
Avalanches

Kay Wiese

LPT-ENS, Paris
with Pierre Le Doussal, 

Alberto Rosso, Alain Middleton, 
Sébastien Moulinet, Etienne Rolley, 

Alexander Dobrinevski,  Andrei Fedorenko

Muenchen, 2.5.2012

1



Physical Realizations
Domain-walls in magnets, temperature T � 0

(‘‘random bond’’)  

defect

‘‘random field’’

x

u(x)

Contact line of liquid hydrogen, helium or water

x

 (  )u  x
Cr

1

Vortex-lattice/Bragg glass

u(x)

x

Charge Density wave

Cracks, earthquakes, directed polymer (KPZ), . . .
3

(Barkhausen noise)

cracks - earthquakes - fracture - contact-line wetting
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Contact line wetting
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• isobutanol on a randomly 
silanized silicon wafer

• hydrogen on disordered 
Cesium substrate
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what is avalanche-
size distribution ?
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The model 

formulas
u�w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)�w

Z(� ) :=
� �

0
dS p(S)

⇥
e�S�1

⇤

5

Model and Observables

x

Displacement field x ⌃ R �⌅ u(x) ⌃ R

Elastic energy: Hel =
1
2

� ddk
2⌅

|ũk|2 ⇥k +
�

x

m2

2
[u(x)�w]2

for contact angle ⇧ = 90⇥: ⇥k ⇤
⌥

k2 +⇤2�⇤
⇤�1 = m�2 kapillary length (instead of ⇥k = k2)

Disorder energy HDO =
�

ddxV (x,u(x))

with correlations V (x,u)V (x⇧,u⇧) = � d(x� x⇧)R(u�u⇧)

2
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Simple theory for zero temperature T = 0
Suppose R(u) is analytic. Then to all orders in perturbation theory:

⌥
[u(x)�u(0)]2

�
⇥�R⌅⌅(0)x4�d +O(T )

shift in dimension by two from thermal 2-point function⇤
[u(x)�u(0)]2

⌅
= T x2�d: dimensional reduction.

Experimentally wrong beyond Larkin length:

L

elastic energy Eel = cLd�2

disorder EDO = f̄
�L

r

⇥d/2

Eel = EDO ⇤ Lc =
⇧

c2

f̄ 2rd
⌃ 1

4�d

critical dimension is dc = 4
u dimensionless in dc = 4 ⇤ all powers of u relevant!

Need functional RG!
Old idea: Wegner, Houghton (1973)
for disordered systems: D.S. Fisher (1985)
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Functional renormalization group (FRG)Functional renormalization group (FRG)
(D. Fisher 1986)

H [u]
T

=
1

2T

n

⇥
�=1

⇤⇧

k
⇤k|ũ�

k |2 +
⇧

x
m2(u�(x)�w)2

⌅

� 1
2T 2

⇧

x

n

⇥
�,⇥=1

R
�
u�(x)�u⇥(x)

⇥

Functional renormalization group equation (FRG) for the disorder
correlator R(u) at 1-loop order:

�md
dm

R(u) = (⇤ �4⌅ )R(u)+⌅ uR⇥(u)+
1
2

R⇥⇥(u)2�R⇥⇥(u)R⇥⇥(0)

Solution for force-force correlator �R⇥⇥(u):

renormalization

uu

!R’’(u) !R’’(u)

Cusp: R⇥⇥⇥⇥(0) = � appears after finite RG-time (at Larkin-length)
3
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FRG at 2-loop order

⌅�R(u)= (��4⇤ )R(u)+⇤ uR⇤(u)+
1
2

R⇤⇤(u)2�R⇤⇤(u)R⇤⇤(0)

+
1
2

[R⇤⇤(u)�R⇤⇤(0)]R⇤⇤⇤(u)2 +⇥ 1
2

R⇤⇤⇤(0+)2R⇤⇤(u)

⇥ =�1 statics, ⇥ = 1 (depinning)

Universality classes
• periodic disorder

• random field disorder: �(u) =�R⇤⇤(u) short-ranged
statics: ⇤ = �

3 (exact), depinning ⇤ = �
3 (1+0.14331� + . . .)

• random bond: R(u) short-ranged
statics: ⇤ = 0.20829804� +0.006858�2, dynamics ⇥ RF

4
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Why is a cusp necessary?
. . . calculate effective action for single degree of freedom. . .
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formulas
u�w =
u

5

formulas
u�w = w
u

5

formulas
u�w = w
u

5

formulas
u�w = w
u

5

formulas
u�w = w
F(w)F(0) u

5

formulas
u�w = w
F(w)F(0) u
|w|

5

formulas
u�w = w
u

5

formulas
u�w = w
u

5

formulas
u�w = w
F(w)F(0) u
ˆ
|w|
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Renormalized Disorder Correlator in FRG

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

2

FRG - Legendre-transform ...  confirm this picture !

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 dx

0 =
�H [u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]dx =

1
Ld

⇤
F(x,uw(x)

⇥
dx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

uw(x)

2

Local minimum satisfies:

Center-of-mass

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 dx

0 =
�H [u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]dx =

1
Ld

⇤
F(x,uw(x)

⇥
dx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

2

fluctuates around 

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 dx

0 =
�H [u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]dx =

1
Ld

⇤
F(x,uw(x)

⇥
dx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

2

Thus naively

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 dx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]dx =

1
Ldm2

⇤
F(x,uw(x)

⇥
dx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

2

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]ddx =

1
Ldm2

⇤
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

2

H w[u] =
⇤ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇤
[uw(x)�w]ddx =

1
Ldm2

⇤
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

2
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Measuring the cusp = effective action

1

�(w � w�) = m4Ld [uw � w] [uw� � w�]

Δ = renormalized disorder correlator 

PLD+KW+A. Middleton

Δ’Δ
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Random Bond (short-range correlated potential), d = 1
⇥ = 0.208298� +0.006858�2: 0.625 (1 loop), 0.687 (2 loop), 2/3 (exact).
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Random Field Disorder
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Depinning in 1+1 dimensions
⇥ = �

3 +0.04777�2: 1.0 (1 loop), 1.2±0.2 (2 loop), 1.25 (numerics).
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Y
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2–loop dynamics
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RFm = 0.71, L = 512
RBm = 0.71, L = 512

FIG. 3: The difference between the normalized correlator Y (z) and
the 1-loop prediction Y1(z).

We have studied the behaviour of the critical force f c(m)
for the two classes of disorder. Because of (6), one has√

∆(0)m ∼ m2−ζ hence one obtains a parameter free linear

scaling shown in Fig.2. For large m the linear scaling does

not hold, while it holds for smaller m up to the point where

the correlation length becomes of the order of L (mL of order
10 again ??). Note that c1 < 0 as discussed below.
We now turn to the FP function determination. Since there

are two scales in∆(u) hence we write:

∆(u) = ∆(0)Y (u/uξ) (7)

where Y (0) = 1 and one determines uξ such that
∫

dzY (z) =
1 hence uξ =

∫
∆/∆(0). The function Y (z) is then fully uni-

versal and depends only on space dimension. We have deter-

mined the function Y (z) from our numerical data both for RF
and RB disorder. For small masses the two function are found

to coincide within statistical errors. We also observe a cusp,

i.e. Y ′(0) = −... (show Y (z) ??). The predictions from the
FRG is that Y (z) = Y1(z) + εY2(z) + O(ε2) with ε = 4− d.
The one loop function is the same as for the statics and given

by the solution of Y = Y1(z) with γz =
√

Y − 1 − ln Y

and γ =
∫ 1
0 dy

√
y − ln y − 1 ≈ 0.5482228893. Since the

measured Y (z) is numerically close to Y1(z), as was found
in the statics, we plot in Fig.3 the differential Y − Y1. The

overall shape of the difference function is very similar to the

one obtained for the RF statics in d = 3, 2, 0which was found
to exhibit only a weak dependence in d. However the over-
all amplitude is larger by a factor of order 1.25. This factor
between statics and dynamics is consistent with the two loop

prediction. We have plotted the function Y2(z) = d
dεY (z)|ε=0

which, as for the statics turns out to close to the numerical re-

sult **Alberto put the zero **

Examples of universal amplitudes are ∆ ′′(0+)cd/2,

∆(0)3/(
∫

∆)2cx or ∆′(0+)2/∆(0)cy, check exponents of c
give one loop predictions ** see what we do about this, Kay

check the powers of c and one loop predictions **

0
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0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆(w)/∆(0)

S

1–loop
RF
RB

FIG. 4: Collapse of the 3 points function for RF and RB disorder.

Simlations has been performed for systems of size L = 512 and
massm = 0.071. The line represents the 1–loop predtiction f(x) =
(1 − x)2

To investigate deeper the validity of FRG we measure the

third cumulant function, defined as:

m2p(w′ − u(w′) − (w − u(w)))3
c

= L−2dS(w′ − w)(8)

The lowest order prediction [19] is S(w) =
12
m2 ∆′(w)(∆(w) − ∆(0)). Numerically one finds the

correct sign and to check the scaling in a parameter-free way

we define S =
∫ w
0 S(w)/

∫ ∞
0 S(w) = F (∆(w)/∆(0)). The

function F (x) hereby defined is expected to be universal.
Indeed we find, as can be seen in Fig.4, that RB and RF give

result identical within statistical errors.

The problem of characterizing the universality of the distri-

bution of the finite size fluctuations of the critical force bear

some similarity with the problem of the finite size fluctuations

of the ground state energy in the statics. There, for the directed

polymer several ”universal” distributions were found depend-

ing on the procedure and the geometry. The Tracy-Widom

distribution (for various β) was found for fixed endpoint or
uniform KPZ field. On a cylinder the large deviation function

ln(eαF ) = L(κ1α − κ2G(κ3α)) where G(z) is universal.
For the critical force problem there are several procedures.

Here we study the mass. Another procedure is the cylinder. A

third one is the fixed center of mass studied with FRG but hard

to study numerically. For each procedure there are fully uni-

versal quantities (different a priori in each procedure). Fully

universal means independent of microscopic details, and of

the model. It usually requires fixing two scales one in the u
direction the other in the x direction. There are additional uni-
versal quantities (usually amplitudes) however which depend

of the microscopic details only through renormalized elastic

constant cR and require fixing only one scale.

