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For N hard-core bosons on an arbitrary lattice with d sites and independent of additional interaction terms
we prove that the hard-core constraint itself already enforces a universal upper bound on the Bose-Einstein
condensate given by Nmax = (N/d)(d−N + 1). This bound can only be attained for one-particle states |ϕ〉
with equal amplitudes with respect to the hard-core basis (sites) and when the corresponding N -particle state
|Ψ〉 is maximally delocalized. This result is generalized to the maximum condensate possible within a given
sublattice. We observe that such maximal local condensation is only possible if the mode entanglement between
the sublattice and its complement is minimal. We also show that the maximizing state |Ψ〉 is related to the
ground state of a bosonic ‘Hubbard star’ showing Bose-Einstein condensation.

PACS numbers: 03.65.-w, 03.75.Nt, 05.30.Jp, 67.85.-d

I. INTRODUCTION

Bose-Einstein condensation (BEC) is one of the most fas-
cinating quantum phenomena. It was predicted almost one
century ago following from the work by Bose [1] and Ein-
stein [2, 3] on the quantum gas of noninteracting bosons. A
lot of effort has been devoted ever since to investigate and un-
derstand the role of particle-particle interactions on the occur-
rence of BEC. In particular, since the concept of one-particle
energy states does not make sense anymore a more general
criterion for BEC was provided by Onsager and Penrose [4]
for the case of interacting bosons: A system of N bosons ex-
hibits BEC whenever its largest eigenvalue of the correspond-
ing one-particle reduced density matrix ρ(~x, ~x′) is propor-
tional to N . Such a macroscopic occupancy is closely related
to long-range order of the ‘off-diagonal’ elements of ρ(~x, ~x′)
[5]. Application of those two criteria to homogeneous gases
has shown that BEC can also exist in the presence of interac-
tions in three and more spatial dimensions (see, e.g., the re-
views [6, 7]). The experimental discovery of BEC for trapped
ultra-cold gases [8, 9] has strongly revived the study of BEC
for both, translationally invariant and trapped systems [10]. In
this context hard-core bosons (HCB), originally introduced as
a lattice model for liquid Helium II to investigate superfluidity
[11, 12], gained tremendous relevance: They can be realized
experimentally, as demonstrated the first time in Ref. [13], by
tuning the interaction between ultracold atoms at the Feshbach
resonance to a repulsive contact potential [14–17].

An interesting observation was made by Girardeau [18] for
one-dimensional systems. The energy spectrum and other
phase-independent quantities like density correlation func-
tions, always coincide for spinless HCB and the analogous
system of spinless fermions. Yet, since the one-particle re-
duced density matrix ρ(x, x′) is phase-sensitive, the question
whether occupation numbers can exceed the value one or may
even describe BEC is a priori non-trivial for HCB in contrast
to fermions. In Refs. [19, 20] the largest occupation number
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for N HCB (without further interactions besides the impen-
etrability) in one dimension was shown to be proportional to√
N implying the absence of BEC. The same results hold for

the case of HCB in an external harmonic trap [21, 22] and for
the corresponding lattice analogs [23].

These specific results on the absence of BEC for hard-core
bosons even at zero temperature motivate a couple of ques-
tions: Is the hard-core constraint itself already so restrictive
that no (or no complete) BEC is possible independent of the
external potential and the type of particle-particle interaction?
In particular for the case of lattice HCB, what is the maximal
possible occupation number Nmax as function of the parti-
cle number N and the number d of available sites? How do
the one-particle quantum states |ϕmax〉 allowing for such a
maximal occupation number look like and what is the form of
the corresponding N -HCB state |Ψmax〉 attaining this occu-
pancy Nmax of |ϕmax〉? In this paper we are going to answer
all those questions. In addition, in Sec. IV, we will propose
a physical model for HCB which allows the realization of a
state with a macroscopically large occupation number saturat-
ing our universal upper bound. Let us first introduce some
elementary concepts relevant for our work.

II. HARD-CORE BOSONS: CONCEPTS

We consider N HCB on d lattice sites. The form and di-
mensionality of the lattice is for the following considerations
not relevant. Let H(d)

1 denote the underlying d-dimensional
one-particle Hilbert space with an orthonormal basis B1 ≡
{|j〉}dj=1 given by the lattice site states |j〉. Although the
‘hard-core basis’ B1 might be any basis of one-particle states
which, due to some physical constraints, cannot be multiply
occupied, we refer in the following to |j〉 as ‘sites’. In case
of bosons without hard-core constraint the corresponding N -
boson Hilbert space H(B)

N is given by the symmetrized N -

particle states, namely H(B)
N ≡ SN

(
H(d)

1

)⊗N

. Imposing the
hard-core constraint then means to restrict this Hilbert space
to the subspaceH(HCB)

N ofH(B)
N by excluding configurations
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with multiply occupied sites. Accordingly, any N -HCB state
can be expanded as

|Ψ〉 =
∑
i

Ai |i〉 , (1)

where i ≡ {i1, . . . , iN}, i1, . . . , iN = 1, . . . , d, |i〉 ≡
SN (|i1〉 ⊗ . . . ⊗ |iN 〉) is the symmetrization of the N -fold
tensor product and sums

∑
i are restricted here and in the

following to configurations i without multiple occupancies.
It is technically convenient to consider configurations i just
as unordered sets of N (different) indices. Furthermore, we
introduce the corresponding HCB creation, b†i , and annihila-
tion operators, bj , with respect to the lattice sites. They fulfill
mixed commutation relations, i.e. they commute for different
sites and anticommute at the same site [11].

