

String Amplitudes for the LHC in D-brane Compactifications

ΠП

LMU

+ËS+

Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

Count the number of consistent string vacua >

Vast landscape with $N_{sol} = 10^{500-1500}$ vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Count the number of consistent string vacua >

Vast landscape with $N_{sol} = 10^{500-1500}$ vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Two strategies to find something interesting:

Count the number of consistent string vacua >

Vast landscape with $N_{sol} = 10^{500-1500}$ vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

 Two strategies to find something interesting:
 Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics.

Count the number of consistent string vacua >

Vast landscape with $N_{sol} = 10^{500-1500}$ vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Two strategies to find something interesting:
Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics.

 Do not look randomly - look for green (promising) spots in the landscape model building, bottom up approach.

Anthropic principle?

Our universe is not special!

(Susskind, 2003; see also Schellekens, arXiv:0807.3249)

Observed parameters take their observed values for the simple reason that they allow for intelligent life.

• Fine structure and strong coupling constants: nucleo-synthesis

Gravity:

• Fine tuning of cosmological constant: (Weinberg, 1987) $\Lambda/M_{\text{Planck}}^4 \simeq 10^{-120}$

 \Rightarrow Need at least 10^{120} vacua!

• Ehrenfest: number of spatial dimensions

Multiverse picture: (Linde, 1986)

Transition amplitudes between different vacua (wave function of the universe): (Hartle, Hawking, 1983)

Multiverse picture: (Linde, 1986)

Transition amplitudes between different vacua (wave function of the universe): (Hartle, Hawking, 1983)

Multiverse picture: (Linde, 1986)

Transition amplitudes between different vacua (wave function of the universe): (Hartle, Hawking, 1983)

General feature of string theory:

Geometrization of particles and their interactions!

General feature of string theory: Geometrization of particles and their interactions!

Dictionary:

Juarks

General feature of string theory: Geometrization of particles and their interactions!

Dictionary:

General feature of string theory: Geometrization of particles and their interactions!

Strategy for string phenomenology:

Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem):

- What is the likelihood for vacua with the SM-like properties?
- What are their generic, model independent features?
- Can we make model independent predictions beyond the SM?
- Can we test these predictions in experiments (LHC)?

Bottum-up approach has to meet top-down approach!

Outline

- Intersecting D-brane models
- Mass scales in D-brane models
- Stringy amplitudes for the LHC

(The LHC string hunter's companion)

II) (Intersecting) D-brane models:

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Alternative constructions: heterotic strings

(Braun, He, Ovrut, Pantev; Bouchard, Donagi; Buchmüller, Hamaguchi, Lebedev, Nilles, Ramos-Sanchez, Ratz, Vaudrevange; Groot Nibbelink, Held, Ruehle, Trapletti, Vaudrevange; Faraggi, Kounnas, Rizos)

F-theory (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt, ...)

Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Features:

- Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes.
- Chiral fermions are open strings on the intersection locus of two D-branes: $N_F = I_{ab} \equiv \#(\pi_a \cap \pi_b) \equiv \pi_a \circ \pi_b$

Perturbative type II orientifolds contain:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/0610327)

• Closed string 6-dimensional background geometry:

-Torus, orbifold, Calabi-Yau space, generalized spaces with torsion.

- Space-time filling D(3+p)-branes wrapped around internal p-cycles:
 - Open string matter fields.
- Strong consistency conditions:
 - tadpole cancellation with orientifold planes.

D6 wrapped on 3-cycles π_a , intersect at angles θ_{ab}

Tadpole condition:

$$\sum_{a} N_a \pi_a = \pi_{O6}$$

D6 wrapped on 3-cycles π_a , intersect at angles θ_{ab}

Tadpole condition:

$$\sum_{a} N_a \pi_a = \pi_{O6}$$

(Ibanez, Marchesano, Rabadan, hep-th/0105155; Blumenhagen, Körs, Lüst, Ott, hep-th/0107138)

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem): Look for solutions of a set of diophantic equations:

Z6'-orientifold: (Gmeiner, Honecker, arXiv:0806.3039)

Millions of standard models!