Here one measures:

m2p(w − u(w))p
c

= L(1−p)dC(n)(0, ..0) (9)

with C(2)(0, 0) = ∆(0). Using the proper scaling

A. Rosso, P. Le Doussal, KW, PRB 75 (2007) 220201
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Experiments on contact line
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The renormalized force-force correlator 

hydrogen/cesium

20 40 60 80 100 120
w !Μm"

1

2

3

4

"#
$
'!Μm2"

1 2 3 4 5
z0.0

0.2

0.4

0.6

0.8

1.0

!
"
!w"

!
"
!0"

isobutanol/silicon

appearance of the 
cusp upon lowering 
of driving velocity

FRG

16



Avalanches

• avalanches appear in many systems: contact-lines, vortex 
lattices, domain walls, earthquakes, etc. 
• Self-Organized Criticality (SOC)
• Abelian Sandpile Model (ASM) is best-known example
• ASM is equivalent to:
• uniform spanning trees (UST)
• loop-erased random walks (LERW)

• Mean-Field (MF) treatment available (Galton process)
• conjecture by Middleton-Narayan that Charge-Density 
Waves (CDW) are equivalent to ASM
• leads to field-theory conjecture (Fedorenko, Le Doussal 
Wiese), with predictions for sub-leading logs in d=4. 
• recently checked in numerical simulations by 
Grassberger 

•Decaying Burgers turbulence
17



The Galton process
• old quesstion: survival probability of male line 
(Galton, Watson1873)
• equivalent: driven particle in random force 
landscape which itself is a Brownian = records with 
drift

⇤ 2Ld |�⌅(0+)|
m4 |w�w⌅|

x u(x) S

Sm :=
�
S2
⇥

2⇧S⌃ =
|�⌅(0+)|

m4

d = 1 :
1
2

⇤
[v(r, t = 0)� v(r⌅, t = 0)]2

⌅
= A|r� r⌅|

�(r) = �(0)�A|r� r|

P(S) =
e�S/Sm

S3/2

P(S)⇥ S�3/2e�S/Sm

Sm = At2

tv(w)
3
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Slope at the cusp and avalanche size moments
f f+df

Avalanche
 size

f f+df

close to

depinning

H w[u] =
⇧ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇧
[uw(x)�w]ddx =

1
Ldm2

⇧
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

⇥ ⇤S⌅ |w�w⇥|= Ld|uw�uw⇥|= Ld|w�w⇥|

⇥
⇤
S2⌅ |w�w⇥|= L2d|uw�uw⇥|2

Ld

2
[(uw�w)� (u⇥

w�w⇥)]2 =
�(0)��(w�w⇥)

m4 =
|�⇥(0+)|

m4 |w�w⇥|+ ...

x u(x)
2

H w[u] =
⇧ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇧
[uw(x)�w]ddx =

1
Ldm2

⇧
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

⇥ ⇤S⌅ |w�w⇥|= Ld|uw�uw⇥|= Ld|w�w⇥|

⇥
⇤
S2⌅ |w�w⇥|= L2d|uw�uw⇥|2

Ld

2
[(uw�w)� (u⇥

w�w⇥)]2 =
�(0)��(w�w⇥)

m4 =
|�⇥(0+)|

m4 |w�w⇥|+ ...

x u(x)
2

H w[u] =
⇧ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇧
[uw(x)�w]ddx =

1
Ldm2

⇧
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

⇥ ⇤S⌅ |w�w⇥|= Ld|uw�uw⇥|= Ld|w�w⇥|

⇥
⇤
S2⌅ |w�w⇥|= L2d|uw�uw⇥|2

Ld

2
[(uw�w)� (u⇥

w�w⇥)]2 =
�(0)��(w�w⇥)

m4 =
|�⇥(0+)|

m4 |w�w⇥|+ ...

x u(x)
2

H w[u] =
⇧ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇧
[uw(x)�w]ddx =

1
Ldm2

⇧
F(x,uw(x)

⇥
ddx

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

�w = uw�w

⇥ ⇤S⌅ |w�w⇥|= Ld|uw�uw⇥|= Ld|w�w⇥|

⇥
⇤
S2⌅ |w�w⇥|= L2d|uw�uw⇥|2

Ld

2
[(uw�w)� (u⇥

w�w⇥)]2 =
�(0)��(w�w⇥)

m4 =
|�⇥(0+)|

m4 |w�w⇥|+ ...

x u(x) S
2#avalanches/unit length

H w[u] =
⇧ 1

2
[⇥u(x)]2+V

�
x,u(x)

⇥
+

m2

2
[u(x)�w]2 ddx

0 =
�H w[u]
�uw(x)

=�⇥2uw(x)�F
�
x,uw(x)

⇥
+m2 [uw(x)�w]

uw�w :=
1
Ld

⇧
[uw(x)�w]ddx =

1
Ldm2

⇧
F(x,uw(x)

⇥
ddx

hwhw⇤ = [uw�w] [uw⇤ �w⇤] =
�(w�w⇤)

Ldm4

�w = uw�w

⇥ ⌅S⇧ |w�w⇤|= Ld|uw�uw⇤|= Ld|w�w⇤|

⇥
⇤
S2⌅ |w�w⇤|⇥ L2d|uw�uw⇤|2

Ld

2
[(uw�w)� (u⇤

w�w⇤)]2 =
�(0)��(w�w⇤)

m4 =
|�⇤(0+)|

m4 |w�w⇤|+ ...
2

⇥ 2Ld |�⇤(0+)|
m4 |w�w⇤|

x u(x) S

3

together:
(exact)

⇥ 2Ld |�⇤(0+)|
m4 |w�w⇤|

x u(x) S

Sm :=
�
S2
⇥

2⌅S⇧ =
|�⇤(0+)|

m4

3
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FRG-calculation
calculate the generating function Z(� ) of avalanche-sizes S:

Z(� ) =
1
⇧S⌃

�
⇧e�S⌃�1�� ⇧S⌃

⇥

e� [u(w)�w�u(0)]�1 = Z(� )w+O(w2) for w > 0 .

Z(� ) = ⇥
�⌅(0+)

�
�

��⇥

⌅
⌅

⌅
⌅

⌅
⌅⌅⌃

⇤
⇤

⇤⇤⇧

loop 1
k2+m2

�(w)��(0)⇤ �⌅(0+)w+ . . .

Recursion Relation:

Z(� ) = � ��⌅(0+)Z(� )2
⌃ ⇧⌅ ⌥

trees
+

�⌅⌅(0)
�⌅(0+) ⇥

n⇥3
(n+1)2n�2

⇤

k

[��⌅(0+)Z(� )]n

(k2 +1)n
⌃ ⇧⌅ ⌥

loops with n outgoing legs

,

7

Generating function for avalanche size moments
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Tree resummation (1)

Rooted trees:

root:

more (2)

V (�r, t) = min
�u

�
1
2t
(�u��r)2+V (�u, t = 0)

⇥

�v(�r, t) = ⇥V (�r, t) �v(�r, t = 0) = �⇥V (�r) V (�r) =V (�r, t = 0)

kkk

m2 =
1
t

Z(� ) = � ��(0+)Z(� )2

3

more (2)

V (�r, t) = min
�u

�
1
2t
(�u��r)2+V (�u, t = 0)

⇥

�v(�r, t) = ⇥V (�r, t) �v(�r, t = 0) = �⇥V (�r) V (�r) =V (�r, t = 0)

kkk

m2 =
1
t

Z(� ) = � ��(0+)Z(� )2

3

Resummation:

more (2)

V (�r, t) = min
�u

�
1
2t
(�u��r)2+V (�u, t = 0)

⇥

�v(�r, t) = ⇥V (�r, t) �v(�r, t = 0) = �⇥V (�r) V (�r) =V (�r, t = 0)

kkk

m2 =
1
t

Z(� ) = � ��⇥(0+)Z(� )2

3

more (2)

V (�r, t) = min
�u

�
1
2t
(�u��r)2+V (�u, t = 0)

⇥

�v(�r, t) = ⇥V (�r, t) �v(�r, t = 0) = �⇥V (�r) V (�r) =V (�r, t = 0)

kkk

m2 =
1
t

Z(� ) = � ��⇥(0+)Z(� )2

3

sufficient for N=1 avalanche-size distribution
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FRG-calculation
calculate the generating function Z(� ) of avalanche-sizes S:

Z(� ) =
1
⇧S⌃

�
⇧e�S⌃�1�� ⇧S⌃

⇥

e� [u(w)�w�u(0)]�1 = Z(� )w+O(w2) for w > 0 .

Z(� ) = ⇥
�⌅(0+)

�
�

��⇥

⌅
⌅

⌅
⌅

⌅
⌅⌅⌃

⇤
⇤

⇤⇤⇧

loop 1
k2+m2

�(w)��(0)⇤ �⌅(0+)w+ . . .

Recursion Relation:

Z(� ) = � ��⌅(0+)Z(� )2
⌃ ⇧⌅ ⌥

trees
+

�⌅⌅(0)
�⌅(0+) ⇥

n⇥3
(n+1)2n�2

⇤

k

[��⌅(0+)Z(� )]n

(k2 +1)n
⌃ ⇧⌅ ⌥

loops with n outgoing legs

,

7

22



Avalanche distribution
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Sm
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Z(� )

MF

MF

numerics !dots"
1 loop !solid line"

1
lo
o
p

!3.0 !2.5 !2.0 !1.5 !1.0 !0.5
Λ

!1.0

!0.5

0.5

Z
#
!Λ"

Z(� )=

MF = trees⌅ ⌥⌃ ⇧
1
2

�
1�

⇤
1�4�

⇥

� �⇥⇥(0)
4
⇤

1�4�

�
log(1�4� )(3� +

⇤
1�4� �1)�2(2� +

⇤
1�4� �1)

⇥

⌃ ⇧⌅ ⌥
1 loop

+ . . .
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RF, d = 3+1, simulation
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1-loop

data

formulas
u�w = w
F(w)F(0) u
ˆ
|w|

Z(� ) :=
� �

0
dS p(S)

⇥
e�S�1

⇤

5

formulas
u�w = w
F(w)F(0) u
ˆ
|w|

Z(� ) :=
� �

0
dS p(S)

⇥
e�S�1

⇤

5

6 Pierre Le Doussal, Kay Jörg Wiese: Elasticity of a contact-line and avalanche-size distribution at depinning

We now evaluate the second variation. Consider first
the sum of (39) and (40). Using the equation of motion
(45) for z̃ the combination ⇤(2,1)E + 1

2⇤
(2,2)E can be inte-

grated by part. Therefore, we obtain for the combination
[⇤(2,1)E + 1

2⇤
(2,2)E ] + 1

2⇤
(2,2)E

⇤(2,1)E + ⇤(2,2)E = �1
2

⌦

y

z̃(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃(x, y)
⇧⇧⇧
x=x0

� 1
2

sin 
⌦

y,x>x0

h⇥⇥(y)
z⇥0(x)↵

1 + z⇥0(x)2
z̃(x, y) . (58) new

The last term has been integrated by part w.r.t. y 2. To
continue, we note the useful equality ***Kay changed***

�
⌦

y

z̃1(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃2(x, y)
⇧⇧⇧
x=x0

= �
⌦

y

z̃2(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃1(x, y)
⇧⇧⇧
x=x0

+ sin 
⌦

y,x>x0

h⇥⇥(y)
z⇥0(x)↵

1 + z⇥0(x)2
z̃2(x, y) , (59) equal

which is a consequence of the two di�erent ways to inte-
grate by part

⌦

y,x>x0

⌃
⌃2z̃1(x, y)z̃2(x, y) +

[⌦xz̃2(x, y)][⌦xz̃1(x, y)]
[1 + z⇥0(x)2]3/2

+
[⌦y z̃1(x, y)][⌦y z̃2(x, y)]

[1 + z⇥0(x)2]1/2

⌥
,

and to use the equation of motion for z̃1 (inhomogeneous)
and z̃2 (homogeneous).

Inserting z̃ = z̃1 + z̃2 into (58) and using the equality
(59) we get:

⇤(2,1)E + ⇤(2,2)E = �1
2

⌦

y

z̃2(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃2(x, y)
⇧⇧⇧
x=x0

�1
2

⌦

y

z̃1(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃1(x, y)
⇧⇧⇧
x=x0

�
⌦

y

z̃2(x0, y)
[1 + z⇥0(x)2]3/2

⌦xz̃1(x, y)
⇧⇧⇧
x=x0

�1
2

sin 
⌦

y,x>x0

h⇥⇥(y)
z⇥0(x)↵

1 + z⇥0(x)2
z̃1(x, y) . (60) tot

We now discuss simplifications. Firstly, the last term in
eq. (60) exactly cancels ⇤E(2,3b); this is shown using (46).

Secondly, from (46), (22) and (15), we obtain

⌦xz̃1(x, y)
[1 + z⇥0(x)2]3/2

⇧⇧⇧
x=x0

= � sin cos ⌃2h(y)h0 . (61)

This shows that the second line, half the third line and
⇤(2,3b)E cancel; the remaining half of the third line gives

2 Note that the integration by part of �y produces no sur-
face term. This can be made rigorous considering a periodic
modulation h(y). We thus restrict here to functions that can
be written as sum of periodic modulations.

the first term reported in eq. (62) below. The second term
comes from the first line of (60), using (50):

⇤(2)E =
sin cos sin ⇧

2 sin(⇧ +  )
⌃2 h0

⌦

y
h(y)2 (62) 63

�1
2

sin2 ⇧ sin(⇧ +  )
⌦

q
hqh�qFq̃(S(x))⌦xFq̃(S(x))

⇧⇧⇧
x=x0

To compute the second term we use rule (53), where at the
end S must be evaluated on the boundary S = sin(⇧+ ).
To compute the first term we use the value (24) for h0.