In contrast to the Hilbert space of N identical fermions
or bosons, the N -HCB Hilbert space is not invariant
under simultaneous one-particle unitary transformations,
(U1)

⊗N

H(HCB)
N 6= H(HCB)

N . The same of course also holds
for the algebra of observables: A change of the basis leads
to rather odd, namely mixed anticommutation/commutation
relations between the new creation, b†α, and annihilation oper-
ators bβ . As a consequence, a possible upper bound on the oc-
cupancy N (ϕ) of a given one-particle state |ϕ〉 ∈ H(d)

1 (which
can be written as a linear combination of the states {|j〉}) de-
pends highly on |ϕ〉 itself. Therefore, one-particle states |ϕ〉
allowing for multiple occupancies may exist, but they need to
differ from the lattice site states {|j〉}.

III. MAXIMUM OCCUPATION NUMBER

To determine the optimal universal upper bound on occu-
pation numbers for N HCB on d sites we need to determine

Nmax = max
|ϕ〉 ∈ H(d)

1
〈ϕ|ϕ〉 = 1

max
|Ψ〉 ∈ H(HCB)

N
〈Ψ|Ψ〉 = 1

(
N (ϕ)(|Ψ〉)

)
. (2)

where N (ϕ)(|Ψ〉) ≡ 〈Ψ|b†ϕbϕ|Ψ〉 with b†ϕ and bϕ the creation
and annihilation operator of particles in the state |ϕ〉. We first
present the final result for Nmax in the form of a theorem and
provide its derivation afterwards.

Theorem 1. For N hard-core bosons on d lattice sites the
maximum possible occupation number is given by

N (N,d)
max ≡

N

d
(d−N + 1) . (3)

Only one-particle states |ϕmax〉 unbiased with respect to the
lattice basis {|j〉}dj=1, i.e. |〈j|ϕmax〉|2 = 1

d , ∀j = 1, . . . , d,
allow for such an occupancy, where the corresponding unique
and pure maximizer state |Ψmax〉 follows as

|Ψmax〉 = N
∑
j

eiφj |j〉 , (4)

with φj =
∑N
m=1 arg(〈jm|ϕmax〉) and N = 1/

√(
d
N

)
.

Theorem 1 provides a universal upper bound for the Bose-
Einstein condensate concentration for HCB on a lattice. It is
worth noting that these results are independent of both, the
spatial dimension and the form of the underlying lattice, and
of any microscopic details. Whether the ground state of a
given hard-core Hamiltonian will exhibit such macroscopic
population of a specific state |ϕ〉 will depend on its concrete
form. In addition, the possible maximum occupation num-
ber Nmax exhibits a particle-hole symmetry, i.e. it takes the
same value for N and [d − (N − 1)] particles, where the lat-
ter corresponds to (N − 1) holes. In the thermodynamic limit
N, d → ∞ at fixed number density n ≡ N/d the maximal
possible degree nmax ≡ Nmax/N of condensation follows
as (this has already been found in [24], yet by assuming in
advance that |ϕmax〉 is given by the 0-momentum state)

nmax(n) = 1− n . (5)

To prove Theorem 1 we express |ϕ〉 with respect to the
hard-core basis,

|ϕ〉 =

d∑
k=1

ck|k〉 , (6)

where we assume ck real and non-negative for all k (possible
phases of the ck could be absorbed by the lattice states |k〉)
and we can assume the N -HCB state to be pure. Eq. (6) to-
gether with the expansion (1) of |Ψ〉 yields (see Appendix A
for technical details)

N (ϕ)(|Ψ〉) =
∑
i′

d∑
k,l=1

A∗i′∪{k}Ai′∪{l}ckc
∗
l

=
∑
i′

∣∣〈 ~A(i′),~c 〉
∣∣2 . (7)

Here, the prime should indicate that i′ is a configuration of
(N − 1) HCB. The union i′ ∪ {k} then means to add a boson
in the state |k〉 to the configuration i′. For k ∈ i′ we have
i′ ∪ {k} = i′ (not allowing for double occupancies) and we
therefore define Ai′∪{k} = 0 whenever k ∈ i′. In the last line
we introduced the compact notation ~c ≡ (ck)dk=1, ~A(i′) ≡
(Ai′∪{k})

d
k=1, with

(
~A(i′)

)
k
≡ 0 whenever k ∈ i′, and 〈·, ·〉

denotes the standard inner product on the d-dimensional com-
plex space. Hence, the expression (7) for the one-particle
quantity N (ϕ)(|Ψ〉) is the squared projection of the vector ~c
(which characterizes the one-particle state |ϕ〉) onto the vec-
tor ~A(i′), summed over all configurations i′ of (N − 1) HCB
on d sites.

