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We propose and work out a reduced density matrix functional theory (RDMFT) for calculating
energies of eigenstates of interacting many-electron systems beyond the ground state. Various
obstacles which historically have doomed such an approach to be unfeasible are overcome. First, we
resort to a generalization of the Ritz variational principle to ensemble states with fixed weights. This
in combination with the constrained search formalism allows us to establish a universal functional of
the one-particle reduced density matrix. Second, we employ tools from convex analysis to circumvent
the too involved N-representability constraints. Remarkably, this identifies Valone’s pioneering work
on RDMFT as a special case of convex relaxation and reveals that crucial information about the
excitation structure is contained in the functional’s domain. Third, to determine the crucial latter
object, a methodology is developed which eventually leads to a generalized exclusion principle. The
corresponding linear constraints are calculated for systems of arbitrary size.

Developing a comprehensive understanding of excita-
tions in many-body systems is of utmost importance from
both a fundamental and technological point of view. For
instance, quantum excitations intervene in crucial pro-
cesses such as vision [1], define the properties of advanced
materials [2] and of states of matter in general [3–5] and
give rise to distinctive functionalities of devices [6, 7].
Although modern computational methodologies can de-
termine the ground state energies of a wide range of sys-
tems relatively inexpensively and rather accurately [8],
methodological innovations are called for handling exci-
tations on an equal footing [9].

The workhorse of modern electronic structure calcu-
lations is the Kohn-Sham formulation [10] of density-
functional theory (DFT) [11]. As far as excitations
are concerned, its time-dependent extension could deal
with them rigorously, at least in principle [12]. In prac-
tice, however, the widely used time-dependent DFT is
not only blessed but unfortunately also cursed by the
so-called adiabatic approximation [13–15]. Circumvent-
ing at least some of the deficiencies of adiabatic time-
dependent DFT, ensemble DFT has become in recent
years a promising alternative for calculating excitations
[16–29] — for example it can capture charge transfers,
double excitations, and avoided/conical crossings.

From a general perspective, density functional theo-
ries are, however, not particularly well-suited for the de-
scription of strongly correlated systems. The particle
density namely does not directly reflect the correlation
strength, in striking contrast to the full one-particle re-
duced density matrix (1RDM) with fractional occupation
numbers in case of strong correlations. This motivates
one-particle reduced density matrix functional theory
(RDMFT) [30] as a more suitable approach to strongly
correlated quantum systems and explains why RDMFT
has become an active field of research in recent years

[31–44]. While the accuracy of ground state calculations
compares favourably to those of DFT [45], no proper
foundation for targeting excited states within RDMFT
exists yet. For instance, a formal justification of a fully
dynamical RDMFT is lacking and the approach based
on an adiabatic approximation to be exploited through
linear response techniques turns out to be technically in-
volved and numerically rather demanding [34, 46]. Most
remarkably, the RDMFT analogue of ensemble DFT for
excited states has not even been considered yet, despite
its numerous potential advantages over time-dependent
functional theories.

In this letter, we propose and work out the ensemble
version of RDMFT for calculating the energies of (se-
lected) low-lying excited states. For this, we put forward
a generalization of the Ritz variational principle which
together with the constrained search formalism leads to
the definition of a universal functional. The crucial ingre-
dient which makes this method viable is a convex relax-
ation scheme. It allows us to circumvent the correspond-
ing too intricate one-body N-representability constraints
and leads instead to an easy-to-calculate generalization
of Pauli’s exclusion principle for mixed states.

RDMFT in a nutshell & relevance of Valone’s work.—
We briefly recall ground state RDMFT. Here and in the
following, we consider Hamiltonians of the form H(h) =
h + V on the N -fermion Hilbert space HN ≡ ∧N [H1],
where h is a one-particle Hamiltonian and V some fixed
interaction (e.g. Coulomb pair interaction). We denote
the set of pure states Γ ≡ |Ψ〉〈Ψ| by PN and the d-
dimensional one-particle Hilbert space by H1.