This yields our final result for the elastic energy:

Eel[h] =
1
2

⌦

q
⌅qhqh�q (63) yy2

with

⌅q
⌃⇥

=
sin(⇧) cos( )

t
+
�
r2 � 1

⇥
[t(r + t) + 1] sin2(⇧)

t (r2 + 3rt + 3t2 � 1)

t =

�
sin(⇧ +  ) + 1

2
, r =

�
1 +

q2

⌃2

. (64) final

One finds that ⌅q is a scaling function of q/⌃ which re-
produces formula (31) for the energy of a uniform mode
⌅q=0 = m2 as computed in the previous section, and which
behaves as ⌅q=0 ⇥ ⇥ sin2 ⇧|q| for large |q|.

**** Maybe a short discussion here of behaviour and
next to leading asymptotics. Not too long please.

 + ⇧ = �/2

4 Avalanche-size distributions

We now study the case of a disordered plate. This is mod-
eled by

*** write and explain model as in the paper with Eti-
enne with w etc..

4.1 Global statistics of avalanches

The experiment shows, as predicted by theory that the
motion proceeds by sudden jumps and avalanche motion.
Define S and introduce P (S) as in paper with Alberto.

We now recall the main results of Ref. and apply the
general formulation to various cases including case of the
contact line elasticity computed above.

The characteristic rescaled function Z̃(⌥) is defined as:

Z̃(⌥) :=
Sm

⇤S⌅

�
e�S/Sm � 1

 
(65)

Sm :=
⇤
S2
⌅

2 ⇤S⌅ =
��⇥(0+)

m4
(66)

All averages are over the normalized probability P (S).
Then it was shown in () that Z̃(⌥) satisfies, up to terms
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Velocity distribution in an avalanche 
classical Langevin equation

Model and Observables

⇥⇤tu(x, t) = ��H [u(t)]
�u(t)

= �2u(x, t)+m2 [w�u(x, t)]�⇤uV (x,u(x, t))

2

4

V. NEW: MOMENTS OF VELOCITY

A. Second moment
a26

For simplicity, we put ⇥ = m2 = v = 1, thus w = t. We set
�(w) = �(0) + �⇥(0+)|w| + . . . , and we anticipate that we
can drop higher terms, as �⇥⇥(0) in the expansion of �(w).
We also remind ŭ(t) := u(t) � vt. When useful, we set
�⇥(0+) = �1.

Then up to disconnected terms, proportional to �(0),

ŭ(t1)ŭ(t2) =
t1

s1

t2

s2

= �⇥(0+)
t1 

�⇤

ds1

t2 

�⇤

ds2 e�s1+t1�s2+t2sgn(s1 � s2)

= �⇥(0+)
⌦
e�|t1�t2| + |t1 � t2|

↵
(5.1)uu

Consequently,

˙̆u(t1)ŭ(t2) = �⇥(0+)
⇤
1 � e�|t1�t2|

⌅
sgn(t1 � t2) (5.2)uv

˙̆u(t1) ˙̆u(t2) = ��⇥(0+) e�|t1�t2| (5.3)vv

Check:
�
S2

⇥

⇥S⇤ = ��⇥(0+)
 ⇤

�⇤
dt2 e�|t1�t2| = �2�⇥(0+) (5.4)a27

OK!
***Check reasoning, but should be ok***********

B. Third moment
a28

In the following, we use the convention to label external times
by ti and internal times by si. So in short,

ŭ1ŭ2ŭ3 = 6 Sym
1

3

1

2 3

4

2

(5.5)a29

The strategy is now to take as many derivatives as useful, be-
fore doing the integral. We choose

˙̆u1
˙̆u2

˙̆u3 = 6 Sym ⇤t2

⌥
⇤t1⇤t3

1

3

1

2 3

4

2

�
,

(5.6)a30
meaning that we do the derivatives outside the bracket after
doing the integrals. Then, by partial integration

 

s4

⇤t3R(t3 � s4)�⇥(s3 � s4)

= �
 

s4

⇤s4R(t3 � s4)�⇥(s3 � s4)

=
 

s4

R(t3 � s4)⇤s4�
⇥(s3 � s4)

= �2�⇥(0+)
 

s4

R(t3 � s4)�(s3 � s4) . (5.7)a31

Note that there is no boundary term, it is explicit in writing
R(t) = e�t⇥(t). By this procedure, the �(s3�s4), will have
exactly two derivatives. Using (5.2), we write the intermediate
result as

˙̆u1
˙̆u2

˙̆u3 = �12�⇥(0+)2 Sym ⇤t2

⇧ 

s3,s4

⇤
1 � e�|t1�s3|

⌅
sgn(t1 � s3)�(s3 � s4)R(t2 � s3)R(t3 � s4)

⌃

= �12�⇥(0+)2 Sym ⇤t2

⇧ 

s3

⇤
1 � e�|t1�s3|

⌅
sgn(t1 � s3)R(t2 � s3)R(t3 � s3)

⌃
(5.8)a32

The calculation is done for each order of the times t1, t2 and t3 in the bracket separately, also seperating the domains of
integration for s3 smaller than the smallest time, between the 2 smallest, between the two largest, or larger than the largest.
Then we take the derivative w.r.t. t2. The result must still be symmetrized. Assuming that the external times are ordered as
t1 < t2 < t3, we get

˙̆u1
˙̆u2

˙̆u3 = 2�⇥(0+)2et1�t3

= 2�⇥(0+)2e�[max(t1,t2,t3)�min(t1,t2,t3)]

= 2�⇥(0+)2e�(|t1�t2|+|t1�t3|+|t2�t3|)/2 (5.9)a33

Check:
�
S3

⇥

⇥S⇤ =
 

t2

 

t3

˙̆u1
˙̆u2

˙̆u3

= 6�⇥(0+)2
 

0=t1<t2<t3

et1�t3

= 12�⇥(0+)2 (5.10)a34

5

OK!
A better way to do the calculations is as follows: We remark that with the same notations as in eq. (5.6), not integrating over

s3, and passing always one external derivative onto each disorder vertex-end, we have

⇥t2⇥t3

⇤
43

2 3

+ 4

2 3

3

⌅

= �2�⇥(0+)
↵

s4

⇥t2R(t2 � s3)R(t3 � s4)�(s3 � s4) + R(t2 � s4)⇥t3R(t3 � s3)�(s3 � s4)

= �2�⇥(0+) (⇥t2 + ⇥t3) R(t2 � s3)R(t3 � s3)
= 2�⇥(0+)⇥s3 [R(t2 � s3)R(t3 � s3)] (5.11)a35

In summary, and in generalization: The surplus external derivatives can always be passed down in the tree, so that each vertex
receives exactly two derivatives. This means, that we can rewrite (5.6) as

˙̆u1
˙̆u2

˙̆u3 = 6�⇥(0+)2 Sym
↵

s1

↵

s2

32

2

1

1

, (5.12)a36

where the points are intermediate times, and the arrows standard response functions.
In order to be able to proceed recursively, let us fix the smallest internal time s1, and integrate over s2:

↵

s2

32

2

1

1

= R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

= R(t1 � s1)
�
e�[max(t2,t3)�s1] � e�(t2�s1)�(t3�s1)

⇥
⇥(s1 < min(t2, t3)) (5.13)a37

Integrating once more gives
↵

s1,s2

32

2

1

1

=
↵

s1

R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

=
↵

s1<min(t1,t2,t3)
es1�t1

�
es1�max(t2,t3) � e2s1�t2�t3

⇥

=
1
2
e2 min(t1,t2,t3)�t1�max(t2,t3) � 1

3
e3 min(t1,t2,t3)�t1�t2�t3 (5.14)a38

Symmetrization gives

6 Sym
↵

s1,s2

32

2

1

1

= e�max(t2,t3)+2 min(t1,t2,t3)�t1 + e�max(t1,t3)+2 min(t1,t2,t3)�t2 + e�max(t1,t2)+2 min(t1,t2,t3)�t3 � 2e3 min(t1,t2,t3)�t1�t2�t3

= emin(t1,t2,t3)�max(t1,t2,t3) (5.15)a39

We note that in the above sum on line 2, for each order only one of the first three terms survives, whereas the other two cancel
against the last term.

C. Fourth moment
a40

We now use the above knowledge, and advance recursively. The result for the fourth cumulant is, supposing the times ordered
as t1 < t2 < t3 < t4:

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 24 Sym

⇧

 ⌥
2

1

1

4

3

32

+ 4

4

2

2

1

1 34
⌃

⌦�

= 4et1�t4 + 2et1+t2�t3�t4 (5.16)a41

Check of normalization: ↵

t2,t3,t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!

↵

t1<t2<t3<t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!⇥ 5 (5.17)a42

OK!

5

OK!
A better way to do the calculations is as follows: We remark that with the same notations as in eq. (5.6), not integrating over

s3, and passing always one external derivative onto each disorder vertex-end, we have

⇥t2⇥t3

⇤
43

2 3

+ 4

2 3

3

⌅

= �2�⇥(0+)
↵

s4

⇥t2R(t2 � s3)R(t3 � s4)�(s3 � s4) + R(t2 � s4)⇥t3R(t3 � s3)�(s3 � s4)

= �2�⇥(0+) (⇥t2 + ⇥t3) R(t2 � s3)R(t3 � s3)
= 2�⇥(0+)⇥s3 [R(t2 � s3)R(t3 � s3)] (5.11)a35

In summary, and in generalization: The surplus external derivatives can always be passed down in the tree, so that each vertex
receives exactly two derivatives. This means, that we can rewrite (5.6) as

˙̆u1
˙̆u2

˙̆u3 = 6�⇥(0+)2 Sym
↵

s1

↵

s2

32

2

1

1

, (5.12)a36

where the points are intermediate times, and the arrows standard response functions.
In order to be able to proceed recursively, let us fix the smallest internal time s1, and integrate over s2:

↵

s2

32

2

1

1

= R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

= R(t1 � s1)
�
e�[max(t2,t3)�s1] � e�(t2�s1)�(t3�s1)

⇥
⇥(s1 < min(t2, t3)) (5.13)a37

Integrating once more gives
↵

s1,s2

32

2

1

1

=
↵

s1

R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

=
↵

s1<min(t1,t2,t3)
es1�t1

�
es1�max(t2,t3) � e2s1�t2�t3

⇥

=
1
2
e2 min(t1,t2,t3)�t1�max(t2,t3) � 1

3
e3 min(t1,t2,t3)�t1�t2�t3 (5.14)a38

Symmetrization gives

6 Sym
↵

s1,s2

32

2

1

1

= e�max(t2,t3)+2 min(t1,t2,t3)�t1 + e�max(t1,t3)+2 min(t1,t2,t3)�t2 + e�max(t1,t2)+2 min(t1,t2,t3)�t3 � 2e3 min(t1,t2,t3)�t1�t2�t3

= emin(t1,t2,t3)�max(t1,t2,t3) (5.15)a39

We note that in the above sum on line 2, for each order only one of the first three terms survives, whereas the other two cancel
against the last term.

C. Fourth moment
a40

We now use the above knowledge, and advance recursively. The result for the fourth cumulant is, supposing the times ordered
as t1 < t2 < t3 < t4:

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 24 Sym

⇧

 ⌥
2

1

1

4

3

32

+ 4

4

2

2

1

1 34
⌃

⌦�

= 4et1�t4 + 2et1+t2�t3�t4 (5.16)a41

Check of normalization: ↵

t2,t3,t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!