To prove Theorem 1 we would need to variationally maxi-
mize the occupation number (7) with respect to both, the N -
HCB state |Ψ〉 and the one-particle state |ϕ〉. SinceN (ϕ)(|Ψ〉)
is a polynomial of degree four in {Ai}, {ck} the correspond-
ing Euler-Lagrange equations are cubic and therefore possi-
bly too difficult to be solved analytically. Even if an analyti-
cal solution could be found it would be difficult to verify that
the corresponding Hessian is negative definite. Instead, we
choose an elegant approach avoiding any variational equation.
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This will be achieved by expressing the inner product in the
last line of Eq. (7) in two different ways

〈 ~A(i′),~c 〉 = 〈(Ai′∪{k})
d
k=1, (χk 6∈i′ck)dk=1 〉

= 〈(Ai′∪{k}ck)dk=1, (χk 6∈i′)
d
k=1 〉 , (8)

where χk 6∈i′ = 1 if k 6∈ i′ and zero otherwise. Application
of the Cauchy-Schwartz inequality in the spirit of the first and
second line of Eq. (8) leads to the estimate (see Appendix A)

N (ϕ)(|Ψ〉) ≤ 1 + (N − 1)
∑
i

∣∣Ai

∣∣2 ∑
k 6∈i

∣∣ck ∣∣2 (9)

and

N (ϕ)(|Ψ〉) (10)

≤ (d−N + 1)− (d−N + 1)
∑
i

∣∣Ai

∣∣2∑
k 6∈i

∣∣ck ∣∣2 ,
respectively. The pleasant surprise is that the term∑

i

∣∣Ai

∣∣2 ∑
k 6∈i
∣∣ck ∣∣2 appears in the final result of estimates

(9), (10) with different signs. By taking an appropriate linear
combination of both estimates it cancels out and one eventu-
ally obtains

N (ϕ)(|Ψ〉) ≤ N

d
(d−N + 1) . (11)

This upper bound on N (ϕ)(|Ψ〉) can be attained only
by those N -HCB states |Ψ〉 and one-particle states |ϕ〉 for
which the vectors ~A(i′), (χk 6∈i′ck)dk=1 and (Ai′∪{k}ck)dk=1,
(χk 6∈i′)

d
k=1, respectively, are parallel for all i′. For the case

of real and positive ck, this can be achieved only for ck ≡ 1√
d

and Ai ≡ 1/
√(

d
N

)
. The case of arbitrary ck-phases, ck =

eiφk |ck|, can be derived from the result of zero-phases by re-
defining the lattice site states, |k〉 → eiφk |k〉. This implies
Ai → eiφiAi with φi ≡

∑N
m=1 φim which completes the

proof.
Taking the hard-core condition (b†j)

2 = 0 and the form of
|ϕmax〉 into account it follows |Ψmax〉 ∝ (b†ϕmax

)N |0〉. As
a consequence of this product structure, |Ψmax〉 has zero en-
tanglement. This equivalently means that |Ψmax〉 contains
no additional information beyond that provided by the one-
particle reduced density matrix. Indeed, according to Theo-
rem 1 |Ψmax〉 is uniquely determined by its one-particle re-
duced density matrix. A different but even more fascinating
connection between maximal condensate concentration and
entanglement can be revealed by asking for the maximal pos-
sible occupation number N (LA)

max for a sublattice LA of L with
dA(< d) sites. Generalizing Theorem 1 (see Appendix B) we
find that N (LA)

max = (dA + 1)2/4dA and the sublattice LA then
contains NA = (dA + 1)/2 particles. NA is the number of
particles maximizing the expression N (NA,dA)

max in Theorem 1.
The correspondingN HCB quantum state |Ψ(LA)

max 〉 is given by
(the symmetrization of) |Ψmax〉A ⊗ |NB〉B , where |Ψmax〉A
is the state (4) for NA HCB on LA and |NB〉B any state of
NB = N −NA HCB on LB . The structure of the maximizer

FIG. 1. The (bosonic) Hubbard Star model. Only hopping between
the outer sites 1 to d and the central site 0 is permitted. The open
circles represent the sites and the full (red) dots the HCB (see text
for more details).

state |Ψ(LA)
max 〉 then shows that maximal local (i.e. in LA) oc-

cupation numbers N (LA)
max can exist if and only if the mode

entanglement between LA and LB is minimal (zero). Hence,
the entanglement entropy of the mode reduced density oper-
ator of L \ LA is expected to be reciprocally related to the
largest occupation number within LA.

IV. PHYSICAL REALIZATION: THE ‘HUBBARD STAR’

Concerning the physical relevance of Theorem 1 one may
wonder whether HCB-Hamiltonians exist having |Ψmax〉 as
ground state. Since all basis states |j1, ..., jN 〉 contribute
equally to |Ψmax〉, systems with site-independent hopping of
the HCB are particulary promising. Indeed, for an infinite-
range HCB hopping model without further interactions the
ground state is given by |Ψmax〉 [25, 26] (see also Refs. [27–
29]). The experimental realization of such a model, however,
seems to be very difficult if not impossible. We therefore pro-
pose here a new model which simulates the infinite-range hop-
ping: Consider a ring with equally spaced sites 1 to d and a
site 0 at its center (cf. Fig. 1). We further assume that hopping
between different sites on the ring is negligible compared to
the hopping between the ring-sites and the central site at a rate
of t > 0. The resulting hard-core Hamiltonian is given by

Ĥ = −t
d∑
i=1

b†0bi + h.c. . (12)

Here, b†j and bj are the HCB creation and annihilation oper-
ators fulfilling the conventional mixed commutation relations
[11]. It is easy to see that Ĥ2 (describing 2nd order processes)
contains hopping terms between all ring-sites with identical
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hopping parameters t2. Ĥ conserves the total particle num-
ber which allows the restriction to a Hilbert space with fixed
particle number N . The model shall be called the (bosonic)
Hubbard star in analogy to the fermionic version studied in
Ref. [30].

