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A crucial theorem in Reduced Density Matrix Functional Theory (RDMFT) suggests that the universal pure
and ensemble functional coincide on their common domain of pure N -representable one-matrices. We refute
this by a comprehensive analysis of the geometric picture underlying Levy’s constrained search. Moreover,
we then show that the ensemble functional follows instead as the lower convex envelop of the pure functional.
It is particularly remarkable that the pure functional determines the ensemble functional even outside its own
domain of pure N -representable one-matrices. From a general perspective, this demonstrates that relaxing
pure RDMFT to ensemble RDMFT does not necessarily circumvent the complexity of the one-body pure N -
representability conditions (generalized Pauli constraints). Instead, the complexity may simply be transferred
from the underlying space of pure N -representable one-matrices to the structure of the universal one-matrix
functional.

I. INTRODUCTION

Reduced density matrix functional theory
(RDMFT)1–5 extends the widely used density func-
tional theory (DFT)6–9 by involving the full one-particle
reduced density matrix (1RDM) γ rather than just the
spatial density. This therefore facilitates the exact de-
scription of the energy of any one-particle Hamiltonian h
(including, e.g., the kinetic energy or a non-local external
potential). Furthermore, RDMFT allows explicitly for
fractional occupation numbers as it is required in the
description of strongly correlated systems4 and thus of-
fers promising prospects of overcoming the fundamental
limitations of DFT10,11. At the same time, involving the
full 1RDM leads also to drawbacks relative to DFT: The
complexity of the N -representability problem, e.g., is not
only hidden in the structure of the universal functional
as in DFT12 but even the space of underlying 1RDMs is
already non-trivial. To explain this aspect crucial to our
work, we consider Hamiltonians of the form H = h + V
on the N -fermion Hilbert space HN ≡ ∧N [H1], where
h is a one-particle Hamiltonian and V some interaction
(e.g. Coulomb pair interaction) which is fixed for the
following. Moreover, we assume a finite-dimensional
one-particle Hilbert space H1 and denote the convex
set of N -fermion density operators Γ by EN and the
subset of pure states by PN . A general expression for
the universal functional13 follows then immediately by
determining the ground state energy of H

E(h) = min
Γ∈PN

TrN [(h+ V )Γ]

= min
γ∈P1

N

[
Tr1[hγ] + min

PN3Γ7→γ
TrN [V Γ]

]
≡ min
γ∈P1

N

[
Tr1[hγ] + Fp(γ)

]
. (1)
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In the second line, we have introduced the set P1
N

of pure N -representable 1RDMs γ and the last line
gives rise to the universal pure functional Fp defined
on P1

N . The crucial point is now that P1
N is not

only constrained by the simple Pauli exclusion princi-
ple, 0 ≤ γ ≤ 1, but there are rather involved addi-
tional one-body pure N -representability conditions (gen-
eralized Pauli constraints), linear conditions on the eigen-
values of the 1RDM14–16. To circumvent at first sight the
complexity of those generalized Pauli constraints, Valone
proposed17 to relax in (1) the set PN to EN by skipping
the purity, leading to

E(h) = min
γ∈E1N

[
Tr1[hγ] + Fe(γ)

]
(2)

with the ensemble functional Fe(γ) ≡
minEN3Γ7→γ TrN [V Γ] defined on the convex set E1

N
of ensemble N -representable 1RDMs. One may now
expect that the complexity of the one-body pure N -
representability conditions is simply transferred within
ensemble RDMFT from the underlying set of 1RDMs
to the structure of the exact functional Fe. This,
however, seems not to happen according to Ref. 18,
suggesting and proving that Fe and Fp coincide on their
common domain P1

N of pure N -representable 1RDMs,
Fp ≡ Fe|P1

N
. In our work, we refute this fundamental

theorem in RDMFT and show that the ensemble func-
tional follows instead as the lower convex envelop of the
pure functional. For this, we first need to develop a
better understanding for the space of N -fermion density
matrices exploited in Levy’s constrained search13, i.e. the
sets