Calculating the ground state energy E(h) of H(h) via
the Ritz variational principle leads immediately to a uni-
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versal functional of the 1RDM [47, 48],

E(h) = min
Γ∈PN

TrN [(h+ V )Γ]

= min
γ∈P1

N

[
Tr1[hγ] + F(γ)

]
, (1)

where

F(γ) ≡ min
PN3Γ7→γ

TrN [V Γ] . (2)

Indeed, F is universal in the sense that it depends only
on the fixed interaction V but not on the one-particle
Hamiltonian h. This version of RDMFT based on (1),
(2) has, however, not been practical at all. This is
due to the fact that describing the functional’s domain
P1
N ≡ NTrN−1[PN ] of pure N -representable 1RDMs γ

has been an almost impossible task. Only recently, a for-
mal solution to this problem has been found [49, 50]. Yet,
the corresponding generalized Pauli constraints defining
P1
N could be calculated so far only for systems of up to

five electrons and eleven spin-orbitals [49–52].
It has been Valone’s crucial idea [53] to apply the con-

strained search formalism (1) by relaxing the Ritz varia-
tional principle from pure to all ensemble states Γ ∈ EN .
In analogy to (1), (2) this then leads to a universal func-
tional

F(γ) ≡ min
EN3Γ7→γ

TrN [V Γ] , (3)

defined on the larger domain E1
N ≡ NTrN−1[EN ] of

ensemble N -representable 1RDMs. Since the latter is
just described by the simple Pauli exclusion principle
constraints [54], restricting the eigenvalues λi of γ as
0 ≤ λi ≤ 1, Valone’s work [53] has marked the start-
ing point of RDMFT, at least from a practical perspec-
tive. Finally, we would like to stress that F follows as
the lower convex envelope of F(γ), F ≡ conv(F) [36]. As
the following will show, this key result has its origin in
a fruitful geometrical structure which will be pivotal to
our approach.

Ensemble-RDMFT for excited states.— To develop
an RDMFT for targeting the excitation spectrum we re-
sort to the generalization [55] of the Ritz variational prin-
ciple to ensemble states with fixed spectrum: let H be
a Hermitian operator on a D-dimensional Hilbert space
with increasingly-ordered eigenvalues Ej and eigenstates
|Ψj〉 and denote by EN (w) the set of density operators Γ
with decreasingly-ordered spectrum w ≡ (w1, . . . , wD).
Then, the following variational principle can be proven
in a straightforward manner [55]

Ew ≡
D∑
j=1

wjEj = min
Γ∈EN (w)

Tr[HΓ] , (4)

and the minimizer of the right-hand side follows as
ΓH,w =

∑D
j=1 wj |Ψj〉〈Ψj |.

At this point, it is crucial to appreciate that the knowl-
edge of the function Ew would obviously allow one to de-
termine various excitation energies Ej . In analogy to the
derivation of ensemble DFT for excited states by Gross,
Oliviera and Kohn [55, 56], the variational principle (4)
is the key ingredient for establishing an RDMFT for ex-
cited states. Combining the constrained search (1) and
the variational principle (4) with H ≡ H(h) leads imme-
diately to a universal functional of the 1RDM,

Fw(γ) ≡ min
EN (w)3Γ7→γ

TrN [V Γ] . (5)

In practice, one would restrict this w-RDMFT to just
a few finite weights w1, . . . , wr and the minimization of
the total energy functional Tr1[hγ] + Fw(γ) would even-
tually yield the energy Ew. It is also worth stressing,
that pure ground state RDMFT is included in our general
w-RDMFT as the special case w0 ≡ (1, 0, 0, . . .). This
observation also implies, however, that finding a practi-
cally useful description of the underlying domain E1

N (w)
of w-ensemble N -representable 1RDMs is impossible, at
least for realistic system sizes [49, 50, 57].

This fundamental concern also explains why ensem-
ble RDMFT for calculating excitation energies has never
been established. It will therefore be a major achieve-
ment of our work to find and work out in the following
a methodology for circumventing the too intricate one-
body w-ensemble N -representability constraints.

FIG. 1. Schematic illustration of the convex hull E1
N (w) of

the “blue” set E1
N (w) (left) and the convex envelope Fw of

Fw (right). See text for more details.

Convex relaxation.— Given the prominence of the
Ritz variational principle in quantum physics, Valone’s
idea to apply the constrained search formalism to the
larger set EN of ensemble states was rather natural.
Since the generalization of this seminal idea to the vari-
ational principle (4) is less obvious, we take the relation
F ≡ conv(F) [36] in ground state RDMFT as an inspi-
ration: A prominent concept in convex analysis explains
that any minimization problem, at least in principle, can
be turned into a convex one without altering the result.
This exact convex relaxation applied in our context is
illustrated in Figure S1: First, one extends the “blue”

domain of Fw to its convex hull E1
N (w) = conv(E1

N (w))
by adding the “red” region and defining there Fw ≡ ∞.
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Then, one replaces Fw by its lower convex envelope

Fw ≡ conv (Fw) on E1
N (w) ≡ conv(E1

N (w)) . (6)

Per construction, the sought-after energy Ew can now be
obtained by minimizing the energy functional Tr1[hγ] +

Fw(γ) on the set E1
N (w),

Ew = min
γ∈E1N(w)

[
Tr1[hγ] +Fw(γ)

]
, (7)

rather than Tr1[hγ] + Fw(γ) on E1
N (w). This convex re-

laxation of w-ensemble RDMFT has two pleasant and
far-reaching consequences. As we will show below, a com-

pact description of the convex set E1
N (w) can be found

and the convexity of Fw implies that the minimization
cannot get stuck in local minima.