The form of Eq. (12) makes explicit the connection of HCB
to spin systems with spin one half, as already pointed out in
Ref. [11]: According to the Holstein-Primakoff transforma-
tion [31], the operators bk, b

†
k for every site k can be mapped

to spin operators for a spin 1/2 (with ~ ≡ 1)

S+
k ≡

√
1− b†kbk bk , S

−
k ≡

(
S+
k

)†
= b†k

√
1− b†kbk

Szk ≡
1

2
− b†kbk . (13)

Here, S±k are the corresponding spin ladder operators and the
original bosonic vacuum state |0〉 is mapped to the completely
polarized spin state |↑〉0 ⊗ |↑, . . . , ↑〉R. It is straightforward
to verify that the operators in (13) fulfill the commutation re-
lations for spin 1/2. The Holstein-Primakoff transformation
then maps the Hamiltonian (12) to the corresponding spin
model

Ĥ ′ = −t
(
Ŝ+

0 Ŝ
−
R + Ŝ−0 Ŝ

+
R

)
, (14)

where ŜR =
∑d
i=1 Ŝi denotes the total spin operator on the

ring. Since the creation of a HCB corresponds to a spin flip,
N -particle states are mapped to states with total magnetic
quantum number M = (d+ 1)/2−N .

The eigenstates of Hamiltonian (14) can be expanded as

|ψ〉 = α1|↑〉0 ⊗ |ψ1〉R + α2|↓〉0 ⊗ |ψ2〉R . (15)

The ring states |ψ1〉R and |ψ2〉R are normalized and orthog-
onal with magnetization M1 = M − 1

2 and M2 = M + 1
2 ,

respectively. The eigenvalue equation Ĥ ′|ψ〉 = E|ψ〉 reduces
to

Eα1|ψ1〉R = −tα2Ŝ
−
R |ψ2〉R

Eα2|ψ2〉R = −tα1Ŝ
+
R |ψ1〉R .

(16)

Let |SR,MR〉 be an eigenstate of Ŝ2
R and ŜzR with eigenvalue

SR(SR + 1) and MR, respectively. By making use of

Ŝ+
R Ŝ
−
R |SR,MR〉
=
[
(SR(SR + 1)−MR(MR − 1)

]
|SR,MR〉 , (17)

Eq. (16) can easily be solved. With MR = M2 the ground
state eigenvalue follows for maximal SR, SR = d/2,

E = −t
√
N(d−N + 1) (18)

and up to a normalization factor we find

|ψ1〉R ∝
(
Ŝ−R
)N |↑, . . . , ↑〉R

|ψ2〉R ∝
(
Ŝ−R
)(N−1)|↑, . . . , ↑〉R .

(19)

Substitution into Eq. (16) allows one to determine the coeffi-
cients αi. Use of the inverse Holstein-Primakoff transforma-
tion finally yields the ground state of the N HCB,

|ψ〉 =
1√
2
|Ψ(N)
max〉R +

1√
2
b̂†0|Ψ

(N−1)
max 〉R , (20)

Here, |Ψ(N)
max〉R denotes the state of maximal occupation num-

ber (4) of N HCB on d sites of the ring, where the corre-
sponding |ϕmax〉 is given by the 0-momentum state on the
ring (i.e. φj ≡ 0).

Since |ψ〉 involves the maximizing state |Ψmax〉R of Theo-
rem 1 for N and N − 1 particles on the ring, the ground state
|ψ〉 obviously exhibits fractional BEC. To confirm this also by
quantitative means we follow Ref. [4] and calculate the largest
eigenvalue of the corresponding one-particle reduced density
operator

ρ1 ≡ NTrN−1[|ψ〉〈ψ|] ≡
d+1∑
j=1

λj |χj〉〈χj | , (21)

obtained by tracing out N − 1 HCB. In particular, we de-
termine its eigenstates (natural orbitals |χj〉) and eigenvalues
(natural occupation numbers λj). Since |ψ〉 is invariant under
arbitrary permutations of the ring sites this is straightforward:
Let U(π) be an arbitrary permutation of the ring site states,
U(π)|j〉 = |π(j)〉, j = 1, 2, . . . , d, where the central site state
is not affected, U(π)|0〉 = |0〉. Then, the structure of the
ground state (20) (recall also Theorem 1) implies for all π
U(π)⊗

N |ψ〉 = |ψ〉. Since U(π) is a unitary operator, the one-
particle reduced density operator (21) inherits that symmetry,
i.e. one has

[ρ1, U(π)] = 0 , ∀π . (22)

As a consequence, ρ1 is block-diagonal with respect to the
eigenspaces of all U(π). Moreover, we observe that only the
two states |0〉 and 1/