PN (γ) ≡ {Γ ∈ PN |Γ 7→ γ}
EN (γ) ≡ {Γ ∈ EN |Γ 7→ γ} (3)

of N -fermion density operators Γ mapping to a given
1RDM γ.
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II. AN INSTRUCTIVE EXAMPLE: HUBBARD DIMER

The simplest way to refute the suggested equality Fp ≡
Fe|P1

N
is to find one counterexample. A simple one is

given by the asymmetric Hubbard dimer,

H = −t
∑
σ

[
c†1σc2σ + c†2σc1σ

]
+
∑
σ

[
ε1n1σ + ε2n2σ

]
+ U

[
n1↑n1↓ + n2↑n2↓

]
, (4)

a system of two electrons on two sites. Here, c†iσ(ciσ)
denotes the creation(annihilation) operator of an elec-

tron at site i with spin σ and niσ = c†iσciσ is the cor-
responding occupation number operator. The first two
terms in Eq. (4) represents the kinetic and external po-
tential energy, while the last one describes the inter-
action (V ) between the electrons. We restrict H to
the three-dimensional singlet space which contains the
ground state. It is an elementary exercise19,20 to deter-
mine the respective pure functional Fp,

Fp(γ) = U

1
2γ

2
12

[
1−

√
1− 4γ2

12 − 4(γ11 − 1
2 )2
]

+ (γ11 − 1
2 )2

γ2
12 + (γ11 − 1

2 )2
,

(5)
with γij ≡ 〈i ↑ |γ|j ↑〉 = 〈i ↓ |γ|j ↓〉, i, j = 1, 2. Fp(γ) is
invariant under γ11 → (1− γ11) (particle-hole duality21)
and γ12 → −γ12.

FIG. 1. Fp(γ) (in units of U) as a function of γ11 and γ12

On the one hand, result (5) and its graphical illustra-
tion in Fig. 1 reveal that the pure functional Fp for the
Hubbard dimer (4) is not convex on the set P1

2 = E1
2 (de-

scribed by the condition19,20 (γ11 − 1
2 )2 + γ2

12 ≤ 1
4 )). On

the other hand, it is well-known4,22 and rather elemen-
tary to verify that the ensemble functional Fe is always
convex. As a consequence, the Hubbard dimer already
refutes the suggested equality Fe ≡ Fp on P1

2 .

III. GEOMETRIC PICTURE OF LEVY’S CONSTRAINED
SEARCH

It is instructive to understand the geometric picture of
density matrices Γ underlying Levy’s constrained search
(1) and (2). This will in particular reveal the loophole
in the derivation in Ref. 18. Let us first recall that the
set EN of N -fermion density matrices is convex and also

compact as a subset of the space of hermitian matrices
with fixed trace (i.e. it is bounded and closed). Its ex-
tremal points are given by the pure states, forming the
compact but non-convex set PN . These are the idem-
potent matrices, Γ = Γ2 (i.e. their eigenvalues all vanish
except one). It is worth noticing that a “point” Γ in
EN lies on the boundary if and only if Γ is not strictly
positive, i.e., at least one of its eigenvalues vanishes. As
a consequence, most boundary points are not extremal
points. It is one of the crucial insights of our work that
this changes considerably if we restrict this considera-
tion to the subsets EN (γ) and PN (γ) with respect to
which the minimization (3) is carried out: While both
sets EN (γ) and PN (γ) are also compact and EN (γ) is
convex for all γ, extremal states Γ of EN (γ) are not nec-
essarily pure anymore. The general reason for this is that
a convex decompositions of Γ (e.g. the spectral decom-
position into pure states) involves states whose 1RDMs
typically differ from γ. Thus, a mixed (i.e. non-pure) Γ
might be extremal within EN (γ) despite the fact that it
is not extremal within EN .

