesting from two different
perspectives. First, we see that Dmax stops growing with βU
and, thus, calculations for temperatures ranging from very
low to very high are manageable within the QTT framework
in this case. Second, although the full vertex Fd does not
contain singularities, we see fingerprints of this first global
divergence of �d in the amount of length scale entanglement
in the system represented by the maximum bond dimension.
A deeper investigation of this behavior is left for future work.

The vertex functions in other channels show a similar
scaling behavior as Fd (not shown here), and hence it can
be concluded that vertex functions of the Hubbard atom are
nicely compressible with a maximum bond dimension of
around 100. Together with the logarithmic scaling in grid
size, this indicates that QTCI can indeed overcome memory

and computational bottlenecks when dealing with two-particle
vertices.

The Hubbard atom is quite an extreme limit of the Hubbard
model and one could think that the high compressibility is re-
lated to structures present in the vertices that are limited to this
atomic limit. However, this is not the case: Prominent struc-
tures in the frequency dependence of vertices are well-known
to be present in the SIAM (see Sec. VI below for an example),
as well as in the local approximation of the Hubbard model
(in dynamical mean-field theory) [42,52]. These structures
arise specifically from certain types of diagrams [42,52] and
also from insertions from one scattering channel to another
through the parquet equation (15). For models whose vertices
depend on momentum and/or orbital indices, the structures
may become more complicated. Nevertheless, their origin is
well understood and we expect the vertices to generically have
structures for a large range of parameters and models. As long
as these structures show some kind of scale separation, they
will be QTT compressible, hopefully with still manageable
bond dimensions.

B. Channel transformations

Each two-particle reducible vertex � is parameterized as a
function of two fermionic frequencies ν, ν ′ and one bosonic
frequency ω. Before performing the sum in the parquet equa-
tion (16), it is necessary to perform transformations such
as �νν ′ω

d → �
ν(ν+ω)(ν ′−ν)
d to translate between the frequency

parametrizations corresponding to different channels [6], as
discussed in Sec. III D and Appendix A. In QTT format,
transforming the function arguments is a nontrivial task, since
each argument is split into bits across different tensor indices.
Affine transformations such as the channel transformations
needed here can be expressed as MPOs with small bond
dimensions, as described in Appendix B. The QTT implemen-
tation of channel transformations is introduced explicitly in
Appendix C. As illustrated in Fig. 8(a), these MPOs are then
applied to vertex QTTs, followed by truncation of the QTT to
the specified bond dimension.

In this process, there are two distinct sources of error: the
finite frequency box and the QTT truncation. As an example,
Fig. 9(a) shows the absolute normalized error (||�Fpp|| :=
|Fpp,trafo − Fpp,exact|/||Fpp,exact||∞) of a transformation of the
full vertex F in the ph channel parametrization to the pp
channel parametrization (denoted as Fpp) in the ν, ν ′-plane. In
two triangular regions, the upper right and lower left corner,
errors are large due to the finite size of the frequency box,
and are not caused by the QTT compression. These points
correspond to grid points outside of the original frequency box
that were transformed into the box by the ph to pp transfor-
mation. The missing data there can be either replaced by zeros
(which corresponds to open boundary conditions of the affine
transformation; see Appendix B) or by values extrapolated
from another part of the frequency box (e.g., by using periodic
boundary conditions for the affine transformation, as in Ref.
55, footnote 14]). We checked that for the examples shown
in this paper, the average difference in error between the two
options is small. We used periodic boundary conditions for
all results presented in the paper. For the half-filled Hubbard
atom, this leads to better representation of missing values on
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(b) Bethe–Salpeter equation

(a) Channel transformation

1. 1.

2.

3.

4.

FIG. 8. QTT implementation of the Bethe-Salpeter equations as
tensor networks. (a) Channel transformation of a vertex in QTT form
(blue) using an affine transform MPO (orange). This is described in
more detail in Appendixes B and C. (b) The Bethe-Salpeter equa-
tions are evaluated from QTT vertices and are implemented using
multiple MPO-MPO contractions (see text). The contraction itself is
done in four steps: (1) Both QTTs to be contracted are converted
to MPOs. (2) The MPOs are contracted to a single MPO. (3) The
duplicate ω′′

� legs are removed. (4) The tensors with ν� and ν ′′ legs
are factorized between their local legs, reaching the original QTT
form.

the diagonal due to high symmetry of the full vertex in this
case. In general, the choice of boundary conditions can be
adapted to the problem at hand. Since the error can easily
be reduced and shifted to higher Matsubara frequencies by
increasing the size of the frequency box exponentially through
increasing R, we do not expect the choice of boundary condi-
tions to have significant effect on the error.

In the remaining diagonal region in between the two yellow
corners in Fig. 9(a), the error is entirely due to the tensor train
approximation. At a bond dimension of Dmax = 100, the error
is smaller than the error tolerance of ε = 10−5 everywhere,
meaning that the crossing symmetry is also fulfilled up to this
error.

Since this operation consists of a single MPO-MPS con-
traction, it is expected to scale as O(D3

maxL) = O(D3
maxR)

provided that the bond dimension is independent of R. We
verify this explicitly in Figs. 9(b) and 9(c). Compared to
increasing resolution, decreasing error tolerances and thus
increasing Dmax is more expensive.

C. Parquet equation

The parquet equation (15) with its frequency shifts as in
(16) can be solved entirely in QTT by first converting all the
vertex functions �,� to the required channel as described in

FIG. 9. (a) Absolute normalized error ||�Fpp|| := |Fpp,trafo −
Fpp,exact|/||Fpp,exact||∞ of the ph to pp channel transformation of F at
ω = 0 in the fermionic Matsubara frequency plane for a Dmax = 100
and R = 7, β = U = 1, ε = 10−8. (b), (c) Runtime of the ph to pp
channel transformation of F for various maximum bond dimensions
and grid size parameters R with β = U = 1. The dashed lines in-
dicate (b) the cubic runtime increase with Dmax and (c) the linear
increase by increasing R, which corresponds to an exponential in-
crease in the number of grid points.

the previous section, then performing their summation and
subtraction as shown in Ref. [37, Sec. 4.7]. The resultant
QTTs for F [and subsequently � obtained from (13)] are
then compressed to a maximum bond dimension Dmax in
O(D3

maxR) computation time. Hence, the parquet equation has
the same O(D3

maxR) computational cost as channel transfor-
mations. Further investigation of error and runtime scaling can
be found in Appendix D.

D. Bethe-Salpeter equation

The costliest part of the iterative parquet scheme are the
Bethe-Salpeter equations (12), where two infinite Matsubara
sums have to be performed. These can be implemented as a
sequence of matrix multiplications as (�χ0)F , where χ0 is
treated as a vertex object with two fermionic frequency axes
and one bosonic frequency axis. At each multiplication step,
we have to compute the product of two vertex functions A and
B as

Cνν ′′ω =
∑
ν ′

Aνν ′ωBν ′ν ′′ω. (23)

To express this summation as matrix multiplication, we intro-
duce dummy indices ω′ and ω′′, such that

Cνν ′′ω =
∑
ν ′ω′

Ãνω
ν ′ω′ B̃ν ′ω′

ν ′′ω′′
∣∣
ω=ω′′ , (24a)

Ãνω
ν ′ω′ := Aνν ′ωδω,ω′ , (24b)

B̃ν ′ω′
ν ′′ω′′ := Bν ′ν ′′ω′

δω′,ω′′ , (24c)

where |ω=ω′′ denotes the restriction of the result to ω = ω′′.
Note that Eq. (24a) has the structure of a matrix multiplica-
tion in the combined index (ν ′, ω′). Thus, this equation can
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FIG. 10. (a) Dependence on Dmax of the maximum absolute
normalized error ||��d ||∞ := ||�d,BSE − �d,exact||∞/||�d,exact||∞ of
the BSE with QTCI for the reducible vertex �d compared to the
exact values for various grid sizes, with U = β = 1 and ε = 10−10.
The dashed lines indicate the results from the dense grid calculation
without QTCI. (b), (c) Runtime of a single evaluation of the BSE for
�d for various maximum bond dimensions and grid size parameters
R with β = U = 1. The dashed lines indicate (b) the quartic runtime
increase with Dmax and (c) the linear increase by increasing R, which
corresponds to an exponential increase in the number of grid points.

be evaluated in QTT format through standard MPO-MPO
contraction, as illustrated in Fig. 8(b). For numerical com-
putations, and thus also for the QTT approach, the infinite
Matsubara sums have to be truncated. The number of Mat-
subara frequencies taken into account is governed by the
chosen Matsubara grid, containing 2R points in each direction.
Introducing dummy indices has a runtime and memory cost of
O(D2

maxR), which is much smaller than the cost of other steps
in the algorithm.

After each MPO-MPO contraction, the bond dimensions
are truncated to Dmax. If all MPOs are truncated to Dmax, the
computational cost of each contraction is expected to scale as
O(D4

maxR) as described in Sec. IV C, which is more expensive
than the channel transformation for large Dmax.

We now conduct numerical tests to verify the accuracy
of the operation and the scaling of the computational cost.
Figure 10(a) shows the dependence on Dmax of the max-
imum absolute normalized error (||��d ||∞ := ||�d,BSE −
�d,exact||∞/||�d,exact||∞) [cf. Eq. (22)] of the QTT implemen-
tation of the BSE in the density channel for various grid sizes.
The dashed lines indicate the results applying these matrix
multiplications for the full numerical data and without the
compressed QTTs. The error of these dense grid calculations
is due to the finite size of the grid and, thus, caused by the
truncated Matsubara sum. The results can be improved by
increasing the grid size.

For the dense grid calculations, the improved results come
at high cost since increasing the grid parameter R leads to an
exponential increase in memory and computational cost. By
contrast, when using QTTs the memory and computational

cost only increase linearly with R, which can be observed in
Fig. 10(c), where the linear dependence of the runtime of the
BSE on R is shown for different maximum bond dimensions.

Moreover, it can be observed that the QTT BSE errors
converge to the box results. Interestingly, for larger grid sizes,
slightly larger Dmax are needed to reach the same error level
as in the case of smaller boxes. However, a maximum nor-
malized error <10−3 can be easily reached using QTTs for
a still reasonable bond dimension of 200. Without the use
of QTTs, this would correspond to calculations with objects
of 8 × 23×12 � 5.5 × 1011 bytes, for which multiple nodes
on a cluster would need to be occupied. With the current
SVD-based QTT matrix multiplication implementation the
BSE operation only takes about 400 seconds on a single 512
GB node (equipped with two AMD EPYC 7713 processors)
without parallelization. The bottleneck of performing the BSE
is, as expected, the quartic dependence on Dmax, which can
be observed in Fig. 10(b). Overall we numerically verified
O(RD4

max) computational cost for the BSE using QTTs. Since
the error of the result of the BSE is bound by the grid size,
QTTs provide an efficient way to overcome this bottleneck.

E. Schwinger-Dyson equation

Similarly to the BSE evaluation, two infinite Matsubara
sums have to be performed in the SDE in Eq. (17). Hence,
qualitatively similar scaling with Dmax and R to the BSE case
are expected. This is indeed the case. The results are presented
in Fig. 16 in Appendix E.

F. Initialization and update strategy

Let us briefly discuss how the iterative parquet calcula-
tions are performed in practice. We start by compressing
the initial inputs G0 and the exact fully irreducible ver-
tices �r with TCI, where in the Hubbard atom case the
exact �r is taken as input and in the SIAM case we make
use of the parquet approximation (�d = U,�m = −U,�s =
2U,�t = 0). We then set �r = �r, Fd = U, Fm = −U, Fs =
2U, Ft = �t , G = G0,�r = 0, where the QTT representation
for the input full vertices Fr = U can easily be obtained with
or without TCI since this can be represented by a QTT of
bond dimension one. Then, the right sides of the four BSEs
are computed using (SVD-based) the MPO-MPO contractions
that were discussed in Sec. IV C. The output of the BSEs is
then linearly mixed with the QTTs of the input �r , resulting
in updated QTT approximations of the reducible vertices �r .
These updated �r QTTs are then used as input in the parquet
equations; as output, the QTT representations of �r and Fr

are updated. As a last step, the QTT representation of the
self-energy is updated by solving the SDE in QTT format. The
updated QTT vertices and self-energy are then used as new
input in the next iteration step of the iterative parquet scheme.

VI. RESULTS OF SELF-CONSISTENT CALCULATIONS

With all the components from the previous section in place,
the parquet equations can now be iteratively solved within the
developed two-particle QTT framework for our two test cases:
the Hubbard model in the atomic limit and the single-impurity
Anderson model.
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FIG. 11. (a) Maximum absolute normalized error ||��d ||∞ :=
||�d,iterative-parquet − �d,exact||∞/||�d,exact||∞ of the iterative parquet
scheme with QTCI for the irreducible vertex �d compared to the
exact values for various grid sizes (23R grid points) in the case of
U = β = 1, plotted (a) as a function of Dmax after 30 iterations, and
as a function of iteration number for (b) Dmax = 100 and (c) Dmax =
200. Dashed lines indicate the results from the dense grid calcula-
tion without QTCI. (d) The maximum absolute normalized error of
�d , shown close to the first divergence, for β = 1.55,U = 2.3 and
Dmax = 100, up to a very large number of 2600 iterations.

A. Hubbard atom

The atomic limit of the Hubbard model gives rise to rich
two-particle correlations giving insight into strong-coupling
limit of the Hubbard model [1,40,51]. This atomic limit offers
considerable simplification, as the vertex functions are ana-
lytically known and become independent of momentum [40].
Therefore, the Hubbard atom serves as an ideal first test case
for exploring two-particle properties in strongly correlated
electron systems using the QTT framework.

Following the iterative parquet scheme outlined in Fig. 1,
we start from the exact fully irreducible vertices �r , set �r =
�r, Fd = U, Fm = −U, Fs = 2U, Ft = �t , G = G0, and use
TCI to efficiently compress the data into QTTs. We then iter-
ate the four BSEs, the parquet equation, and the SDE in QTT
format by means of the discussed MPO operations, which
leads to quick convergence of the results for β = U = 1.

Figure 11(a) shows the maximum absolute normalized er-
ror in �d compared to the exact result after 30 iterations of
the iterative parquet cycle with a set tolerance of 10−10 in
the initial TCI. We can now disentangle the two sources of
error—the finite size of the discrete frequency grid, corre-
sponding to the error in the respective dense grid calculations

indicated by dashed lines, and the QTT approximation. The
error due to the QTT approximation for a specified maximum
bond dimension can be identified as the difference between
the QTT and the dense grid results. Remarkably, the QTT
errors quickly converge toward the dense grid results, where
larger bond dimensions are needed to reach lower errors for
larger grids, e.g., in the case of R = 9 already with Dmax =
180, the error from the QTT approximation de facto van-
ishes, leading to the same result as the dense grid calculation.
However, the difference is that in the dense grid calculations
objects containing 23R � 1.34 × 108 data points need to be
stored, while the QTTs stored for these parameters consist
only of ∼8.5 × 105 elements leading to a compression ratio
of O(102), remarkably, without any loss of accuracy.

If we allow for a small loss of accuracy, even more impres-
sive compression ratios can be achieved, while at the same
time reaching very low errors. For instance, it can be observed
that already at a bond dimension of 100 maximum normalized
errors, <10−3 can be achieved. In the case of R = 11, this
corresponds to a compression ratio of O(104), leading only
to a tiny fraction of the required memory occupation in com-
parison to the dense grid calculations. Thus, we observe that
the outlined framework can be used to efficiently solve the
parquet equations in the compressed QTT format.

In Figs. 11(b) and 11(c), we show the maximum normal-
ized errors for various grid sizes with respect to the iteration.
At Dmax = 100, (b) the dense grid results (dashed lines) are
only up to R = 7 exactly reproduced, while the errors of larger
grid calculations level off below 10−3 in the vicinity of each
other. Furthermore, we see that for larger grids slightly larger
maximum bond dimensions are required to obtain the same
level of error. In comparison, at Dmax = 200 (c) the QTT
calculations converge toward the resulting dense grid errors
also up to R = 9.

Next, we show that computations can also be performed
for a more challenging case with the parameters β =
1.55,U = 2.3, which are chosen in the same way as in
Ref. [13]. This case is interesting since βU = 3.565 is very
close to the point, where the irreducible vertex in the density
channel diverges (βU ≈ 3.628) [45,56–60]. We show the re-
sults of these calculations in Fig. 11(d) for a maximum bond
dimension Dmax = 100, where the maximum normalized error
of �d is shown with respect to the iteration. Since the param-
eters are very close to the first divergence line, we use a small
mixing parameter α = 0.01, leading to convergence only after
2600 iterations. In accordance with (b), we observe that in
the case of R � 6 the error plateaus at decreasing levels for
increasing R, which is due to the increased box size reflect-
ing the results from the dense grid calculation. However, for
R � 7 the situation changes, where the leveled-off errors are
closer together. This means that the error is now governed by
the QTT approximation (i.e., by Dmax) and not by the finite
box size anymore. Still, it can be seen that already a maxi-
mum bond dimension of 100 is sufficient to reach absolute
normalized errors <10−3 for larger values of R, similar as in
(b).

The above analysis demonstrates that during BSE it-
erations, errors due to the QTT representation do not
accumulate—if they did, the solid lines in Figs. 11(b) and
11(c) would slope upward with increasing iteration number.
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FIG. 12. Runtime of a single iteration of the iterative parquet
scheme for various maximum bond dimensions and grid size pa-
rameters R in the case of β = U = 1. The dashed lines indicate
(a) the quartic runtime scaling with Dmax (governed by the BSEs)
and (b) linear increase with R.

Instead, the error saturates at a value governed by the max-
imum of the error due to the Matsubara sum truncation and
the initial QTT approximation. The accuracy of the results
can be improved systematically by increasing the maximum
bond dimension. In principle, this can also be done during
the course of the BSE iterations if these generate structures
of increasing complexity, but that was not necessary for the
calculations presented here.