↵

t1<t2<t3<t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!⇥ 5 (5.17)a42

OK!

moments are again trees...

5

OK!
A better way to do the calculations is as follows: We remark that with the same notations as in eq. (5.6), not integrating over

s3, and passing always one external derivative onto each disorder vertex-end, we have

⇥t2⇥t3

⇤
43

2 3

+ 4

2 3

3

⌅

= �2�⇥(0+)
↵

s4

⇥t2R(t2 � s3)R(t3 � s4)�(s3 � s4) + R(t2 � s4)⇥t3R(t3 � s3)�(s3 � s4)

= �2�⇥(0+) (⇥t2 + ⇥t3) R(t2 � s3)R(t3 � s3)
= 2�⇥(0+)⇥s3 [R(t2 � s3)R(t3 � s3)] (5.11)a35

In summary, and in generalization: The surplus external derivatives can always be passed down in the tree, so that each vertex
receives exactly two derivatives. This means, that we can rewrite (5.6) as

˙̆u1
˙̆u2

˙̆u3 = 6�⇥(0+)2 Sym
↵

s1

↵

s2

32

2

1

1

, (5.12)a36

where the points are intermediate times, and the arrows standard response functions.
In order to be able to proceed recursively, let us fix the smallest internal time s1, and integrate over s2:

↵

s2

32

2

1

1

= R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

= R(t1 � s1)
�
e�[max(t2,t3)�s1] � e�(t2�s1)�(t3�s1)

⇥
⇥(s1 < min(t2, t3)) (5.13)a37

Integrating once more gives
↵

s1,s2

32

2

1

1

=
↵

s1

R(t1 � s1)
↵

s2

R(t2 � s2)R(t3 � s2)R(s2 � s1)

=
↵

s1<min(t1,t2,t3)
es1�t1

�
es1�max(t2,t3) � e2s1�t2�t3

⇥

=
1
2
e2 min(t1,t2,t3)�t1�max(t2,t3) � 1

3
e3 min(t1,t2,t3)�t1�t2�t3 (5.14)a38

Symmetrization gives

6 Sym
↵

s1,s2

32

2

1

1

= e�max(t2,t3)+2 min(t1,t2,t3)�t1 + e�max(t1,t3)+2 min(t1,t2,t3)�t2 + e�max(t1,t2)+2 min(t1,t2,t3)�t3 � 2e3 min(t1,t2,t3)�t1�t2�t3

= emin(t1,t2,t3)�max(t1,t2,t3) (5.15)a39

We note that in the above sum on line 2, for each order only one of the first three terms survives, whereas the other two cancel
against the last term.

C. Fourth moment
a40

We now use the above knowledge, and advance recursively. The result for the fourth cumulant is, supposing the times ordered
as t1 < t2 < t3 < t4:

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 24 Sym

⇧

 ⌥
2

1

1

4

3

32

+ 4

4

2

2

1

1 34
⌃

⌦�

= 4et1�t4 + 2et1+t2�t3�t4 (5.16)a41

Check of normalization: ↵

t2,t3,t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!

↵

t1<t2<t3<t4

˙̆u1
˙̆u2

˙̆u3
˙̆u4 = 4!⇥ 5 (5.17)a42

OK!

6

D. Fifth moment
a43

˙̆u1
˙̆u2

˙̆u3
˙̆u4

˙̆u5 = 5! Sym

⇤

⌥⌥⌥⇧
8

1245

1

2

4

3

3

+ 2
2

1

1

432

4

5

3

+ 4

4

1 3

1 3

2 4 5

2

⌅

���⌃

= 8et1�t4 + 4et1+t2�t3�t5 + 8et1+t2�t4�t5 + 4et1+t3�t4�t5 (5.18)a44

We check that

5!
⌦

t1=0<t2<t3<t4<t5

= ˙̆u1
˙̆u2

˙̂u3
˙̂u4

˙̂u5 = 5!⇥ 14 (5.19)a45

OK!

VI. GENERATING FUNCTIONS
a46

A. Generating function with arbitrary times: Recursion relation
a50

In order to establish this, we need to keep the last time in the diagrams. Integrating over the last times gives the moment, i.e.

Bn(t1, . . . , tn) :=
1
n!

˙̂u(t1) . . . ˙̂u(tn) (6.1)a51

E.g.

B1(t1; s) := �(t1 � s) (6.2)a52

B2(t1, t2; s) =
⌦

s1,s2>s
B(t1; s1)B(t2; s2)R(s1 � s)R(s2 � s)

= e2s�t1�t2�(s < min(t1, t2)) (6.3)a53

and

B2(t1, t2) :=
⌦

s
B2(t1, t2; s) =

1
2
emin(t1,t2)�max(t1,t2) (6.4)a54

The recursion relation reads

Bn(t1, t2, . . . , tn; s) = (6.5)a55

Sym
n 

k=1

⌦ min(t1,t2,...,tk)

s
ds1

⌦ min(tk+1,...,tn)

s
ds2Bk(t1, t2, . . . , tk; s1)Bn�k(tk+1, . . . , tn; s2)R(s1 � s)R(s2 � s)

Checking. . . This gives

B3(t1, t2, t3; s) =
2
3
e2s�t1�t2�t3

�
emin(t1,t2) + emin(t1,t3) + emin(t2,t3) � 3es

⇥
(6.6)a56

B3(t1, t2, t3) =
1
3
e2 min(t1,t2,t3)�t1�t2�t3

�
emin(t1,t2) + emin(t1,t3) + emin(t2,t3) � 2emin(t1,t2,t3)

⇥
(6.7)a57

27
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FIG. 1: Schematic plot of the instantaneous velocity (divided
by v) as a function of vt for di�erent v. The area under the
curve is the avalanche size hence is constant as v � 0+. The
quasi-static avalanche positions wi are indicated.

Sm ⇤ m�(d+�) is the large-scale cuto⇥ of P (S). Here we
study the dynamics inside these avalanches, which occur
for small v on a time scale ⌥m ⇤ Lz

m ⌅ �w/v, where
�w is the typical separation of avalanches in the same
space region, and z the dynamical exponent. Hence we
are considering small enough v so that avalanches remain
well separated, a condition equivalent to Lm ⌅ ⇧v, where
⇧v is the standard critical correlation length [10, 11] near
depinning (for m = 0). This is illustrated on figure 1.

The information about the dynamics in an avalanche
is contained in the n-times cumulants Cn = u̇t1 . . . u̇tn

c
,

n ⇥ 2 (with u̇t = 0). In the limit v ⇧ 0+ the prod-
uct u̇t1 . . . u̇tn vanishes unless all times are inside an
avalanche. The probability that exactly one avalanche
occurs in a time interval T < �w/v is ⌃0vT , with
⌃0 = Ld/⌃S⌥ the avalanche density per unit w. Cn

is thus O(v), rather than O(vn), the hallmark of a
non-smooth motion. In addition, Cn obeys the sum
rule Lnd

⇥
[�T/2,T/2]n dt1 . . . dtn u̇t1 . . . u̇tn = ⌃0vT ⌃Sn⌥ +

O(v2). It can be computed perturbatively in the (renor-
malized) disorder. For n = 2 and to lowest order one
finds

u̇t1 u̇t2
c
= �L�d�⇥(0+)

v

m2⇤
e�

m2

� |t1�t2| (3)

where here and below ⇤ is the renormalized friction [16].
Integrating over time, one recovers (2).

To obtain all moments at once, as well as the velocity
distribution, we now compute the generating function

Z[⌅] = L�d�ve
�
xt ⇥xt(v+u̇xt)

���
v=0+

. (4)

The average over disorder (and initial conditions) is ob-

tained from the dynamical action S = S0 + Sdis of (1):

S0 =

⇤

xt
ũxt(⇤�t ��2

x +m2)u̇xt (5)

Sdis = �1

2

⇤

xtt�
ũxtũxt��t�t��(v(t� t⇥) + uxt � uxt�) (6)

This yields

Z[⌅] = L�d�v

⇤
D[u̇]D[ũ] e�S+

�
xt ⇥xt(v+u̇xt)

���
v=0+

(7)

with Z[0] = 0. We write

�t�t��(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�t��
⇥(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�
⇥(0+)�t�sgn(t� t⇥) + . . . (8)

where we have used that the interface is only moving
forward (Middleton theorem [18]). We can thus rewrite
the disorder term as S = Stree

dis + . . ., where

Stree
dis = �⇥(0+)

⇤

xt
ũxtũxt(v + u̇xt) (9)

is the so-called tree-level or mean-field action [16]. The
terms neglected are O(�⇥⇥(0+)) and higher derivatives,
and we have shown that they contribute only to O(⇥) to
Z[⌅], hence can be neglected at tree level.
We now study the tree approximation for Z[⌅], i.e. (7)

with Sdis replaced by (9). Thus the highly non-linear ac-
tion (6) has been reduced to a much simpler cubic theory!
Even more remarkably, u̇xt appears only linearly in (9),
and viewing u̇ as a response field, the tree level theory is
equivalent to the following non-linear equation:

(⇤�t +�2
x �m2)ũxt ��⇥(0+)ũ2

xt + ⌅xt = 0 (10)

We denote ũ⇥
xt the solution of this equation for a given

source ⌅xt. Performing the derivative w.r.t v in (7) gives

Z[⌅] = L�d

⇤

xt
⌅xt ��⇥(0+)(ũ⇥

xt)
2 (11)

= L�d

⇤

xt
(�⇤�t ��2

x +m2)ũ⇥
xt = m2L�d

⇤

xt
ũ⇥
xt

where we have used equation (10) and, in the last equal-
ity, assumed that ũ⇥ vanishes at large t and x. To an-
alyze the result, it is convenient to use dimensionless
equations, replacing x ⇧ x/m, L ⇧ L/m, t ⇧ ⌥mt,
v ⇧ vvm, ⌅ ⇧ ⌅/Sm and ũxt ⇧ ũxt/m2Sm, where
vm = Smmd/⌥m, and ⌥m = ⇤/m2. From now on we
use these units, and consider the center-of-mass velocity,
thus choosing ⌅xt = ⌅t uniform.
The 1-time probability at time t = 0 is given by ⌅t =

⌅�(t) through its Laplace transform

Z̃(⌅) = L�d�veL
d⇥(v+u̇)

���
v=0+

. (12)
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FIG. 1: Schematic plot of the instantaneous velocity (divided
by v) as a function of vt for di�erent v. The area under the
curve is the avalanche size hence is constant as v � 0+. The
quasi-static avalanche positions wi are indicated.

Sm ⇤ m�(d+�) is the large-scale cuto⇥ of P (S). Here we
study the dynamics inside these avalanches, which occur
for small v on a time scale ⌥m ⇤ Lz

m ⌅ �w/v, where
�w is the typical separation of avalanches in the same
space region, and z the dynamical exponent. Hence we
are considering small enough v so that avalanches remain
well separated, a condition equivalent to Lm ⌅ ⇧v, where
⇧v is the standard critical correlation length [10, 11] near
depinning (for m = 0). This is illustrated on figure 1.

The information about the dynamics in an avalanche
is contained in the n-times cumulants Cn = u̇t1 . . . u̇tn

c
,

n ⇥ 2 (with u̇t = 0). In the limit v ⇧ 0+ the prod-
uct u̇t1 . . . u̇tn vanishes unless all times are inside an
avalanche. The probability that exactly one avalanche
occurs in a time interval T < �w/v is ⌃0vT , with
⌃0 = Ld/⌃S⌥ the avalanche density per unit w. Cn

is thus O(v), rather than O(vn), the hallmark of a
non-smooth motion. In addition, Cn obeys the sum
rule Lnd

⇥
[�T/2,T/2]n dt1 . . . dtn u̇t1 . . . u̇tn = ⌃0vT ⌃Sn⌥ +

O(v2). It can be computed perturbatively in the (renor-
malized) disorder. For n = 2 and to lowest order one
finds

u̇t1 u̇t2
c
= �L�d�⇥(0+)

v

m2⇤
e�

m2

� |t1�t2| (3)

where here and below ⇤ is the renormalized friction [16].
Integrating over time, one recovers (2).