We conclude this section by presenting an equivalent
but constructive expression for Fw. As it is shown in the
supporting information [58], the definition of the lower
convex envelop leads in a straightforward (but technical)
manner to

Fw(γ) ≡ min
EN(w)3Γ7→γ

TrN [V Γ] . (8)

The underlying search space EN(w) is nothing else than
the convex hull of EN (w), which can also be characterized
as [58]

EN(w) ≡ conv(EN (w)) = {Γ ∈ EN |spec(Γ) ≺ w} . (9)

Here, v is said to be majorized by w, v ≺ w, if for all
k = 1, 2, . . . , D one has

v↓1 + . . .+ v↓k ≤ w
↓
1 + . . .+ w↓k , (10)

where v↓,w↓ denote the vectors with the same entries,
but sorted in descending order. Intriguingly, relations (8)
and (S2) reveal that the functional Fw could also have
been defined in the spirit of Valone’s work [53] by re-

placing in (4) the set EN (w) by its convex hull EN(w).
This modification of (4) can be seen as the historically
missed variational principle for establishing a viable en-
semble RDMFT for excited states. Moreover, since the
partial trace TrN−1[·] is linear we obtain

E1
N (w) = NTrN−1[ EN(w)] . (11)

Calculation of functional domain E1
N (w).— In gen-

eral, without knowing the functional domain, the com-
mon process of developing more and more accurate and
sophisticated approximations to the universal functional
cannot be initiated. Also, having just a formal definition

of E1
N (w) as in Eq. (6) or (11) is actually not sufficient.

Instead, a concrete description is needed, allowing one in
minimization algorithms to easily check whether a given

1RDM γ belongs to E1
N (w). In the following, we achieve

the ideal scenario: A description of E1
N (w) in terms of

just a few linear inequalities is found, similar to the Pauli
exclusion principle constraints in ground state RDMFT.

For this we resort to analytical tools some of which
have extensively been used in quantum chemistry since
the 1960s (see, e.g., [54, 59] for a comprehensive intro-
duction). The first one is a very well-known duality cor-
respondence which is illustrated in Figure 2 for a gen-
eral convex, compact subset S of an Euclidean space:
the minimization of a linear function 〈·, h〉 on S means
to shift the hyperplane of constant value 〈γ, h〉 (shown
as “red” lines in the left panel) along its normal direc-
tion −h until the boundary is reached. By realizing such
minimizations for all possible ‘directions’ −h, we obtain
a complete characterization of S through its boundary
points.

FIG. 2. Geometric illustration of the dual characterization
of a convex, compact set S, based on the minimization of all
possible linear functions (see text for more details).

In our context, dual characterization of E1
N (w) means

to study the minimization of Tr1[hγ] on the convex, com-

pact set E1
N (w) for all Hermitian operators h on the one-

particle Hilbert space H1. It is exactly this aspect which
reveals a fruitful equivalence of our theoretical problem

of characterizing the set E1
N (w) and describing systems

of N non-interacting fermions with a one-particle Hamil-

tonian h. Since E1
N (w) is invariant under unitary conju-

gation, u E1
N (w)u† = E1

N (w), we can restrict to h with

a fixed eigenbasis, h =
∑d
i=1 hi|i〉〈i|, and increasingly-

ordered energies hj . To proceed, since the definition (11)

of E1
N (w) refers to the set EN(w), we lift our minimiza-

tion problem from the one- to the N -particle level, ac-
cording to

min
γ∈E1N(w)

Tr1[hγ] = min
Γ∈EN(w)

TrN [hΓ] . (12)

The minimizers of the right side of (12) then lead via

h 7→ Γh,w 7→ γh,w 7→ λh,w (13)

to all extremal points λh,w of the polytope

Σ(w) ≡ spec
(
E1
N (w)

)
(14)

of natural occupation numbers λ ≡ spec(γ). Just to
recall, determining Σ(w) is sufficient for the description

of E1
N (w) because of its unitary invariance.
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To determine the required minimizers Γh,w of the
right-hand side of (12), notice that the eigenstates of
the one-particle Hamiltonian h are given by the config-
uration states i ≡ |i1, . . . , iN 〉 with energies

∑N
j=1 hij .