Our calculations were performed on a single 512 GB node
on a cluster without parallelization, where in Fig. 12 the
runtime of a single iteration of the iterative parquet scheme is
shown. For the dense grid calculations, performing the same
iterative parquet cycle was possible only up to R = 9 due
to the exponentially increasing memory demand. In contrast,
using the QTT approach, calculations for R = 11 were easily
carried out on this single node without parallelization. This
demonstrates the advantage of QTTs, where memory occu-
pation and operations scale logarithmically with increasing
resolution [see Fig. 12(b)], in contrast to the rapid growth
in memory and computational costs encountered in standard
methods. This allows for efficient computation on large grids,
providing a significant advantage over dense grid implemen-
tations.

B. Single-impurity Anderson model

After solving the parquet equations for the simplified Hub-
bard atom case, we extend the QTT framework to the more
complex SIAM, where a Hubbard atomlike interacting site
is coupled to a bath of noninteracting electrons. Using the
parquet approximation in which the fully irreducible ver-
tex is approximated by the bare interaction (�d = U,�m =
−U,�s = 2U,�t = 0), we iteratively evaluate the four BSEs
(12), the parquet equation (15), and the SDE (17) with QTTs.
Starting from �r = �r, Fr = �r, G = G0, we decompose the
relevant functions into QTTs using TCI and then make use
of the discussed MPO operations to iteratively solve the par-
quet equations. To ensure full convergence, we perform 60
iterations with a linear mixing α = 0.4. The results presented
below were obtained for β = 10, U = 1, V = 2, D = 10, and
half filling, i.e., with εd = −U/2. For these parameters, the
SIAM is in the weakly correlated regime, where the par-
quet approximation still holds. We compare our results with
reference data obtained for the parquet approximation with
the state-of-the-art parquet equations implementation on large

FIG. 13. Irreducible vertex �d of the reference data (a) com-
pared to the iterative parquet approximation calculations for R =
13, Dmax = 200 (b) for β = 10,U = 1,V = 2, D = 10, ε = 10−6,
and a mixing of 0.4. (c), (d) The maximum normalized error of �d

(||��d ||∞ := ||�d,iterative−parquet − �d,ref ||∞/||�d,ref ||∞) with respect
to the reference data is shown (c) as a function of the maximum bond
dimension Dmax and (d) dependent on the iteration for Dmax = 200,
where dashed lines indicate the obtained errors from dense grid
calculations.

equidistant frequency grids of Ref. [3] using the single- and
multiboson exchange formulation [12].

Figure 13(b) shows the irreducible vertex �d at ω = 0 cal-
culated for R = 13 and a maximum bond dimension Dmax =
200, which is in good agreement with reference data in (a). In
(c), we show the maximum normalized error of �d obtained
from the QTT calculations in comparison to the reference data
depending on the maximum bond dimension for various grid
sizes. In agreement with the results for the Hubbard atom,
it can be observed that the errors of the QTT calculations
converge toward the results of the dense grid calculations,
which are indicated by dashed lines. Like in the Hubbard atom
case, we exactly reproduce the dense grid results at R = 9 and
Dmax = 180, leading to a O(102) compression ratio de facto
without any loss in accuracy due to the QTT approximation.
Moreover, since these calculations were performed up to R =
13, very large compression ratios of O(105) can be reached,
while obtaining a maximum normalized error <10−3. In (d),
the maximum normalized error with respect to the iteration for
Dmax = 200 can be observed. We show that for larger grids
more iterations are needed to converge due to approaching
smaller errors.

Finally, let us mention that the performed calculations for
R = 13 would correspond to dense grid calculations with
multiple objects of the size of 8 × 23×13 � 4.4 × 1012 bytes.
Instead of the necessity of engaging multiple nodes and mak-
ing use of parallelization for the dense grid calculations, using
the QTT framework it was possible to perform these cal-
culations on a single node without parallelization. Applying
this approach allowed us to obtain maximum normalized er-
rors <10−3, while using only a tiny fraction of the memory
required for the corresponding dense grid computations. This
shows the computational advantage of the QTT approach.
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C. Technical limitations

In our calculations, there are two main sources of error:
(1) the finite size of the discrete Matsubara frequency grid
and (2) the QTT approximation, which is governed by the
maximum bond dimension. The finite grid size determines
how accurately we can evaluate the BSEs and SDE, as it
controls the truncation of the infinite Matsubara sums. On the
other hand, the QTT approximation dictates how accurately
the data can be represented.

The combined QTT and TCI approach exhibits logarithmic
scaling in both memory and computational costs relative to
the grid size, enabling the potential to handle very large grids
(e.g., R = 20). While this is theoretically feasible, our explicit
calculations for the Hubbard atom show that for such large
values of R, the error increases significantly compared to the
smaller grid sizes used in this study. This issue is not inherent
to the method itself but arises due to the current imple-
mentation of MPO-MPO contractions, which relies on bond
dimension truncation via SVD. The SVD truncation suffers
from a loss of accuracy, such as round-off errors, because the
Frobenius norm of the vertex functions diverges at large R due
to a constant term in the frequency domain. This limitation
can be addressed in future work by switching to a CI-based
truncation approach [37]. For more details on this technical
aspect, we refer readers to Appendix F. Alternatively, the
vertex asymptotics can be explicitly removed from parquet
equations as in Ref. [12] or [10].

Finally, it is important to note that the maximum bond
dimension directly governs the accuracy of the QTT approx-
imation, as it reflects how compressible the data are. Large
bond dimensions can significantly increase computational
costs, making them the primary bottleneck for scaling up the
calculations.

VII. CONCLUSION AND OUTLOOK

This paper represents a large step forward in solving many-
body problems with quantum field theory methods in QTT
representations. The chosen example, the self-consistent so-
lution of parquet equations, is a challenging one, requiring
both efficiency in constructing the QTT representation of two-
particle vertices and in evaluation of matrix multiplications
and variable shifts within this representation. At the same
time, the parquet equations for the simplest model, the Hub-
bard atom, can be solved analytically, allowing for careful
benchmarking and assessment of the performance at each step
of the solution separately. In this paper, we have numerically
shown that the QTT representation of the vertex frequency
dependence is suitable for solving the parquet equations and
that, together with TCI, it leads to only logarithmic scaling
in the grid size and with fourth power in the maximum bond
dimension. For the two examples of Hubbard atom and SIAM,
we observed that the bond dimension of ∼100–200 is enough
to obtain the solution with high accuracy. For the case of
Hubbard atoms, we see a saturation (or even decrease) of the
bond dimension with increasing the inverse temperature β.
We also expect a saturation or only slow growth of the bond
dimension with β in more general cases, as conjectured in Ref.
[34].

The naïve iteration of the parquet equations is difficult to
converge in some regimes, cf. Sec. III F. While this prob-
lem is almost orthogonal to questions of representation and
compression of the vertices, QTTs offer potential synergies:
In particular, the greatly reduced size of QTT vertices may
enable a solver to keep a convergence history and use non-
linear mixing schemes, which have been shown to stabilize
convergence in Hartree-Fock [61] or quasi-Newton solvers,
which have been able to access previously hidden solutions in
self-consistent diagrammatic theories [62].

Although for explicit testing we have chosen models
having no other degrees of freedom than frequencies (no mo-
mentum or orbital dependence), the dissection of the parquet
equations solver into operations on QTTs—TCI compression
and MPO-MPO contractions—is general and the extension to
lattice models is straightforward. All results presented here
were obtained on a single core with 512 GB memory and
the grid sizes in each frequency variable were up to 220. This
high compressibility of the frequency dependence of vertex
functions can in the future be exploited (i) to solve parquet
equations for lattice systems with high momentum resolution
and orbital degrees of freedom needed to address material
properties (see Appendix G for a brief discussion of how to
deal with such additional degrees of freedom) and (ii) to apply
QTCI to other vertex-based methods, such as the functional
renormalization group (fRG) [63–65]; ladder extensions [42]
or fRG extensions [66] of dynamical mean-field theory (pos-
sibly using as input results for the local vertex obtained using
the numerical renormalization group [2,67,68]), embedded
multiboson exchange methods [69], or the Migdal-Eliashberg
theory in ab initio calculations [70,71].

On a more general note, two-particle objects are central
in many more applications involving interacting electrons:
In particular, the two-electron integrals [i j|kl] are central
to quantum chemistry, whereas the renormalized interaction
Wi jkl is one of the main ingredients of GW [72]. Neither of
these objects have the intricate three-frequency structure of
the vertex F , however, they do depend on four orbital (spatial)
indices. Handling this dependence is usually the main compu-
tational bottleneck in self-consistent field computations, even
with sophisticated mitigation techniques [73]. The present
paper offers a blueprint for applying QTTs to these methods
and is a promising topic for future study.
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APPENDIX A: PARQUET EQUATION AND FREQUENCY
CONVENTIONS

The parquet equation (15) gives the full vertex F as a
simple sum of the fully irreducible vertex � and vertices re-
ducible in the ph, pp, and ph channels. The reducible vertices,
however, are represented in their “channel native” frequency
parametrization. After applying the parametrization changes
and collecting the spin components, the final expressions are
linear combinations of different spin components and fre-
quency shifted arguments. For Fd , see Eq. (16), and for the
remaining three spin combinations we have

F νν ′ω
m = �νν ′ω

m + �νν ′ω
m − 1

2�
ν(ν+ω)(ν ′−ν)
d + 1

2�ν(ν+ω)(ν ′−ν)
m − 1

2�νν ′(−ω−ν−ν ′ )
s + 1

2�
νν ′(−ω−ν−ν ′ )
t , (A1a)

F νν ′ω
s = �νν ′ω

s + �νν ′ω
s + 1

2�
νν ′(−ω−ν−ν ′ )
d − 3

2�νν ′(−ω−ν−ν ′ )
m + 1

2�
ν(−ν ′−ω)(ν ′−ν)
d − 3

2�ν(−ν ′−ω)(ν ′−ν)
m , (A1b)

F νν ′ω
t = �νν ′ω

t + �νν ′ω
t + 1

2�
νν ′(−ω−ν−ν ′ )
d + 1

2�νν ′(−ω−ν−ν ′ )
m − 1

2�
ν(−ν ′−ω)(ν ′−ν)
d − 1

2�ν(−ν ′−ω)(ν ′−ν)
m . (A1c)

The origin of the need for frequency shifts lies in the inher-
ent incompatibility of the parquet equation viewpoint and the
BSE viewpoint. In the BSE, we choose the frequency and spin
parametrizations so we can eliminate at least one frequency
and spin sum. This optimal parametrization is, however, dif-
ferent for generating ph- and pp-reducible diagrams. In the
parquet equation, on the other hand, we need all vertices in the
same frequency parametrization, hence the need for frequency
channel transformations.

Additionally, we also need a transformation between ph
and ph representations to obtain �ph. This transformation
exploits the so-called crossing symmetry relation between the
ph and ph frequency channels.

1. Parquet picture

To have a closer look at where the frequency shifts orig-
inate, let us first extend the frequency dependence of each
vertex by including a fourth fermionic Matsubara frequency
ν4, i.e., a frequency related to the fourth time variable in
Eq. (8). It would multiply the time 0 in the exponent, so it
is obviously redundant and given by the energy conservation
ν1 + ν2 + ν3 + ν4 = 0. Let us reintroduce the four index no-
tations for the spin variable and use the following combined
notation (as in e.g. Ref. [6]):

F (1, 2, 3, 4) = Fσ1σ2σ3σ4 (ν1, ν2, ν3, ν4). (A2)

Then the parquet equation (15) is simply

F (1, 2, 3, 4) = �(1, 2, 3, 4) + �ph(1, 2, 3, 4)

+ �ph(1, 2, 3, 4) + �pp(1, 2, 3, 4). (A3)

In this notation, the crossing symmetry of the full vertex is
simply

F (1, 2, 3, 4) = −F (1, 4, 3, 2) = −F (3, 2, 1, 4) (A4)

and corresponds to exchanging variables of the two creation
(annihilation) operators in the expectation value in Eq. (8) (in
the language of diagrams one calls it exchanging two incom-
ing or two outgoing lines). One can show that the reducible

vertex in the pp channel is also crossing symmetric (and
hence also the irreducible since � = F − �). The crossing
symmetry transformation applied to the ph channel, however,
gives only the following relation:

�ph(1, 2, 3, 4) = −�ph(1, 4, 3, 2). (A5)

In the four frequency notations, the BSEs have the follow-
ing form:

F (1, 2, 3, 4) = �ph(1, 2, 3, 4) + �ph(1, 2, 3, 4), (A6a)

�ph(1, 2, 3, 4) = �ph(1, 2, 5, 6)G(6, 7)G(8, 5)F (7, 8, 3, 4),

F (1, 2, 3, 4) = �pp(1, 2, 3, 4) + �pp(1, 2, 3, 4),

�pp(1, 2, 3, 4) = 1
2�pp(1, 5, 3, 6)G(6, 7)G(5, 8)F (7, 2, 4, 8),

(A6b)

where the summation over repeated arguments (5,6,7, and 8)
is implied and we also used a two-frequency two-spin notation
for the one-particle Green’s function G(1, 2) = Gσ1σ2 (ν1, ν2).
This representation reveals the true difference between the ph
and pp BSEs—the Green’s functions connect the vertices dif-
ferently, i.e., different frequency arguments are summed over.
Practical evaluation of these equations, however, requires the
introduction of two different three-frequency (two fermionic,
one bosonic) parametrizations. These parametrizations are
sometimes called channel native.

2. Bethe–Salpeter picture and channel native description

Following Ref. [40], in this paper we use the following
frequency convention for the ph and pp channels:

ph :ν1 = −ν, pp :ν1 = −ν,

ν2 = ν + ω, ν2 = −(ν ′ + ω),

ν3 = −(ν ′ + ω), ν3 = ν + ω,

ν4 = ν ′. ν4 = ν ′. (A7)

Applying the above parametrizations to Eqs. (A6) and addi-
tionally introducing the d/m/s/t spin combinations leads to
Eqs. (12). Now, however, we need channel transformations
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(frequency shifts) to evaluate the parquet equation. We need F
both in the ph and pp notations for the d/m and s/t channels,
respectively. The channel transformations can be derived by
going back and forth from three frequency to four frequency
representations, e.g.,

Fpp(ν, ν ′, ω) = Fpp(−ν1, ν4, ν1 + ν2)

= Fph(−ν1, ν4,−ν2 − ν4)

= Fph(ν, ν ′,−ω − ν − ν ′), (A8)

from which we deduce

ph −→ pp,

(ν, ν ′, ω) −→ (ν, ν ′,−ω − ν − ν ′). (A9)

To use the crossing symmetry relation (A5), we also need the
ph to ph channel transformation. The crossing transformation
means exchanging either first and third or second and fourth
frequencies, so we can write

Fph(ν, ν ′, ω) = Fph(−ν1, ν4, ν1 + ν2)

= Fph(−ν1, ν2, ν1 + ν4)

= Fph(ν, ν + ω, ν ′ − ν), (A10)

from which we deduce

ph −→ ph,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν). (A11)

All channel transformations needed in Eqs. (16) and (A1)
are outlined in Appendix C, together with their numerical
implementation.

APPENDIX B: AFFINE TRANSFORMATIONS

An important subset of transformations on a QTT are coor-
dinate transformations, in particular, affine transformations. In
this Appendix, we show how to efficiently construct an MPO
(B6) for such a transformation.

Rather than striving for full generality, we limit our dis-
cussion to the type of affine transformations needed in this
paper: transformations between the native frequency repre-
sentations for the ph, pp, and ph channels. In practice, we
limit the range of Matsubara frequencies to a finite box. The
frequencies within that box can be enumerated by positive
integers. Upon transforming to another channel, some fre-
quencies will be mapped to lie outside the frequency box of
the new channel, causing missing information in the mapping.
Those frequency points then have to be dropped (open bound-
ary conditions) or periodically continued (periodic boundary
conditions). With open boundary conditions, the mapping will
generically become noninvertible. For the remaining frequen-
cies, the channel transformation maps one constrained set of
positive integers to another.

We formalize the above scenario as follows. Let x and y be
vectors with N components. An affine transformation is a map
x �→ y that can be represented as

y = Ax + b, (B1)

where A is an invertible N × N matrix. In the following,
we limit our description to the case relevant for channel

g

FIG. 14. Affine transform T (y, x) applied to function g(x) in
MPO form.

transforms, where all components of x, y, b, A are integers.
We further constrain ourselves to the case where A−1 has
integer components and the components of b are nonnegative.
Given a function g(y), we construct a new function f (x) by a
coordinate transformation:

f (x) := g(y(x)). (B2)

We call this type of transformation a passive affine transfor-
mation, where for a given x, we define the value of the new
function f (x) by picking the value of the old function g(x)
at the transformed point y. In practice, we limit x, y, and b
to a finite box S = {0, . . . , 2R − 1}N . Then, some x may be
transformed to a y outside the box, in which case the choice
of periodic or open boundary conditions becomes relevant.
With periodic boundary conditions, we interpret Eq. (B1)
as y ≡ Ax + b (mod 2R), where (mod 2R) is to be under-
stood componentwise. With open boundary conditions, we set
f (x) = 0 if y /∈ S. The transformation (B1) is not necessarily
invertible on S, even if it is invertible on ZN .