As already stated above, the ensemble functional Fe(γ)
follows for each γ ∈ E1

N by minimizing TrN [V Γ] over
EN (γ). Since TrN [V (·)] is linear and EN (γ) convex
and compact, the minimum (i.e. Fe(γ)) is attained on
the boundary of EN (γ). This is a general (and rather
obvious) fact from linear optimization: First, we ob-
serve that TrN [V Γ] is nothing else than the standard in-
ner product on the Hilbert space of hermitian matrices,
TrN [V Γ] ≡ 〈V,Γ〉N . In that sense, there is given a notion
of geometry on the space of density operators23–34 and V
defines thus a direction in EN (γ). The set of Γ ∈ EN (γ)
with a specific interaction energy v = 〈V,Γ〉N gives rise
to a hyperplane, orthogonal to V . The minimum of
TrN [V (·)] ≡ 〈V, ·〉N on EN (γ) then follows by shifting
the hyperplane along the direction −V (i.e. by reducing
v) until an extremal point of EN (γ) is reached. This fi-
nal hyperplane is a so-called supporting hyperplane35. By
definition, this means that EN (γ) is entirely contained in
one of the two closed half-spaces bounded by that hyper-
plane and EN (γ) has at least one boundary point on the
hyperplane. This geometric picture underlying Levy’s

FIG. 2. Schematic illustration of the geometric picture under-
lying Levy’s constrained search for determining the ensemble
functional Fe(γ): For each 1RDM γ, the linear functional
TrN [V (·)] attains it minimum (i.e. Fe(γ)) on the boundary of
EN (γ) (see also text).
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constrained search is illustrated in Fig. 2 for different in-
teractions (“directions”) V . There are three conceptually
different boundary points which can be characterized by
referring to two distinctive features: On the one hand,
point ΓA and ΓB have a unique supporting hyperplane
(unique “normal” vector V ), in contrast to ΓC supported
by infinitely many hyperplanes. On the other hand, point
ΓA and ΓC are exposed35 in contrast to ΓB , i.e. they are
supported by hyperplanes which do not contain any fur-
ther boundary points. In other words, ΓA and ΓC can be
obtained as unique minimizers of TrN [V Γ] for some V .

After having explained the geometric picture underly-
ing Levy’s constrained search, we can now identify the
loophole of the proof in Ref. 18 which we briefly re-
cap: For γ ∈ P1

N the minimizer of TrN [V Γ] on EN (γ)

is denoted by Γ. Since EN (γ) is convex and com-
pact, Γ can be expressed according to the Krein-Milman
theorem36 as a convex combination of the extreme points
of EN (γ). This convex combination can be grouped
into two parts, one (wpΓp) arising from pure extremal
states and one ((1 − wp)Γe) arising from mixed states,

i.e. Fe(γ) = TrN [V Γ] = wpTrN [V Γp]+(1−wp)TrN [V Γe]
(with Γp/e normalized to unity). In a straightforward

manner18 this yields Fe(γ) ≥ wpFp(γ) + (1 − wp)Fe(γ),
implying (if wp > 0) Fe(γ) ≥ Fp(γ). In combination with
Fe(γ) ≤ Fp(γ) (following from the definition of Fp/e and

PN (γ) ⊂ EN (γ)), this eventually yields the suggested
equality Fe(γ) = Fp(γ) on P1

N . It is exactly the hidden
assumption wp > 0 which is not justified: As explained

above, the minimizer Γ lies already on the boundary of
EN (γ). Even more importantly, according to a theorem
from convex optimization37, Γ is with probability one
(i.e. for generic V ) already extremal and even exposed.
The application of Krein-Milman’s theorem is therefore
rather meaningless, the assumption wp > 0 is violated as

long as the minimizer Γ is not incidentally a pure state
and thus Fe(γ) 6= Fp(γ). To illustrate all those general
aspects we revisit in the following the Hubbard dimer.

3
2
1-Tr[Γ2]
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FIG. 3. Illustration of Levy’s constrained search for the Hub-
bard dimer on E2(γ) for (γ11, γ12) = (0.25, 0.15)(left) and
(γ11, γ12) = (0.25, 0.38)(right); the blue dots represent ex-
tremal pure Γ, one of which coincides (right figure) with the
minimizer (black dot) of Tr2[V Γ].