Consequently, as explained by the variational principle
(4), the minimizers follow as

Γh,w =

D∑
j=1

wj |ij〉〈ij | , (15)

where ij is the N -fermion configuration with the j-th
lowest energy. Due to the noninteracting character, one
can easily determine for any Γh,w its natural occupation
numbers λ as required by (13).

To obtain the vertex representation of the polytope
Σ(w), it remains to determine for each choice h1 ≤ . . . ≤
hd the corresponding sequence of eigenstates |ij〉 ordered
according to their energy. Since there are only finitely
many different sequences, this amounts to a purely com-
binatorial problem. The example of N = 3 fermions with
r = 3 finite weights, w = (w1, w2, w3, 0, . . .), will be suffi-
ciently representative for the general case. According to
(15), we need to determine all possible sequences i1, i2, i3
of the three energetically lowest configurations. Indepen-
dent of the values of various hj , the first two configura-
tions are always given by i1 = (1, 2, 3) and i2 = (1, 2, 4).
The third lowest will be either (1, 2, 5) or (1, 3, 4), de-
pending on the ordering between h2 + h5 and h3 + h4.
Consequently, there are in total two different minimizers
Γh,w and according to (13) two vertices of decreasingly
ordered natural occupation numbers,

v(1) = (1, 1, w1, w2, w3, 0, . . .)

v(2) = (1, w1 + w2, w1 + w3, w2 + w3, 0, . . .) . (16)

The polytope Σ(w) is eventually obtained as the convex
hull of v(1),v(2) and all their permutations. The sup-
porting information [58] provides a graphical illustration
of Σ(w) for different w.

FIG. 3. Illustration of the excitation spectrum for the case of
N = 3 fermions (see text for more details).

As a help for dealing with larger numbers r of non-
vanishing weights, we illustrate in Figure 3 the so-called
Gale order [60]. All configurations are systematically ar-
ranged, where the ≤-sign between two configurations i
and j means that i has always a lower energy than j for

all h. Figure 3 also confirms that the first two configura-
tions are always given by i1 = (1, 2, 3), i2 = (1, 2, 4) and
that the dimension d of the one-particle Hilbert space
does not play any role. In addition, it shows that in-
creasing the particle number from 3 to N will not change
the excitation structure but just add another N − 3 ‘1’s
at the very beginning of each spectral vector in (16).

Generalization of Pauli’s exclusion principle.— The
vertex representation of the polytope Σ(w) can also be
turned into a halfspace representation, leading accord-
ing to (14) to the desired practical description of the

domain E1
N (w). This mathematical procedure for arbi-

trary r will be discussed in [61] and we present it here
only for r = 1, 2. These two cases are particularly rele-
vant from a physical point of view since the correspond-
ing w-RDMFT describes the ground state energy and its
gap.

For r = 1 and r = 2, the permutation-invariant
polytope Σ(w) is generated by only one vertex,
(1, . . . , 1, 0, . . .) and (1, . . . , 1, w1, w2, 0, . . .), respectively.
According to Rado’s theorem [62], a vector λ lies in such
distinctive polytope if and only if λ is majorized by the
vertex v(1), λ ≺ v(1). The definition (S4) of majoriza-
tion is nothing else than the halfspace representation of
Σ(w).

Most remarkably, referring to different values r, there
is a hierarchy of linear inequalities for Σ(w) which gen-
eralize Pauli’s exclusion principle. On its lowest level,
r = 1, one recovers the Pauli exclusion principle λ↓1 ≤ 1.
For r = 2, one additional constraint,

N∑
j=1

λ↓j ≤ N − 1 + w1 , (17)

occurs. This already manifests a generalization of the
exclusion principle. Next, for r = 3 again one additional
constraint emerges, namely

2

N−1∑
j=1

λ↓j + λ↓N + λ↓N+1 ≤ 2N − 2 + w1 + w2 . (18)

The inequalities of this hierarchy for larger r are pre-

r 1 2 3 4 5 6 7 8 9

#v(k) 1 1 2 4 10 28 90 312 1160

#ineq 1 2 3 4 8 13 23 42 88

TABLE I. Number # of generating vertices v(k) and inequal-
ities of permutation-invariant polytope Σ(w)

sented in [61], while in Table I we just list the number
of generating vertices v(k) and inequalities of Σ(w) for
r ≤ 9. It is worth recalling that all these results are in-
dependent of the particle number N and the dimension
d of the one-particle Hilbert space (provided N ≥ r − 1,
d ≥ N + r − 1).
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Outlook.— We have proposed and worked out in the
form of w-RDMFT a viable generalization of ground
state RDMFT for targeting the energies of the first few
excitations. The crucial ingredient has been a convex
relaxation scheme which allowed us to overcome the
obstacles which have historically doomed such an ap-
proach to be unfeasible. As a major achievement, our
work has namely overcome the too involved one-body w-
ensemble N -representability constraints. Instead, a hi-
erarchy of easy-to-calculate generalizations of Pauli’s ex-
clusion principle constraints has been revealed, providing

a practical description of the functional domain E1
N (w).