√
d
∑d
j=1 |j〉 (and their linear combina-

tions) are eigenstates of all U(π) (always with eigenvalue 1).
The (d−1)-dimensional subspaceH⊥2 orthogonal to the space
H2 spanned by those two states is therefore an irreducible rep-
resentation of the group of ring site permutations. Thus, d− 1
natural occupation numbers λj are degenerate and their re-
spective natural orbitals |χj〉 span the space H⊥2 . To deter-
mine the remaining two natural orbitals and natural occupa-
tion numbers we express ρ1, restricted to H2, with respect to
the states |0〉, 1/

√
d
∑d
j=1 |j〉, leading to

ρ1|H2 =
1

2

 1

√
N

(N,d)
max√

N
(N,d)
max N

(N,d)
max +N

(N−1,d)
max

 . (23)

The matrix (23) can easily be diagonalized, leading to the re-
maining two natural orbitals and natural occupation numbers
(the concrete value of the other d − 1 (degenerate) NON can
then be determined via the normalization of ρ1). We state the
concrete results for the thermodynamic limit, i.e. N, d → ∞
at fixed filling factor n ≡ N/(d + 1). The two eigenvalues
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of (23) in leading order follow as N(1 − n) and 1/4. The
normalization of ρ1 then implies that the other eigenvalues in
leading order are given by n2, i.e. they are not macroscopic
in N . This result shows that BEC is present with the max-
imal possible degree nmax ≡ 1 − n of condensation (re-
call Eq. (5)). The respective maximally occupied one-particle
state is given in (leading order) by the 0-momentum state on
the ring, i.e. |ϕmax〉 = 1/

√
d
∑d
j=1 |j〉

For the sake of completeness, we mention another model
which has |Ψmax〉 as its ground state. It is a one-dimensional
lattice gas model with nearest neighbour hopping and nearest
neighbour interactions, provided the ratio of the hopping pa-
rameter and the coupling constant takes a very specific value
[32]. The precise tuning of the coupling constant may be again
difficult in practice.

V. SUMMARY AND CONCLUSIONS

For N hard-core bosons on a lattice of d sites we have
proven that the hard-core constraint itself enforces a non-
trivial universal upper bound on arbitrary occupation num-
bers. The maximal possible occupation number Nmax =
(N/d)(d − N + 1) is proportional to the relative ‘free vol-
ume’ (d − N + 1)/d, i.e., to the density of available sites.
This upper bound Nmax can be attained only for one-particle
states |ϕmax〉 which are maximally unbiased with respect to
the hard-core basis (sites). The corresponding unique and
pure N -HCB maximizer state |Ψmax〉 is maximally delocal-
ized (cf. Theorem 1). Accordingly, |ϕmax〉 corresponds to a
one-particle state with zero ‘momentum’, which has a macro-
scopic occupancy in the state |Ψmax〉. Since all these results
are independent of the spatial dimension and form of the un-
derlying lattice and of the microscopic details and temperature
of the system, our work establishes a new, much broader per-
spective on BEC: It is based on the structure of the N -HCB
state space only and does not refer to properties of some spe-
cific Hamiltonians. In addition, from a general viewpoint, we
have also shown that (incomplete) BEC is possible for every
lattice despite the hard-core repulsion.

The significance of our universal result 1 has been con-
firmed through the existence of two well-known models
whose ground states exhibit the maximal possible degree of
condensation. One of them, the infinite-range hopping model
for “free” HCB also shows that the largest occupation num-
ber is strongly related to the mobility of the HCB. The fact
that the infinite-range hopping model attains the upper bound
Nmax is not surprising due to the mean-field character of that
model. Indeed, it is known that the order parameter given
by the ‘degree of condensation’ becomes maximal in mean-
field approximations. Since its experimental realization, how-
ever, is very difficult if not impossible we have proposed in
the form the Hubbard star a new HCB model which simulates
the infinite-range hopping. The experimental realization of
the Hubbard star exhibiting BEC of maximal degree seems to
be feasible. Indeed, the experimentalists in the field of ultra-
cold gases have demonstrated high skills by realizing various
models (see, e.g., Refs. [13, 14, 33, 34]). By generating a

ring-like optical lattice including a central potential well and
by tuning the barrier heights in order to make the hopping be-
tween the central and the ring-sites dominant our predictions
can be tested. It is also worth noting that it is the single site
at the ring’s center which makes BEC possible by drastically
increasing the mobility of the HCB on the ring. In case that
the ring hopping parameter vanishes, tR = 0, it is the central
site only which generates an effective mobility (via 2nd order
processes) on the ring. In an experiment, it would be therefore
interesting to increase the ratio tR/t more and more. For val-
ues much smaller than unity nothing will change qualitatively
due to the gap in the spectrum of the Hubbard star Hamilto-
nian (12). However, at tR/t = O(1) there will be a crossover
from a condensate with Nmax(N) ∝ N to Nmax(N) ∝

√
N

(c.f [19, 20]).