To obtain all moments at once, as well as the velocity
distribution, we now compute the generating function

Z[⌅] = L�d�ve
�
xt ⇥xt(v+u̇xt)

���
v=0+

. (4)

The average over disorder (and initial conditions) is ob-

tained from the dynamical action S = S0 + Sdis of (1):

S0 =

⇤

xt
ũxt(⇤�t ��2

x +m2)u̇xt (5)

Sdis = �1

2

⇤

xtt�
ũxtũxt��t�t��(v(t� t⇥) + uxt � uxt�) (6)

This yields

Z[⌅] = L�d�v

⇤
D[u̇]D[ũ] e�S+

�
xt ⇥xt(v+u̇xt)

���
v=0+

(7)

with Z[0] = 0. We write

�t�t��(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�t��
⇥(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�
⇥(0+)�t�sgn(t� t⇥) + . . . (8)

where we have used that the interface is only moving
forward (Middleton theorem [18]). We can thus rewrite
the disorder term as S = Stree

dis + . . ., where

Stree
dis = �⇥(0+)

⇤

xt
ũxtũxt(v + u̇xt) (9)

is the so-called tree-level or mean-field action [16]. The
terms neglected are O(�⇥⇥(0+)) and higher derivatives,
and we have shown that they contribute only to O(⇥) to
Z[⌅], hence can be neglected at tree level.
We now study the tree approximation for Z[⌅], i.e. (7)

with Sdis replaced by (9). Thus the highly non-linear ac-
tion (6) has been reduced to a much simpler cubic theory!
Even more remarkably, u̇xt appears only linearly in (9),
and viewing u̇ as a response field, the tree level theory is
equivalent to the following non-linear equation:

(⇤�t +�2
x �m2)ũxt ��⇥(0+)ũ2

xt + ⌅xt = 0 (10)

We denote ũ⇥
xt the solution of this equation for a given

source ⌅xt. Performing the derivative w.r.t v in (7) gives

Z[⌅] = L�d

⇤

xt
⌅xt ��⇥(0+)(ũ⇥

xt)
2 (11)

= L�d

⇤

xt
(�⇤�t ��2

x +m2)ũ⇥
xt = m2L�d

⇤

xt
ũ⇥
xt

where we have used equation (10) and, in the last equal-
ity, assumed that ũ⇥ vanishes at large t and x. To an-
alyze the result, it is convenient to use dimensionless
equations, replacing x ⇧ x/m, L ⇧ L/m, t ⇧ ⌥mt,
v ⇧ vvm, ⌅ ⇧ ⌅/Sm and ũxt ⇧ ũxt/m2Sm, where
vm = Smmd/⌥m, and ⌥m = ⇤/m2. From now on we
use these units, and consider the center-of-mass velocity,
thus choosing ⌅xt = ⌅t uniform.
The 1-time probability at time t = 0 is given by ⌅t =

⌅�(t) through its Laplace transform

Z̃(⌅) = L�d�veL
d⇥(v+u̇)

���
v=0+

. (12)
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FIG. 1: Schematic plot of the instantaneous velocity (divided
by v) as a function of vt for di�erent v. The area under the
curve is the avalanche size hence is constant as v � 0+. The
quasi-static avalanche positions wi are indicated.

Sm ⇤ m�(d+�) is the large-scale cuto⇥ of P (S). Here we
study the dynamics inside these avalanches, which occur
for small v on a time scale ⌥m ⇤ Lz

m ⌅ �w/v, where
�w is the typical separation of avalanches in the same
space region, and z the dynamical exponent. Hence we
are considering small enough v so that avalanches remain
well separated, a condition equivalent to Lm ⌅ ⇧v, where
⇧v is the standard critical correlation length [10, 11] near
depinning (for m = 0). This is illustrated on figure 1.

The information about the dynamics in an avalanche
is contained in the n-times cumulants Cn = u̇t1 . . . u̇tn

c
,

n ⇥ 2 (with u̇t = 0). In the limit v ⇧ 0+ the prod-
uct u̇t1 . . . u̇tn vanishes unless all times are inside an
avalanche. The probability that exactly one avalanche
occurs in a time interval T < �w/v is ⌃0vT , with
⌃0 = Ld/⌃S⌥ the avalanche density per unit w. Cn

is thus O(v), rather than O(vn), the hallmark of a
non-smooth motion. In addition, Cn obeys the sum
rule Lnd

⇥
[�T/2,T/2]n dt1 . . . dtn u̇t1 . . . u̇tn = ⌃0vT ⌃Sn⌥ +

O(v2). It can be computed perturbatively in the (renor-
malized) disorder. For n = 2 and to lowest order one
finds

u̇t1 u̇t2
c
= �L�d�⇥(0+)

v

m2⇤
e�

m2

� |t1�t2| (3)

where here and below ⇤ is the renormalized friction [16].
Integrating over time, one recovers (2).

To obtain all moments at once, as well as the velocity
distribution, we now compute the generating function

Z[⌅] = L�d�ve
�
xt ⇥xt(v+u̇xt)

���
v=0+

. (4)

The average over disorder (and initial conditions) is ob-

tained from the dynamical action S = S0 + Sdis of (1):

S0 =

⇤

xt
ũxt(⇤�t ��2

x +m2)u̇xt (5)

Sdis = �1

2

⇤

xtt�
ũxtũxt��t�t��(v(t� t⇥) + uxt � uxt�) (6)

This yields

Z[⌅] = L�d�v

⇤
D[u̇]D[ũ] e�S+

�
xt ⇥xt(v+u̇xt)

���
v=0+

(7)

with Z[0] = 0. We write

�t�t��(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�t��
⇥(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�
⇥(0+)�t�sgn(t� t⇥) + . . . (8)

where we have used that the interface is only moving
forward (Middleton theorem [18]). We can thus rewrite
the disorder term as S = Stree

dis + . . ., where

Stree
dis = �⇥(0+)

⇤

xt
ũxtũxt(v + u̇xt) (9)

is the so-called tree-level or mean-field action [16]. The
terms neglected are O(�⇥⇥(0+)) and higher derivatives,
and we have shown that they contribute only to O(⇥) to
Z[⌅], hence can be neglected at tree level.
We now study the tree approximation for Z[⌅], i.e. (7)

with Sdis replaced by (9). Thus the highly non-linear ac-
tion (6) has been reduced to a much simpler cubic theory!
Even more remarkably, u̇xt appears only linearly in (9),
and viewing u̇ as a response field, the tree level theory is
equivalent to the following non-linear equation:

(⇤�t +�2
x �m2)ũxt ��⇥(0+)ũ2

xt + ⌅xt = 0 (10)

We denote ũ⇥
xt the solution of this equation for a given

source ⌅xt. Performing the derivative w.r.t v in (7) gives

Z[⌅] = L�d

⇤

xt
⌅xt ��⇥(0+)(ũ⇥

xt)
2 (11)

= L�d

⇤

xt
(�⇤�t ��2

x +m2)ũ⇥
xt = m2L�d

⇤

xt
ũ⇥
xt

where we have used equation (10) and, in the last equal-
ity, assumed that ũ⇥ vanishes at large t and x. To an-
alyze the result, it is convenient to use dimensionless
equations, replacing x ⇧ x/m, L ⇧ L/m, t ⇧ ⌥mt,
v ⇧ vvm, ⌅ ⇧ ⌅/Sm and ũxt ⇧ ũxt/m2Sm, where
vm = Smmd/⌥m, and ⌥m = ⇤/m2. From now on we
use these units, and consider the center-of-mass velocity,
thus choosing ⌅xt = ⌅t uniform.
The 1-time probability at time t = 0 is given by ⌅t =

⌅�(t) through its Laplace transform

Z̃(⌅) = L�d�veL
d⇥(v+u̇)

���
v=0+

. (12)

simplifies to

!!! simple cubic theory !!!
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3

u̇ = u̇t=0 and the notation Z̃ reminds us that we use
dimensionless units. ũxt = ũt and we need to solve

(⌥t � 1)ũt + ũ2
t = �⇤�(t) (13)

with ũt ⇧ 0 at t = ±⌃:

ũt =
⇤

⇤+ (1� ⇤)e�t
⇥(�t) (14)

Inserting into (12) gives

Z̃(⇤) =

⌘

t
ũt = � ln(1� ⇤) . (15)

Calling ⌃i the duration of the i-th avalanche out ofN , and
defining ⌥⌃� := 1

N

�
i ⌃i the mean duration, the probabil-

ity pa that t = 0 belongs to an avalanche is pa = ⌅0v⌥⌃�.
Hence the total 1-time velocity probability is P (u̇) =
(1� pa)�(v + u̇) + paP̃ (u̇) where P̃ (u̇) is the probability
given that t = 0 belongs to an avalanche. Both P̃ and P
are normalized to unity. One notes the two (always) ex-
act relations ⌥u̇�P = 0, pa⌥u̇+v�P̃ = v. Hence for v = 0+

one has ⌅0⌥⌃�⌥u̇�P̃ = 1 and, in dimensionfull units Z(⇤) =
1

mdvm
Z̃(mdvm⇤) = L�d⌅0⌥⌃�

�
du̇ P̃ (u̇)(eL

d�u̇ � 1). We
thus obtain, in the slow driving limit, the instantaneous
velocity distribution in the range v0 ⌅ u̇ ⇥ ṽm (v0 being
a small velocity cuto⇥):

P̃ (u̇) =
1

⌅0⌥⌃�ṽ2m
p
⇧ u̇

ṽm

⌃
, p(x) =

1

x
e�x . (16)

We defined ṽm = (mL)�dvm = L�dSm/⌃m. Hence
⌥u̇�P̃ ⇤ ṽm/ ln( ṽmv0 ). Note that (i) p(x) is not a prob-

ability, but is normalized by
�
dxx p(x) = 1 (ii) the

quantity which is distributed according to p(x) is x =
⌃m
�
x u̇xt/Sm, which does not contain the factor L�d.