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

How many orientifold models exist which come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand; related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/0605226; Douglas, Taylor, hep-th 0606109; Dienes, Lennek, hep-th/0610319)

Example: $\mathcal{M}_6 = T^6/(Z_N \times Z_M)$ IIA orientifold: Systematic computer search (NP complete problem):

Look for solutions of a set of diophantic equations:

Outline

- Intersecting D-brane models
- Mass scales in D-brane models
- Stringy amplitudes for the LHC
 - (The LHC string hunter's companion)

There are 3 basic mass scales in D-brane compactifications:

There are 3 basic mass scales in D-brane compactifications:

String scale: (1): $M_s = \frac{1}{\sqrt{\alpha'}}$

There are 3 basic mass scales in D-brane compactifications:

String scale: (1): $M_s = \frac{1}{\sqrt{\alpha'}}$ Compactification scale: (2): $M_6 = \frac{1}{V_6^{1/6}}$

There are 3 basic mass scales in D-brane compactifications:

String scale: (1): $M_s = \frac{1}{\sqrt{\alpha'}}$ Compactification scale: (2): $M_6 = \frac{1}{V_6^{1/6}}$

Scale of wrapped D(p+3)-branes (e.g. IIB: p=0,4), (IIA: p=3):

$$\begin{array}{ll} (3): & M_p^{\parallel} = \frac{1}{(V_p^{\parallel})^{1/p}}, & (3'): & M_{6-p}^{\perp} = \frac{1}{(V_{6-p}^{\perp})^{1/(6-p)}} \\ & & V_6 = V_p^{\parallel} V_{6-p}^{\perp} \end{array}$$

There are 2 basic 4D observables:

There are 2 basic 4D observables: Strength of 4D gravitational interactions: $(A): M_{Planck}^2 \simeq M_s^8 V_6 \simeq 10^{19} \text{ GeV}$

There are 2 basic 4D observables: Strength of 4D gravitational interactions: $(A): M_{\text{Planck}}^2 \simeq M_s^8 V_6 \simeq 10^{19} \text{ GeV}$ Strength of 4D gauge interactions: $(B): \quad g_{Dp}^{-2} \simeq M_s^p V_p^{\parallel} \simeq \mathcal{O}(1)$ $\implies (V_n^{\parallel})^{-1/p} \simeq M_s$
There are 2 basic 4D observables: Strength of 4D gravitational interactions: $(A): \quad M_{\text{Planck}}^2 \simeq M_s^8 V_6 \simeq 10^{19} \text{ GeV}$ Strength of 4D gauge interactions: $(B): \quad g_{Dp}^{-2} \simeq M_s^p V_p^{\parallel} \simeq \mathcal{O}(1)$ $\implies (V_n^{\parallel})^{-1/p} \simeq M_s$ (A) and (B): leave one free parameter.

 M_s is a free parameter in D-brane compactifications !

Dublin 6. April 2009

There are 4 natural scenarios for the string scale:

There are 4 natural scenarios for the string scale:

(o) Planck scale scenario:

 M_s is the gravitational 4D Planck scale

$$M_s \equiv M_{\text{Planck}} \simeq 10^{19} \text{ GeV}$$

Gauge coupling unification at the Planck scales needs further effects (string threshold corrections, ...) Alternatively relate the string scale to particles physics mass scales.

(i) GUT scale scenario:

 $M_s\,$ is the 4D scale of gauge coupling unification

$$M_s \equiv M_{GUT} \simeq 10^{16} \text{ GeV}$$
$$M_{GUT} = M_{SM} \exp\left(\frac{g_{Dp}^{-2}(M_{SM}) - g_{Dp}^{-2}(M_{GUT})}{b_p}\right)$$

Recent GUT string model building in F-theory and IIB orientifolds: (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt; Blumenhagen, Braun, Grimm, Weigand; Andreas, Curio)

- D7-branes wrapped on del Pezzo surfaces
- GUT gauge group is broken by $U(1)_Y$ flux

Dublin 6. April 2009

(ii) SUSY breaking scenario:

 M_s is the intermediate 4D scale of supersymmetry breaking (Balasubramanian, Conlon, Quevedo, Suruliz, ...)

$$M_s \equiv M_{SUSY} \simeq 10^{11} \text{ GeV}$$

Gravity mediation:

$$M_{SUSY} \sim \sqrt{M_{SM}M_{Planck}}$$

(No natural gauge coupling unification!)