Our results also reveal an interesting link between BEC and
entanglement: The maximum possible condensate concentra-
tion for HCB on a lattice L, or on a sublattice LA, occurs for
states with zero entanglement. This observation adds a new
facet to BEC by building a bridge to quantum information the-
ory. Moreover, in the same context, our work could be under-
stood as a first step towards addressing the famous and fun-
damentally important one-body N -representability problem
[35] for HCB: Calculating all constraints on the one-particle
picture emerging from the mixed HCB commutation relations
could lead to new insights into, e.g., quantum pase transitions
in systems of HCB.
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Appendix A: Proof of Theorem 1

We consider the expectation value of the occupancy,
N (ϕ)(|Ψ〉), of |ϕ〉 (6) given that the system of N HCB is in
the state |Ψ〉 (1). We derive a compact expression for this
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quantity:

N (ϕ)(|Ψ〉) ≡ 〈Ψ|b†ϕbϕ|Ψ〉

=
∑
i,j

A∗iAj

d∑
k,l=1

ckc
∗
l 〈i|b

†
kbl|j〉

=
∑
i,j

A∗iAj

∑
k∈i,l∈j

ckc
∗
l 〈i|b

†
kbl|j〉

=
∑
i,j

A∗iAj

∑
k∈i,l∈j

ckc
∗
l δi\{k},j\{l}

=
∑
i′

d∑
k,l=1

A∗i′∪{k}Ai′∪{l}ckc
∗
l

=
∑
i′

(
d∑
k=1

A∗i′∪{k}ck

) (
d∑
l=1

Ai′∪{l}c
∗
l

)
=
∑
i′

∣∣〈 ~A(i′),~c 〉
∣∣2 . (A1)

In line four, δ denotes the Kronecker delta. The prime should
indicate that i′ is a configuration of (N − 1) HCB (in contrast
to i being a configuration of N HCB). The union i′ ∪ {k}
then means to add a boson in the state |k〉 to the configura-
tion i′. For k ∈ i′ we have i′ ∪ {k} = i′ (not allowing
for double occupancies) and we therefore define Ai′∪{k} = 0
whenever k ∈ i′. In the last line we introduced the com-
pact notation ~c ≡ (ck)dk=1, ~A(i′) ≡ (Ai′∪{k})

d
k=1, with the

k-th component,
(
~A(i′)

)
k
≡ 0 whenever k ∈ i′, and 〈·, ·〉

denotes the standard inner product on d-dimensional complex
space. Hence, the expression (A1) for the one-particle quan-
tityN (ϕ)(|Ψ〉) is the squared projection of the vector ~c (which
characterizes the one-particle state |ϕ〉) onto the vector ~A(i′),
summed over all configurations i′ of (N − 1) HCB on d sites.

Since N (ϕ)(|Ψ〉) is a polynomial of degree four in {Ai},
{ck} the corresponding Euler-Lagrange equations are cubic
and therefore possibly too difficult to solve analytically. In-
stead, we choose an elegant approach avoiding any variational
equation. This will be achieved by expressing the inner prod-
uct in the last line of Eq. (A1) in two different ways

〈 ~A(i′),~c 〉 = 〈(Ai′∪{k})
d
k=1, (χk 6∈i′ck)dk=1 〉

= 〈(Ai′∪{k}ck)dk=1, (χk 6∈i′)
d
k=1 〉 , (A2)

where χk 6∈i′ = 1 if k 6∈ i′ and zero otherwise. Application of
the Cauchy-Schwartz inequality in the spirit of the first line of

Eq. (A2) yields for (A1)

N (ϕ)(|Ψ〉) =
∑
i′

∣∣〈 ~A(i′), (χk 6∈i′ck)dk=1 〉
∣∣2

≤
∑
i′

∣∣ ~A(i′)
∣∣2 ∣∣(χk 6∈i′ck)dk=1

∣∣2
=
∑
i′

( d∑
l=1

∣∣Ai′∪{l}
∣∣2) ∑

k 6∈i′

∣∣ck ∣∣2
=

d∑
l=1

∑
i3l

∣∣Ai

∣∣2 ∑
k 6∈(i\{l})

∣∣ck ∣∣2
=
∑
i

∣∣Ai

∣∣2 ∑
l∈i

∑
k 6∈(i\{l})

∣∣ck ∣∣2
=
∑
i

∣∣Ai

∣∣2 ∑
l∈i

(∑
k 6∈i

∣∣ck ∣∣2 +
∣∣cl ∣∣2)

=
∑
i

∣∣Ai

∣∣2 [N∑
k 6∈i

∣∣ck ∣∣2 +
∑
l∈i

∣∣cl ∣∣2]
= 1 + (N − 1)

∑
i

∣∣Ai

∣∣2 ∑
k 6∈i

∣∣ck ∣∣2 . (A3)

In the forth line,
∑

i3l denotes the sum over those configura-
tions i of N HCB which contain the site index l and i′ can be
written as i \ {l}. In the last line we have first used the nor-
malization of |ϕ〉 and then of |Ψ〉. Application of the Cauchy-
Schwartz inequality in the spirit of the second line of Eq. (8)
yields for (7)

N (ϕ)(|Ψ〉) =
∑
i′

∣∣〈(Ai′∪{k}ck)dk=1, (χk 6∈i′)
d
k=1 〉

∣∣2
≤
∑
i′

∣∣(Ai′∪{k}ck)dk=1

∣∣2 ∣∣(χk 6∈i′)dk=1

∣∣2
= (d−N + 1)

∑
i

∣∣Ai

∣∣2∑
k∈i

∣∣ck ∣∣2 (A4)

= (d−N + 1)− (d−N + 1)
∑
i

∣∣Ai

∣∣2∑
k 6∈i

∣∣ck ∣∣2 .
In the third line, we have used

∣∣(χk 6∈i′)dk=1

∣∣2 = d−N + 1 for
all i′ and for k 6∈ i′ we introduced i = i′ ∪ {k}. In the forth
line, we have first used the normalization of |ϕ〉 and then of
|Ψ〉.