We can write Eq. (B2) as a tensor product

f (x) =
∑
y∈S

T (x, y)g(y), (B3)

with

T (x, y) :=
{

1 y = Ax + b
0 else. (B4)

In quantics representation, the tensor T can be factorized to
an MPO with small bond dimension, which allows cheap
transformation of functions given in QTT format through a
single MPO-MPS contraction. To construct this MPO, it is
useful to start with fused rather than interleaved indices, i.e.,
we only separate out the length scales of the vector, but not its
components:

x =
R∑

r=1

2R−rxr, (B5)

where xr is a vector of N bits corresponding to the current
scale, i.e., xr ∈ {0, 1}N . Thus, the legs xr of the corresponding
MPS are of dimension 2N rather than 2. We perform similar
decompositions for y and b. Consequentially, T is decom-
posed as

T (x, y) =
D1∑

α1=1

· · ·
DR−1∑

αR−1=1

[
T1

]x1y1

1α1

[
T2

]x2y2

α1α2
· · · [TR

]xRyR

αR−11, (B6)

where [Tr]xr yr
αr−1αr is the rth core tensor with virtual indices αr−1

and αr as well as local indices xr and yr . The corresponding
tensor network diagram is shown in Fig. 14. The indices are
bound by αr ∈ {1, . . . , Dr}, xr, yr ∈ {0, 1}N . Once the MPO is
constructed in this way, we can transform it to the interleaved
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representation by splitting the core tensors using a QR decom-
position.

For the explicit construction of the MPO, we first decom-
pose Eq. (B1) for the finest scale r = R:

2cR−1 + yR = AxR + bR, (B7)

where cR−1 is the carry, a vector of integers not confined to 0
and 1. Since all components of 2cR−1 are even, we find that
legal values of yR must satisfy

yR ≡ AxR + bR (mod 2), (B8a)

where (mod 2) is to be understood componentwise. Conse-
quently, the carry is obtained as

cR−1 = 1
2 (AxR + bR − yR). (B8b)

The carry cR−1 enters the calculation for the next scale
R − 1, so we have to communicate it to the previous core
tensor TR−1 via the bond. To do so, we first observe that
Eqs. (B8) uniquely determine yR and cR for each xR. We
collect all distinct values of the carry for all possible inputs
xR into a tuple (cR−1,1, . . . , cR−1,DR−1 ). The core tensor is then
given by

[TR]xRyR
α1 =

{
1 2cR−1,α + yR = AxR + bR

0 else.
(B9)

For all the other scales r, we must add the incoming carry
cr and must thus amend Eq. (B7) to

2cr−1 + yr = Axr + br + cr, (B10)

and Eqs. (B8) to

yr ≡ Axr + br + cr (mod 2), (B11a)

cr−1 = 1
2 (Axr + br + cr − yr ). (B11b)

We again collect all distinct outgoing carry values for all
possible xr and cr into (cr−1,α )α=1,...,Dr−1 , and obtain the core
tensor

[Tr]xr yr
αα′ =

{
1 2cr−1,α + yr = Axr + br + cr,α′

0 else.
(B12)

We iterate this procedure from r = R to 1, constructing
all MPO core tensors in a single backward sweep. Having
reached the first tensor, r = 1, we implement open boundary
conditions by demanding that c0 = 0 in Eq. (B12), such that

[T1]x1y1
1α′ =

{
1 y1 = Ax1 + b1 + c1,α′

0 else.
(B13)

Periodic boundary conditions are implemented by modifying
Eq. (B12) such that the leftmost carry c0 is discarded, such
that

[T1]x1y1
1α′ =

{
1 y1 ≡ Ax1 + b1 + c1,α′ (mod 2)

0 else.
(B14)

The bond dimension Dmax = maxr Dr of the tensors con-
structed in this way is likely optimal. This algorithm has
O(RD2

max22N ) runtime, which is optimal in the sense that
at least this amount of runtime and memory is necessary to
construct the tensors Tr . The algorithm can be generalized to
cases where A and b have entries in Q.

TABLE I. Nonzero elements of [Tr]
xr yr
αr−1αr (B6) constructed from

Eqs. (B7)–(B13) for the affine transform (B15) with open boundary
conditions.

r αr−1 cr−1 yr xr αr cr

R 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
2 (0,−1) (0, 1) (0, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)

R − 1 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
2 (0,−1) (0, 1) (0, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)
2 (0,−1) (0, 1) (0, 0) 2 (0,−1)
1 (0, 0) (1, 0) (1, 0) 2 (0,−1)
2 (0,−1) (0, 0) (0, 1) 2 (0,−1)
2 (0,−1) (1, 1) (1, 1) 2 (0,−1)

...
...

...
...

...
...

...

1 1 (0, 0) (0, 0) (0, 0) 1 (0, 0)
1 (0, 0) (1, 1) (1, 0) 1 (0, 0)
1 (0, 0) (1, 0) (1, 1) 1 (0, 0)
1 (0, 0) (1, 0) (1, 0) 2 (0,−1)

Let us walk through the algorithm for the example trans-
formation with N = 2 and open boundary conditions:

y =
(

1 0
1 −1

)
x +

(
0
0

)
. (B15)

The nonzero elements of the corresponding core tensors
(B6) are listed in Table I. For the case r = R, we sim-
ply apply the transformation (B8a) to each bit combination
xR ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. In the case xR = (0, 1),
Eq. (B8b) yields a carry of cR−1 = (0,−1), to which we
assign the bond index αR−1 = 2, otherwise it is (0,0), to which
we assign the index αR−1 = 1. The dimension of the corre-
sponding bond is thus DR−1 = 2 and the core tensor has the
four nonzero elements listed in rows 1–4 of Table I.

For r = R − 1, Eq. (B11) directs us to add the incoming
carry cr . Hence, we double the number of nonzero entries,
as we have to repeat the calculation for each of the two
outgoing carries of TR. We observe that the set of incoming
and outgoing carries is identical and assign the same bond
indices to them. The corresponding nonzero elements of TR−1

are then listed in rows 5–12 of Table I. Since the values of the
outgoing carries form the same set as those of the incoming
carries, all other core tensors Tr′ with 1 < r′ < R are equal
to TR−1. For r = 1, we impose open boundary conditions,
thereby restricting the outgoing carry of T1 to zero, as shown
in Eq. (B13). This cuts half of the elements and yields the
entries listed in rows 13–16 of Table I.

APPENDIX C: CHANNEL TRANSFORMATIONS

We describe how to implement channel transformations
using affine transformations in QTT, which is defined in
Eq. (B2).
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1. ph to pp transformation

We first describe a ph → pp channel transformation via
the ph channel:

ph −→ ph −→ pp,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν) −→ (ν, ν ′,−ω − ν − ν ′),
(C1)

where ν (′ ) = (2n(′ ) + 1)π/β and ω = 2mπ/β. The picture
corresponds to the following, e.g., for the full vertex:

Fpp(ν, ν ′, ω) = Fph(ν, ν ′,−ω − ν − ν ′), (C2a)

Fph(ν, ν ′, ω) = Fph(ν, ν + ω, ν ′ − ν), (C2b)

Fpp(ν, ν ′, ω) = Fph(ν,−ν ′ − ω, ν ′ − ν). (C2c)

In the following, we will denote the old variables in every
transformation step with a tilde. For the ph to ph transforma-
tion

Fph(ν, ν ′, ω) = Fph(ν, ν + ω, ν ′ − ν) = Fph(ν̃, ν̃ ′, ω̃), (C3)

we need the transformation matrix [expressing the old
(ν̃, ν̃ ′, ω̃) by the new variables (ν, ν ′, ω)]⎛

⎝ ν̃

ν̃ ′
ω̃

⎞
⎠ =

⎛
⎝ 1 0 0

1 0 1
−1 1 0

⎞
⎠

⎛
⎝ν

ν ′
ω

⎞
⎠, (C4)

with (ν̃, ν̃ ′, ω̃) = (ν, ν + ω, ν ′ − ν) and ν̃ (′ ) = (2ñ(′ ) +
1)π/β and ω̃ = 2m̃π/β. We also need to shift the indices such
that, for example, for n = 0 and m = 0 (ν + ω = π

β
= ν̃ ′), we

are at ñ′ = 0 again:

0 � a, b, c, ã, b̃, c̃ � N − 1,

n = a − N

2
, n′ = b − N

2
, m = c − N

2
, (C5)

ñ = ã − N

2
, ñ′ = b̃ − N

2
, m̃ = c̃ − N

2
, (C6)

with N = 2R. This leads to

ã = a, no shift,

b̃ = a + b − N

2
= n + m + N

2
, shift by

N

2

c̃ = −a + b + N

2
= −n + n′ + N

2
, shift by

N

2
. (C7)

Hence, we get the shift vector b = (0, N
2 , N

2 )T. For example,
at n = n′ we need ω = 0 and, thus, c̃ = N

2 , which is ensured
by the shift. This first transformation can be represented by an
MPO with Dmax = 9.

For the ph → pp transformation,

Fpp(ν, ν ′, ω) = Fph(ν,−ν ′ − ω, ν ′ − ν) = Fph(ν̃, ν̃ ′, ω̃),
(C8)

we need the transformation matrix⎛
⎝ ν̃

ν̃ ′
ω̃

⎞
⎠ =

⎛
⎝ 1 0 0

0 −1 −1
−1 1 0

⎞
⎠

⎛
⎝ν

ν ′
ω

⎞
⎠, (C9)

with (ν̃, ν̃ ′, ω̃) = (ν,−ν ′ − ω, ν ′ − ν). Using the same pro-
cedure as above, we get the shift vector b = (0, N

2 − 1, N
2 )T.

FIG. 15. (a) Absolute normalized error ||��d || := |�d,parquet −
�d,exact|/||�d,exact||∞ of the parquet equation with QTTs for �d com-
pared to the exact values at ω = 0 in the fermionic Matsubara
frequency plane for Dmax = 200, R = 7, β = U = 1, ε = 10−8. Run-
time of the parquet equation for �d for various maximum bond
dimensions and grid size parameters R with β = U = 1. The dashed
lines indicate (b) the cubic runtime increase with Dmax and (c) lin-
ear increase by increasing R, which corresponds to an exponential
increase in the number of grid points.

This affine transformation can be represented by an MPO with
Dmax = 15.

2. pp to ph transformation

Basically, we use the same procedure as above since the ph
to pp transformation is its own inverse.

pp −→ pp −→ ph,

(ν, ν ′, ω) −→ (ν, ν + ω, ν ′ − ν) −→ (ν, ν ′,−ω − ν − ν ′),
(C10)

The picture corresponds to the following, e.g., for the full
vertex:

Fph(ν, ν ′, ω) = Fpp(ν, ν ′,−ω − ν − ν ′), (C11a)

Fpp(ν, ν ′, ω) = Fpp(ν, ν + ω, ν ′ − ν), (C11b)

Fph(ν, ν ′, ω) = Fpp(ν,−ν ′ − ω, ν ′ − ν). (C11c)

The transformation matrices and shift factors and, hence,
the MPO representations are identical to the ph to pp trans-
formation.

APPENDIX D: PARQUET EQUATION IN QTT FORMAT

In the parquet equation (16) and (A1), the triangle-shaped
frequency box errors from frequency transformations add up
to a diamond-shaped error with larger errors in the corners.
This can be observed in Fig. 15, where a plot of the absolute
normalized error of the irreducible vertex in the density chan-
nel �d computed via Eq. (16) and (13) with QTCI compared
to the exact �d is shown at ω = 0.
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FIG. 16. Plot of the maximum absolute normalized error of the
SDE ||��||∞ := ||�d,SDE − �d,exact||∞/||�d,exact||∞ with QTTs for
the self-energy � compared to the exact values for various grid
sizes depending on the maximum bond dimension with U = β = 1.
The dashed lines indicate the results from the dense grid calculation
without QTTs.

The cubic dependence on Dmax is shown in Fig. 15(b),
which corresponds to the cubic scaling of the channel trans-
formations inside the parquet equations and, thus, constitutes
the bottleneck of the parquet equation. Linear scaling of the
runtime of the parquet equation with QTTs in R is shown in
Fig. 15(c). Again, we want to emphasize that exponentially
increasing the number of grid points comes only at linearly
increasing computational cost in the parquet equation.

APPENDIX E: SDE IN QTT FORMAT

In Fig. 16, we show the maximum absolute normalized
error of the self-energy � obtained by using QTTs in the
SDE. The dashed lines represent the errors of the dense grid
calculations, which are due to the finite size of the grid. A
qualitatively similar behavior to the BSE can be observed,
with the difference that already quite low bond dimensions
are sufficient for obtaining very low errors. This is caused by
the frequency dependence of the functions in the SDE, where
only the full vertex depends on three Matsubara frequencies.
At this point, we should emphasize the fact that exponentially
increasing the number of grid points by increasing the grid
parameter R exponentially reduces the error (exponential con-
vergence to the true solution), but only comes with linearly
increasing computational cost. In the case of R = 14, the
computation with a maximum bond dimension of 100 took
only around 100 seconds using QTTs on a single 512 GB node
on a cluster, while without the use of QTTs the calculation
would include computations with the numerical data of the
full vertex, which is the size of 8 × 23×14 � 3.5 × 1013 bytes.
This would only be possible by engaging a larger number of
nodes on a cluster, which emphasizes the strength of the QTCI
approach.

APPENDIX F: TECHNICAL LIMITATIONS

Theoretically, in the iterative parquet calculations with
QTCI, it should easily be possible to run calculations for much
larger grids, e.g., R = 20 (23×20 grid points), on a single 512
GB node on a cluster, without running into any memory or
computational time bottlenecks, because the computational
costs only depend linearly on R. This is still true, but there
is another limiting technical difficulty at the moment.

In the calculations, a specified maximum bond dimension
is set not only in the initial TCI but also in every QTT

FIG. 17. Absolute normalized error of the reconstructed Fd

compared to the exact data for the innermost 16 × 16 fermionic
Matsubara frequency grid at ω = 0, β = U = 1. (a), (b) The errors
after using TCI with a set tolerance of 10−10 and the maximum bond
dimensions set to 160 and 140, respectively. (c)–(f) The errors after
applying the SVD based truncation to the QTT with maximum bond
dimension 160 (a) with a set maximum bond dimension of 140. The
truncation error increases with larger values of the grid parameter R.

operation to avoid a blowing up of the bond dimensions
since this is the computational bottleneck. As was shown in
Sec. V A, for the initial TCI already bond dimensions slightly
above 100 are sufficient to reach maximum normalized errors
of 10−6 of the QTTs with respect to the exact data. However,
a problem emerges in the QTT operations, which are at the
moment SVD based and make use of the truncate func-
tion in ITensors.jl to compress the resulting QTTs back
to a certain maximum bond dimension. Furthermore, the fit
algorithm used for MPO-MPO contractions relies on the SVD
truncation internally [48]. The SVD truncation minimizes the
difference between an original MPS and an approximated one
in terms of the Frobenius norm. Because the Frobenius norm
of the vertex functions grows exponentially with R due to
a constant term, the SVD truncation is expected to fail at
large R; the Frobenius norm reaches c(2R)3 ≈ c × 3 × 1013

at R = 15 (c is the constant term).
Here, we have observed the truncation error to become

more significant the larger the value of the grid parameter R
is and even leads to wrong results around R = 15. In Fig. 17,
we show this behavior in case of the full vertex in the density
channel Fd . In Figs. 17(a) and 17(b), the absolute normalized
error is shown after applying TCI to evaluate a QTT for
Fd for different maximum bond dimensions. It can be seen
that the error in this center (16 × 16) fermionic Matsubara
frequency box is of O(10−15). Figures 17(c)–17(f) show the
errors after applying the SVD-based truncation to the QTT
with maximum bond dimension 160 down to a maximum
bond dimension of 140 for various grid sizes determined by
R. Although using TCI with a maximum bond dimension
of 140 [Fig. 17(b)] the QTT was able to reconstruct the
exact data with an absolute normalized error of O(10−15),
applying the SVD-based truncation significantly worsens the
results, leading to normalized errors between 10−9 and 10−5.
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Moreover, it can be seen that the error increases significantly
with increasing R. This is why in the case of the iterative
parquet solutions for the Hubbard atom, only results up to
R = 11 are shown, since the resulting maximum normalized
error does not improve anymore for larger grids due to the
truncation errors. This can also already seen in Fig. 11 for
R = 11, where the maximum normalized error at a maximum
bond dimension of 200 is only slightly lower than in the case
of R = 10. However, this should only be a problem of the
current implementation and first numerical tests indicate that
it is possible to overcome this limitation in the future, e.g., by
using CI-based truncation [37]. This is because the CI-based
truncation relies on the maximum norm and thus does not
suffer from the divergence of the Frobenius norm.

An alternative way to deal with the infinite Frobenius norm
is, as mentioned at the end of Sec. VI, to change into a
formalism with vertices with removed asymtotics and thus
finite Frobenius norm. The recent reformulation of parquet
equations into single- and multiboson exchange vertices pro-
vides such a solution [3,12]. Earlier approaches to parquet
equations have used the so-called kernel asymptotics [10,44].

APPENDIX G: MODEL EXTENSIONS

In future work, our goal will be to apply the QTT represen-
tation to two-particle calculations with orbital and momentum

degrees of freedom. Suppose that these are labeled by an ad-
ditional (composite) index, say i = 1, . . . , N , then the vertex
carries four such indices, Fi jkl , and has N4 components. The
memory costs for such computations depend on how QTTs
are used to parametrize the vertex.

For example, a naive approach would be to use a sep-
arate QTT to parametrize the frequency dependence of
Fi jkl (ν, ν ′, ω) for each index combination (i, j, k, l ). This
would require N4 different QTTs and N4 BSEs connecting
them all, etc. We estimate that with this approach, computa-
tions for N = 6, R = 10 and Dmax = 200 should be feasible
on a single 512 GB node.