(iii) Low string scale scenario: (Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

M_s is the Standard Model (TeV) scale:

$$M_s \equiv M_{SM} \simeq 10^3 \text{ GeV}$$

(No natural gauge coupling unification!)

(iii) Low string scale scenario: (Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

M_s is the Standard Model (TeV) scale:

$$M_s \equiv M_{SM} \simeq 10^3 \text{ GeV}$$

(No natural gauge coupling unification!) SUMMARY:

Table 1: The three different mass scales in D-brane models

	$M_s \; ({\rm GeV})$	L_s (m)	$M_6 = V_6^{-1/6} (\text{GeV})$	$V_6^{1/6}$ (m)	$M_2^{\perp} = (V_2^{\perp})^{-1/2} \; (\text{GeV})$	$(V_2^{\perp})^{1/2}$ (m)
(0)	10^{19}	10^{-35}	10^{19}	10^{-35}	10^{19}	10^{-35}
(i)	10^{16}	10^{-32}	10^{15}	10^{-31}	10^{13}	10^{-29}
(ii)	10^{11}	10^{-27}	10^{6-7}	$10^{-(22-23)}$	10^{3}	10^{-19}
(iii)	10^{3}	10^{-19}	$10^{-14/6}$	10^{-14}	10^{-13}	10^{-3}

Dimensionless volume in string units:

$$V_6' = V_6 M_s^6 = \frac{M_{\text{Planck}}^2}{M_s^2} = 1,10^6,10^{16},10^{32}$$

Dublin 6. April 2009

There are 3 generic type of particles:

There are 3 generic type of particles: (i) Stringy Regge excitations: $M_{\text{Regge}} = M_s = \frac{M_{\text{Planck}}}{\sqrt{V'_6}}$

Open string excitations: completely universal (model independent), carry SM gauge quantum numbers

(ii) Overall volume modulus:

 $M_T = \frac{M_{\text{Planck}}}{(V_6')^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV}$

Closed string, model independent, neutral under the SM, interacts only gravitationally

Problem: the very light mass causes a fifth force. Would rule out TeV string scale !

(ii) Overall volume modulus:

 $M_T = \frac{M_{\text{Planck}}}{(V_6')^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV}$ Closed string, model independent, neutral under the SM, interacts only gravitationally Problem: the very light mass causes a fifth force. Would rule out TeV string scale !

(ii) Overall volume modulus:

 $M_T = \frac{M_{\text{Planck}}}{(V'_6)^{3/2}} = 10^{19}, 10^{10}, 10^{-5}, 10^{-29} \text{ GeV}$ Closed string, model independent, neutral under the SM, interacts only gravitationally Problem: the very light mass causes a fifth force. Would rule out TeV string scale !

But one expects a mass shift by radiative corrections:

$$\Delta M_T \simeq \frac{\langle T^{\mu}_{\mu} T^{\mu}_{\mu} \rangle}{M_{\text{Planck}}^2} \simeq \frac{M_s^4}{M_{\text{Planck}}^2} \simeq 10^{-13} \text{ GeV}$$

Dublin 6. April 2009

(iii) D-brane cycle Kaluza Klein excitations:

$$M_{KK}^{\parallel} = \frac{1}{(V_p^{\parallel})^{1/p}} \simeq M_s = \frac{M_{\text{Planck}}}{(V_6')^{1/2}}$$

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers

(iii) D-brane cycle Kaluza Klein excitations:

$$M_{KK}^{\parallel} = \frac{1}{(V_p^{\parallel})^{1/p}} \simeq M_s = \frac{M_{\text{Planck}}}{(V_6')^{1/2}}$$

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers

SUMMARY:

The string Regge excitations (i) and the D-brane cycle KK modes (iii) are charged under the SM and have mass of order M_s is can they be seen at LHC ?!

Type IIB orientifolds: Realization of low string scale compatifications on "Swiss Cheese" Manifolds:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn;

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

Moduli potential:

Kähler potential: $K = K_{cs} - 2\log\left(V_6 + \frac{\xi}{2g_s^{\frac{3}{2}}}\right)$ (Becker, Becker, Haack, Louis)Superpotential: $W = W_{cs} + \sum A_i \exp(-a_i t_i)$ Moduli stabilization>Minima: Large hierarchical scales with $V_6 M_s^6 = 10^{16}, 10^{32}$

Type IIB orientifolds: Realization of low string scale compatifications on "Swiss Cheese" Manifolds:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn;

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

2 requirements:

- Negative Euler number.