The pleasant surprise is that the term
∑

i

∣∣Ai

∣∣2 ∑
k 6∈i
∣∣ck ∣∣2

appears in the final result of estimates (A3), (A4) with dif-
ferent signs. By considering the specific linear combination
(d −N + 1)(A3) + (N − 1)(A4) of estimate (A3) and (A4)
it cancels out:

(d−N + 1)N (ϕ)(|Ψ〉) + (N − 1)N (ϕ)(|Ψ〉)
≤ (d−N + 1) + (d−N + 1)(N − 1)

= N(d−N + 1) . (A5)

Eventually, this leads to

N (ϕ)(|Ψ〉) ≤ N

d
(d−N + 1) . (A6)
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This upper bound on N (ϕ)(|Ψ〉) can be attained only
by those N -HCB states |Ψ〉 and one-particle states |ϕ〉 for
which the vectors ~A(i′), (χk 6∈i′ck)dk=1 and (Ai′∪{k}ck)dk=1,
(χk 6∈i′)

d
k=1, respectively, are parallel for all i′. For the case of

ck ∈ R+
0 ,∀k, this can be achieved only for ck ≡ 1√

d
andAi ≡

1/
√(

d
N

)
. The case of arbitrary ck-phases, ck = eiφk |ck|, can

be derived from the result of zero-phases by redefining the
lattice site states, |k〉 → eiφk |k〉. This implies Ai → eiφiAi

with φi ≡
∑N
m=1 φim which completes the proof.

Appendix B: A generalized theorem and its proof

From a practical viewpoint, particularly for macroscopi-
cally large lattice systems L the concept of a subsystem plays
an important role and a natural question arises: What is the
maximal possible occupation number that one can find within
a subsystemLA of dA < d sites? The answer to this important
question is given by the following theorem:

Theorem 2. For N hard-core bosons on a lattice L of d sites
the maximum possible occupation number that can be found
within a sublattice LA of dA sites is given by

N (LA)
max ≡ max

N−A≤NA≤N+
A

[
N (NA,dA)
max

]
. (B1)

where N−A = max
(
0, N − (d− dA)

)
, N+

A = min (N, dA)

and Nmax is given by (3). Only one-particle states |ϕ(LA)
max 〉

unbiased with respect to the lattice states {|j〉}j∈LA
of the

sublattice LA allow for such an occupancy. Any maximizer
state |Ψ(LA)

max 〉 has the form

|Ψ(LA)
max 〉 = SN

[
|Ψmax〉A ⊗ |N −NA〉B

]
, (B2)

where NA is the particle number maximizing (B1), |Ψmax〉A
the maximizer state for NA HCB on the sublattice LA of dA
sites according to Theorem 1, |N −NA〉B an arbitrary state
of N − NA HCB on the complementary lattice L \ LA and
SN denotes the symmetrizing operator for N particles.

Let us label the d lattice sites of the total lattice L such that
the sites 1, 2, . . . , dA belong to the sublattice LA. The sites of
its complementary lattice LB ≡ L \ LA are then labeled by
dA + 1, . . . , d. The one-particle Hilbert space H1(L) for the
total lattice splits according to

H1(L) = H1(LA)⊕H1(LB) (B3)

since any one-particle quantum state |ϕ〉 ∈ H1(L) is
expressed in a unique way as |ϕ〉 =

∑dA
k=1 ck|k〉 +∑d

k=dA+1 ck|k〉. This structure of the one-particle Hilbert
space implies that the corresponding HCB Fock space
F (HCB) overH1(L) has the following structure

F (HCB) ∼= F (HCB)
A ⊗F (HCB)

B , (B4)

where F (HCB)
A/B denote the respective HCB Fock spaces over

H1(LA/B). The isomorphism (B4) is rather elementary. It is
given by

b†j1 · . . . · b
†
jN
|0〉 ↔

( ∏
ji≤dA

b†ji |0〉A
)
⊗
( ∏
ji>dA

b†ji |0〉B
)
,

(B5)
for all N = 0, 1, . . . , d, and for all sets of different
j1, . . . , jN ∈ {1, 2, . . . , d}, where we used again second
quantization and introduced the vacuum states for F (HCB)

(|0〉), F (HCB)
A (|0〉A) and F (HCB)

B (|0〉B).
We use in the following the expansion

|ϕ〉 =

dA∑
k=1

ck|k〉 (B6)

and

|Ψ〉 =
∑
i

Ai|i〉 =
∑
iA,iB

AiA∪iB |iA ∪ iB〉 . (B7)

Here, the sum
∑

i contains all configuration of N HCB on
d sites. The sum

∑
iA

and
∑

iB
denote sums over configu-

rations within the lattice LA and LB , respectively. Since the
latter two sums are not restricted to a fixed particle number
we need to define AiA∪iB ≡ 0 whenever iA ∪ iB is not a
configuration of N HCB. We can now begin to calculate the
corresponding particle number expectation value.