We expect a broad significance of those novel con-
straints across the quantum sciences. For instance, since
they describe the compatibility of N -fermion and one-
fermion density operators our work solves a certain class
of quantum marginal problems. The latter play a cru-
cial role, e.g., for quantum communication and quantum
information processing [57, 63]. Moreover, since realistic
systems in nature are described by mixed states due to
the finite temperature, it is primarily not Pauli’s exclu-
sion principle which dictates their physics but our gen-
eralized exclusion principle for mixed states. The spec-
tral polytopes Σ(w) are also strongly related to a pos-
sible generalization of the Fermi-Dirac distribution to
interacting fermions: Increasing the temperature T of
a system makes the spectrum w(T ) of the Gibbs state
Γ(T ) ∝ e−H/kBT more mixed which in turn reduces the
size of the polytope Σ(w(T )). In that sense the gener-
alized exclusion principle constraints provide a tool to
determine the maximal temperature of a system which is
still compatible to given occupation numbers.

Equipped with the definition (8) of the universal func-
tional Fw and the practical description of its domain

E1
N (w), the common process of developing more and

more accurate and sophisticated functional approxima-
tions can be initiated. Actually, the ground state func-
tional may serve as a first approximation to Fw, as
it is explained in the Supporting Information [58]: At
least for weakly interacting systems, the energy difference
Ew ≤ Ew′ (where w′ ≺ w) is primarily a direct geomet-

rical consequence, following from E1
N (w′) ⊂ E1

N (w). In

particular, knowing the boundary of E1
N (w) is sufficient

for determining approximately Ew. Another promising
and particularly sophisticated strategy would be to work
out in the context of mixed states exactly the same three
steps [64–66] that led to the rather accurate BBC ground
state functionals.
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helpful discussions. We acknowledge financial support
from the Deutsche Forschungsgemeinschaft (Grant SCHI
1476/1-1) and the UK Engineering and Physical Sci-
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and from the MIUR PRIN Grant No. 2017RKWTMY
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E. Gull, S. Guo, C. A. Jiménez-Hoyos, T. N. Lan, J. Li,
F. Ma, A. J. Millis, N. V. Prokof’ev, U. Ray, G. E. Scuse-
ria, S. Sorella, E. M. Stoudenmire, Q. Sun, I. S. Tupit-
syn, S. R. White, D. Zgid, and S. Zhang (Simons Col-
laboration on the Many-Electron Problem), Towards the
solution of the many-electron problem in real materials:
Equation of state of the hydrogen chain with state-of-the-
art many-body methods, Phys. Rev. X 7, 031059 (2017).

[9] S. Matsika and A. I. Krylov, Introduction: Theoretical
modeling of excited state processes, Chem. Rev. 118,
6925 (2018).

[10] W. Kohn and L. J. Sham, Self-consistent equations in-
cluding exchange and correlation effects, Phys. Rev. 140,
A1133 (1965).

[11] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[12] E. Runge and E. K. U. Gross, Density-functional the-
ory for time-dependent systems, Phys. Rev. Lett. 52, 997
(1984).

[13] N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, Dou-
ble excitations within time-dependent density functional
theory linear response, J. Chem. Phys. 120, 5932 (2004).

[14] N. T. Maitra, Perspective: Fundamental aspects of time-
dependent density functional theory, J. Chem. Phys. 144,
220901 (2016).

[15] P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Per-
spectives on double-excitations in TDDFT, Chem. Phys.
391, 110 (2011).

[16] A. K. Theophilou, The energy density functional formal-
ism for excited states, J. Phys. C 12, 5419 (1979).

[17] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Density-
functional theory for ensembles of fractionally occupied
states. i. basic formalism, Phys. Rev. A 37, 2809 (1988).