- SM lives on D7-branes around small cycles of the CY. One needs at least one blow-up mode (resolves point like singularity).

Moduli potential:

Kähler potential: $K = K_{cs} - 2\log\left(V_6 + \frac{\xi}{2g_s^{\frac{3}{2}}}\right)$ (Becker, Becker, Haack, Louis)Superpotential: $W = W_{cs} + \sum A_i \exp(-a_i t_i)$ Moduli stabilization>Minima: Large hierarchical scales with $V_6 M_s^6 = 10^{16}, 10^{32}$

Outline

- Intersecting D-brane models
- Mass scales in D-brane models
 - Stringy amplitudes for the LHC

(The LHC string hunter's companion)

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333; L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arXiv:0808.0497 [hep-ph]; L. Anchordoqui, H. Goldberg, D. Härtl, D. Lüst, S. Nawata, O. Schlotterer, S. Stieberger, T. Taylor, to appear)

III) The LHC String Hunter's Companion:

III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM)

III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM) New massive particles at string scale M_s : III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM)
New massive particles at string scale M_s :
Massive extra (anomalous) Z' U(1) gauge bosons

> (also kinetic mixing of Z' with photon and milli-charged particles)

(Abel, Goodsell, Jäckel, Khoze, Ringwald, arXiv: 0803.1449) III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM)
New massive particles at string scale M_s :
Massive extra (anomalous) Z' U(1) gauge bosons

(also kinetic mixing of Z' with photon and milli-charged particles) (Abel, Goodsell, Jäckel, Khoze, Ringwald, arXiv: 0803.1449)

- Massive black holes (for strong string coupling)

III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM) New massive particles at string scale M_s : - Massive extra (anomalous) Z' U(1) gauge bosons

> (also kinetic mixing of Z' with photon and milli-charged particles) (Abel, Goodsell, Jäckel, Khoze, Ringwald, arXiv: 0803.1449)

- Massive black holes (for strong string coupling)
- Regge excitations of higher spin

III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM) New massive particles at string scale M_s : - Massive extra (anomalous) Z' U(1) gauge bosons

> (also kinetic mixing of Z' with photon and milli-charged particles) (Abel, Goodsell, Jäckel, Khoze, Ringwald, arXiv: 0803.1449)

- Massive black holes (for strong string coupling)
- Regge excitations of higher spin
- Kaluza Klein (KK) (and winding) modes

III) The LHC String Hunter's Companion: Test of D-brane models at the LHC: (New stringy physics of beyond the SM)
New massive particles at string scale M_s :
Massive extra (anomalous) Z' U(1) gauge bosons

> (also kinetic mixing of Z' with photon and milli-charged particles) (Abel, Goodsell, Jäckel, Khoze, Ringwald, arXiv: 0803.1449)

- Massive black holes (for strong string coupling)
- Regge excitations of higher spin
- Kaluza Klein (KK) (and winding) modes

One has to compute the parton model cross sections of SM fields into new stringy states !

Dublin 6. April 2009

Parton model cross sections of SM-fields: **Disk amplitude among n external SM fields** $(q, l, g, \gamma, Z^0, W^{\pm})$: n = 4: $\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$

Parton model cross sections of SM-fields: Disk amplitude among n external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$: n = 4: $\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$

These amplitudes are dominated by the following poles:

Parton model cross sections of SM-fields:

Disk amplitude among n external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

 $n = 4 : \mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$

These amplitudes are dominated by the following poles:

• Exchange of SM fields

Parton model cross sections of SM-fields:

Disk amplitude among n external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

 $n = 4 : \mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$

These amplitudes are dominated by the following poles:

• Exchange of SM fields

 Exchange of string Regge resonances (Veneziano like ampl.) ⇒ new contact interactions:

Parton model cross sections of SM-fields:

Disk amplitude among n external SM fields $(q, l, g, \gamma, Z^0, W^{\pm})$:

 $n = 4 : \mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{disk}$

These amplitudes are dominated by the following poles:

• Exchange of SM fields

 Exchange of string Regge resonances (Veneziano like ampl.) ⇒ new contact interactions:

• Exchange of KK and winding modes (model dependent)

The string scattering amplitudes exhibit some interesting properties:

- Interesting mathematical structure
- They go beyond the N=4 Yang-Mills amplitudes:

(i) The contain quarks & leptons in fundamental repr. Quark, lepton vertex operators:

 $V_{q,l}(z,u,k) = u^{\alpha} S_{\alpha}(z) \Xi^{a \cap b}(z) e^{-\phi(z)/2} e^{ik \cdot X(z)}$

Fermions: boundary changing (twist) operators!