Similarly one obtains the n-time distribution of
the center-of-mass velocity solving (13) with ⇤t =�n

j=1 ⇤j�(t� tj), noting zij := 1� e�|ti�tj |/⇤m

Z̃n(⇤1, . . . ,⇤n) = � ln

 

↵
✏

�⇥{1,...,n}

⇣

i⌅�

[�⇤i]
⇣

{i,j}⇥�,i<j

zij

⌦

�

(17)
For n = 2 one finds Z̃2 = � ln(1� ⇤1 � ⇤2 + ⇤1⇤2z) with
z = 1� e�|t2�t1|/⇤m . From this we obtain (i) the proba-
bility q12 = vq⇤12 that both t1 and t2 belong to the same
avalanche and the velocity distribution P̃ conditioned to
this event:

q⇤12P̃ (u̇1, u̇2) =
1

ṽ3m
p
⇧ u̇1

ṽm
,
u̇2

ṽm

⌃
(18)

p(v1, v2) =
e
� t

2�
v1+v2
1�e�t

(1� e�t)
 
v1v2

I1

⌥
2 e�t/2 v1v2

1� e�t

�
(19)

with t = |t2 � t1|/⌃m, q⇤12ṽm = ln(1/z), and I1(x) is the
Bessel-I function of the first kind. The probability that
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FIG. 2: “Pulse-shape”: The normalized velocity at time t
in an avalanche of duration � for � � �m (lower curve) to
� ⇥ �m (upper curve).

t1 but not t2 belongs to an avalanche is

q⇤1P̃1(u̇1) =
1

ṽ2m
p
⇧ u̇1

ṽm

⌃
, p(u̇1) =

e�u̇1/z

u̇1
(20)

with p⇤a = q⇤1 + q⇤12. Since the probability that there
exists an avalanche starting in [t1, t1+dt1] and ending in
[t2, t2+dt2] is �dt1dt2⌥t1⌥t2q12 we obtain the distribution
of durations ⌃ as

P (⌃) =
1

⌅0ṽm⌃2m

e�⇤/⇤m

(1� e�⇤/⇤m)2
. (21)

For small durations ⌃ ⌅ ⌃m, P (⌃) ⇤ 1
⇥0ṽm⇤2 , cut o⇥ at

⌃ ⇤ ⌃0. This gives ⌥⌃� = 1
⇥0ṽm

ln( ⇤m⇤0 ) in good agree-

ment with the above, using ln( ⇤m⇤0 ) ⇤ ln( ṽmv0 ). Note that

q⇤12P̃ (0+, 0+) is proportional to the probability that an
avalanche starts at t1 and ends at t2.
The “shape” of an avalanche with duration ⌃ can then

be extracted from the probabilities at 3 times (t1, t2, t3) =
(0, t, ⌃) setting u̇1 = u̇3 = 0+. From the generating func-
tion (17) for 3 times, the probability distribution for the
intermediate-time velocity is P (u̇2) = b2u̇2e�u̇2b, with
ṽmb := 1

z12
+ 1

z23
� 1 resulting in the average “shape”

u̇2 =
2

b
= ṽm

4 sinh
�

t
2⇤m

⇥
sinh

�
⇤

2⇤m

⇤
1� t

⇤

⌅⇥

sinh
�

⇤
2⇤m

⇥ . (22)

This interpolates from a parabola for small ⌃ ⌅ ⌃m to a
flat shape for the longest avalanches (see Fig 2.). This
result holds for an interface at or above its upper critical
dimension, which previously was used [7] on the basis of
the ABBM model.
We now clarify the relation to the phenomenologi-

cal ABBM theory [8]. The latter models the inter-
face as a single point driven in a long-range correlated
random-force landscape, F (u), with Brownian statistics.
It amounts to suppressing the space dependence in (1),
hence corresponds in our general model to the special
case d = 0 and �0(0) � �0(u) = ⇧|u|. The instanta-
neous velocity v = u̇t+v satisfies the stochastic equation
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u̇ = u̇t=0 and the notation Z̃ reminds us that we use
dimensionless units. ũxt = ũt and we need to solve

(⌥t � 1)ũt + ũ2
t = �⇤�(t) (13)

with ũt ⇧ 0 at t = ±⌃:

ũt =
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Inserting into (12) gives
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Calling ⌃i the duration of the i-th avalanche out ofN , and
defining ⌥⌃� := 1
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i ⌃i the mean duration, the probabil-

ity pa that t = 0 belongs to an avalanche is pa = ⌅0v⌥⌃�.
Hence the total 1-time velocity probability is P (u̇) =
(1� pa)�(v + u̇) + paP̃ (u̇) where P̃ (u̇) is the probability
given that t = 0 belongs to an avalanche. Both P̃ and P
are normalized to unity. One notes the two (always) ex-
act relations ⌥u̇�P = 0, pa⌥u̇+v�P̃ = v. Hence for v = 0+
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du̇ P̃ (u̇)(eL

d�u̇ � 1). We
thus obtain, in the slow driving limit, the instantaneous
velocity distribution in the range v0 ⌅ u̇ ⇥ ṽm (v0 being
a small velocity cuto⇥):

P̃ (u̇) =
1

⌅0⌥⌃�ṽ2m
p
⇧ u̇

ṽm

⌃
, p(x) =

1

x
e�x . (16)

We defined ṽm = (mL)�dvm = L�dSm/⌃m. Hence
⌥u̇�P̃ ⇤ ṽm/ ln( ṽmv0 ). Note that (i) p(x) is not a prob-

ability, but is normalized by
�
dxx p(x) = 1 (ii) the

quantity which is distributed according to p(x) is x =
⌃m
�
x u̇xt/Sm, which does not contain the factor L�d.

Similarly one obtains the n-time distribution of
the center-of-mass velocity solving (13) with ⇤t =�n

j=1 ⇤j�(t� tj), noting zij := 1� e�|ti�tj |/⇤m

Z̃n(⇤1, . . . ,⇤n) = � ln
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(17)
For n = 2 one finds Z̃2 = � ln(1� ⇤1 � ⇤2 + ⇤1⇤2z) with
z = 1� e�|t2�t1|/⇤m . From this we obtain (i) the proba-
bility q12 = vq⇤12 that both t1 and t2 belong to the same
avalanche and the velocity distribution P̃ conditioned to
this event:

q⇤12P̃ (u̇1, u̇2) =
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ṽm
,
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with t = |t2 � t1|/⌃m, q⇤12ṽm = ln(1/z), and I1(x) is the
Bessel-I function of the first kind. The probability that
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FIG. 2: “Pulse-shape”: The normalized velocity at time t
in an avalanche of duration � for � � �m (lower curve) to
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t1 but not t2 belongs to an avalanche is

q⇤1P̃1(u̇1) =
1

ṽ2m
p
⇧ u̇1

ṽm

⌃
, p(u̇1) =

e�u̇1/z

u̇1
(20)

with p⇤a = q⇤1 + q⇤12. Since the probability that there
exists an avalanche starting in [t1, t1+dt1] and ending in
[t2, t2+dt2] is �dt1dt2⌥t1⌥t2q12 we obtain the distribution
of durations ⌃ as

P (⌃) =
1

⌅0ṽm⌃2m

e�⇤/⇤m

(1� e�⇤/⇤m)2
. (21)

For small durations ⌃ ⌅ ⌃m, P (⌃) ⇤ 1
⇥0ṽm⇤2 , cut o⇥ at

⌃ ⇤ ⌃0. This gives ⌥⌃� = 1
⇥0ṽm

ln( ⇤m⇤0 ) in good agree-

ment with the above, using ln( ⇤m⇤0 ) ⇤ ln( ṽmv0 ). Note that

q⇤12P̃ (0+, 0+) is proportional to the probability that an
avalanche starts at t1 and ends at t2.
The “shape” of an avalanche with duration ⌃ can then

be extracted from the probabilities at 3 times (t1, t2, t3) =
(0, t, ⌃) setting u̇1 = u̇3 = 0+. From the generating func-
tion (17) for 3 times, the probability distribution for the
intermediate-time velocity is P (u̇2) = b2u̇2e�u̇2b, with
ṽmb := 1

z12
+ 1

z23
� 1 resulting in the average “shape”

u̇2 =
2

b
= ṽm

4 sinh
�

t
2⇤m

⇥
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�
⇤

2⇤m
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1� t

⇤

⌅⇥

sinh
�

⇤
2⇤m

⇥ . (22)

This interpolates from a parabola for small ⌃ ⌅ ⌃m to a
flat shape for the longest avalanches (see Fig 2.). This
result holds for an interface at or above its upper critical
dimension, which previously was used [7] on the basis of
the ABBM model.
We now clarify the relation to the phenomenologi-

cal ABBM theory [8]. The latter models the inter-
face as a single point driven in a long-range correlated
random-force landscape, F (u), with Brownian statistics.
It amounts to suppressing the space dependence in (1),
hence corresponds in our general model to the special
case d = 0 and �0(0) � �0(u) = ⇧|u|. The instanta-
neous velocity v = u̇t+v satisfies the stochastic equation

If then the instanton equation is

Model and Observables

⇥⌅tu(x, t) = ��H [u(t)]
�u(t)

= �2u(x, t)+m2 [w�u(x, t)]�⌅uV (x,u(x, t))

⇤ (x, t) = ⇤� (t)

2

Solution

Model and Observables

⇥⌅tu(x, t) = ��H [u(t)]
�u(t)

= �2u(x, t)+m2 [w�u(x, t)]�⌅uV (x,u(x, t))

⇤ (x, t) = ⇤� (t)

Ztree(⇤ ) =
⇥
e⇤ u̇(t)�1

⇤���
t=0

=
⌅

t<0
ũt =� ln(1�⇤ )

Ptree(u̇) =
e�u̇

u̇

2

higher-point functions also possible. 
29
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FIG. 3.3: Main plot: vP (v) as a function of v for � = 3. Inset:
log-log plot of P (v) as a function of v. Resommation formula (3.61)
was used. fig:Pv

transform (3.48) becomes a compact and simple cut-integral

⇤P (v) = �
⌅�

1

d⌥

e�v

⌥

 2⇥E + 2 ln(ln⌃) +
⌅↵

j=1

bj(ln⌃)j�1

�(j)

�

⌦

(3.55)delta-P-v

However, this series also diverges. Therefore choose jmax as
cutoff, by defining

⇤P (v) = ⇤Pser(v) + ⇤Pcut(v) (3.56)

⇤Pcut(v) = �
⌅�

1

d⌥

e�v

⌥

 2⇥E + 2 ln(ln⌃) +
jmax↵

j=1

bj(ln⌃)j�1

�(j)

�

⌦

(3.57)delta-P-magic

The coefficients ãn are what remains of an after subtracting
their asymptotic behavior,

ãn := an + 2
lnn

n
�

jmax↵

j=1

bj
nj

. (3.58)

Especially note that ã1 becomes non-zero; in fact, this coeffi-
cient grows rather quickly with jmax, while the other coeffi-
cients decay.

⇤Pser(v) =
⌅↵

n=1

ãne
�v vLn(v) (3.59)deltaPser

Both expressions, ⇤Pcut(v) and ⇤Pser(v) can be obtained nu-
merically with good precision, and seem to decay rapidly at
large v.

Practical values are jmax = 15, and (3.59) can be stopped at
n = 15. With this choice, we find that all moments between
the fourth and 36th are at least given with 10�7, precision,
most even with 10�10. The first two moments have some de-
viations, which improve by taking a smaller grid-size for the
numerical integration (current ⇤v = 0.01). jmax should not

be taken too large, since otherwise this shifts too much weight
into the moment ã1. As an example, for jmax = 15, one has
ã1 = �51.97, ã2 = 0.002976, ã3 = 1.359 ⇥ 10�6, . . . ,
ã20 = 2.373⇥ 10�15.

The final result for P (v) is

P (v) = P0(v)�
⇥̃⇤⇤(0+)

2
⇤P (v) +O(⌅2) (3.60)Pv-final

= P0(v) exp

⇧
�⇥̃⇤⇤(0+)

2

⇤P (v)

P0(v)

⌃
+O(⌅2) , (3.61)Pv-resum

where we remind formula (B12) of [? ]

⇥̃⇤⇤(0+) =
⌅� ⇧

3
+O(⌅2) (3.62)

Note that the second formula (3.61), while being equivalent to
order ⌅, has the property to resum the logarithmic behavior at
small v into the correct power-law behavior. This is why we
have chosen it for the plot 3.3.

5. Discussion, asymptotic behavior

We now turn to an asymptotic analysis of ⇤Z(⌥). This knowl-
edge will allow us to calculate the exponent � of the small-
velocity behavior of P (v). From the leading term an =
�2 ln(n)/n of (3.52), we obtain

⇤Z(⌥) = � ln2(1� ⌃) +O
⇤
ln(1� ⌃)

⌅
+ . . .

= � ln2(1� ⌥) + . . . (3.63)

This yields for ⌥ ⇧ �⌃

Z(⌥) = Z0(⌥) + ⇥̃⇤⇤(0+)
1

2
ln2(1� ⌥) + . . . (3.64)b39

Suppose that P (v) = 1
v1+x e�v . Then it has Laplace transform

LTv⇥�
1

v1+x
e�v = � ln(1� ⌥)

� 1

12

�
6⇥2

E + �2 + 12⇥E ln(1� ⌥) + 6 ln2(1� ⌥)
⇥
x+ . . .