However, such a naive approach would not exploit low-
rank structures that may arise if different vertex components
have similar frequency dependencies. In such a case, it could
be more efficient to use a single QTT to parametrize the
dependence of the vertex on its frequencies and all i indices.
To pursue such a strategy and optimize its efficiency, fur-
ther methodological developments will be required to address
some open questions: What is the best grouping and order of
quantics indices for a combined frequency and momentum
(orbital) representation? How can MPO-MPO contractions
(the current bottleneck) be performed more efficiently?
What are the best strategies for parallelizing the computa-
tions? These issues are currently being explored in ongoing
work.
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4. Implementing diagrammatic methods with tensor trains

4.3 Publication 5: Computing and compressing local vertex
functions in imaginary and real frequencies from the mul-
tipoint numerical renormalization group using quantics
tensor cross interpolation

In this section, the following publication is reprinted:
P5 Computing and compressing local vertex functions in imaginary and

real frequencies from the multipoint numerical renormalization group
using quantics tensor cross interpolation,
Markus Frankenbach, Marc K. Ritter, Mathias Pelz, Nepomuk Ritz,
Jan von Delft, and Anxiang Ge,
to be submitted to Physical Review Research,
doi:10.48550/arXiv.2506.13359.
Reprinted on pages 142–161.
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Computing and compressing local vertex functions in imaginary and real frequencies
from the multipoint numerical renormalization group using quantics tensor cross

interpolation

Markus Frankenbach , Marc K. Ritter , Mathias Pelz, , Nepomuk Ritz , Jan von Delft , and Anxiang Ge
Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for

Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
(Dated: June 17, 2025)

The multipoint numerical renormalization group (mpNRG) is a powerful impurity solver that provides
accurate spectral data useful for computing local, dynamic correlation functions in imaginary or real
frequencies non-perturbatively across a wide range of interactions and temperatures. It gives access
to a local, non-perturbative four-point vertex in imaginary and real frequencies, which can be used
as input for subsequent computations such as diagrammatic extensions of dynamical mean–field
theory. However, computing and manipulating the real-frequency four-point vertex on large, dense
grids quickly becomes numerically challenging when the density and/or the extent of the frequency
grid is increased. In this paper, we compute four-point vertices in a strongly compressed quantics
tensor train format using quantics tensor cross interpolation, starting from discrete partial spectral
functions obtained from mpNRG. This enables evaluations of the vertex on frequency grids with
resolutions far beyond the reach of previous implementations. We benchmark this approach on the
four-point vertex of the single-impurity Anderson model across a wide range of physical parameters,
both in its full form and its asymptotic decomposition. For imaginary frequencies, the full vertex can
be represented to an accuracy on the order of 2 · 10−3 with maximum bond dimensions not exceeding
120. The more complex full real-frequency vertex requires maximum bond dimensions not exceeding
170 for an accuracy of ≲ 2%. Our work marks another step toward tensor-train-based diagrammatic
calculations for correlated electronic lattice models starting from a local, non-perturbative mpNRG
vertex.

I. INTRODUCTION

In the study of strongly correlated systems, correla-
tions at the two-particle level play a key role. A powerful
framework for computing two-particle correlation func-
tions is given by quantum field theory approaches such as
the functional renormalization group (fRG) [1] or (closely
related [2–4]) the parquet equations [5]. While these
methods formally provide exact and unbiased equations
at the four-point level, solving them in practice requires
some approximations. A common choice is the perturba-
tive parquet approximation, which limits the applicability
of these methods to weak interactions. In order to ap-
ply these diagrammatic methods to correlated electronic
lattice systems in the physically relevant strong inter-
action regime, it has been proposed to combine them
with dynamical mean–field theory (DMFT) [6]. DMFT
approximates the self-energy to be local, i.e., momentum-
independent, thereby neglecting spatial correlations but
capturing local correlations non-perturbatively [7]. In the
form of DMF2RG [8] or the dynamical vertex approxima-
tion (DΓA) [9, 10], the fRG or the parquet equations can,
in principle, be used to self-consistently add non-local
correlations on the two-particle level on top of the local
DMFT result.

However, such calculations entail two numerical chal-
lenges: the solution of the impurity model arising in the
self-consistent DMFT loop and, subsequently, solving the
fRG or parquet equations for frequency- and momentum-
dependent vertices. The present work is concerned with

the interface between these two steps, i.e., the conversion
of local four-point spectral functions obtained from an
impurity solver to a four-point (4p) vertex. An impurity
solver that yields such 4p spectral functions is the multi-
point numerical renormalization group (mpNRG)[11, 12].
This extension of the numerical renormalization group
(NRG) [13, 14] is capable of computing both imaginary
and real-frequency local correlation functions up to the
four-point level in the form required for a subsequent
diagrammatic extension of DMFT [15, 16]. Just as NRG,
which has been the gold standard for solving impurity
problems on the two-point level for decades [17, 18], mp-
NRG can be applied to a wide range of parameters, in-
cluding large interactions and low temperatures. A cen-
tral ingredient to mpNRG are spectral representations of
time-ordered correlation functions in the frequency do-
main [11]. These represent correlators as convolutions
of formalism-dependent but system-independent kernels
with formalism-independent but system-dependent partial
spectral functions (PSFs). While the former are known
analytically, the latter are obtained from their respec-
tive Lehmann representations, using the eigenenergies
and (discarded) eigenstates obtained from mpNRG. The
local 4p vertex can be computed using the symmetric
improved estimator (sIE) technique [15], which avoids
the numerically unstable amputation of two-point (2p)
Green’s functions.

An appealing feature of spectral representations is that
the same set of PSFs can be used to obtain imaginary-
and real-frequency correlation functions. However, even
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when energy conservation is exploited, the 4p vertex is a
huge, three-dimensional object. Hence its computation
from PSFs on a large, dense grid quickly becomes challeng-
ing or even unfeasible due to its huge memory footprint.
Furthermore, performing calculations with such vertices
as required in fRG or parquet calculations poses a major
challenge [19–21].

It is thus highly desirable to represent 4p vertices in a
compressed format that reduces the computational cost
of the operations occurring in diagrammatic calculations.
A promising candidate for compression is the quantics
tensor train (QTT) representation [22, 23] of multivariate
functions, which has recently proven useful in various
areas of physics [24–29]. Its first application in the con-
text of many-body theory was in Ref. 25, a study which
demonstrated the compressibility of correlation functions
and used QTT-based algorithms to solve the Schwinger-
Dyson and Bethe–Salpeter equations. Furthermore, the
QTT representation has been employed successfully in
imaginary-frequency parquet calculations for the Hubbard
atom and the single-impurity Anderson model (SIAM),
using the parquet approximation [28].
These recent developments and the need for efficient

representations of 4p vertices motivate this work: We
use mpNRG to compute the local vertex of the SIAM
as a function of real and imaginary frequencies in QTT
format and investigate its compressibility across a broad
range of physical parameters. The reason for studying
the SIAM is its natural appearance in a DMFT treatment
of the Hubbard model and the fact that it can be solved
accurately using (mp)NRG. To compute the vertex of the
SIAM, we employ the quantics tensor cross interpolation
(QTCI) algorithm [30–33], which iteratively constructs
a QTT by sparse sampling of the target function. This
sampling-based interpolation enables evaluation of the
mpNRG vertex on grids much larger and much denser
than those accessible with the previous state-of-the-art
[15]. For appropriate error tolerances, the maximum bond
dimensions (ranks) of the resulting QTTs are within a
range where diagrammatic calculations, such as those
presented in Ref. 28, should be feasible, even for real
frequencies.
This paper is organized as follows: In Sec. II, we reca-

pitulate how the 4p vertex of the SIAM can be obtained
in imaginary or real frequencies from PSFs. Additionally,
we briefly explain key features of the QTCI algorithm
and how it is employed in this work. In Sec. III, we
show that imaginary- and, in particular, real-frequency
vertices are representable by low-rank QTTs within a
reasonable error margin. In the final Sec. IV, we provide
an outlook on how the results of this work may be used
to perform diagrammatic calculations for lattice models
in QTT format.

II. METHODS

This section explains how to compute 4p vertices in
QTT format. This is achieved in two steps: First, we
convolve PSFs with formalism-dependent frequency ker-
nels to obtain correlation functions (cf. Ref. 11). In a
second step, the sIE scheme is employed [15] to extract
the 4p vertex from various correlators and self-energies
in a numerically stable fashion. The vertex is computed
both in its asymptotic decomposition [34], which the sIE
naturally yields, and in its ‘full’ form.

A. Partial spectral functions

The input to our calculations is given by the PSFs

S[O](ω) =

∫
dℓt

(2π)ℓ
eiω·t

〈 ℓ∏

i=1

Oi(ti)
〉
, (1)

depending on a tuple O = (O1, . . . ,Oℓ) of operators
in the Heisenberg picture and ℓ frequency arguments
ω = (ω1, . . . , ωℓ). By ⟨O⟩ = Tr

[
e−βHO

]
/Z, we denote

the thermal expectation value, with the partition function
Z = Tr[e−βH ] at inverse temperature β = 1/T . Time
translation invariance implies:

S[O](ω) = δ(ω1···ℓ)S[O](ω), (2)

with the shorthand ω1···ℓ =
∑ℓ

i=1 ωi, thus making S[O] a
function of ℓ− 1 independent frequencies. In this work,
we are primarily interested in the case ℓ = 4, i.e., three-
dimensional PSFs.

The PSFs carry the formalism-independent information
that is specific to the model itself. The same set of PSFs
can thus be used to compute Matsubara and Keldysh
correlators by convolution with formalism-specific kernels.
In this work, PSFs were computed using mpNRG as
described in Ref. 12. This yields PSFs on a discrete,
(ℓ−1)-dimensional logarithmic energy grid for all relevant
operator tuples O. This yields the representation

S[O](ω) =
∑

ϵ

S[O](ϵ) δ(ω − ϵ), (3)

where the peak weights S[O](ϵ) and energies ϵ are ob-
tained as output of the mpNRG computation. The ener-
gies ϵ are binned into a Cartesian product of logarithmic
grids.

B. Matsubara formalism

AMatsubara correlator G(iω) depending on ℓ operators
(O1, . . . ,Oℓ) can be expressed via ℓ! PSFs S[Op], as was
shown in Sec. II.C of Ref. 11:

G(iω) =
∑

p

Gp(iωp) =
∑

p,ϵ

ζpK(iωp − ϵp)S[Op](ϵp).

(4)
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The frequencies ω = (ω1, . . . , ωℓ) are restricted to discrete
fermionic or bosonic grids, depending on the type of the
respective operator Oi. Similarly to Eq. (2), frequency
conservation ω1...ℓ = 0 is understood. The sum

∑
p is over

all permutations of ℓ elements, permuting frequency ar-
guments and operators accordingly. Using the shorthand
i = p(i), we can then write

ωp =
(
ωp(1), . . . , ωp(ℓ)

)
=

(
ω1, . . . , ωℓ

)
, (5)

Op =
(
Op(1), . . . ,Op(ℓ)

)
=

(
O1, . . . ,Oℓ

)
. (6)

Depending on whether p transposes an even or odd num-
ber of fermionic operators, a sign factor ζp = ±1 is
required in Eq. (4). The summands Gp(iωp) are termed
partial correlators. Most importantly, Eq. (4) also intro-
duces the Matsubara frequency kernel K, which reads

K(Ωp) =





∏ℓ−1
i=1 Ω

−1

1···i if
∏ℓ−1

i=1 Ω1···i ̸= 0,

− 1
2

[
β +

ℓ−1∑
i=1
i̸=j

Ω−1

1···i

]
ℓ−1∏
i=1
i̸=j

Ω−1

1···i if ∃j : Ω1···j = 0,

(7)

where Ωj = iωj − ϵj (cf. Eq. (4)) and Ω1...i = iω1̄···̄i −
ϵ1̄···̄i with iω1̄···̄i =

∑i
j=1 iωj̄ and ϵ1̄···̄i =

∑i
j=1 ϵj̄ . The

definition (7) assumes that at most one of the partial
sums Ω1...j vanishes, which is the case if there is at most

one bosonic Matsubara frequency (this is always true in
the present work). The first case in Eq. (7) is called
regular kernel, the second case anomalous kernel. In

the most important situation, ℓ = 4 and
∏ℓ−1

i=1 Ω1̄...̄i ̸=
0, the spectral representation of a partial correlator for
permutation p is simply given by

Gp(iωp) =
∑

ϵ1̄,ϵ1̄2̄,ϵ1̄2̄3̄

S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄)

3∏

i=1

(iω1̄···̄i − ϵ1̄···̄i)
−1.

(8)

Eq. (8) assumes that the PSFs S[Op] are parametrized in
partially summed energies (ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄), which is always
the case for our data (see Ref. 12).

C. Keldysh formalism

We now turn to the relation between PSFs and corre-
lators in the Keldysh formalism [35–37]. For details and
derivations, see Sec. II.D of Ref. 11. Keldysh ℓ-point cor-
relators Gk(ω) carry a Keldysh index k = (k1, k2, . . . kℓ)
with ki ∈ {1, 2}. Their spectral representation is analo-
gous to Eq. (4):

Gk(ω) =
2

2ℓ/2

∑

p

Gk
p (ωp), (9a)

Gk
p (ωp) =

∑

ϵ

ζpK
kp

b (ωp, ϵp)S[Op](ϵp). (9b)

It involves ℓ real frequencies ω that satisfy ω1...ℓ = 0.

The broadened Keldysh frequency kernel K
kp

b is a linear

combination of the broadened, fully retarded kernels K
[λ]
b :

K
kp

b (ωp, ϵp) =

ℓ∑

λ=1
kλ even

(−1)λ−1+k1...λ−1 ·K [λ]
b (ωp, ϵp),

(10a)

K
[λ]
b (ωp, ϵp) =

ℓ−1∏

j=1

lim
γ0→0+

∫

R
dω′

1...j

δb(ω
′
1...j

, ϵ1...j)

ω1...j − ω′
1...j

+ iγλ
0,j

,

(10b)

where δb(ω
′
1̄...j̄

, ϵ1̄...j̄) is a broadened version of the Dirac-δ

function appearing in Eq. (3). This broadening ensures a
smooth structure of the kernel, free from unphysical poles
or δ-peaks. The imaginary shifts iγλ

0,j in Eq. (10b) are
defined as

iγλ
0,j =

{
iγ0 · (ℓ− j) j ≥ λ,

−iγ0 · j j < λ.
(10c)

While the factors ℓ − j and j in Eq. (10c) can be disre-
garded in the limit γ0 → 0+, they remain relevant for the
linear broadening. Details on the broadening procedure
can be found in App. A and Ref. 12, Sec. VI.

D. Symmetric improved estimators: from
correlators to the vertex

In principle, the one-particle irreducible 4p vertex can
be obtained simply by amputating the four external
2-point (2p) propagators (“legs”) of the connected impu-
rity Green’s function Gcon[dσ1

d†σ2
dσ3

d†σ4
] (cf. Sec. IIIA).

In practice, however, this leads to pronounced numerical
artifacts, especially at asymptotically large frequencies,
where both functions decay to zero. A numerically stable
scheme that avoids direct amputation is the symmetric im-
proved estimator (sIE) technique introduced in Ref. 15. In
addition, this method yields the vertex in its asymptotic
decomposition [34]. This decomposition separates the
contributions that decay only in one or two frequency di-
rections from the genuinely three-dimensional core vertex
Γcore, which asymptotically decays in all three frequencies,

Γ(ω, ν, ν′) = Γcore(ω, ν, ν
′)

+
∑

r=a,p,t

[Kr
2(ωr, νr) +Kr

2′(ωr, ν
′
r) +Kr

1(ωr)]

+ Γ0.
(11)

The functions Kr
1, Kr

2 and Kr
2′ (not to be confused with

the kernels K defined above) only depend on one or two
frequencies if parametrized in their native channel r. They
are one- and two-dimensional contributions to the two-
particle reducible vertex in channel r. This channel can



4

be the antiparallel (a), parallel (p), or the transverse
(t) channel. These are also known as the particle-hole,
particle-hole crossed and particle-particle channels, respec-
tively [15]. By Γ0 we denote the frequency-independent
bare vertex. Note that the sIE method does not pro-
vide a decomposition of Γcore into two-particle reducible
contributions Kr

3 and a two-particle irreducible term.
In this work, we consider the single-impurity Anderson

model with interaction Hint = Ud†↑d↑d
†
↓d↓, where d†σ cre-

ates an electron with spin σ on the impurity, see Sec. III A
for details. We denote the self-energy of the impurity

Green’s function G[dσ, d
†
σ′ ](ν) as Σσσ′

(ν). In the absence

of a magnetic field, it satisfies Σσσ′
(ω) = δσσ

′
Σ(ω). Fol-

lowing Ref. 15, Γcore can be obtained as

Γcore(ω) =
∑

ai∈{d,q}
Ya1

(ω1)Ya3
(ω3)Gcon[a1, a

†
2, a3, a

†
4](ω)

· Ya2
(ω2)Ya4

(ω4), (12)

where we introduced an auxiliary operator q = [d,Hint],
and

Yai(ωi) =

{
−Σ

(
(−1)i−1ωi

)
ai = d,

X = ( 0 1
1 0 ) ai = q,

(13)

is a 2×2 matrix acting on the ith Keldysh index of Gcon.
In the Matsubara formalism, X is replaced by scalar
unity. In practice, the main workload in computing Γcore

at a given frequency ω is the evaluation of all 24 = 16
connected correlators, each comprised of 4! = 24 partial
correlators. The quantities Kr

1 and Kr
2(′) can be computed

using an analogous approach presented in App. B.

E. Quantics Tensor Cross Interpolation

Having summarized the evaluation of the 4-point ver-
tex in its asymptotic decomposition, we next discuss the
quantics tensor cross interpolation (QTCI) method [30–
33], which we used to obtain vertex functions in the form
of QTTs. Recently, it has been shown in the Matsubara
formalism that this representation is well-suited for effi-
cient diagrammatic calculations [28]. We discuss only the
basics of QTCI here. For a detailed introduction, we refer
to Ref. 38.
Let us begin with the quantics representation [22, 23].

