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Abstract

This first part of two talks aims to introduce T-Duality and to highlight some
problems.
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1 Introduction

Dualities are among the most interesting features of string theory as they reflect a rich
symmetry structure non-existent in point-particle theories. T-Duality or Target-Space
Duality can be considered a geometric duality identifying different string backgrounds
as providing identical theories. They have led to the discovery of D-branes, of mir-
ror symmetry and can be used as solution generator. The latter application has also
revealed the existence of so-called non-geometric backgrounds which exceed the estab-
lished notions of geometry.

The plan of the two talks is to provide an introduction to T-duality. But instead of
discussing it as a symmetry of the mass spectrum of the string – which is restricted to
cases where we can actually solve the string EOM’s explicitly – we will provide. The
first talk will cover methods for determining T-duals and the second talk will cover
some applications.

A very good general (but a little out-dated) reference is the review by [1].

2 Target-space dualities

The most conventional method for obtaining duality goes back to [2, 3] and has been
clarified and extended by [4]. It relies on gauging isometries of the two-dimensional
sigma model.

To this end, let Σ be the two-dimensional worldsheet and M the d-dimensional
target-space with an embedding X : Σ →֒ M . Having local coordinates {xa} on M ,
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the pulled-back coordinates are denoted X∗xa ≡ Xa. Moreover, Σ is assumed to be
equipped with coordinates {τ, σ}, the metric h = diag(−1, 1) (conformal gauge) and
the volume element dτ∧dσ, such that the Hodge-star is given by α∧⋆β = h(α, β)dτ∧dσ.
The target-space is equipped with the background (G,B) consisting of a metric and a
two-form field.1 Then the string sigma-model reads

S(X;G,B) =
1

4πα′

∫

Σ

[
G(X)ab dX

a ∧ ⋆dXb + B(X)ab dX
a ∧ dXb

︸ ︷︷ ︸
=X∗B

]
. (2.1)

Being a quantum correction and breaking classical Weyl invariance, the dilaton will be
discussed separately later. It is worth mentioning that

• the equations of motion for S can be considered as two-dimensional geodesic
equation on a Riemann-cartan space:

d ⋆ dXa + Γa
bc dX

b ∧ ⋆dXc = 1
2
GamHmbc dX

b ∧ dXc (2.2)

with Γa
bc the coefficients of the Levi-Civita connection on TM and H = dB,

• and that S is subject to the two constraints

Gab(∂τX
a∂τX

b + ∂σX
a∂σX

b) = 0 ,

Gab ∂τX
a∂σX

b = 0 .
(2.3)

As to spacetime symmetries, S is invariant under B-field gauge transformations only
if ∂Σ = ∅. Otherwise, appropriately transforming U(1)-gauge fields have to be in-
cluded at the endpoints of the string in order to restore gauge invariance, i.e. SA =
1

4πα′

∫
∂Σ

X∗A with δgaugeA = −ω for δgaugeB = dω. For spacetime diffeomorphisms
we will be more explicit: Infinitesimally, they are generated by vector fields ki (with
i ∈ {1, . . . , n} a label) via

Xa → Xa + ǫi ka
i . (2.4)

Varying the action with respect to these diffeomorphisms S → S + δS gives

δS(X;G,B) =
ǫi

4πα′

∫

Σ

[
(LkiG)ab dX

a ∧ ⋆dXb + (LkiB)ab dX
a ∧ dXb

]
(2.5)

with Lki the Lie-derivative with respect to ki. Thus spacetime diffeomorphism invari-
ance involves

• the vanishing of δS. For ∂Σ = ∅ this means

LkiG = 0

LkiB = dνi ⇐⇒ ιkiH = −d(ιkiB − νi) ≡ −dξi
(2.6)

1From the point of view of Σ, G and B are the couplings of the bosonic fields Xa.
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with νi a one-form. For open strings this has to be supplemented by LkiA =
dfi − νi for fi ∈ C∞(M); since it can be implemented straight-forwardly, it will
be neglected in the following.

• The associated conserved current is given by

Ji = (ιkiG)a ⋆dXa + (ιkIB − νi)a dX
a = ⋆ [X∗(ιkiG)] +X∗ξi . (2.7)

The EOM can be used to show conservation, i.e. dJi = 0.

• We assume multiple non-abelian isometries I with Lie algebra

i : 〈{ki}ni=1〉 with [ki, kj ] = fm
ij km . (2.8)

• Consistency with the Lie algebra i yields further conditions; we can evaluate

−fm
ij dξm = fm

ij ιkmH = ι[ki,kj ]H = [Lki , ιkj ]H = −Lkidξj . (2.9)

Since Lie and exterior derivative commute, the left-hand side of this equation
must be closed, i.e.

dfm
ij ∧ dξm = 0 =⇒ Lkiξj = fm

ij ξm (up to exact terms) ; (2.10)

For simplicity we assume constant structure coefficients in the following.