As an orthonormal reference basis for the singlet
spin sector underlying the Hubbard dimer we choose

|1〉 = c†1↑c
†
1↓|0〉, |2〉 = c†2↑c

†
2↓|0〉 and |3〉 = [c†1↑c

†
2↓|0〉 −

c†1↓c
†
1↑|0〉]/

√
2, where |0〉 denotes the vacuum. Express-

ing any singlet state Γ =
∑3
i,j=1 Γij |i〉〈j| with respect to

that basis and restricting it (as usually in quantum chem-
istry) to real values, the 1RDM in spatial representation
follows as (recall γij ≡ 〈i↑|γ|j ↑〉 = 〈i↓|γ|j ↓〉, i, j = 1, 2)

γ11 = 1− γ22 = Γ11 +
1

2
Γ33

γ12 = γ21 =
1√
2

(Γ13 + Γ23) . (6)

The set E2(γ) can thus be parameterized by three in-
dependent real variables. We choose (Γ11,Γ12,Γ13) and
find for the expectation value of the Hubbard interaction
Tr2[V Γ] = U(Γ11 + Γ22) = 1

2U
(
1 + Γ11 − 2γ11

)
where

Eq. (6) and the normalization of Γ have been used. For
two exemplary γ ∈ P1

2 ≡ E1
2 , we illustrate in Fig. 3 the re-

spective sets E2(γ). Levy’s minimization of the Hubbard
interaction V is illustrated as a set of black hyperplanes
with the black normal vector corresponding to −V . For
generic γ, there are only two pure states on the boundary
of E2(γ), shown as blue dots (in the right figure, one of
them is shown in black since it coincides with the min-
imizer of Tr2[V (·)]). All other points on the boundary
turn out to be mixed states (see also color scheme repre-
senting the purity 1−Tr[Γ2]). Since almost all boundary
points are exposed and describe mixed states (thus vio-
lating the assumption wp > 0 in Ref. 18) one may now
even wonder why the functionals Fp and Fe do not dif-
fer almost everywhere on P1

2 . The answer to this is the
following: By choosing an interaction V (i.e. a “direc-
tion” in E2(γ)) at random, pure states appear with finite
probability as minimizers of Tr2[V (·)]. This is due to the
fact (see Fig. 3) that each pure state has a whole range
of supporting hyperplanes (see also point ΓC in Fig. 2),
whose normal vectors cover a finite angular range.

IV. RELATING PURE AND ENSEMBLE FUNCTIONAL

Strongly inspired by Lieb’s seminal work38 on DFT for
Coulomb systems, we resort to convex analysis, particu-
larly to the concept of convex conjugation, to relate pure
(Fp) and ensemble functional (Fe) for arbitrary interac-
tion V . The conjugate f∗ (also called Legendre-Fenchel
transform) of a function f : Rn → R ∪ {±∞} is de-
fined as f∗(y) = supx∈Rn

[
〈y, x〉 − f(x)

]
. Allowing f

to take infinite values “has the advantage that technical
nuisances about effective domains can be suppressed al-
most entirely”35 and we therefore extend Fp and Fe to
the respective Euclidean space of hermitian matrices by
defining Fp(γ) = ∞ and Fe(γ) = ∞ for γ outside their
original domains P1

N and E1
N , respectively. By referring

to those common definitions and identifying Tr1[hγ] as
the inner product 〈h, γ〉 on the Euclidean space of her-
mitian matrices, we make the crucial observation that
the energy E(h) (recall Eqs. (1), (2)) is nothing else than
the conjugate of the universal functional Fp and Fe, re-
spectively (up to an overall minus sign and a reflection
h 7→ −h). The conjugation and thus the minimizations in
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(1) and (2) have a clear geometric meaning as it is illus-
trated in Fig. 4: For any fixed ‘normal vector’ h, one con-
siders the respective hyperplanes in the Euclidean space
of vectors (γ, µ) (γ a hermitian matrix, µ ∈ R) defined by
µ = 〈h, γ〉+u and determines the largest u such that the
upper closed halfspace of the respective hyperplane still
contains the entire graph of Fp/e. E(h) then follows as
the intercept of that hyperplane with the F-axis, i.e. the
maximal u. This interpretation of the conjugation in par-
ticular explains in a geometric way why some 1RDMs γ
(such as those on the line segment between γA and γB in
Fig. 4) are not pure v-representable7,8,20,39. Moreover, it
shows that replacing Fp in (1) by the lower convex en-
velop35, conv(F), would not change the outcome of the
minimization.