N (ϕ)(|Ψ〉) ≡ 〈Ψ|b†ϕbϕ|Ψ〉
= TrF(HCB)

[
b†ϕbϕ|Ψ〉〈Ψ|

]
= TrF(HCB)

A

[
b†ϕbϕρA

]
, (B8)

where we introduced the mode-reduced density operator,
ρA ≡ TrF(HCB)

B

[|Ψ〉〈Ψ|], for subsystem LA and made use
of the fact that |ϕ〉 contains only lattice sites of system LA.
Since the state |Ψ〉 for the total system has fixed particle num-
ber, the reduced state ρA is block-diagonal with respect to the
different particle number sectors. By introducing the operator
P̂

(NA)
A projecting F (HCB)

A onto the subspace of fixed particle
number NA we have ρA =

∑N
NA=0 P̂

(NA)
A ρAP̂

(NA)
A . De-

pending on the concrete values of N, d and dA it is possible
to further restrict this sum since not all particle numbers NA
between 0 and N are possible on LA. For instance, for the
case N = d − 1 and dA = d − 1 only particle numbers
NA = N − 1, N are possible. In general, the sum can be
restricted to the minimal (N−A ) and maximal possible particle
number (N+

A ) following as

N−A = max
(
0, N − (d− dA)

)
, N+

A = min (N, dA) .
(B9)

Consequently, we can express ρA as

ρA =

N+
A∑

NA=N−A

q(NA)ρ
(NA)
A , (B10)
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where the state ρ(NA)
A has particle number NA and is trace-

normalized to one. Hence, we have

q(NA) ≡ TrF(HCB)
A

[P̂
(NA)
A ρAP̂

(NA)
A ]

=
∑

|iA|=NA

∑
|iB |=N−NA

∣∣AiA∪iB
∣∣2 , (B11)

where
∑
|iA|=NA

denotes the sum over all configurations iA
on LA with particle number |iA| = NA (and analogously∑
|iB |=NB

). In principle, one could also restrict the trace over

F(HCB)
A

in Eq. (B11) to the particle number sector with NA
particles. Plugin in the expression (B10) in Eq. (B8) yields

N (ϕ)(|Ψ〉) =

N+
A∑

NA=N−A

q(NA)TrF(HCB)
A

[
b†ϕbϕρ

(NA)
A

]
.(B12)

The crucial point is now that N (ϕ)(|Ψ〉) is a convex com-
bination (indeed we have q(NA) ≥ 0 and

∑
NA

q(NA) =
1) of the (non-negative) particle number expectation values
TrF(HCB)

A

[
b†ϕbϕρ

(NA)
A

]
and that all ρ(NA)

A are independent
in the sense that each configuration iA ∪ iB in Eq. (B7)
contributes to exactly one ρ(NA)

A . Hence, the maximum of
N (ϕ)(|Ψ〉) is obtained by maximizing each expectation value
TrF(HCB)

A

[
b†ϕbϕρ

(NA)
A

]
separately and then picking the largest

one (by choosing all other weights q(NA) equal zero). The
first part of this task is already done: According to Theo-
rem 1, TrF(HCB)

A

[
b†ϕbϕρ

(NA)
A

]
attains its maximum N

(NA,dA)
max

when the one-particle state |ϕ〉 ∈ H1(LA) ≤ H1(L) (recall
Eq. (B6)) is unbiased with respect to the lattice site states
{|k〉}dAk=1 and when the corresponding state ρ(NA)

A is pure,
ρ

(NA)
A = |Ψ〉AA〈Ψ|, with |Ψ〉A given by Eq. (4). Conse-

quently, the maximal possible particle number expectation
value within the lattice LA is given by

N (LA)
max ≡ max

N−A≤NA≤N+
A

[
N (NA,dA)
max

]
, (B13)

where N±A are given by Eq. (B9). The total maximizer state
(B7) takes the form

|Ψ(LA)
max 〉 = SN

[
|Ψmax〉A ⊗ |N −NA〉B

]
, (B14)

where NA is the particle number maximizing (B13),
|N −NA〉B any arbitrary state of N −NA HCB on the com-
plementary lattice L \ LA and SN denotes the symmetrizing
operator for N particles.

Theorem 2, particularly the form (B2) of the maximizer
state, shows that a locally (i.e. within LA) maximal possi-
ble occupation number requires that the mode-reduced den-
sity operator ρB of the complementary system LB ≡ L \ LA
is pure, i.e. its entanglement entropy is minimal (zero). This
suggests that the entanglement entropy of the complementary
system is reciprocally related to the largest occupation number
within LA.
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[25] B. Tóth, “Phase transitions in an interacting bose system. an
application of the theory of Ventsel’ and Freidlin,” J. Stat. Phys.
61, 749–764 (1990).

[26] O. Penrose, “Bose-Einstein condensation in an exactly solu-
ble system of interacting particles,” J. Stat. Phys. 63, 761–781
(1991).

[27] M. W. Kirson, “Bose-Einstein condensation in an exactly solv-
able model for strongly interacting bosons,” J. Phys. A: Math.
Gen. 33, 731–740 (2000).

[28] J.-B. Bru and T. C. Dorlas, “Exact solution of the infinite-range-

hopping Bose-Hubbard model,” J. Stat. Phys. 113, 177–196
(2003).
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