Consider a one-dimensional function f(ω) defined on a
discrete, equidistant grid {ω0, . . . , ω2R−1} consisting of
2R points with ωm ∈ R. The grid index m of a point ωm

can be written in binary representation

m =
R∑

ℓ=1

2R−ℓσℓ, σℓ ∈ {0, 1}, (14)

so that m can be identified with the R-tuple (σ1, . . . , σR).
Hence, the mapping m 7→ f(ωm) can be viewed as an
R-leg tensor Fσ1···σR

= f(ωm({σℓ})). This so-called quan-
tics encoding can be generalized to higher-dimensional

functions, in particular to functions f(ω, ν, ν′) of three
frequency arguments. The frequencies lie on a Cartesian
product of 1D grids, each of size 2R. We use a binary
encoding

(ωi, νj , ν
′
k) =

(
(σ11, ..., σ1R), (σ21, ..., σ2R), (σ31, ..., σ3R)

)
,

(15)

with the binary variables σnℓ labelled by n = 1, 2, 3 for
ω, ν, ν′. The function f can then be represented by a
tensor with 3R indices:

Fσ = Fσ11σ21σ31···σ1Rσ2Rσ3R
= f(ωi, νj , ν

′
k). (16)

Importantly, note that the tensor indices in Eq. (16)
have been interleaved, such that the indices correspond-
ing to the same length scale 2R−ℓ in different vari-
ables σ1ℓ, σ2ℓ, σ3ℓ, are adjacent. Alternatively, triples
(σℓ1, σℓ2, σℓ3) of legs can be fused to single legs σ̃ℓ =∑3

n=1 2
n−1σℓn, which yields the fused representation of

f as an R-leg tensor:

F̃σ̃ = F̃σ̃1···σ̃R
= f(ωi, νj , ν

′
k). (17)

The second ingredient of QTCI is the tensor cross inter-
polation (TCI) algorithm [30–32, 38], which approximates
tensors Fσ = Fσ1···σL

(with L = R, 2R or 3R for one-,
two- or three-dimensional functions, respectively) using
tensor trains constructed from a sampled subset of all
tensor elements. If a low-rank factorization of the tensor
exists, the number of samples taken is much smaller than
the number of elements of the full tensor. This way, the
cost of generating all tensor elements, exponentially large
in R, can be avoided.

More precisely, the TCI algorithm seeks to find a tensor
train (TT)

FQTCI
σ1...σL

=
∑

α1...αL−1

[Mσ1
1 ]1α1 [M

σ2
2 ]α1α2 · · · [MσL

L ]αL−11

(18)
that minimizes the elementwise error

εσ[F ] =
|FQTCI

σ − Fσ|
maxσ′ |Fσ′ | . (19)

Here, the αℓ are virtual bond indices with ℓ-dependent
bond dimensions, αℓ = 1, ..., χℓ. The maximum bond
dimension, χ = maxχℓ, is called the rank of FQTCI

σ . The
maximum in Eq. (19) is estimated using all sampled en-
tries of Fσ. The TCI algorithm optimizes the tensors
[Mσℓ

ℓ ]αℓ−1αℓ
iteratively, progressively sampling Fσ, until

no σ is found where the error εσ exceeds a given tol-
erance τ . During this process, the bond dimensions χℓ

are increased dynamically to improve the accuracy of
the tensor train representation. Finding a tensor train
representation of FQTCI

σ with TCI has a computational
cost of O

(
Rχ3

)
.

In conjunction with the quantics representation, TCI
can be employed to approximate not only tensors, but also
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functions defined on discrete grids by tensor trains. Once
the bond dimensions are saturated, i.e., no longer increase
with R, the computational cost of QTCI scales linearly
in R. This translates to an exponential resolution of the
target function at linear cost. Of course, the function
is only approximated within an error margin given by
Eq. (19). The next section details how we used QTCI
to compress 4p vertex functions on exponentially large
grids.

F. Implementation details

To obtain the core and full vertices in the Matsubara
and Keldysh formalisms as QTTs, we apply QTCI to
functions that evaluate Γcore(ω) and Γ(ω) on individual
frequency points ω to be specified on demand by the TCI
algorithm. The frequencies ω reside on an equidistant
grid of 23R points. For Matsubara grids, the grid spacing
is set by the temperature, and the extent of the grid can
be increased exponentially by increasing R. For Keldysh
vertices, which are functions of continuous frequencies,
one may exponentially increase either the density of grid
points, or the extent of the grid, or both, by increasing
R. It is important not to precompute the vertices on
a dense grid, as this precomputation step would incur
costs scaling as O

(
23R

)
. By avoiding precomputation, R

can be increased to yield grid sizes and/or grid densities
beyond those attainable by conventional means. The
TCI algorithm samples a sparse set of O

(
χ2R

)
points ω,

which is much smaller than 23R, the total number of grid
points for the 4p vertex functions considered in this work.
For this application, function evaluation during sampling
is the dominant cost as opposed to the O

(
χ3R

)
cost of

computing prrLU factorizations (see [38, Sec. 3.3]). More
specifically, the computational effort is dominated by the
evaluation of partial 4p correlators. These enter Γcore

and Γ via the full correlators appearing in Eq. (12). In
this section, we discuss how our code evaluates partial
correlators in an efficient way. Readers only interested
in our results on the compressibility of Matsubara and
Keldysh vertices can move on to Sec. III.

1. Matsubara vertices

In the Matsubara case, evaluating the regular part of
the 4p correlator, Eq. (8), constitutes the majority of
computational cost. Using the shorthand kω1̄···̄iϵ1̄···̄i =
iΩ1̄···̄i = (iω1̄···̄i − ϵ1̄···̄i)

−1, we can rewrite Eq. (8) as

Gp(iωp) =
∑

ϵ1̄,ϵ1̄2̄,ϵ1̄2̄3̄

kω1̄ϵ1̄kω1̄2̄ϵ1̄2̄kω1̄2̄3̄ϵ1̄2̄3̄S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄).

(20)

Since (ω1̄, ω1̄2̄, ω1̄2̄3̄) and (ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄) live on finite fre-
quency grids, the kernels kω1̄···̄iϵ1̄···̄i can be viewed as ma-
trices. A typical grid size for the spectral function peaks

8 9 10 11 12
R

10 8

10 7

10 6

10 5

10 4

10 3

10 2

m
ax

. e
rr

or

β= 2000, u= 0.5

τ
Matsubara

10−5 10−4 10−3 10−2

Keldysh

FIG. 1. Maximum error of Matsubara (circles) and Keldysh
(diamonds) core vertex evaluations with SVD truncations as
described in the main text. The error is measured relative to
the maximum of the respective vertex function. By τ we denote
the target TCI tolerance, and use a cutoff of Scut = 10−2τ
for Matsubara. For Keldysh, we choose an SVD cutoff of
10−6 times the largest singular value, and find that this yields
results that are sufficiently accurate for a tolerance of τ = 10−3.
We show maximum errors over 64000 sampling points for the
Matsubara core vertex and 2 ·106 sampling points for the more
complicated Keldysh core vertex. All errors are well below the
respective target tolerance τ .

(ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄) is 70 × 70 × 70, while the largest grids for
Matsubara frequencies (ω1̄, ω1̄2̄, ω1̄2̄3̄) used in this work
have 212 = 4096 points in each dimension. Thus kω1̄···̄iϵ1̄···̄i
can be precomputed and stored for all relevant grid sizes.

We implemented two methods to speed up the threefold
contractions in Eq. (20): (i) compressing the kernels and
(ii) performing one kernel contraction as a preprocessing
step.
(i) Compressing the kernels is the more general of the

two methods, in that it has a smaller memory footprint
(< 1GB per full correlator G(iω) for R = 12, τ = 10−3).
The idea is to compress the kernels kωϵ by exploiting their
low-rank structure [39, 40]: We SVD-decompose each
kωϵ and discard singular values below a given cutoff Scut,
resulting in the approximation

kωϵ ≈
∑

a

UωaSaV
†
aϵ. (21)

We then contract the singular values Sa ≥ Scut and the
right-hand isometries V † with the PSF by performing ϵ
sums to obtain a smaller rank-3 tensor A, thus reducing
the cost of the threefold summation in Eq. (20):

Gp(iωp) =
∑

a1a2a3

Aa1a2a3

3∏

i=1

Uωiai
, (22a)

Aa1a2a3 =
∑

ϵ1̄,ϵ1̄2̄,ϵ1̄2̄3̄

S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄)

3∏

i=1

SaiV
†
aiϵ1···i

. (22b)
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The computations (21) and (22b) are performed during
preprocessing prior to the QTCI run. Note that this
treatment of the low-rank Matsubara kernels is closely
related to the so-called intermediate representation (IR)
of Matsubara Green’s functions, see Refs. [41, 42]. The
cutoff Scut should be chosen as to introduce an error
significantly below the TCI tolerance τ in all target quan-
tities. While one can bound the error in Eq. (22a), e.g.,
using the Cauchy–Schwarz inequality, these estimates
were found to be very conservative. We observed that
setting Scut = 10−2 τ leads to errors more than two orders
of magnitude below the TCI tolerance when evaluating
correlators and vertices. This is shown in Fig. 1, where we
plot the accuracy of Matsubara (and Keldysh) core vertex
evaluations for different TCI tolerances τ and numbers
of quantics bits R. In Matsubara, the accuracy improves
with increasing R. This is because, for a fixed SVD cutoff,
fewer singular values are discarded for larger R.
A further speedup can be achieved by realizing that,

even though all singular values Sa in Eq. (21) are larger
than Scut, their products appearing in Eq. (22b) can
become negligibly small. Ordering Sai

by decreasing
magnitude, we therefore discard all entries Aa1a2a3

where
a1 + a2 + a3 is larger than some integer N :

Gp(iωp) =
∑

∑
i ai≤N

Aa1a2a3

3∏

i=1

Uωiai . (23)

A similar truncation is useful when constructing IR 4pt
Green’s functions, see Ref. 43. To determine N for a
prescribed tolerance τ , we estimate the contribution from
terms with

∑
i ai > N via the Cauchy–Schwarz inequality:

∣∣∣∣∣∣
∑

∑
i ai>N

Aa1a2a3

3∏

i=1

Uωiai

∣∣∣∣∣∣

≤
√ ∑

∑
i ai>N

|Aa1a2a3
|2

3∏

i=1

max
ωi

√∑

ai

|Uωiai
|2

=

√ ∑
∑

i ai>N

|Aa1a2a3
|2 . (24)

The second factor in the second line of Eq. (24) is equal
to one, since the U ’s are isometries. Hence, Eq. (24)
provides a simple bound on the error in Gp(iω), which is
independent of the frequency at hand. We choose N such
that

√ ∑
∑

i ai>N

|Aa1a2a3
|2 ≤ τ

10
max
ω

|G(iω)|, (25)

which ensures an error one order of magnitude below the
TCI tolerance in the full correlator G. While this error in
principle occurs per partial correlator Gp, the criterion
(25) was observed to yield sufficient accuracy. Overall,
this first method gives a substantial speedup compared

to directly performing the contractions in Eq. 20: It ac-
celerates the evaluation of the full 4p impurity correlator

G[d↑, d
†
↑, d↑, d

†
↑] at β = 2000, u = 0.5 (cf. Sec. IIIA) at

a single frequency in an R = 12 quantics grid using an
SVD cutoff of Scut = 10−5 by more than a factor 60. This
observation simply reflects the strong compresssibilty of
the Matsubara kernels.

(ii) A more straightforward way to speed up pointwise
evaluations of partial correlators (20) is to precompute
one of the three contractions before running QTCI. This
yields an object depending on the variables (ω1̄, ϵ1̄2̄, ϵ1̄2̄3̄),

Bp(ω1̄, ϵ1̄2̄, ϵ1̄2̄3̄) =
∑

ϵ1̄

kω1̄ϵ1̄S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄). (26)

Bp gives access to Gp via

Gp(iωp) =
∑

ϵ1̄2̄ϵ1̄2̄3̄

kω1̄2̄ϵ1̄2̄kω1̄2̄3̄ϵ1̄2̄3̄Bp(ω1̄, ϵ1̄2̄, ϵ1̄2̄3̄). (27)

In this approach, we only have two kernel contractions in
each evaluation Gp, but have to store the intemediates
(26) for all partial correlators. Their size grows linearly
in the grid frequency grid size, i.e., as 2R where R is the
number of quantics bits. For example, if R = 12 and the
PSFs live on a 70×70×70 logarithmic grid (which results
from 2×6 decades of energy bins with 8 points per decade
and discarding zeros in the PSFs), each full correlator
consumes 12.9GB of memory. On an R = 12 grid at β =
2000, u = 0.5, the precomputation also yields a speedup
of about a factor 60. But in contrast to the compression
of kernels (Eq. (21)), this speedup is independent of the
TCI tolerance τ . Overall, method (ii) is recommended
as long as its memory demands can be met, because it
evaluates correlators in a numerically exact fashion.

2. Keldyh vertices

In the Keldysh formalism, evaluating partial correlators
Gk

p (cf. Eq. (9b)) also comes down to threefold contrac-
tions of a 3-dimensional PSF with kernel matrices. This
can be seen by rewriting the kernel K

[λ]
b (10b) as a prod-

uct of one-dimensional kernels evaluated at frequencies
ω1̄···̄i:

K
[λ]
b (ωp, ϵp) =

3∏

i=1

k
[λ,i]
b (ω1̄···̄i, ϵ1̄···̄i), (28a)

k
[λ,i]
b (ω1̄···̄i, ϵ1̄···̄i) = lim

γ0→0+

∫

R
dω′

1...i

δb(ω
′
1...i

, ϵ1...i)

ω1...i − ω′
1...i

+ iγλ
0,i

.

(28b)

Equation (9b) can then be written as:

Gk
p (ωp) =

4∑

λ=1
kλeven

(−1)λ−1+k1...λ−1 ·G[λ]
p (ωp), (29a)
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G[λ]
p (ωp) =

∑

ϵ1̄,ϵ1̄2̄,ϵ1̄2̄3̄

S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄)×

3∏

i=1

k
[λ,i]
b (ω1̄···̄i, ϵ1̄···̄i). (29b)

The ensuing contractions (29b) to be performed for λ =
1, ..., 4 are analogous to Eq. (20). However, interpolating
the complex structure of the Keldysh vertex requires more
evaluations compared to its Matsubara counterpart. At
the same time, the memory cost of a precomputation
analogous to Eq. (26) becomes prohibitive for large (R ≳
12) frequency grids, since it must be applied to G

[λ]
p for

λ = 1, ..., 4 and for each partial correlator. For these
reasons, the optimization of Eq. (29b) needs to go beyond
the compression scheme for the Matsubara kernels from
Eqs. (21) and (22b). To this end, we exploit the fact that

the structure of the 1D kernels k
[λ,i]
b (ω1̄···̄i, ϵ1̄···̄i) becomes

simpler at large frequencies ω1̄···̄i: We divide the ω1̄···̄i grid
into nL equally-sized intervals Ii1, . . . , I

i
nL

, with nL = 23

as a default. Then, for each dimension i and each interval
Iij , we SVD-decompose the restricted kernel

k
[λ,i]
b (ω1̄···̄i, ϵ1̄···̄i)

∣∣∣∣
ω1̄···̄i∈Ii

j

≈
∑

ai

U ij
ω1̄···̄iai

Sij
ai
V †ij
aiϵ1̄···̄i

, (30)

discarding singular values that are at least 6 orders of
magnitude smaller than the largest singular value. This
strategy of partitioning the ω1̄···̄i grid prior to the SVD
truncation allows us to discard more singular values in
outer intervals, where the kernel is more compressible.
Next, for each triple of intervals (I1k , I

2
l , I

3
m), we contract

the corresponding singular values and right hand isome-
tries into the PSF. While this entails precomputing n3

L
3-leg tensors of the form
(
Aklm

)
a1a2a3

=

=
∑

ϵ1̄,ϵ1̄2̄,ϵ1̄2̄3̄

(SV †)1ka1ϵ1̄
(SV †)2la2ϵ1̄2̄

(SV †)3ma3ϵ1̄2̄3̄
S[Op](ϵ1̄, ϵ1̄2̄, ϵ1̄2̄3̄),

(31)

it yields a substantial speedup in evaluations of Gk(ω):
For β = 2000, u = 0.5, ωmax = 0.65 (cf. Sec. IIIA)
and R = 12 this scheme is about a factor 150 faster
than a naive kernel contraction. This speedup refers to
an average over 2 · 105 evaluations on random frequency
points, since the compressibility of the kernels depends
on the intervals (I1k , I

2
l , I

3
m) the frequencies (ω1̄, ω1̄2̄, ω1̄2̄3̄)

belong to. Indeed, truncated isometries U ij pertaining to
the outermost intervals usually have about 5 times fewer
rows than those of the inner intervals. That Keldysh core
vertex evaluations using the above scheme are sufficiently
accurate (i.e. to more than 10−3, see Sec. III C) is verified
in Fig. 1.
Having explained the optimization of vertex eval-

uations, we turn to the settings chosen in the
QTCI routine. All of our code is written in Ju-
lia (versions 1.9.4 and 1.10.3), using the TCI pack-

age TensorCrossInterpolation.jl, the quantics util-
ities QuanticsGrids.jl as well as the QTCI package
QuanticsTCI.jl of the tensor4all collaboration [38, 44].
The latter exposes the quanticscrossinterpolate rou-
tine, which is the entry point of the QTCI algo-
rithm and offers various settings: We used the default
:backandforth sweep strategy and the :fullsearch
pivot search strategy. The increase in computational
cost entailed by a full pivot search was accepted to ensure
a reliable interpolation. For Matsubara objects, the in-
terleaved representation was chosen to obtain maximum
memory compression. In the Keldysh case, the interleaved
representation exhibited convergence problems: After 80
sweeps (with ≤ 5 sweeps until convergence being com-
mon), a QTT with an error significantly exceeding the
tolerance was obtained. Switching to the fused represen-
tation solved this problem. This is due to the fact that a
2-site update in a 3D fused representation corresponds to
a 6-site update in the interleaved representation, which
implies more extensive sampling of the target function.
Another choice worth mentioning is that of initial pivots:
For Keldysh vertices, it was sufficient to use the grid center
as the only initial pivot. In Matsubara, the same choice
occasionally lead to premature termination of the TCI al-
gorithm, resulting in a QTT representation that was miss-
ing relevant features. We therefore chose 125 initial pivots
forming a cube at Matsubara frequencies (ωi, νj−1, ν

′
k−1)

with i, j, k ∈ {−2, ..., 2}. On fermionic grids, the cube is
thus centered around ν−1 = ν′−1 = −πT . This choice of
initial pivots ensures that the sharp Matsubara vertex
structure around the origin is properly sampled. Finally,
since vertex evaluations are the bottleneck of our QTCI-
compressions, a significant speedup can be achieved via
multithreading. The samples evaluated during a two-site
optimization step (see Ref. [38, Sec. 4.3]) are independent
of one another, and can therefore be evaluated in parallel.