FIG. 4. Schematic illustration of the energy minimization
(1) in RDMFT, emphasizing the role of convex conjugation
(Legendre-Fenchel transform) in particular (see also text).

The second ingredient required for relating Fp and
Fe is a theorem from convex analysis stating35 that the
biconjugate f∗∗ coincides with f whenever f is convex
and lower semicontinuous (a weaker form of continuity).
Moreover, for arbitrary f , f∗∗ is (the closure of) the lower
convex envelop of f . It is straightforward to apply those
mathematical results to the functionals Fp, Fe and E:
First, since Fe is convex, it is continuous in the interior
of E1

N . This implies immediately35 lower semicontinuity
(except for γ ∈ ∂E1

N ). We assume in the following that
Fe is also lower semicontinuous on the boundary ∂E1

N of
E1
N . The latter seems to be particularly difficult to verify

(also since the interaction V is arbitrary). In case this as-
sumption turns out to be wrong, our final result (7) will
be valid on the interior of E1

N only (which does not reduce
at all the significance and scope from any practical point
of view). According to the theorem mentioned above, Fe
therefore coincides with its biconjugation. Furthermore,
the biconjugate of Fp coincides with its lower convex en-
velop conv(Fp). Yet, since both functionals, Fe = F∗∗e
and conv(Fp) = F∗∗p follow as the conjugate of the same
functional, namely the energy E (up to minus signs) we
eventually obtain (see also Fig. 5)

Fe ≡ conv(Fp) . (7)

It is particularly remarkable that the pure functional
Fp determines the ensemble functional Fe on its whole

domain E1
N , despite the fact that Fp’s effective do-

main P1
N is a proper subset of E1

N . To be more spe-
cific, (7) namely states that Fe(γ) follows as the min-
imisation of

∑
i wiFp(γi) with respect to all possible

convex decompositions γ =
∑
i wiγi (0 ≤ wi ≤ 1,∑

i wi = 1) involving only 1RDMs γi from P1
N , Fe(γ) =

min
{∑

i wiFp(γi)
∣∣∑

i wiγi = γ, γi ∈ P1
N

}
. This is also

illustrated on the right panel of Fig. 5 for a γ outside P1
N ,

also emphasizing the important fact that the extremal
points of P1

N and E1
N coincide.

FIG. 5. Schematic illustration of Fe given as the lower convex
envelop of Fp (left). This relation between Fp and Fe is
remarkable since the domain P1

N of Fp is a proper subset of
E1N (right), yet their extremal points coincide.

V. SUMMARY AND CONCLUSION

A fundamental theorem in RDMFT suggested that the
pure (Fp) and ensemble functional (Fe) would coincide
on their common domain P1

N of pure N -representable
1RDMs. Based on a comprehensive study of the geo-
metric picture of density matrices underlying Levy’s con-
strained search, we have refuted this crucial theorem. By
exploiting concepts from convex analysis, we have then
shown that Fe follows instead as the lower convex en-
velop of Fp. This relation (see Eq. (7)) which holds for
any interaction V is particularly remarkable: The pure
functional Fp together with P1

N determines the ensemble
functional Fe on its whole domain E1

N , despite the fact
that Fp’s domain P1

N is a proper subset of E1
N . This letter

point in conjunction with the refutation of the relation
Fp ≡ Fe|P1

N
demonstrates that relaxing pure RDMFT to

ensemble RDMFT does not necessarily circumvent the
complexity of the one-body pure N -representability con-
ditions. Instead, it may simply be transferred from the
underlying space of pure N -representable one-matrices
into the structure of the universal one-matrix functional
Fe. In that case, an additional conceptual insight would
follow: Approximating the universal functional would
have at least the same computational complexity as the
problem of determining all generalized Pauli constraints.
Moreover, taking the generalized Pauli constraints into
account may facilitate the development of more accurate
functionals.
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