These isometries are global symmetries from the worldsheet point of view, provided
that the conditions above hold. For obtaining a dual sigma model, the idea is to start
with making this global symmetries local – they will be gauged (see [5, 6]).

2.1 The gauged sigma model

We now consider the local transformation Xa → Xa + ǫi(X)ka
i (X). The aim is to find

an action stemming from S which is invariant under it. Let us see what happens to
the action under this transformation. The basic ingredients are:

δdXa = ǫi dka
i + ka

i dǫ
i

δf(X) = ǫi ka
i ∂af

δki = ǫjLkjki = km fm
ni ǫ

n .

(2.11)

The last variation is a consequence of ki being a target-space vector field. Thus, the
difference to the considerations above is the appearance of dǫi-terms, which spoils the
invariance. For example, the kinetic term transforms as

δ
(
GabdX

a ∧ ⋆dXb
)
= ǫi(LkiG)abdX

a ∧ ⋆dXb

︸ ︷︷ ︸
=0by (2.6)

+2ka
i Gab dǫ

i ∧ ⋆dXb .
(2.12)
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As is known from basic QFT, the unwanted term can be cancelled by introducing an
appropriate gauge field

A = Ai ki ∈ Γ(T ∗M ⊗ i) with δA = [A, ǫ]− dǫ ; (2.13)

in components this means δAi = f i
mn A

mǫn − dǫi. Then the partial derivative is
extended the covariant derivative

DXa = dXa + ka
i A

i with δDXa = ǫi dka
i (2.14)

as desired. The appropriate inclusion of the gauge field follows the basic rule of thumb
“for every dǫi in the variation, add this terms with an Ai to the action” and is as
follows

• kinetic term: It can be treated via minimal coupling. By the last equation the
variation of the minimally coupled kinetic term becomes

δ
(
Gab DXa ∧ ⋆DXb

)
= ǫi(LkiG)abDXa ∧ ⋆DXb = 0 . (2.15)

• B-field term: Minimal coupling does in general not work since

δ
(
BabDXa ∧DXb

)
= ǫi(LkiB)abDXa ∧DXb

= ǫi(X) ∂[aνb]iDXa ∧DXb
(2.16)

is not a total derivative anymore. To gauge this term an annoying procedure of
adding terms which again produce new terms leading to more unwanted terms
has to be followed. It can be found in the papers of [5, 6]. In particular, the
consistency condition Lkiξj = fm

ijξm has to be true outside of cohomology (i.e.
no exact terms are allowed). Moreover, we encounter an anomaly c(ij) with
cij = ιkiξj.

After the lengthy procedure which also involves the inclusion of a new scalar field λi

we end up with

Sg(G,B,A; ξ, λ) =
1

4πα′

∫

Σ

[
Gab DXa ∧ ⋆DXb +Bab dX

a ∧ dXb

− 2
(
ξi + dλi

)
∧ Ai −

(
c[ij] + λmf

m
ij

)
Ai ∧ Aj

] (2.17)

with

• the transformation rules

δǫX
a = ǫi ka

i , δǫλi = c(ij) ǫ
j − fm

ni λm ǫn , δǫA
i = f i

mn A
m ǫn − dǫi ,
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• the total variation

δSg = − 1

4πα′

∫

Σ

ǫjc(ij) f
i
mnA

m ∧ An, (2.18)

which can be derived using the Jacobi identity for i, i.e. f l
[i|mf

m
|jk] = 0; thus,

at least for the abelian case further conditions are avoided,

• the new terms are of particularly nice form: we added −dλi∧Ai− 1
2
λmf

m
ijA

i∧Aj;
upon an integration by parts this gives λiF

i with

F = dA+ [A ∧ A] ∈ Γ(Λ2T ∗M × i) , (2.19)

i.e. the field strengths associated to A with λi Lagrange multipliers. However,
as we will see below, it is important for the cancellation of possible holonomies
to keep the Ai ∧ dλi-term.

2.2 Going back to the original action and global issues

The original action S is returned from Sg if we set A = 0; this, however, is not well-
defined since A is a gauge field and the right-hand side is gauge invariant. Thus we
need a procedure consistent with gauge transformations. The newly introduced scalar
field λ can be considered a Lagrange multiplyer and its EOM from Sg is

F = 0 ⇐⇒ dA = −[A ∧ A] . (2.20)

Locally, this can be solved by a pure gauge field

A = d ln g = g−1dg with g ∈ C∞(M)⊗ I; (2.21)

this makes sense as the logarithm – being the inverse of the exponential map – is a
map ln : I → i, i.e. it maps the group to its Lie algebra. This now allows for choosing
a gauge in which A = 0: a general gauge transformation acts as

A → A′ = h−1Ah+ h−1dh = h−1(g−1dg)h+ h−1dh; (2.22)

thus A′ = 0 for h = g−1. Therefore, in this gauge we locally obtain the original action.