We tested our code for evaluating vertex functions with
the sIE scheme against the prior Matlab implementation
used in Ref. 15. We found numerically exact agreement
with a normalized discrepancy < 10−13 for the Matsubara
quantities. In Keldysh the maximum discrepancy in the
core vertex between our Julia code and the Matlab code
of Ref. 15 is about 0.002 · ||Γcore||∞ (with the supremum
norm || · ||∞). This discrepancy can be attributed to small
differences in the broadening implementation, mainly the
interpolation of the broadened kernel from a logarithmic
to a linear grid (cf. App. A). This discrepancy is one
order of magnitude smaller than the error introduced
by the arbitrariness inherent in the choice of broadening
parameters. As an additional test, our code was used to
generate Keldysh vertex data to check the fulfillment of
exact diagrammatic relations of mpNRG data [16].

To conclude this section, Fig. 2 compares the singular
value spectra of regular Matsubara kernels (Eq. (7)) and
broadened, fully retarded Keldysh kernels (Eq. (28a)) at
different temperatures. As expected, the singular values
of both Matsubara and Keldysh kernels decay significantly
faster at higher temperatures. In Keldysh, this is due
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FIG. 2. Singular values Si of regular Matsubara kernels
(Eq. (7), solid line) and broadened, fully retarded Keldysh
kernels (Eq. (28a), dashed line). We show kernels at inverse
temperatures β ∈ {20, 200, 2000} and interaction u = 0.5. The
frequency grids are bosonic with 212 points, with the Keldysh
grid ranging from −0.65 to ωmax = 0.65.

U ∆ u TK βK = 1/TK

0.05 0.0318 0.5 4.14 · 10−2 24.2
0.05 0.0159 1.0 9.58 · 10−3 104
0.05 0.0106 1.5 3.57 · 10−3 280
0.05 0.00530 3.0 3.36 · 10−4 2980
0.05 0.00318 5.0 2.06 · 10−5 48400

TABLE I. Kondo temperatures TK = TK(U,∆) with inverses
βK = 1/TK for different parameter sets. The Kondo tempera-
ture was computed via the Bethe ansatz solution of the SIAM,
see, e.g., Ref. 45. All quantities have been rounded to three
significant digits.

to the temperature-dependent linear broadening γL (see
App. A). Moreover, the singular values of Keldysh kernels
decay much more slowly than their Matsubara counter-
parts at the same temperature. This reflects the more
complex structure, i.e., lower compressibility, of Keldysh
vertices.

III. RESULTS

In this section, we show how QTCI performs in com-
pressing the 4p vertex of the single-impurity Anderson
model (SIAM) in the Matsubara (Sec. III B) and Keldysh
(Sec. III C) formalisms. We discuss the benefits of its
QTT representation compared to storing the vertex on
dense frequency grids, considering both the core and the
full vertex (Γcore and Γ in Eq. (11)). The asymptotic con-
tributions are discussed in App. B. The two most relevant
numerical parameters are the number R of quantics bits,
corresponding to a grid with 2R points in each dimension
and the maximum bond dimension χ, which serves as a
measure for compressibility.

A. Single impurity Anderson model

The Hamiltonian of the single impurity Anderson model
(SIAM) [46] reads

H =
∑

σ

ϵd nσ + Un↑n↓ +
∑

kσ

ϵkc
†
kσckσ

+
∑

kσ

Vk

(
d†σckσ + h.c.

)
, nσ = d†σdσ

(32)

where d†σ with spin σ ∈ {↑, ↓} creates an electron in an
interacting, single-orbital impurity. c†bσ creates an elec-
tron in a noninteracting bath, coupled to the impurity via
a hybridization term Vk. Electrons on the impurity site
interact with the interaction strength U . Since the ckσ
electrons occur only quadratically, they can formally be
integrated out, yielding a frequency-dependent hybridiza-
tion function ∆(ν) as an additional quadratic term for
the d electrons. We choose the hybridization function as

∆(ν) =
∆

π
ln

∣∣∣∣
ν +D

ν −D

∣∣∣∣− i∆ θ(D − |ν|), (33)

with a box-shaped imaginary part, characterized by the
bandwidth 2D and the hybridization strength ∆ ∈ R.
Moreover, we set ϵd = −U/2, which leads to a particle-
hole symmetric Hamiltonian.
In the following, energy, temperature and frequencies

are measured in units of half the bandwidth D = 1.
The interaction strength is specified by the dimensionless
quantity u = U/π∆. Our analysis covers a wide parameter
range from weak (u = 0.5) to very strong (u = 5.0)
interactions and moderate (β = 20) to low (β = 2000)
temperatures. The corresponding Kondo temperatures
are given in Tab. I. (It should be noted that the two
datasets for β = 20 and β = 200 have u = 0.5004 rather
than u = 0.5. This minor difference changes the Kondo
temperature by less than a factor 1.002.) To parametrize
the vertex, different frequency conventions and index
orderings can be used. Both are listed in App. D. Finally,
note that the spin structure of the vertex Γσ1σ2σ3σ4 can be
simplified by exploiting the SU(2) spin symmetry of the
SIAM in the absence of a magnetic field. Only components
of the form

Γσσ′
= Γσσσ′σ′

(34)

are needed. Moreover, we have Γ↓↓ = Γ↑↑ and Γ↓↑ = Γ↑↓

by spin flip symmetry, such that only Γ↑↑ and Γ↑↓ remain
independent. The same applies to Γσσ′

core.

B. mpNRG vertex functions: Matsubara formalism

Let us first consider the QTCI-compression of the
Matsubara core and full vertices. An important input to
the QTCI algorithm is the specified error tolerance τ , see
Eq. (19). When compressing vertices from mpNRG, the
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FIG. 3. QTCI-compression of the Matsubara core vertex
Γcore(ω, ν, ν

′) in the p-channel at β = 2000, with R = 8
and tolerance τ = 10−3. Heatmaps show the log10 absolute
value of Γ↑↑

core in (a,b) and Γ↑↓
core in (d,e) on the slice ω = 0.

nν and nν′ enumerate the fermionic Matsubara frequencies
ν, ν′. Left column: Reference data Γref

core. Center column:
QTCI representation ΓQTCI

core . Right column: Normalized error
εσ[Γcore] ≲ 1.58 · 10−3 defined in Eq. (19). We reproduce
key features of the vertex on a large frequency box with
a comparatively low QTT rank of χ = 107 and χ = 106,
respectively.

choice of tolerance should be based on the accuracy of the
PSFs. Based on benchmark results of Refs. 11, 12, and
15, we expect the mpNRG vertex to be reliable to roughly
10−3 · ||Γcore||∞, where the error is partially systematic
(as opposed to pure white noise). It should be empha-
sized that this is only an estimate and inherent errors in
mpNRG (due to discretization of the noninteracting bath
and discarding high-energy eigenstates during iterative
diagonalization) are different from those stemming from
TCI. A tolerance significantly below τ = 10−3 may be
desirable for two reasons: First, to avoid errors (19) larger
than our mpNRG accuracy estimate of 10−3: After all,
a local error (19) below the tolerance is only expected
within the set of pivots that have been sampled by TCI –
and even for these, the tolerance is not strictly guaranteed
by the TCI routine used here (see [38], Sec. 4.3.1) , which
breaks full nesting conditions. Lowering the tolerance
increases the confidence that the required accuracy has
been reached even outside the sampled set. The second
motivation is to assess the potential of our approach for
situations where more precise input data is available. We
shall therefore investigate tolerances ranging from 10−2

to 10−5.

The vertex functions Γcore(ω, ν, ν
′) and Γ(ω, ν, ν′) to

be represented in QTT format here generally have promi-

5 6 7 8 9 10 11 12
R

102
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χ

(a)u= 0.5

β= 2000
β= 200

τ
worst case

10−5 10−4 10−3 10−2

Matsubara Γcore ranks

5 6 7 8 9 10 11 12
R

10−1

100

101
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R
AM

 [M
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]

(b)

dense grid

Matsubara Γcore RAM

FIG. 4. (a) Rank and (b) RAM usage of the interleaved QTT
representation of the Matsubara core vertex Γ↑↑

core in the p-
channel vs. frequency grid size for different tolerances. The
grid has 2R points in each frequency argument. For the target
tolerance of τ = 10−3, ranks saturate at χ ≈ 100. Dotted
worst-case lines in (a) and (b) indicate the maximum rank of
a 3R-leg QTT (hence the even-odd alternation in the worst
case of (a)) and the RAM requirements of dense grids with
23R points, respectively.

nent structures around the origin, along the frequency
axes, and along the diagonals [47]. This is exemplified
in Fig. 3, which shows slices of Γcore at fixed bosonic
frequency ω = 0. The inverse temperature is β = 2000.
We compare reference data with the QTT representation
of the vertex for a TCI tolerance of τ = 10−3. The refer-
ence was obtained by evaluating the vertex only on the
two-dimensional slice shown in Fig. 3. A logarithmic color
scale has been chosen to expose imperfections of the TCI
approximation. Fig. 3 illustrates how QTCI represents
important features of the vertex in a strongly compressed
format: For a 256×256×256 (R = 8) frequency grid, we
have ranks of χ = 107 for Γ↑↑

core and χ = 106 for Γ↑↓
core.

This translates to memory footprints reduced by factors
of 92 (268MB to 2.9MB) and 89 (268MB to 3.0MB),
respectively.

A systematic account of the compressibility of Γcore is
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FIG. 5. Rank of the Matsubara core vertex Γ↑↑
core and full vertex Γ↑↑ in the p-channel versus (a) TCI tolerance τ , (b) inverse

temperature β and (c) interaction strength u.

provided in Fig. 4. It shows (a) ranks and (b) memory
consumption of the resulting QTTs, as a function of
tolerance τ and grid size. The grid size is governed by
the number R of quantics bits in each dimension. Two
different datasets at β = 200 and β = 2000 are represented
by crosses and circles, respectively. The QTT ranks do not
exceed 250 (red circles, τ = 10−5), with compressions for
the target accuracy of τ = 10−3 (green) saturating w.r.t.
R at χ = 96 even for the low temperature data. This
rank saturation reflects the simple asymptotic structure
of Γcore.

In light of recent work by Rohshap et. al. [28], these re-
sults are very promising: There, the authors demonstrate
that self-consistent parquet calculations with maximum
bond dimensions of 200 are feasible on a single CPU (cf.
Ref. 28, Sec. VI B). While the calculations in Ref. 28
were performed in a different parameter regime of the
SIAM, their computational cost is determined by the bond
dimensions of the QTTs involved. Our results therefore
suggest that QTT-based parquet calculations with an
NRG Matsubara vertex as input will be feasible. Fig. 4
further shows that TCI ranks of Γcore do not significantly
increase beyond a grid size of R = 8. In this region of sat-
urated ranks, both memory usage and runtime required
for manipulations of the vertex such as convolutions or
frequency transformations scale logarithmically in the
grid size (linearly in R) [33]. In this regime, the QTT
representation yields an exponential reduction in com-
putational cost compared to dense grids. Lowering the
tolerance (thus increasing χ) comes at a runtime cost of
O(χ4) for the most expensive manipulations performed
in Ref. 28 (see Sec. V.D there).

The linear scaling in R generically allows for exponen-
tially cheap reduction of discretization errors (for con-
tinuous variables) or errors due to finite-size domains
(for discrete variables) [33]. For Matsubara vertices, the
asymptotic structure contains terms Γ0,K1,K2, and K2′

that are independent of some of the frequencies (see
Eq. (11)), implying that the function does not decay
to zero at infinity [34]. One might be tempted to con-
clude that this makes any finite box representation invalid
without high-frequency extrapolation. In practice, ver-

tex functions are used in evaluating diagrammatic equa-
tions such as expectation values of observables, Bethe–
Salpeter equations or the Schwinger–Dyson equation. In
all of these cases, the vertex is embedded in a frequency
summation or integral with single-particle propagators
that do approach zero asymptotically for high frequencies.
The error generated in such summations and integrals
is thus the relevant criterion for frequency box size, as
was shown in Ref. 28 for a parquet approach, including
Bethe–Salpeter equations. There, the error of a QTCI-
based self-consistent calculation of the density channel
irreducible vertex was shown to improve from 10−1 for
R = 5 to 10−3 for R = 9. Frequency grids larger than
R = 8 are hence relevant. We are considering significantly
lower temperatures (βD ∈ {200, 2000}, U/π∆ = 0.5 here
vs. βD = 100, U/π∆ ≈ 0.51 in Ref. 28). Since Γcore

becomes more complicated at these low temperatures (cf.
Fig. 5(b) below), we expect large grids to be even more
relevant in NRG+parquet calculations.

To assess the range of applicability of our approach, we
also examined how the QTT rank for Γcore as well as the
full vertex Γ depends on the desired tolerance, inverse
temperature β and interaction strength u. The results
for the ↑↑ flavor and an R = 10 grid are summarized in
Fig. 5. The full and core vertices show a similar increase
in rank with the TCI tolerance (Fig. 5(a)), since Γcore

contains precisely the complex 3-dimensional structure
of the full vertex. Consistent with previous results on
random pole based Matsubara correlators (cf. Fig. 8b in
Ref. 48 ), the TCI ranks increase with β, though only
logarithmically, see Fig. 5(b). Finally, Fig. 5(c) shows the
ranks versus the interaction strength. The key finding
is that both vertices remain strongly compressible with
ranks ≤ 110 when increasing u from the perturbative
regime (u ≪ 1) to very strong coupling (u = 5). Since the
y-axis ranges only from 85 to 110, the observed variation
in ranks with u does not carry much significance. Over all,
Fig. 5 suggests that parquet calculations with an mpNRG
vertex as input will be feasible across a wide range of
parameters.

According to Eq. (11), the full vertex also contains
lower-dimensional contributions Kr

1 and Kr
2(′) . In App. B,
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FIG. 6. Imaginary part of the Keldysh core vertex Γ2121,↑↑
core , at ω = 0, compressed using R = 12, τ = 10−2. On this slice,
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core ). The QTT rank is χ = 198. The QTT representation allows us to zoom in
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FIG. 7. QTCI-compression of the Keldysh core vertex
Γ2121,↑↑
core (ω, ν, ν′) in the p-channel at β = 2000, with R = 10

and tolerance τ = 10−2. Heatmaps show the log10 absolute
value of the vertex on the slice ω = 0. The interaction strengths
are u = 0.5 in (a,b,c) and u = 1.5 in (d,e,f). Left column: Ref-
erence data Γref

core. Center column: QTT representation ΓQTCI
core .

Right column: Normalized error εσ[Γcore] ≲ 1.73% defined in
Eq. (19). The QTT representation captures complex features
using moderate bond dimensions of χ = 184 and χ = 187,
respectively.

we verify that they have very small TCI ranks (χ ≲ 20 for
τ = 10−3) compared to Γcore and Γ. Moreover, we focused
on the ↑↑ component of the vertex in the p-channel. In
App. C, we discuss how the ranks of Γcore and Γ depend
on the frequency channel and spin component.

C. mpNRG vertex functions: Keldysh formalism

We now turn to computations of the Keldysh vertex
in QTT format. In contrast to the Matsubara vertex,

this object gives direct access to real-frequency dynamic
response functions, but is a significantly more compli-
cated function on a continuous domain of real frequencies.
Faithfully capturing its structure on a finite grid while
keeping the computational cost in check is very challeng-
ing. This has been achieved in Refs. 20 and 21, but
requires tedious manual tuning of nonlinear grids. By
contrast, our QTCI-based approach allows us to automat-
ically capture features on different length scales on an
extremely fine equidistant grid. Our grid for ω contains 0,
while ν and ν′ live on a grid that is offset from 0 by half a
grid spacing. An alternative choice would be to include 0
in all three grids. In QTCI, we can refine the grid until all
features are represented up to a given tolerance, so that
shifting the ν and ν′ grids by half a grid spacing does not
make a difference. The resolution attained with QTCI is
exemplified in Fig. 6, showing a QTT representation of
Γ2121,↑↑
core on a slice at ω = 0 using R = 13 quantics bits.

The TCI tolerance was set to 10−2. All panels show the
same slice, but zoom in by factors of 2 moving from left to
right. The rightmost panel still exhibits a sharp resolution
after a 32-fold magnification. As a further illustration,
Fig. 7 compares the TCI-compressed vertex (center) to
the reference (left), showing the normalized error on the
right. The slices are taken again at ω = 0 and for u = 0.5
(top row) and u = 1.5 (bottom row). Overall, we see that
TCI resolves the core vertex to 1% precision with ranks
of 184 and 187, respectively.