[18] M. Filatov, M. Huix-Rotllant, and I. Burghardt, Ensem-
ble density functional theory method correctly describes

mailto:c.schilling@physik.uni-muenchen.de
https://doi.org/10.1038/nchem.2406
https://doi.org/10.1038/nchem.2406
https://doi.org/10.1038/nphys3290
https://doi.org/10.1038/nphys3290
https://doi.org/10.1126/science.aam6432
https://doi.org/10.1038/nature05131
https://www.pnas.org/content/118/13/e2010110118
https://doi.org/10.1038/25954
https://doi.org/10.1038/s41565-019-0543-6
https://doi.org/10.1103/PhysRevX.7.031059
https://doi.org/10.1021/acs.chemrev.8b00436
https://doi.org/10.1021/acs.chemrev.8b00436
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1063/1.1651060
https://doi.org/10.1063/1.4953039
https://doi.org/10.1063/1.4953039
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1088/0022-3719/12/24/013
https://doi.org/10.1103/PhysRevA.37.2809


6

bond dissociation, excited state electron transfer, and
double excitations, J. Chem. Phys. 142, 184104 (2015).

[19] Z.-h. Yang, A. Pribram-Jones, K. Burke, and C. A. Ull-
rich, Direct extraction of excitation energies from en-
semble density-functional theory, Phys. Rev. Lett. 119,
033003 (2017).

[20] T. Gould and S. Pittalis, Hartree and exchange in ensem-
ble density functional theory: Avoiding the nonunique-
ness disaster, Phys. Rev. Lett. 119, 243001 (2017).

[21] F. Sagredo and K. Burke, Accurate double excitations
from ensemble density functional calculations, J. Chem.
Phys. 149, 134103 (2018).

[22] T. Gould, L. Kronik, and S. Pittalis, Charge transfer ex-
citations from exact and approximate ensemble Kohn-
Sham theory, J. Chem. Phys. 148, 174101 (2018).

[23] T. Gould and S. Pittalis, Density-driven correlations in
many-electron ensembles: Theory and application for ex-
cited states, Phys. Rev. Lett. 123, 016401 (2019).

[24] K. Deur and E. Fromager, Ground and excited energy
levels can be extracted exactly from a single ensem-
ble density-functional theory calculation, J. Chem. Phys.
150, 094106 (2019).

[25] E. Fromager, Individual correlations in ensemble density
functional theory: State- and density-driven decomposi-
tions without additional Kohn-Sham systems, Phys. Rev.
Lett. 124, 10.1103/physrevlett.124.243001 (2020).

[26] P.-F. Loos and E. Fromager, A weight-dependent local
correlation density-functional approximation for ensem-
bles, J. Chem. Phys. 152, 214101 (2020).

[27] C. Marut, B. Senjean, E. Fromager, and P.-F. Loos,
Weight dependence of local exchange–correlation func-
tionals in ensemble density-functional theory: double ex-
citations in two-electron systems, Faraday Discuss. 224,
402 (2020).

[28] T. Gould, G. Stefanucci, and S. Pittalis, Ensemble den-
sity functional theory: Insight from the fluctuation-
dissipation theorem, Phys. Rev. Lett. 125, 233001
(2020).

[29] T. Gould, L. Kronik, and S. Pittalis, Double excitations
from ensemble density functionals: Theory and approxi-
mations, ChemRxiv (2021).

[30] T. L. Gilbert, Hohenberg-Kohn theorem for nonlocal ex-
ternal potentials, Phys. Rev. B 12, 2111 (1975).

[31] J. Cioslowski, Many-electron densities and reduced den-
sity matrices (Springer Science & Business Media, 2000).

[32] M. Piris, Natural orbital functional theory, in Reduced-
Density-Matrix Mechanics: With Application to Many-
Electron Atoms and Molecules, edited by D. A. Mazziotti
(Wiley-Blackwell, 2007) Chap. 14, p. 387.

[33] I. Theophilou, N. N. Lathiotakis, M. A. L. Marques,
and N. Helbig, Generalized Pauli constraints in reduced
density matrix functional theory, J. Chem. Phys. 142,
154108 (2015).

[34] K. Pernal and K. J. H. Giesbertz, Reduced density matrix
functional theory (RDMFT) and linear response time-
dependent rdmft (TD-RDMFT), in Density-Functional
Methods for Excited States, edited by N. Ferré, M. Fila-
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Supplemental Material

PROOF OF RELATION (8) AND (9)

We recall relation (8) and (9) as part of the following theorem.

Theorem 1. The relaxed w-ensemble functional Fw follows as

Fw(γ) = min
EN(w)3Γ7→γ

Tr[ΓV ] , (S1)

and in addition we have

EN(w) =
⋃

w′≺w

EN (w′) ≡ {Γ ∈ EN |spec(Γ) ≺ w} (S2)

E1
N (w) = NTrN−1[ EN(w)] =

⋃
w′≺w

E1
N (w′) . (S3)

Here (as in the paper), EN(w) ≡ conv(EN (w)) is defined as the convex hull of the (non-convex) set EN (w) of
N -fermion density operators Γ with spectrum w. Moreover, v is said to be majorized by w, v ≺ w, if for all
k = 1, 2, . . . , D one has

v↓1 + . . .+ v↓k ≤ w
↓
1 + . . .+ w↓k , (S4)

where v↓,w↓ denote the vectors with the same entries, but sorted in descending order.