Hence

x = �⇥̃⇤⇤(0+) +O(⌅2) , (3.65)

which can be compared to z = 2� ⇥̃⇤⇤(0+) +O(⌅2).
One also expects a correction to the exponential decay, of

the form

P (v) + ⌅⇤P (v) ⇤ e�v1+�

v
(3.66)

Expanding yields ⇤P (v) ⇤ e�v ln v, equivalent to

⇤Z(⌥) ⇤ ln(1� ⌥)

1� ⌥
=
↵

n

cn⌥
n , (3.67)

and cn ⌅ lnn+const for large n. Numerically from the series
expansion (3.52), one might guess that cn = 4

3 lnn.

Velocity distribution in avalanche: tree + loops 

1 loop
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38

There is an interesting series expansion, obtained by Taylor expanding the denominator:

⇤�xB�(1 + x, 0) =
⌅⇤

n=0

⇤n+1

n+ x+ 1
= ⇤⇥(⇤, 1, x+ 1) (9.200)b36

⇥ is the HurwitzLerchPhi function.
Pierre: one finds using that representation, including the counterterm
⌅ X

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = (⇤+ 2 ln(1� ⇤)) ln(1 +X)� 2X(⇤+ ln(1� ⇤))

1 +X
(9.201)

�⇤
⌅⇤

n=0

⇤n[
2(1 + 2n)(⇤� 2 + (⇤� 1)n)

(2 + n)2
(ln(1 + n+X)� ln(1 + n)) +

n(⇤� 3 + (⇤� 1)n)2

2(3 + n)2
(ln(1 + n+ 2X)� ln(1 + n)))]

It simplifies into for X = ⇥:
⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = �2(⇤+ ln(1� ⇤))� 1

2

⌅⇤

n=0

⇤1+nn(⇤� 3 + n(⇤� 1))2

(n+ 3)2
ln 2 (9.202)

+
1

2

⌅⇤

n=0

[
n(⇤� 3 + n(⇤� 1))2

(3 + n)2
+

4(1 + 2n)(⇤� 2 + n(⇤� 1))

(2 + n)2
]⇤1+n ln(1 + n)

= �2(⇤+ ln(1� ⇤))� ln 2

⇤
(⇤(6 + ⇤) + (6� 8⇤) ln(1� ⇤)� 6⇤Li2(⇤)) (9.203)

+
1

2

⌅⇤

n=0

[
n(⇤� 3 + n(⇤� 1))2

(3 + n)2
+

4(1 + 2n)(⇤� 2 + n(⇤� 1))

(2 + n)2
]⇤1+n ln(1 + n)

This is checked to be equivalent to: ***this is the only formula Kay has checked, it was slightly simplified***

�Z(⌅) :=

⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = ⇤2(1� ln 4) +

⌅⇤

n=3

an⇤
n (9.204)delta-Z

an =
(n� 3)(n� 2)2 log(n� 2)

2n2
+

6 log(2)� 2n(n+ 1)(log(2)� 1)

n2(n+ 1)

� (n� 1)(n((n� 6)n+ 2) + 6) log(n� 1)

n2(n+ 1)
+

�
n2 � 8n+ 3

⇥
log(n)

2n+ 2
(9.205)

Note that limn⇥2 an = 1� 2 ln 2, i.e. the first term a2 follows the same relation, if the coefficients are properly interpreteted.
We have checked that this reproduces the explicit series expansion given in section IX B 5 up to order ⌅3. It behaves at large
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Decaying Burgers

Model and Observables
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inviscid limit
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particle in parabola with curvature
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monic coupling to an external variable w!t", a given function
of time !in most cases we choose it uniform in x". This is the
simplest generalization of the statics, where w!t"=w is time
independent. It is useful to define the fixed-w energy

Hw#u$ =% ddx
m2

2
#u!x" − w$2 + V„x,u!x"… !2"

associated to the force Fx#u ;w$=−
!Hw#u$
!u!x" . If w!t" is an in-

creasing function of t the model represents an elastic mani-
fold “pulled” by a spring, see Fig. 1.

We first describe qualitatively how to measure the FRG
functions and later justify why the relation is expected to be
exact. We are interested in the observable w!t"− &ū!t"' where
ū!t"=L−d(ddxu!x , t" is the center of mass position, and &·'
denotes thermal averages, i.e., the ground state at zero tem-
perature. It represents the shift between the translationally
averaged displacement and the center of the well, i.e., the
extension of the spring. It is thus proportional to the pulling
force on the manifold, hence to the translationally averaged
pinning force minus the friction force, i.e., w!t"− ū!t"
=m−2#"v!t"−(xF(x ,u!x , t")$ !if we use periodic boundary
conditions inside the manifold". Of particular interest are

w!t" − &ū!t"' = m−2fav!t" ,

#w!t" − &ū!t"'$#w!t!" − &ū!t!"'$c = m−4L−dDw!t,t!" , !3"

where connected means with respect to the double average
&¯'. If we consider a function w!t" such that dw!t" /dt#0,
one can also write

Dw!t,t!" = $w„w!t",w!t!"… . !4"

As written, the function $w may in general depend on the
history w!t". However, we expect that for fixed L ,m and
slow enough w!t", e.g., w!t"=vt with v→0+, one has
$w(w!t" ,w!t!")→$#w!t"−w!t!"$. This function $!w−w!",
which is independent of the process w!t", is the one defined

in the F.T. The derivation of this property is given in Appen-
dix A to which we refer the reader for technical details. Note
that we are discussing now N=1 systems !interfaces", subtle-
ties related to N#1 are discussed in Sec. VIII.

Let us now describe T=0 depinning. Quasistatic depin-
ning is studied as the limiting case where dw /dt→0+. The
quasistatic motion can be described as follows !in the con-
tinuum model". One starts in a metastable state u0!x" for a
given w=w0, i.e., a zero-force state Fx(u0!x" ;w)=0 which is
a local minimum of Hw0

#u$ with a positive barrier. One then
increases w. For smooth short-scale disorder, the resulting
deformation of u!x" is smooth. At some w=w1, the barrier
vanishes. For w=w1

+ the manifold moves downward in en-
ergy until it is blocked again in a metastable state u1!x"
which again is a local minimum of Hw1

#u$. We are interested
in the center of mass !i.e., translationally averaged" displace-
ment ū=L−d(ddxu!x". The above process defines a function
ū!w" which exhibits jumps at the set wi. Note that time has
disappeared: evolution is only used to find the next location.
The first two cumulants

w − u!w" = m−2fc, !5"

#w − u!w"$#w! − u!w!"$
c

= m−4L−d$!w − w!" !6"

allow a direct determination of the averaged !m dependent"
critical force fc and of $!w". Note that u!w" a priori depends
on the initial condition and on its orbit but at fixed m one
expects an averaging effect when w is moved over a large
region. This is further discussed below. Note that the defini-
tion of the !finite size" critical force is very delicate in the
thermodynamic limit #38$.

Elastic systems driven by a spring and stick-slip type mo-
tion were studied before, e.g., in the context of dry friction.
The force fluctuations and jump distribution were studied
numerically for a string driven in a random potential #70$.
However, the precise connection to quantities defined and
computed in the field theory has to our knowledge not been
made. The dependence in m for small m predicted by FRG,
$!w"=m%−2&$̃!wm−&", is consistent with observations of #70$
but the resulting $̃!w" has never been measured. Fully con-
nected mean-field models of depinning also reduce to a par-
ticle pulled by a spring, together with some self-consistency
condition. Reference #44$ discusses related issues in an ex-
pansion around mean field. As discussed below, our main
remarks here are much more general, independent of any
approximation scheme, and provide a rather simple and
transparent way to attack the problem.

Note that the manifold in the harmonic well can be ap-
proximated by !L /Lm"d roughly independent pieces with
Lm)1 /m. The motion of each piece over large distances
resembles the one of a particle, i.e., a d=0 model, but with a
rescaled unit of distance in the u direction, um)Lm

& )m−&.
The “effective force” landscape seen by each piece becomes
uncorrelated on such distances, and its amplitude scales as
Fm)m2um. Hence one is in a bulk regime not dominated by
extremes, i.e., $!w" probes only motion over order one unit.
It is easy to check that an arbitrary initial condition joins the
common unique orbit after about one correlation length.

10200 10400 10600 10800 11000

-40

-20

20

w − uw − "w − uw#

w

FIG. 1. !Color online" Dynamical shocks !avalanches": position
of a particle uw pulled by a spring, of varying equilibrium position
w, in a one-dimensional random force landscape !with forces uni-
formly distributed between 0 and 1". The quasistatic motion shows
a succession of jumps, also called shocks. Decreasing the spring
constant !the mass" from m2=0.01 !red" over m2=0.03 !green" to
m2=0.001 !blue", the shocks become larger and larger.

DRIVEN PARTICLE IN A RANDOM LANDSCAPE: … PHYSICAL REVIEW E 79, 051105 !2009"
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Decaying Burgers with random walk initial 
condition
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does not renormalize!

⇒ tree result is exact 
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FIG. 1: Shock-walls in 2 dimensions. The axes are w = (w1, w2), with w1 on the horizontal axes and w2 on the vertical axes. We plot the
points pi as black circles with colored center. At t = 0, each point is inside its domain of attraction, which is a convex polygon. Increasing
time, the domain-walls move, and some domains are swallowed up. One notes that the shock-walls can branch off or terminate in a point. f:2d-shocks
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Analytical Results for Decaying Burgers in 2 
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Analytical Results for Decaying Burgers in 2 
dimensions
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Funtional RG still exact for 

but tree summation becomes difficult, since non-rooted 
trees contribute
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Tree resummation (2): several “roots”

7

(ii) this relation contains an explicit factor of |u| in each C(n), absent in the old formulation; it is this factor which is derived.
Clearly, for n = 1, there is no difference.

(iii) rij defined in (89) is the final �(u) added at the bottom of the construction, expanded to linear order in |u|.
(iv) the construction supposes that from each part of the tree, which is glued together to form a new and bigger tree, only the

term of order |u| contributes.
(v) one has to devide by |{r..}|, i.e. the number of unexpanded �ij(u). The reason is as follows: Suppose that the tree we are

constructing contains n terms of the form �ij(u) (with of course in general different indices). Then our recursion relation will
give a contribution for each of them, i.e. n times the desired result.

Define

Z(⌅�, u) :=
⇤
e
⇤�⇤S � 1

⌅
|u| =

⌅⇧

n=1

�i1 ...�inC
(n)(i1, . . . , in) (91)

If there were not the factor of |{r..}|, it would satisfy the recursion relation

Z(⌅�, ⌅u) = ⌅�⌅u+
⇧

i,j

rij
⇤

⇤ui
Z(⌅�, ⌅u)

⇤

⇤uj
Z(⌅�, ⌅u) (92)

We conjecture that this is replaced by

Z(⌅�, ⌅u) = ⌅�⌅u�
⌃�

e
�

�
i,j rij ⇥

⇥ui

⇥
⇥uj � 1

⇥
eZ(⇤�,⇤u)

⌥c,trees
+O(u2) (93)

The c indicates the connected part, and we throw out all loops (see later). This can –apart from loops– also be written as

⌅�⌅u = ln
�
e
�

�
i,j rij ⇥

⇥ui

⇥
⇥uj eZ(⇤�,⇤u)

⇥
+O(u2) (94)94

The idea is as follows: The diagram appears twice in (88), as it has two lower vertices. Marking the vertex in the
recursion relation red, we can write

= + � (95)

The last line is the subtraction we have to implement to correct the double counting. We also give a third order (in disorder
vertices) example:

= + +

� � �

+ (96)

For N = 1, this becomes (with w > 0)

0 = �w � ln
�
e�wh���(0) ⇥2

⇥w eZ(�)w)
⇥

= �w � ln
�
e�wh���(0)Z(�)2eZ(�)w)

⇥

= �w + wh⇤⇤⇤(0)Z(�)2 � Z(�)w (97)

One problem persists in (94): there are loops. They can be eliminated by our final conjectured formula

⌅�⌅u = lim
⇥⇥0

1

⇥
ln
�
e
�⇥

�
i,j rij ⇥

⇥ui

⇥
⇥uj e

1
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The limit ⇥ ⇥ 0 picks out tree diagrams only.
This formula gives (suppressing indices and not writing explicitly the dependence on �):

standard recursion relation overcounts - correct
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more complicated consitency relation
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more (2)
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We checked that if we replace in this equation recursively y by u� 2rZ �(y), then we get back (99).
In components, this reads with the definition that one first calculates ⇧iZ�(u), then put u ⇥ y, i.e. ⇧iZ�(y) := ⇧iZ�(u)|u=y:

⌃u⌃⇤ = Z�(y) +
⌥

ij

rij⇧iZ�(y)⇧jZ�(y)

rij =
1

2

⇧
uiuj

|⌃u| + �ij |⌃u|
⌃
h���(0)

m4

yi = ui � 2rij⇧jZ�(y)

(106)tree-2

Explanation: We have written Z�(y). It is indeed a function of 3 scalar arguments, ⌃⇤⌃y, ⌃⇤2, and ⌃y2. We only need the order
proportional to |u|.