This 1% error is comparable to the uncertainty due to
the broadening of spectral functions, which supersedes the
NRG error of 10−3 in the real-frequency case: While there
are well-established schemes [12, 15] to choose broadening
parameters, legitimate choices can vary within a range
that causes vertex functions to change by a few percent.
Our default tolerance for Keldysh objects is therefore
chosen as τ = 10−2. In view of ongoing research aiming to
develop an impurity solver less susceptible to broadening
artifacts [49], which could be extended to the multipoint
case in the future, we extend our investigations down to
τ = 10−3.

Figure 8 shows (a) the rank and (b) the memory size of
the compressed Keldysh core vertex component Γ2121,↑↑

core

at temperatures β = 200 and 2000 versus the number of
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quantics bits R in each dimension. This Keldysh com-
ponent of Γk

core was found to have the highest bond di-
mension (see App. C, Fig. 12). We set a fixed box size
of ωmax = 0.65 (cf. Fig. 6(a)) and increase the resolu-
tion with R. We verified that the chosen box size is large
enough to capture all relevant structures within the target
tolerance τ = 10−2. At this tolerance, the rank shown in
Fig. 8 saturates at χ = 202. This rank is again of a mag-
nitude where a self-consistent parquet calculation in the
Matsubara formalism was shown to be feasible on a single
core in Ref. 28. The 16 components of the Keldysh vertex
can be inferred from just 5 components using complex
conjugation and crossing symmetry [50]. Nevertheless,
in follow-up computations such as solving the parquet
equations, these multiple Keldysh components in contrast
to a single Matsubara vertex may necessitate paralleliza-
tion already for χ ≈ 200. Multithreaded or distributed
schemes will certainly be required for the most difficult
case considered here (τ = 10−3 and β = 2000), which
results in ranks of χ ≈ 450. On a different note, the QTT
vertex has a vastly reduced memory footprint, as shown in
Fig. 8(b): For β = 2000, τ = 10−2 and R = 10, it requires
11.3 MB of memory, compared to 17.1 GB for a dense
grid representation; this corresponds to a compression
ratio of 1 : 1513. Although real-frequency diagrammatic
calculations for the SIAM are limited by runtime rather
than memory [20], this paves the way for investigation
of more complicated models with multiple orbitals or
momentum dependence, which have prohibitive memory
requirements if attempted with dense grids [51–53].

In Fig. 9 we explore the compressibility of the core and
full vertices for varying tolerance τ , inverse temperature
β and interaction strength u. As seen before in Fig. 8,
lowering the tolerance below 10−2 results in a steep in-
crease in the rank. As in the Matsubara formalism, the
rank increases with β, but only slowly. Panel (c) reveals
a much less predictable behavior: The ranks of both the
full and core vertices reach a maximum at u = 1.0 and
decrease significantly for large u. Moreover, the rank
of the full vertex Γ approaches that of Γcore from below
with increasing interaction u. This reflects the increasing
magnitude of Γcore relative to the asymptotic contribu-
tions Kr

1 and Kr
2(′) : At weak interaction, the magnitude

of the core vertex is much smaller than that of the full
vertex, which is dominated by Kr

1 and Kr
2(′) . Since TCI

measures the error relative to the supremum norm of the
target function (cf. Eq. (19), this means that Γcore need
not be resolved as accurately at weak interaction. The
compression of the asymptotic contributions Kr

1 and Kr
2(′)

is discussed in App. B, together with their Matsubara
counterparts. In App. C, we discuss how the ranks of
Γk
core and Γk depend on flavor, frequency channel and

Keldysh component k.

Finally, we discuss how compressing each Keldysh com-
ponent of the vertex separately, as was done in this work,
compares to running TCI on the entire Keldysh core or
full vertex, where the Keldysh components are encoded
in an additional leg of a single tensor train. In both cases,
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FIG. 8. (a) Rank and (b) RAM usage of Keldysh core vertex
Γ2121,↑↑
core (ω, ν, ν′) in the p-channel vs. frequency grid size for

different tolerances and temperatures. The grid has 2R points
in each frequency argument. For a tolerance of τ = 10−2 (blue),
the bond dimension saturates at χ ≈ 200. Dotted worst-case
lines in (a) and (b) indicate the maximum rank of an R-leg
QTT (fused representation) and the RAM requirements of
dense grids with 23R points, respectively.

spin components are compressed separately. For a fair
comparison of these two approaches, recall the following:
(i) TCI measures the interpolation error relative to the
supremum norm of the target function (see Eq. (19)).
When compressing the entire vertex, any given Keldysh
component Γk (or Γk

core) should therefore be normalized
by ||Γk||∞ (or ||Γk

core||∞), i.e., with the supremum norm
of the same Keldysh component k. Only then does one
achieve the same accuracy as in separate compressions of
Keldysh components. (ii) MPO–MPO contractions, the
most expensive operations in QTT-based diagrammatic
calculations, scale as O

(
Rχ4

)
in runtime. As a prelimi-

nary investigation, we compressed the entire core vertex
at u = 0.5, β = 2000 and ωmax = 0.65 with a tolerance
of τ = 10−2 and R = 8 quantics bits. The tensor leg for
the Keldysh component was placed to the very left and
only included the five Keldysh components not related by
crossing symmetry or complex conjugation (cf. App. C).
The resulting rank χ is compared with the ranks χk of
individual Keldysh components in Tab. II. We observe the
ratio χ4/maxk χ

4
k ≈ 21.77, thus MPO-MPO contractions
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FIG. 9. Rank of Keldysh core vertex Γ↑↑
core and full vertex Γ↑↑ in the p-channel versus (a) TCI tolerance τ , (b) inverse temperature

β and (c) interaction strength u. We show data for the k = (2121) Keldysh component. In panel (c), we choose smaller box
sizes ωmax = 0.08 and ωmax = 0.04 for u = 3.0 and u = 5.0, respectively. This is because the extent of the core vertex decreases
at these strong interactions.

component k 1111 2111 2121 2112 1222 all

rank χ 130 136 159 126 95 344

TABLE II. QTT ranks of the five Keldysh components not
related by crossing symmetry or complex conjugation (center
columns) compared to the QTT rank of a single tensor that
contains all five components (rightmost column). Parameters
are u = 0.5, β = 2000, ωmax = 0.65, τ = 10−2 and R = 8.

take about 22 times longer for two entire vertices than
for two individual components. On the other hand, the
latter type of contraction would have to be performed
52 = 25 times. However, Tab. II shows that some Keldysh
components have a significantly lower bond dimension
than maxk χk. In summary, both approaches are worth
investigating, and a conclusive comparison is only possi-
ble in the context of a specific QTT-based diagrammatic
code.

IV. SUMMARY AND OUTLOOK

We have presented a QTCI-based method for repre-
senting imaginary- and real-frequency mpNRG vertex
functions on large grids that are far beyond the reach of
previous implementations. The QTCI algorithm allows us
to automatically capture all relevant features of the vertex
up to a prescribed accuracy and represents the result in a
highly compressed format. Repeated sampling during TCI
sweeps necessitates optimizations of the vertex evaluation,
which we described in detail. We studied the compressibil-
ity of the vertex in a systematic fashion: Imaginary- and
even real-frequency vertices are representable as QTTs
with maximum bond dimensions sufficiently small (χ ≈
a few hundred) to allow for diagrammatic computations
with these objects. This holds true across a broad range of
temperatures and interaction strengths, both for the full
vertex as well as its asymptotic decomposition. Our work
thus constitutes an important step toward QTCI-based
diagrammatic calculations which use a nonperturbative

DMFT vertex as input, and suggests that these will be
feasible. The next step will be to implement a QTCI-
based diagrammatic extension of DMFT that augments
the local vertex with momentum dependence. An anal-
ogous program can be envisioned in the real-frequency
setting. Though this is a challenging, computationally
demanding endeavor, it would achieve a long-sought goal:
a method to obtain nonlocal, real-frequency dynamical
response functions of strongly correlated systems.

DATA AND CODE AVAILABILITY

The mpNRG computations were performed with the
MuNRG package [12, 54, 55], which is based on the QS-
pace tensor network library [56–59]. The latest version of
QSpace is available [60] and a public release of MuNRG
is intended. The code used in this work to compute and
compress vertices is available on GitHub, see Ref. 61. The
partial spectral functions required as input for that code
can be found in Ref. 62.
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Appendix A: Computing broadened Keldysh kernels

In this section, we provide details on the numerical com-

putation of the broadened Keldysh kernels K
[λ]
b appearing

in Eq. (10b). It consists of two steps: broadening the
Dirac-δ functions in Eq. (3) to δb(ω

′, ϵ), and convolution
of δb(ω

′, ϵ) with the Keldysh kernel (ω′ + iγλ
0,i)

−1. The
numerical details of this procedure are taken from the
MuNRG code of Ref. 12.

The broadening combines symmetric log-Gaussian and
linear broadening (cf. Ref. 15, App. E.2):

δb(ω
′, ϵ) =

∫

R
dϵ′δF(ω

′, ϵ′)δsLG(ϵ
′, ϵ), (A1a)

δsLG(ϵ
′, ϵ) =

Θ(ϵ′ϵ)√
πσsLG|ϵ|

exp

[
−
(
ln |ϵ/ϵ′|
2σsLG

− σsLG

4

)2
]
,

(A1b)

δF(ω
′, ϵ′) =

1

2γL

(
1 + cosh

ω′ − ϵ′

γL

)−1

. (A1c)

The broadening parameters γL and σsLG along with other
numerical settings for all physical parameter sets are
listed in Tab. III. However, the linear broadening γL is
multiplied with a prefactor that depends on the current
permutation p, the fully retarded index λ and the di-
mension i. This scheme will be explained further at the
end of this section (see Eq. (A4)). The integral (A1a) is
performed by trapezoidal quadrature, where ω′ and ϵ′ are
discretized on logarithmic grids. These grids contain 0,
are symmetric around the origin and range from emin to
emax with estep points per decade (see Tab. III). For the ϵ′

grid, emin is automatically replaced by a lower boundary
xmin with 0 < xmin < emin if the low-frequency tail of
the log-Gaussian broadening kernel extends below emin.
This ensures an accurate integration of δsLG(ϵ

′, ϵ). The
energies ϵ specifying the location of the spectral function
peaks also reside on a logarithmic grid, which arises from
the mpNRG computation.
The numerical integration described above yields

δb(ω
′, ϵ) with ω′ and ϵ on logarithmic grids. To con-

volve δb with the Keldysh kernel (ω′ + iγλ
0,i)

−1, we use
the identity

lim
γ0→0+

∫

R
dω′ δb(ω

′, ϵ)

ω − ω′ + iγλ
0,i

=

= P
∫

R
dω′ δb(ω

′, ϵ)
ω − ω′ − iπsgn(γλ

0,i)δb(ω, ϵ),

(A2)

where P denotes the Cauchy principal value (PV) inte-
gral. Also, recall the definition (10c) of γλ

0,i. Importantly,
δb(ω

′, ϵ) has been computed on a logarithmic grid, while

ω in the broadened Keldysh kernel K
[λ]
b (ω, ϵ) defined in

u β σsLG γL

0.5 20/200 0.693 T
0.5/1.0/1.5 2000 0.4 T
3.0/5.0 2000 0.4 T

TABLE III. Broadening settings for different NRG datasets.
T = 1/β denotes the temperature. See main text for definitions
of the parameters. We set emin = 10−6, emax = 104 and
estep = 50. For TCI tolerances τ ≤ 3.4 · 10−3, the integration
grid was refined to estep = 200 to avoid fitting of numerical
noise by the TCI algorithm. We also set estep = 200 to broaden
2p functions.

Eq. (10b) resides on a linear grid. This is because the
external frequency grids on which we compute vertices
are also linear. To obtain the imaginary part of Eq. (A2)
on the linear grid, we use linear interpolation of δb(ω, ϵ)
in the argument ω. Computing the real part, i.e., the
PV integral is slightly more involved: By the linear inter-
polation performed for the imaginary part, δb(ω, ϵ) can
be viewed as a piecewise linear function. We split the
PV integral over δb(ω

′, ϵ) into PV integrals over linear
functions (ai,ϵω

′ + bi,ϵ) on intervals [ω′
i, ω

′
i+1]. These are

evaluated using the formula

P
∫ ω′

i+1

ω′
i

dω′ ai,ϵ(ω
′ − ωi) + bi,ϵ
ω − ω′ =

− ai,ϵ(ω
′
i+1 − ω′

i)− (ai,ϵ(ω − ω′
i) + bi,ϵ) ln

∣∣∣∣
ω − ω′

i+1

ω − ω′
i

∣∣∣∣.
(A3)

The sum over all PV integrals of the form (A3) then yields
the real part of the broadened Keldysh kernel Kb(ω, ϵ).
For this scheme to be accurate, the extent [−emax, emax] of
the logarithmic ω′ grid should be significantly larger than
the frequency box delimited by ωmax. Comparing the
values of emax given in Tab. III with our default frequency
box size ωmax = 0.65, one verifies that this is the case.

We now turn to the prefactors of the linear broaden-
ing γL mentioned above. In the linear broadening ker-
nel δF(ω

′
1̄···̄i, ϵ

′
i) to be convolved with the Keldysh kernel

(ω′
1̄···̄i + γλ

0,i)
−1, the broadening with γL is replaced by

γλ
L,i =

{
γL · (ℓ− i) for i ≥ λ,

γL · i for i < λ.
(A4)

This choice was found to reduce broadening artifacts in
an mpNRG treatment of the Hubbard atom in Ref. 63.
Moreover, composite operators qij in 3p correlators (cf.
Ref. 15, Eq. (96)) receive a doubled linear broadening.
This was found to cancel discretization and broadening
artifacts when computing Kr

2(′) by multiplication with
self-energies (see Eq. (B3)), see Ref. 63. The broadening
of 3p correlators is exemplified in Tab. IV. Finally, the
2p correlators required for self-energies in the symmetric
estimators for Γcore and Kr

2(′) (cf. Sec. IID and App. B.)
are broadened according to Tab. V.
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FIG. 10. QTT ranks of Matsubara (top row, (a–c)) and Keldysh (bottom row, (d–f)) Kt,↑↑
1 and Kt,↑↑

2 contributions to the
full vertex versus: (a,d) tolerance τ , (b,e) inverse temperature β and (c,f) interaction strength u. In Keldysh we chose, of all

components, the component k = (22) for Kt,↑↑
1 and k = (112) for Kt,↑↑

2 . These components were found to have the highest rank,
respectively.

i = 1 i = 2

λ = 1 2γL γL
λ = 2 2γL γL
λ = 3 2γL 3γL

i = 1 i = 2

λ = 1 3γL γL
λ = 2 γL γL
λ = 3 γL 3γL

TABLE IV. Linear broadening of a 3p correlator with doubled
broadening on the composite operator qij . The operator qij is
in the first slot of the operator tuple for the identity permuation
p = [123]. Left: Permutation p = [123]. Right: Permutation
p = [213].

i = 1, p = [12] i = 1, p = [21]

λ = 1 3γL γL
λ = 2 γL 3γL

TABLE V. Linear broadening of a 2p function used for the
aIE self-energy. The two rightmost columns correspond to the
two possible permutations.

Appendix B: Compression of 1D and 2D vertex
contributions

A QTCI-based parquet calculation exploiting the
asymptotic decomposition (11) requires not only Γcore,
but also Kr

1 and Kr
2(′) represented as QTTs. Recall that

r = a, p, t labels the three frequency channels. In this sec-
tion, we verify that these asymptotic contributions indeed
have a significantly lower rank than Γcore, as expected

from their simpler structure.
The Kr

1 contributions are simply given by 2p correlators
of composite operators, see Ref. 15, Sec. IV.F. We illus-
trate the evaluation of Kr

2(′) using Kt
2 as an example. For

derivations and the remaining Kr
2(′) components we refer

to Ref. 15, Secs. IV.C and IV.F. Since the self-energy is
spin-diagonal, we again omit spin indices. First the oper-
ator q = [d,Hint] introduced in Sec. IID is used to define
the operator q34 = {q, d†} = qd† + d†q. One further intro-

duces 3p correlators G[q34, a1, a
†
2], where a1, a2 ∈ {d, q}.

They are defined in terms of connected correlators as

Gk[q34, a1, a
†
2] = P k1k2(k3+k4)Gk

con[q34, a1, a
†
2]. (B1)

In the Keldysh formalism, the tensor P reads

P k1k2(k3+k4) =

{
1√
2

if
∑

i ki is odd,

0 else,
(B2)

while it is set to unity in Matsubara. Using the symbol
Yxi

introduced in Eq. (13), Kt
2 can then be expressed as:

Kt
2(ωt, νt) =

∑

a1,a2∈{d,q}
Ya1G[q34, a1, a

†
2](−ω12, ω1, ω2)Ya2 .

(B3)
To evaluate Kt

2, the external frequencies ω1, ω2 appearing
on the RHS of Eq. (B3) are expressed in the t-channel
parametrization, i.e., in terms of ωt and νt.
The ranks of Matsubara and Keldysh asymptotic con-

tributions Kt,↑↑
1 , Kt,↑↑

2 for different parameters are shown
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in Fig. 10(a–c) and 10(d-f), respectively. We use the
t-channel frequency parametrization, thus viewing Kt

1(ωt)
as a 1D and Kt

2(ωt, νt) as a 2D function. A comparison
of Fig. 10 with Figs. 5 and 9 confirms that the three-
dimensional vertex functions will dominate the cost of a
diagrammatic calculation: For a tolerance of τ = 10−3,
the ranks of the Matsubara Kt

2 component are no larger
than 20. The variation of the rank with β and u does
therefore not bare much significance. For smaller toler-
ances, the rank of Kt

2 remains much lower than that of the
core vertex. Analogous observations hold for the Keldysh
Kt

2 component with a target tolerance of τ = 10−2. Like
the Keldysh core vertex, its rank increases slowly with β
and decreases for strong coupling u, but the changes are
small compared to the core vertex.