(ii) They contain stringy corrections.

Striking relation between quark and gluon amplitudes: (i) Four point scattering amplitudes (2 jet events): Field theory factors: $\mathcal{M}_{\rm YM}^{(4)} = \frac{4g_{\rm YM}^2 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$ 4 gluons: (Stieberger, Taylor) $\langle ij \rangle = (\lambda_i)^{\alpha} (\lambda_j)_{\alpha}$ a $\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+)_{\alpha' \to 0} \to \mathcal{M}_{\rm YM}^{(4)}, \quad (V^{(4)} = 1 + \zeta(2)\mathcal{O}({\alpha'}^2))$ $\mathcal{N}_{\rm YM}^{(4)} = \frac{4g_{\rm YM}^2 \langle 14 \rangle \langle 13 \rangle^3}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$ 2 gluons, 2 quarks: (Lüst, Stieberger, Taylor) $\mathcal{A}(g_1^-, g_2^+, q_3^-, \overline{q}_4^+) = V^{(4)}(\alpha', k_i) \times \mathcal{N}_{v_M}^{(4)}$

(ii) Five point scattering amplitudes (3 jet events):

$$\mathcal{M}_{\rm YM}^{(5)} = \frac{4g_{\rm YM}^3 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle 51 \rangle}$$

 $\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+) = \left(V^{(5)}(\alpha', k_i) - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_i) \right) \times \mathcal{M}_{\mathsf{VM}}^{(5)}$

(D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress).

 $\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \overline{q}_5^+) = \left(V^{(5)}(\alpha', k_i) - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_i) \right) \times \mathcal{N}_{\rm VM}^{(5)}$

(ii) Five point scattering amplitudes (3 jet events):

$$\mathcal{M}_{\rm YM}^{(5)} = \frac{4g_{\rm YM}^3 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle 51 \rangle}$$

 $\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+)_{\alpha' \to 0} \to \mathcal{M}_{\mathrm{YM}}^{(5)}, \quad (V^{(5)} = 1 + \zeta(2)\mathcal{O}({\alpha'}^2), \ P^{(5)} = \zeta(2)\mathcal{O}({\alpha'}^2))$

(D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress).

 $\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \overline{q}_5^+) = \left(V^{(5)}(\alpha', k_i) - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_i) \right) \times \mathcal{N}_{\rm VM}^{(5)}$
(ii) Five point scattering amplitudes (3 jet events):

$$\mathcal{M}_{\rm YM}^{(5)} = \frac{4g_{\rm YM}^3 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle 51 \rangle}$$

 $\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+)_{\alpha' \to 0} \to \mathcal{M}_{\mathrm{YM}}^{(5)}, \quad \left(V^{(5)} = 1 + \zeta(2)\mathcal{O}({\alpha'}^2), \ P^{(5)} = \zeta(2)\mathcal{O}({\alpha'}^2)\right)$

S. Stieberger, T. Taylor, work in progress).

 $\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \overline{q}_5^+)_{\alpha' \to 0} \to \mathcal{N}_{\mathrm{YM}}^{(5)}$

The two kinds of amplitudes are universal: the same Regge states are exchanged:

 n-point tree amplitudes with 0 or 2 open string fermions (quarks, leptons) and n or n-2 gauge bosons (gluons) are completely model independent.

 \Rightarrow Information about the string Regge spectrum.