Proof. Our proof of Theorem 1 makes use of the following well-known theorem [67]

Theorem 2 (Uhlmann). Let Γ and Γ′ be two density operators on a D-dimensional complex Hilbert space. Then
there exist unitary operators Ui and weights 0 ≤ pi ≤ 1,

∑
i pi = 1, such that

Γ′ =

D∑
i=1

piUiΓU
†
i (S5)

if and only if spec(Γ′) ≺ spec(Γ).

Equation (S2) follows directly from Uhlmann’s theorem. To explain this, we first observe that the set EN (w) can
be parameterized as the family of all unitary conjugations of some arbitrary Γ ∈ EN (w), EN (w) = {UΓU†}. Indeed,
for any Γ′ ∈ EN (w) the unitary transformation U then just maps the eigenstates of Γ to those of Γ′. Accordingly,
Theorem 2 states that a density operator Γ′ ∈ EN can be written as a convex combinations of Γi ∈ EN (w) (actually

Γi ≡ UiΓU
†
i ) if and only if its spectrum is majorized by w. Relation (S3) follows then directly from the linearity of

the partial trace and Eq. (S2). To prove (S1), we use the fact that each element Γ ∈ EN(w) ≡ conv(EN (w)) can be
written as a convex combination

∑
i piΓi of Γi ∈ EN (w), leading to

min
EN(w)3Γ7→γ

Tr[ΓV ]

= min∑
i piΓi 7→ γ,

Γi ∈ EN (w)

∑
i

piTr[ΓiV ]

= min∑
i piγi = γ,

γi ∈ E1N (w)

min
{EN (w)3Γi 7→γi}

∑
i

piTr[ΓiV ]

≡ min∑
i piγi = γ,

γi ∈ E1N (w)

∑
i

piFw(γi) =Fw(γ) . (S6)
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SPECTRAL POLYTOPES AND ROLE OF THEIR BOUNDARY

We consider the example of N = 2 fermions with a d = 3 dimensional one-particle Hilbert space. We choose those
small values for N, d since this will allow us to graphically illustrate the spectral polytopes Σ(w). At the same time,
this setting already exhibits all relevant features of arbitrary settings N, d, including the complete basis set limit,
d→∞. To target the lowest three eigenstates of a given Hamiltonian, we consider three exemplary weight vectors:

w(A) = (1, 0, 0) , w(B) = (0.7, 0.3, 0) , w(C) = (0.5, 0.3, 0.2) . (S7)

For a given class

H(h) ≡ h+W (S8)

of Hamiltonians characterized by a fixed pair interaction W each choice of w leads to a corresponding universal

functionalFw on a specific domain E1
N (w) described by the polytope Σ(w). The spectral polytopes Σ(w) for the

three exemplary cases (S7) are shown in Fig. 1. There, we can restrict λ to just two entries λ1, λ2, while λ3 follows
from the normalization, λ1 + λ2 + λ3 = 2. It is crucial to recall that the polytopes Σ(w) depend only on N, d and w
but not on any Hamiltonian.

The first RDMFT (with w(A)) is characterized by r = 1 non-vanishing weights and is therefore nothing else
than ground state RDMFT. The choices w(B) and w(C) represent an RDMFT for targeting the lowest two and the
lowest three eigenstates, respectively.
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FIG. S1. Polytope Σ(w) of possible natural occupation number vectors λ for N = 2 fermions, dimension d = 3 and the three

exemplary weight vectors w(A) = (1, 0, 0), w(B) = (0.7, 0.3, 0) and w(A) = (0.5, 0.3, 0.2). In addition, we present the specific λ
of the three minimizers (S11) for non-interacting fermions as blue, red and orange points. See text for more details.