The subtleties of the procedure lie in the global properties.2 For Σ simply-connected
(a two-sphere, i.e. string tree-level) there are no problems. However, if Σ has genus g
(i.e. string g-loop), there might be non-trivial monodromies or, in other words, non-
trivial holonomies of the gauge connection. We want to find a mechanism to rid the
gauge field of its holonomies. For simplicity of the formulas, we assume Σ to be a

2I find it hard do find a good reference. I think the canonical one is [7], but different aspects can
also be found in [4, 1, 8, 9, 10, 11] and for sure many more.
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torus, i.e. g = 1, and choose the cycles a, b to be the generators of its first homology.
Then Ai might have a holonomy

hi
a,b =

1√
α′

∮

a,b

A . (2.23)

This can be cared of by adding appropriate δ-functions

δ(hi
a)δ(h

i
b) ∼

∑

na,nb∈Z

e
i√
α′ (na

∮
a
A+nb

∮
b
A)

(2.24)

to the path integral. The addition of the delta functions is a task which we assign to
the newly introduced field λi and is the reason why we write the Lagrange-multiplier
term in this strange manner. Indeed, using Riemann’s bilinear identity we find

1

2πα′

∫

Σ

dλi ∧ Ai =
1

2πα′

(∮

a

dλi

∮

b

Ai −
∮

b

dλi

∮

a

Ai

)
; (2.25)

thus, if the Lagrange multipliers are multi-valued with

∮

a

dλi = ℓs nb and

∮

b

dλi = −ℓs na (2.26)

and ℓs = 2π
√
α′ the string length, we automatically get the desired terms in the

path integral; the summation is contained in the measure. However, recall that the
Lagrange multipliers transform under gauge transformations δλi = c(ij)ǫ

j − fm
inλmǫ

n.
In the absence of the anomaly c(ij) this means that they transform in the adjoint
representation λ → g−1λg. Therefore, λ is gauge-invariant for abelian isometries and
can without problems be equipped with the suitable periodicities. However, for non-
abelian isometries the gauge-dependence is in general incompatible with a particular
choice of periodicities.

The upshot of this short discussion is that non-abelian isometries on non-simply
connected worldsheets spoil the way back to the original action. However, the “way
back” is essential for obtaining dual theories as it is necessary for their equivalence.
Therefore we assume the isometries to be abelian in the following.

2.3 The abelian-dual theory: the Buscher rules

Since we have already restricted ourselves to abelian isometries, we can very well
restrict further to a single isometry. We also choose adapted coordinates in which the
single generator is k = ∂/∂X0 and fix two gauges:

• Since we have now a single abelian gauge field A, it can be gauge-fixed to A−dX0.
In particular, this gives DX0 = A and DXa = dXa for a 6= 0.
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• We have the condition L∂/∂X0B = dν for the Killing vector ∂/∂X0 to generate an
isometry. Gauge transformations B → B + dω therefore imply transformations
ν → ν + L∂/∂X0ω. Thus we can find a gauge with ν = 0 (the equation ν +
L∂/∂X0ω = 0 for ω is an ODE). This implies ξ = B0adX

a.

Taking these gauges into account, the gauged sigma model simplifies to

Sg =
1

4πα′

∫

Σ

[
Gab dX

a ∧ ⋆dXb +Bab dX
a ∧ dXb + 2 dλ ∧ dX0

G00A ∧ ⋆A+ 2G0a A ∧ ⋆dXa + 2B0a A ∧ dXa +−2 dλ ∧ A
] (2.27)

with a, b 6= 0 and G as well as B independent of X0 by (2.6). Apart from integrating
out the periodic Lagrange multiplier λ which gives back the initial theory, we can also
integrate-out the gauge field. Its EOM is

⋆A = − 1

G00

(G0a ⋆dX
a + B0adX

a + dλ) . (2.28)

Plugging this back into the action above gives – upon interpreting dλ = −dX̃0 as new
coordinate – the sigma model action S(X̃0, Xa; g, b) with the new background given
by

g00 =
1

G00

, g0a = −B0a

G00

, gab = Gab −
Ga0G0b + Ba0B0b

G00

b0a = −G0a

G00

, bab = bab −
Ga0B0b + Ba0G0a

G00

(2.29)

for a, b 6= 0. These are the Buscher rules. Some comments:

• The action above contains the term dλ∧dX0. However, in order to exchange X0

with X̃0 properly, this term has to vanish in the path integral. Keep in mind that
due to the multi-valuedness of λ this is not a total derivative. Using Riemann’s
bilinear identity and (2.26) we find the contribution

exp

(
i

2πα′

∫

Σ

dλ ∧ dX0

)
= exp

(
inb√
α′

∮

b

dX0 − ina√
α′

∮

b

dX0

)
(2.30)

to the path integral. It vanishes, if we obtain multiples of 2π; thus we have to
assure that

∮

γ

dX0 ∈ ℓsZ (2.31)

for γ any non-trivial cycle.
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• The latter consistency condition shows that the initial coordinate X0 as well as
the new coordinate X̃0 = λ have to contain winding as multiple of the string
length. Thus both X0 and X̃0 can be interpreted as coordinates on a circle-
direction of the target-space: we have exchanged a circle of unit radius with
another circle of unit radius. If we would have started with a circle of radius
R, the winding of X0 would be integer multiples of Rℓs. Then, in order for the
cancellation of the holonomies to still work out, λ = X̃0 would require winding
as multiples of 1

R
ℓs: duality inverts the radius of the circle!

• More generally, the last argument indicates that abelian duality is restricted
to toroidally-compactified target spaces. In the approach followed here, this
conclusion is a consequence of a careful treatment of global obstructions.

• The new background is independent of X̃0 because the old one was independent
of X0. In general, one can show that abelian duality preserves the isometries – we
can go back the same way we arrived at the new action. If we would have ignored
the global issues discussed above and would have derived the non-abelian “dual”,
we would have observed the loss of some of the initial isometries and therefore
the possibility to go back to the initial model. This is another incarnation of the
global problems.

• In [4] it was shown that the abelian dual of a conformal (quantum) theory is
also conformal, i.e. abelian duality holds to all orders in α′. If also possible
holonomies are treated correctly, duality also holds to all orders in the string
coupling

2.4 The Dilaton

So far we have neglected the contribution of the Dilaton. The contribution to the
string sigma model is of higher order in α′ and therefore a quantum correction

Sdil =
1

4π

∫

Σ

φ(X)R(2) ⋆1 , (2.32)

where R(2) is the Ricci scalar on the worldsheet. This term breaks the classical Weyl
invariance of the theorie, but proves to be a valuable contribution in retaining Weyl
invariance in the quantum theory: the classical lack of Weyl invariance is compensated
by a one-loop contribution. This gives rise to the lowest-order string EOMs

0 = Rab + 2∇a∇bφ− 1
4
HamnHb

mn +O(α′) ,

0 = Gab ∇aφ∇bφ− 1
2
Gab ∇a∇bφ− 1

24
HabcH

abc +O(α′) ,

0 = 1
2
∇mHmab −∇mφHmab +O(α′) .

(2.33)

Now suppose we have a Ricci-flat background without B-field and dilaton. This cer-
tainly satisfies the string EOMs. However, if the metric is chosen suitably, T-duality
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can produce a B-field via the Buscher rules but the dual metric is still Ricci flat. Thus
the H-terms in the EOM have to be compensated by the introduction of a suitable
dilaton field.

The change of the dilaton can be derived by carefully integrating-out the gauge
field A in the path integral, which changes the measure [3]. However, a very simple
way to obtain the transformation of the dilaton is to demand invariance of the measure
factor:

√
| detG| e−2φ Buscher−−−−→

√
| det g| e−2φ̃ =

√
| detG||G00|−1 e−2φ̃ . (2.34)

The new factor is compensated by a shift of the dilaton

φ̃ = φ− 1
2
lnG00 . (2.35)

2.5 Topology changes by T-duality

The Busher rules show that if G00 is vanishing a some point, this point becomes a
singularity in the dual theory. The general statement is that a fixed point of the killing
vector are interchanged with singularities by duality.

A very simple example is given by spacetimes of the form M = R
2 × R

1,d−3 with
flat metric

ds2 = dr2 + r2 dφ2 + dx2 . (2.36)

Thus the plane is equipped with the euclidean metric in spherical coordinates r ∈
[0,∞), φ ∈ [0, 2π) and the dx2 is the flat Minkowski metric. The Ricci scalar of this
metric is R = 0 and ∂/∂φ is generates an isometry and has a fixed point at r = 0.
Thus we can perform T-duality along the angular direction and get

ds̃2 = dr2 + r−2 dφ̃2 + dx2 (2.37)

by the Buscher rules. Global considerations also restrict the dual coordinate φ̃ to be
periodic. This metric has Ricci scalar R̃ = −2r−2 and therefore a singularity at r = 0.
This is the most simple example of topology changes by T-duality.
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