Appendix C: Compression for different channels,
flavors, Keldysh components

In this section we investigate the compressibility of
core and full vertices for different flavors (↑↑, ↑↓), fre-
quency channels (r = a, p, t) and Keldysh components
k = (k1k2k3k4).
Fig. 11 shows the QTT ranks of the Matsubara and

Keldysh full and core vertices for different channels and
flavors, at β = 2000 and u = 0.5. The tolerances are
τ = 10−3 and τ = 10−2 for Matsubara and Keldysh
vertices, respectively. We observe that the p-channel
exhibits the highest ranks throughout, which is why we
used this frequency parametrization in the main text. The
QTT ranks of the Matsubara vertices shown in Fig. 11(c)
barely differ between the two flavors. By contrast, Γ2121,↑↑

core

has a significantly higher rank than Γ2121,↑↓
core (χ = 198 vs.

χ = 154).
The rank of Γ↑↑

core and Γ↑↑ depending on the Keldysh
component is shown in Fig. 12. Only components that are
not related by crossing or complex conjugation symmetry
[50] are considered. We show data for β = 2000, u = 0.5
and τ = 10−3. The (2121) component of Γcore is found to
have the highest rank. We therefore selected Γ2121,↑↑

core for
our analysis of rank saturation and parameter dependence
in Figs. 8 and 9.

Appendix D: Frequency conventions

We use the following parametrizations for the t (particle-
hole), p (particle-particle) and a (transverse particle-hole)
channels:

ω =





(−νr, ωr + νr,−ωr − ν′r, ν
′
r) for r = t (ph),

(−νr, ωr − ν′r,−ωr + νr, ν
′
r) for r = p (pp),

(−νr, ν
′
r,−ωr − ν′r, ωr + νr) for r = a (ph).

(D1)
These are the same as in Ref. 15, up to a global mi-
nus sign. Spin and, if present, Keldysh indices of the
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FIG. 11. Top row (a,b): TCI ranks of Γ↑↑ and Γ↑↑
core in the

three channels a, p, t. Bottom row (c,d): TCI ranks of Γ and
Γcore in the p-channel for the two flavors ↑↑ and ↑↓. Matsubara
vertices (a,c) were compressed with τ = 10−3 and R = 10,
Keldysh vertices (b,d) with τ = 10−2 and R = 12.

1111 2112 1222 2111 2121

Keldysh component k1k2k3k4

0

50

100

150

200

250

χ

β= 2000, u= 0.5
ωmax = 0.65

τ= 10−2, R= 12

τ
=

0.1

158
142

107

178
198

93 86
72

103 103

core

FIG. 12. QTT rank of Keldysh core vertex Γk,↑↑
core in the p-

channel vs. Keldysh component. From the 16 Keldysh compo-
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of the full vertex was compressed with tolerance τ = 0.1,
since it is about a factor 10 smaller than the other Keldysh
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1 contri-
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vertex Γk,σ1σ2σ3σ4(ω) are ordered according to the under-
lying impurity Green’s function Gk

con[dσ1
d†σ2

dσ3
d†σ4

](ω).
Finally, the evaluation of a 2p correlator G at a frequency
ν is defined as G(ν,−ν) in our convention. This is rele-

vant for evaluating the self-energy Σ in Eq. (13), because
computing the self-energy comes down to evaluating 2p
correlators according to the asymmetric estimators (see
Eq. (27) in Ref. [15]) we employed.
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Chapter Five

Conclusion and outlook

5.1 Summary
This thesis has explored two types of approaches for studying quantum many-
body systems on a classical computer, those that compress wave functions and
those that avoid explicit representation of the wave function. The parquet
equations and the closely related fRG belong to the second class, relying
on exact relations of quantum many-body correlators. We showed how to
apply these approaches to quantum spin systems and how to distinguish both
ordered phases and quantum spin liquids. These results are reproducible if
the implementation is set up carefully, extensively relying on error-controlled
adaptive algorithms.

We then showed how a different type of approach, approximate compres-
sion of the wave function, can be generalized to a TT representation of general
functions of multiple variables. We showed how a TT for a compressible func-
tion is reliably generated by TCI, a active learning algorithm that iteratively
optimizes a TT using local updates. Its computational cost scales as O(χ3L).
The original TCI algorithm’s fragile numerical stability can be improved upon
by using a partial rank-revealing LU decomposition to perform the local up-
dates. There are also some variations of TCI tailored for specific purposes.
Rook search and block rook search can reduce the number of samples taken
during TCI construction. Variants with 1-site or 0-site updates are much
cheaper than original TCI, and can be used to restore full nesting or remove
spurious pivots that induce numerical instability. Ergodicity issues can be
mitigated by global update schemes. Once generated, numerous operations
can be performed on a TT in a tensor network fashion with linear cost in
the number of variables and polynomial cost in the bond dimension, O(χκL),
where κ ∈ [2, 4]. For instance, quadrature, i.e. evaluating an integral, can be
performed through factorized sum. This is particularly helpful for oscillating
functions, which are difficult to perform using Monte Carlo integration due to
the sign problem.
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This approach is particularly powerful in combination with the quantics
representation, where a function’s argument is represented in terms of it binary
digits, or bits. Each bit then corresponds to a certain length scale, and
factorizing this quantics representation of the function to quantics TT thus
factorizes different length scales of the function. Many highly structured
functions, for example, sums of exponentials and polynomials are representable
at a small bond dimension in this way. Using the well-known Haldane model as
an example, we demonstrate how both the propagator and the Berry flux are
representable efficiently, easily reaching a resolution of 220 × 220 ≈ 106 × 106

discretization points in the Brillouin zone. For the propagator, the bond
dimension scales only weakly with temperature, χ ∈ O(

√
β). The berry flux

can be summed over efficiently using factorized summation, giving a value for
the Chern number that is accurate to 10−6.

Besides integration, other operations that can be performed particularly on
a quantics TT using tensor network techniques are the Fourier transform and
integrals over the shared variables of two multivariate functions. The quantics
Fourier transform is implemented as a partially factorized linear operator,
akin to an MPO. Given a specific index ordering, it has a bond dimension of
11 for an accuracy of 10−11. Performing Fourier transforms corresponds to
contracting this MPO to the QTT representing the function to be transformed.
This operation scales as O(χ2L) = O(χ2 logN), where N is the number of data
points, which may be faster than the fast Fourier transform for compressible
functions. In a similar fashion, coordinate transforms such as rotations can
often be expressed as MPO with low bond dimension. Convolutions, or more
generally an integral over shared parameters of two multivariate functions, are
expressed as MPO-MPO contraction, where each MPO is a reshaped version
of a QTT corresponding to each function. If the original functions and the
resulting QTT all have bond dimension χ, this operation scales as O(χ4L),
which is again linear in L.

This library of QTT operations is sufficiently versatile to allow us to
implement entire quantum many-body algorithms within the formalism. In
this thesis, we showed an implementation of the parquet equations using this
approach. Diagrammatic equations of this kind are a particularly attractive
target, since most of the computational effort is expended on integrals over
shared frequency and momentum variables in two-particle reducible diagrams.
These can be converted to MPO-MPO contractions in the QTT format, which
scale only logarithmically with the size of the frequency box. We showed
that for frequency boxes that are accessible in a dense grid format, the QTT
parquet equations converge with the same speed and accuracy, but consume
much less memory. We also showed how to obtain vertices from multipoint
NRG, using QTCI to obtain the data directly in QTT format.
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5.2 Improving the tensor train toolbox
Currently, the limiting factor in TT-based implementations of algorithms is
the computation time required to perform algorithms with scaling O(χ4), most
notably MPO-MPO contractions. These are usually performed using a vari-
ational optimization algorithm [83], using the result of the so-called zip-up
algorithm [84] as initial state. These algorithms were formulated in the context
of tensor networks for many-body quantum systems, and existing implementa-
tions are optimized for computing wave functions or density matrices. Notably,
these algorithms also target a Frobenius norm error, which is not always ap-
propriate in the function representation context [P4]. It is therefore likely that
a new implementation optimized for more general applications would improve
both computation time and truncation error.

A further speedup could be gained by parallelization of the TCI and MPO-
MPO contraction algorithms, for which there are two approaches: One ap-
proach is to perform local optimization sweeps on different parts of the TT in
parallel, only exchanging information every few sweeps, akin to the parallel
DMRG algorithm [85]. An alternative approach is to distribute the infor-
mation on multiple TT and performing optimization on each TT in parallel.
This distribution into multiple TT can be done manually, by constructing
separate TT for each discrete value of a subset of the function parameters,
and compressing the dependencies on all other parameters. An automatic
way of distributing on multiple TT is through an adaptive patching scheme
introduced in Ref. [86].

In tensor networks for many-body quantum physics, the site indices are usu-
ally uniform, having the same bond dimension and meaning across the whole
MPS chain. Established tensor network algorithms therefore assume the same
operation is to be applied uniformly, whereas that is often not the intention
for TT representing functions. For example, the QTT representing vertices
in publication [P4] carries site indices alternating between bosonic frequency
bits ωℓ and fermionic frequency bits νℓ, ν ′

ℓ. Evaluating the Bethe–Salpeter
equations requires contraction of νℓ and ν ′

ℓ, but elementwise multiplication of
ωℓ. To avoid a distinct treatment of different tensors in the TT, the tensors
carrying ωℓ indices were reshaped to a diagonal tensor carrying a duplicated
index, such that elementwise multiplication is equivalent to contraction, induc-
ing some numerical overhead. This overhead is the source of some inefficiency,
which should be avoided for more challenging applications. To this end, it is
necessary to implement more flexible variants of the known tensor network
algorithms, with particular emphasis on the MPO-MPO contraction.

Another, more explorative direction is to vary the topology of the tensor
network beyond the one-dimensional TT. The TCI algorithm has been general-
ized to a tree topology by Tindall et al. [87], which resulted in a more efficient
representation for the benchmarks tested by them. Efficient contraction algo-
rithms can be formulated on trees as well [71, 88, 89], and it thus seems worth
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investigating for which classes of functions an overall gain in efficiency can be
expected from a quantics tensor tree implementation of numerical algorithms.
More general structures which are not cycle-free, such as a two-dimensional
lattice of tensors similar to projected entangled pair states (PEPS) [90], do
not permit a canonical form comprised entirely of isometry tensors. These
canonical forms are necessary to formulate efficient contraction algorithms
[7]. A generalization of the tensor network format beyond trees is therefore
unlikely to yield further performance improvements.

In total, these improvements to the implementation on a technical level,
combined with a clean and easy-to-use programming interface, would facilitate
widespread use of tensor networks for function representations in many dif-
ferent fields of computational physics. Some algorithms have already reached
sufficient reliability to be used as black boxes. In the long term, as available
libraries mature, tensor network representations may become a standard ap-
proach to increasing efficiency, particularly in the fields of hydrodynamics,
quantum chemistry, as well as correlator-based methods for quantum many-
body systems.

5.3 Future applications of tensor trains
Even when only considering correlator-based methods, the new computational
infrastructure of TT representations opens up a wide field of possible applica-
tions. Full parameterization of all frequency and momentum dependencies of
the vertex was previously unfeasible due to excessive computational cost, as
were multi-orbital models. All of this is now in reach of the parquet scheme
that uses a QTT parameterization of the vertex, or possibly a combination
of multiple QTT. The implementation in this work was entirely based on the
imaginary time Matsubara formalism, which requires an inherently ill-defined
analytic continuation step to obtain real-frequency quantities that could be
observed in experiment. A fundamental improvement would be to implement
the parquet equations or a related diagrammatic method, such as the finite-
difference parquet scheme [37], in the real-frequency Keldysh formalism. This
allows for direct calculation of observables without an ill-defined analtic con-
tinuation step, as well as generalizing the scope to non-equilibrium settings
[56]. Real-frequency correlators in QTT format were used in independent
work to implement Dyson’s equation [29], the non-crossing approximation in
a strong-coupling expansion [82], and the GW formalism [31].

Another method that is currently limited in memory consumption and
would benefit from QTT representation of correlators is DMFT. As we showed
in Ref. [P5], vertices can be extracted directly in QTT format from an NRG
impurity solver in the multipoint NRG scheme [35, 36, 91]. An obvious next
step would be to combine this output with the parquet equations in a DΓA
scheme.
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These developments all contribute to closing a gap between the neces-
sary simplifications made in computational methods in quantum many-body
physics and the complexity of real materials in experiment. Often, to make a
model treatable with high-precision numerical methods, it must be simplified
considerably. The paradigmatic model of high-temperature superconducting
cuprates, for instance, is the single-band Hubbard model [92]. Despite this,
the model was found to show no superconductivity in its pure form; it only
becomes superconducting with the addition of further terms [93]. A more
recent study by Jiang et al. [94] found that when downfolding a slightly more
realistic three-band model to a single-band Hubbard model, an additional
density-assisted hopping term appears. This serves to illustrate that studying
single-band models may not always be sufficient to explain phenomena ob-
served in experiment. On the other hand, multi-orbital models are often out
of reach for more precise computational methods, and one has to fall back to
cheaper approximations. There is thus a tradeoff between completeness of the
model and precision of the method, which can be alleviated by new technical
developments such as the tensor trains presented in this work.
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Appendix A

Conventions

This section gives a brief overview over the notation used in this thesis.

A.1 Acronyms
Acronyms used in this thesis are listed in alphabetical order in Table A.1

Table A.1: Acronyms used in this thesis, in alphabetical order.

BSE Bethe–Salpeter equation
BZ Brillouin zone
CI cross interpolation → matrix cross interpolation

DMFT dynamical mean-field theory
DMRG density matrix renormalization group

DΓA dynamical vertex approximation
FFT fast Fourier transform
fRG functional renormalization group
FT Fourier transform
GK Gauss–Kronrod quadrature
IR infrared, i.e. low energy
LU LU decomposition, i.e. factorization of a matrix into a lower tri-

angular matrix L and an upper triangular matrix U
MCI matrix cross interpolation

mfRG multiloop functional renormalization group
MPO matrix product operator

Continued on next page
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Table A.1: Acronyms used in this thesis, in alphabetical order. (Continued)

MPS matrix product state
ODE ordinary differential equation

PEPS projected entangled pair states
pffRG pseudofermion functional renormalization group
prrLU partial rank-revealing LU decomposition

QFT quantum Fourier transform, or quantics Fourier transform
QR QR decomposition, i.e. factorization of a matrix into a unitary

matrix Q and an upper triangular matrix R
QTCI quantics tensor cross interpolation
QTT quantics tensor train
SDE Schwinger–Dyson equation

SIAM single-impurity Anderson model
SVD singular value decomposition
TCI tensor cross interpolation
TT tensor train
UV ultraviolet, i.e. high energy

A.2 Table of symbols
In some cases, the publications that are part of this thesis use different symbols
for the same quantities, or adhere to different conventions amongst those
common in the field. These are listed in Table A.2 below.

Table A.2: Symbols used for various quantitites in each publication that is
part of this thesis.

Parquet diagrammatics and fRG
bosonic Matsubara frequencies

ω ω ω

fermionic Matsubara frequencies
ν, ν ′ iω ν, ν ′ ν, ν ′

two-point Green’s function
G(ν) G(k, iω) G Gσ(ν) G G(1′, 1)

[P1] [P2] [P3] [P4] [P5] this thesis

Continued on next page
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Table A.2: Symbols used for various quantitites in each publication that is
part of this thesis. (Continued)

self energy
Σ(ν) Σ Σσ(ν) Σ Σ(1′, 1)

pair propagator

(G×G) χνν
′
ω

0,ph/pp Π
(full) two-particle vertex

Γ(ω, ν, ν ′) F νν
′
ω

σσ
′ Γ(ω, ν, ν ′) Γ(1′, 2′; 1, 2)

r-channel reducible two-particle vertex

γr(ωr, νr, ν ′
r) Φνν

′
ω

σσ
′ γr(1′, 2′; 1, 2)

r-channel irreducible two-particle vertex

Γνν
′
ω

σσ
′ Ir

(fully) irreducible two-particle vertex

Λνν
′
ω R

fRG cutoff parameter
Λ Λ

Tensor trains (TT) and tensor cross interpolation (TCI)
tensor train representation of F

FQTCI F̃ FQTCI

bond index
ℓ ℓ ℓ ℓ

length of tensor train
L L L L

general index on bond ℓ

αℓ aℓ αℓ αℓ

index on bond ℓ in CI-canonical form
αℓ, βℓ iℓ, jℓ+1 αℓ

index set on bond ℓ in CI-canonical form
Iℓ,Jℓ Iℓ,Jℓ+1

[P1] [P2] [P3] [P4] [P5] this thesis

Continued on next page
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Table A.2: Symbols used for various quantitites in each publication that is
part of this thesis. (Continued)

tensor in tensor train
[Mℓ]σℓ

αℓ−1αℓ
[Mℓ]σℓ

aℓ−1aℓ
,

[Mσℓ
ℓ ]αℓ−1αℓ

[Mℓ]σℓ
αℓ−1αℓ

[Mσℓ
ℓ ]αℓ−1αℓ

[Mσℓ
ℓ ]αℓ−1αℓ

local bond dimension
d d, dℓ d

bond dimension on bond ℓ

Dℓ χℓ Dℓ χℓ

maximum bond dimension
Dmax χ Dmax χ χ

(estimated) error
ε ϵ ϵ ε

error tolerance
ϵ τ ϵ τ

Quantics representation
number of original variables

n N N

number of quantics bits per variable
R R R R

original variable
ui xn ω

linear index
m m m

quantics index
σℓ σℓ σℓ,

νℓ, ν
′
ℓ, ωℓ

σℓ σℓ

tuple of all quantics indices
σ σ σ

[P1] [P2] [P3] [P4] [P5] this thesis
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