Just to recall, the universal functionalFw allows one to determine the averaged energy w1E1(h)+w2E2(h)+w3E3(h)
by the following minimization

Ew(h) ≡ w1E1(h) + w2E2(h) + w3E3(h) = min
γ∈E1

N (w)

[
tr1[hγ] +Fw(γ)

]
, (S9)

where Ej(h) denotes the j-th lowest eigenenergy of the Hamiltonian (S8). This statement is true for any choice of
decreasingly ordered weight vectors w, in particular also for our three examples in Eq. (S7). Hence, tr1[hγ]+Fw(A)(γ)
needs to be minimized over the ‘blue’ spectral polytope Σ(w(A)) to obtain the energy E1(h), tr1[hγ]+Fw(B)(γ) needs to
be minimized over the ‘red’ spectral polytope Σ(w(B)) to obtain the energy 0.7E1(h)+0.3E2(h) and tr1[hγ]+Fw(C)(γ)
needs to be minimized over the ‘orange’ spectral polytope Σ(w(C)) to obtain the energy 0.5E1(h)+0.3E2(h)+0.2E3(h).
From those three energy averages one can extract in particular the individual energies E2(h) and E3(h) through
appropriate linear combinations.

To explain now why the boundary of the spectral polytopes Σ(w) contains crucial information about the excitation
spectrum we consider the case of non-interacting fermions. This means to consider the family of Hamiltonians
H̃(h) = h, i.e, we chose W ≡ 0 in (S8). Of course, this is a rather special case since the corresponding interaction
functional Fw vanishes, Fw ≡ 0. Nonetheless, one can still calculate in the same manner as described above the
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eigenenergies Ẽw(h) for the Hamiltonians H̃(h) ≡ h. We added a ‘tilde’ to distinguish the case of non-interacting
fermions from the one of interacting fermions. In the same manner as above, we could obtain the energy Ẽw(h) as

Ẽw(h) = min
γ∈E1

N (w)

tr1[hγ] , (S10)

where we already used the fact that the interaction functional is zero. For our three examples in Eq. (S7), we would
then minimize the rather trivial energy functional tr1[hγ] over the three different polytopes shown in Fig. 1 to obtain
the corresponding weighted energies Ẽ1(h), 0.7Ẽ1(h) + 0.3Ẽ2(h) and 0.5Ẽ1(h) + 0.3Ẽ2(h) + 0.2Ẽ3(h), respectively.
Since the energy functional is linear we can even determine the minimizers λ for those three cases and also the
corresponding 2-fermion density operators:

Γ(A) = |1, 2〉〈1, 2| 7→ λ(A) = (1, 1, 0) (S11)

Γ(B) = 0.7 |1, 2〉〈1, 2|+ 0.3 |1, 3〉〈1, 3| 7→ λ(B) = (1, 0.7, 0.3)

Γ(C) = 0.5 |1, 2〉〈1, 2|+ 0.3 |1, 3〉〈1, 3|+ 0.2 |2, 3〉〈2, 3| 7→ λ(C) = (0.8, 0.7, 0.5)

The three minimizers λ(A),λ(B),λ(C) are presented in Fig. S1. Since the functional tr1[hγ] ≡ h1λ1 + h2λ2 + h3λ3 (hi
denote the eigenvalues of h) is linear, they lie on the boundary of their respective polytopes. To be more specific, for
any w the minimizer is give by that vertex v ≡ (v1, v2, v3) of Σ(w) which minimizes the energy h1v1 + h2v2 + h3v3.

The crucial observation is the following: the minimizer λ(A) of tr1[hγ] on the ‘blue’ polytope corresponding

to w(A) cannot be the minimizer of tr1[hγ] on the ‘red’ polytope corresponding to w(B). This is because λ(A) lies
outside of the ‘red’ polytope. Consequently the minimization of tr1[hγ] on the ‘red’ polytope will lead to a higher
energy than the one on the ‘blue’ polytope. This consideration confirms that for non-interacting fermions all the
information about the excitation structure is contained in the boundary of the spectral polytopes. For weakly
correlated systems, this is still approximately true since the minimizers will still lie very close to the boundary of
the spectral polytopes (the total energy functional is in leading order indeed still linear because the pair interaction
strength is assumed to be small). For stronger correlation this may change considerably. Yet, it is still true that by
considering some w(B) sufficiently different to w(A) the corresponding polytope Σ(w(B)) is getting so small that it

does not contain the ground state vector λ(A) anymore.
In summary, all these considerations suggest that the ground state functional may serve as a first approximation

to Fw: At least for weakly interacting systems, the energy difference Ew ≤ Ew′ (where w′ ≺ w) is primarily a direct

geometrical consequence, following from E1
N (w′) ⊂ E1

N (w) and Σ(w′) ⊂ Σ(w), respectively. In particular, knowing
the boundary of Σ(w) is sufficient for determining approximately Ew. A more detailed analytical investigation
reveals that using the ground state functional in w-RDMFT as an approximation forFw would always yield in the
minimization (S9) a lower bound to Ew. Understanding for which systems this bound is sufficiently close to the exact
value Ew would require some extensive numerical testing.
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