4 gauge boson amplitudes:

Only string Regge resonances are exchanged \Rightarrow

This amplitude is completely model independent! Examples:

 $\begin{aligned} |\mathcal{A}(gg \to gg)|^2 &= g_3^4 \Big(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2} \Big) \Big[\frac{9}{4} s^2 V_s^2(\alpha') - \frac{1}{3} (sV_s(\alpha'))^2 + (s \leftrightarrow t) + (s \leftrightarrow u) \Big] \\ \Rightarrow \quad \textbf{dijet events} \\ |\mathcal{A}(gg \to g\gamma(Z^0))|^2 &= g_3^4 \frac{5}{6} Q_A^2 \Big(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2} \Big) \left(sV_s(\alpha') + tV_t(\alpha') + uV_u(\alpha') \right)^2 \end{aligned}$

4 gauge boson amplitudes:

Only string Regge resonances are exchanged \Rightarrow

This amplitude is completely model independent! Examples:

 $\begin{aligned} \alpha' &\to 0 : \text{ agreement with SM!} \\ |\mathcal{A}(gg \to gg)|^2_{\alpha' \to 0} &\to \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2}\right) \frac{9}{4} \left(s^2 + t^2 + u^2\right) \\ |\mathcal{A}(gg \to \gamma(Z^0))|^2_{\alpha' \to 0} &\to 0 \end{aligned}$

2 gauge boson - two fermion amplitude:

Note: Cullen, Perelstein, Peskin (2000) considered: $e^+e^- \rightarrow \gamma\gamma$

Only string Regge resonances are exchanged \Rightarrow

These amplitudes are completely model independent!

$$\begin{aligned} |\mathcal{A}(qg \to qg)|^2 &= g_3^4 \frac{s^2 + u^2}{t^2} \bigg[V_s(\alpha') V_u(\alpha') - \frac{4}{9} \frac{1}{su} (sV_s(\alpha') + uV_u(\alpha'))^2 \bigg] \\ &\implies \text{dijet events} \\ |\mathcal{A}(qg \to q\gamma(Z^0))|^2 &= -\frac{1}{3} g_3^4 Q_A^2 \frac{s^2 + u^2}{sut^2} (sV_s(\alpha') + uV_u(\alpha'))^2 \end{aligned}$$

2 gauge boson - two fermion amplitude:

Note: Cullen, Perelstein, Peskin (2000) considered: $e^+e^-
ightarrow \gamma\gamma$

Only string Regge resonances are exchanged \Rightarrow These amplitudes are completely model independent!

 $\alpha' \rightarrow 0$: agreement with SM !

$$|\mathcal{A}(qg \to qg)|^2_{\alpha' \to 0} = g_3^4 \frac{s^2 + u^2}{t^2} \left[1 - \frac{4}{9} \frac{1}{su} (s+u)^2 \right]$$

 $|\mathcal{A}(qg \to q\gamma(Z^0))|^2_{\alpha' \to 0} = -\frac{1}{3}g_3^4 Q_A^2 \frac{s^2 + u^2}{sut^2}(s+u)^2$

Exchange of Regge, KK and winding resonances. These amplitudes are more model dependent and test the internal CY geometry. Constrained by FCNC's and/or proton decay. (Klebanov, Witten, hep-th/0304079; Abel, Lebedev, Santiago, hep-th/0312157) E.g. $|\mathcal{A}(qq \to qq)|^{2} = \frac{2}{9} \frac{1}{t^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{cc}(\alpha') \right)^{2} + \left(uG_{ts}^{bc}(\alpha') \right)^{2} + \left(uG_{ts}^{cb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{ut}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bc}(\alpha') \right)^{2} + \left(sF_{tu}^{bc}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bc}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bc}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bc}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \right] + \frac{2}{9} \frac{1}{u^{2}} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left(sF_{tu}^{bb}(\alpha') \right)^{2} \left[\left(sF_{tu}^{bb}(\alpha') \right)^{2} + \left$ $+ \left(sF_{ut}^{cc}(\alpha')\right)^{2} + \left(tG_{us}^{bc}(\alpha')\right)^{2} + \left(tG_{us}^{cb}(\alpha')\right)^{2}\right] - \frac{4}{27}\frac{s^{2}}{tu}F_{tu}^{bb}(\alpha')F_{ut}^{bb}(\alpha') + F_{tu}^{cc}(\alpha')F_{ut}^{cc}(\alpha')\right)$

depend on internal geometry

Exchange of Regge, KK and winding resonances. These amplitudes are more model dependent and test the internal CY geometry. Constrained by FCNC's and/or proton decay. (Klebanov, Witten, hep-th/0304079; Abel, Lebedev, Santiago, hep-th/0312157) E.g. $\alpha' \rightarrow 0$: agreement with SM !

$$|\mathcal{A}(qq \to qq)|^2_{\alpha' \to 0} \to \frac{4}{9} \left[\frac{s^2 + u^2}{t^2} \right] + \frac{4}{9} \left[\frac{s^2 + t^2}{u^2} \right] - \frac{8}{27} \frac{s^2}{tu}$$

These stringy corrections can be seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, Taylor, arXiv:0808.0497[hep-ph])

$$M_{\rm Regge} = 2 \,\,{\rm TeV}$$

 $\Gamma_{\rm Regge} = 15-150~{\rm GeV}$

Widths can be computed in a model independent way !

(Anchordoqui, Goldberg, Taylor, arXiv:0806.3420)

- KK modes are seen in scattering processes with more than 2 fermions.
 - \Rightarrow Information about the internal geometry.

KK modes are exchanged in t- and u-channel processes and exhibit an interesting angular distribution.

(L.Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, paper in preparation)

Dublin 6. April 2009

• There exists many ISB models with SM like spectra without chiral exotics.

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!)
 String tree level, 4-point processes with 2 or 4 gluons
 observable at LHC ?? - M_{string}??

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!)
 String tree level, 4-point processes with 2 or 4 gluons
 • observable at LHC ?? - M_{string}??

Computations done at weak string coupling ! Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\text{string}}}{g_{\text{string}}}$

- There exists many ISB models with SM like spectra without chiral exotics.
- One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!)
 String tree level, 4-point processes with 2 or 4 gluons
 observable at LHC ?? - M_{string}??

Computations done at weak string coupling ! Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\text{string}}}{g_{\text{string}}}$

Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: $M_{b.h.}$

• There exists many ISB models with SM like spectra without chiral exotics

Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: $M_{b.h.}$

Any null-vector $k_i^2=0~$ can be written in terms of two spinors $(\lambda, \dot{\lambda})$

Momentum
$$k_i^{\mu} \longrightarrow$$
 Dirac spinor $\begin{pmatrix} u_+(k_i)_{\alpha} \\ u_-(k_i)_{\dot{\alpha}} \end{pmatrix} \equiv \begin{pmatrix} (\lambda_i)_{\alpha} \\ (\tilde{\lambda}_i)_{\dot{\alpha}} \end{pmatrix}$

u(k) = Dirac spinor, helicity states $u_{\pm}(k) = (1 \pm \gamma_5) u(k)$

with choice
$$u_{\pm}(k) = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{k^{\pm}} \\ \sqrt{k^{\pm}} e^{i\varphi} \\ \sqrt{k^{\pm}} \\ \sqrt{k^{\pm}} e^{i\varphi} \end{pmatrix}$$
, $u_{\pm}(k) = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{k^{\pm}} e^{-i\varphi} \\ -\sqrt{k^{\pm}} \\ \sqrt{k^{\pm}} e^{-i\varphi} \\ \sqrt{k^{\pm}} \end{pmatrix}$
 $e^{\pm i\varphi} = \frac{k^{1} \pm ik^{2}}{\sqrt{k^{\pm}k^{\pm}}}$
Define $|i^{\pm}\rangle = u_{\pm}(k_{i})$, $\langle i^{\pm}| = \overline{u_{\pm}(k_{i})}$

Spinor products:

$$\langle ij \rangle := \langle i^- | j^+ \rangle = \overline{u_-(k_i)} \ u_+(k_j) \equiv \epsilon^{\alpha\beta} \ (\lambda_i)_\alpha \ (\lambda_j)_\beta = \sqrt{k_i k_j} \ e^{i\phi_{ij}} ,$$
$$[ij] := \langle i^+ | j^- \rangle = \overline{u_+(k_i)} \ u_-(k_j) \equiv \epsilon^{\dot{\alpha}\dot{\beta}} \ (\tilde{\lambda}_i)_{\dot{\alpha}} \ (\tilde{\lambda}_j)_{\dot{\beta}} = -\sqrt{k_i k_j} \ e^{-i\phi_{ij}}$$

$$\langle ij\rangle[ji] = -k_ik_j$$

Dublin 6. April 2009