Note that the first equation can also be written as

⌃u⌃⇤ = Z�(y) +
1

2

⌥

i

⇧iZ�(y) (ui � yi) (107)107

Check 1: Expanding (105) in u at N = 1 gives u⇤ = Z�u(1� 2Z�) + uZ2
�, equivalent to (101).

Check 2: Expanding the set of equations (106) in powers of ⇤ and solving for the coefficients of Z�(u), we find agreement with
eq. (102) up to order ⇤6 included, see “/Users/wiese/tex/pinning/avalanches/shocksN/math/contractions3.nb, (* solution of the
new cactus recursion relation *)”. Note that our algorithm to arrive at (102) was more efficient. This algorithm was sped up by
working on a Taylor series in ⇤ only, so that Mathematica could discard lower-order terms immediately. We give the result
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+O(⇤9) (108)102bis

Note that both (102) and (108) reproduce the N = 1 result Z(⇤) = ⇤+ ⇤2 + 2⇤3 + 5⇤4 + 14⇤5 + 42⇤6 + 132⇤7 +O
�
⇤8

⇥
.

Note that the rij we used is the one with u not replaced by y. We tried to replace systematically u by y in R too, with absurd
results. ***RECHECK***

V. SOLUTIONS !?

We try to solve the tree equations (106) for N = 2. Define
⇤
u1

u2

⌅
= u

⇤
sin ⇥

cos ⇥

⌅
(109)

Define Z�(u, ⇥), and ⇧iZ(u, ⇥), etc. the partial derivatives w.r.t. first and second argument. (106) becomes

u (⇤1 sin ⇥ + ⇤2 cos ⇥) = Z�(y,⌅) + u [⇧1Z(y,⌅)]2

+
1

2u
[⇧2Z(y,⌅)]2 (110)

y = complicated ??? (111)
⌅ = complicated ??? (112)

Second try:

x =
u1u2

u2
, u2 = u2

1 + u2
2 (113)

(106) becomes even more complicated.

⇔
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Tree resummation (3)
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Results

9

We checked that if we replace in this equation recursively y by u� 2rZ �(y), then we get back (99).
In components, this reads with the definition that one first calculates ⇧iZ�(u), then put u ⇥ y, i.e. ⇧iZ�(y) := ⇧iZ�(u)|u=y:

⌃u⌃⇤ = Z�(y) +
⌥

ij

rij⇧iZ�(y)⇧jZ�(y)

rij =
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2

⇧
uiuj

|⌃u| + �ij |⌃u|
⌃
h���(0)

m4

yi = ui � 2rij⇧jZ�(y)

(106)tree-2

Explanation: We have written Z�(y). It is indeed a function of 3 scalar arguments, ⌃⇤⌃y, ⌃⇤2, and ⌃y2. We only need the order
proportional to |u|.

Note that the first equation can also be written as

⌃u⌃⇤ = Z�(y) +
1

2

⌥

i

⇧iZ�(y) (ui � yi) (107)107

Check 1: Expanding (105) in u at N = 1 gives u⇤ = Z�u(1� 2Z�) + uZ2
�, equivalent to (101).

Check 2: Expanding the set of equations (106) in powers of ⇤ and solving for the coefficients of Z�(u), we find agreement with
eq. (102) up to order ⇤6 included, see “/Users/wiese/tex/pinning/avalanches/shocksN/math/contractions3.nb, (* solution of the
new cactus recursion relation *)”. Note that our algorithm to arrive at (102) was more efficient. This algorithm was sped up by
working on a Taylor series in ⇤ only, so that Mathematica could discard lower-order terms immediately. We give the result
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Note that both (102) and (108) reproduce the N = 1 result Z(⇤) = ⇤+ ⇤2 + 2⇤3 + 5⇤4 + 14⇤5 + 42⇤6 + 132⇤7 +O
�
⇤8

⇥
.

Note that the rij we used is the one with u not replaced by y. We tried to replace systematically u by y in R too, with absurd
results. ***RECHECK***

V. SOLUTIONS !?

We try to solve the tree equations (106) for N = 2. Define
⇤
u1

u2

⌅
= u

⇤
sin ⇥

cos ⇥

⌅
(109)

Define Z�(u, ⇥), and ⇧iZ(u, ⇥), etc. the partial derivatives w.r.t. first and second argument. (106) becomes

u (⇤1 sin ⇥ + ⇤2 cos ⇥) = Z�(y,⌅) + u [⇧1Z(y,⌅)]2

+
1

2u
[⇧2Z(y,⌅)]2 (110)

y = complicated ??? (111)
⌅ = complicated ??? (112)

Second try:

x =
u1u2

u2
, u2 = u2

1 + u2
2 (113)

(106) becomes even more complicated.

Finite moments

2

It implies universal moment ratios, in particular

⇧S2
x⌃

⇧S2
⌃⌃

=
2

⇧s2⌃⌃
=

2

D � 1
. (8)

where here �S⌃ and �s⌃ denote the component of the shock
orthogonal to x. While the set of shocks along x are un-
correlated both in position and size, a property which
indeed implies (3), by contrast, longitudinal and trans-
verse components of a given shock are correlated, as from
(7) one can calculate higher moments, e.g.

4
⇧SxS2

⌃⌃⇧Sx⌃
⇧S2

x⌃2
= ⇧sxs2⌃⌃ = 4(D � 1) . (9)

We now indicate the origin of our conjecture, by recalling
the connection to disordered systems. Eq. (1) is solved
by the Cole-Hopf transformation [2] in the limit ⌅ ⇥ 0:

V̂ (�r, t) = min
⇤u

�
1

2t
(�u� �r)2 + V (�u)

⇥
, (10)

where V (�u) is the potential associated with the initial
condition, i.e. �v(�r, t = 0) = �⌥V (�r). Hence for a ran-
dom initial condition the problem is equivalent to find-
ing the minimum energy position of a particle in a ran-
dom potential, plus a harmonic well. Denoting by �u(�r)
the position of the minimum in (10), the velocity field is
�v(�r, t) = [�r��u(�r)]/t. At the shocks, the minimum jumps,
and the shock size is �S = �u(x� +0+)� �u(x� � 0+). Note
that u(�r) = �r which implies ⇧Sx⌃ = 1 as stated above.

The random potential V (�u) corresponding to the
present model (2) is a generalization of the 1D random
acceleration process [20, 21] toD dimensions. To define it
one needs a large-scale regularization; we choose periodic
boundary conditions of period L in all D directions,

V (�u) = L�D
2

⇤

⇤q ⇧=0

V⇤qe
i⇤q·⇤u, V⇤qV⇤q� =

⌃2�⇤q,�⇤q�

(q2)
D
2 +H

, (11)

where �q = 2⇥
L �n, �n ⌅ {�L/2 + 1, . . . , L/2� 1, L/2}D,

in the limit L ⇥ ⇤, and H = 3/2. In real space
this leads to a non-analytic cubic potential correlator
V (�u)V (�u⌅) = R0(�u��u⌅) with R0(�u)�R0(0) = � 1

2ALu2+
B
6 |u|

3 + O(1/L) with AL = 0.0182L⌃2 + O(L0) and
B = ⌃2/(3⇧) +O(1/L). The initial velocity correlator is
vi(�r, t = 0)vj(0, t = 0) = �⌥i⌥jR0(�r) with independent
increments distributed as in (2).

In a nutshell the basis for the conjecture is as follows.
The present model is the d = 0 limit of a model of an
elastic manifold (of internal dimension d) in a random
potential and a quadratic well of curvature 1/t. The anal-
ogous variable to �u(�r) is the center of mass of the mani-
fold, and V̂ (�r) the energy of the optimal configuration as
a function of well position. Its second cumulant defines
a renormalized potential disorder correlator R(�r) for any
d, which is shown to obey a Functional RG equation as
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FIG. 1: Left. Step One: reduction to one dimension. E�ective
1-dimensional potential V(i, t) after the minimization over j,
as given in Eq.(14), at di�erent times (from top to bottom
t = 0, 2, 8). The potential becomes deeper and deeper as time
increases. Right. Step Two: location of the minimum. Solid
stair-case line is imin(x), dashed line is jmin(x) for t = 8. The
drift x is indicated. Shocks are only forward in x direction.

t is varied. This equation can be solved perturbatively
in R in a d = 4 � ⇥ expansion. It turns out that the
initial correlator R0(�r) corresponding to (2) solves the
FRG equation to all orders in ⇥, i.e. there are no loop
corrections. This implies that the correlation functions
need only be computed to tree-level, either by recursion
or from a saddle-point method, as detailed in [17]. This
leads to (3) and to Zt(⇤), which hold for any D and any
d, for this choice of initial conditions, although we need
only d = 0 (Burgers). A further result, proved to low-
est order in ⇥ = 4 � d [17] but which we expect to hold
for any d, is that (2) is an attractive fixed point of the
RG, hence for velocity correlations which di�er from (2)
only at small r, the behaviour at large t again follows
(3) [18]. Of course we cannot exclude non-perturbative
corrections, hence our prediction is, strictly, a conjecture.
In support we note that for D = 1 it has been proven in
[6]. To check it in D = 2 we now turn to numerics.

A powerful algorithm allows to solve this problem for
a slightly modified version of Eq. (10), with a discretized
variable �u = (i, j) and a continuous variable �r = x�e1

V̂ (x�e1, t) = min
1⇤i,j⇤L

�
(i� x)2

2t
+

j2

2t
+ V (i, j)

⇥
, (12)

for any x in the interval (0, L). Let us now discuss how
the algorithm finds the site �umin(x) = (imin(x), jmin(x))
which satisfies the minimization condition (12):

Step 1: Reduction to a 1-dimensional problem. For
each value of i we perform a minimization over the trans-
verse coordinate j, keeping in memory the location of the
minimum, j⇥min(i). Since this operation does not involve
x, the e�ective dimension of the problem is reduced to 1,
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FIG. 2: Color Online. Left: Convergence of the measured
Z̃num

1 (�) to the analytical prediction (16) for di�erent times:
t = 2.04 (filled circles), t = 2.78 (open circles), t = 4
(squares). Right: measured Z̃2(�) for t = 4 (squares) com-
pared to the prediction (17) (solid line).

and Eq. (12) becomes

V̂ (x⇧e1, t) = min
1⇤i⇤L

⇧
(i� x)2

2t
+ V(i, t)

⌃
. (13)

V(i, t) = min
1⇤j⇤L

⇧
j2

2t
+ V (i, j)

⌃
. (14)

The reduced potential V(i, t) is plotted on Fig. 1 (left).
Step 2: Determination of imin(x). The latter is an

increasing piecewise constant function of x. The mini-
mum location in the original D = 2 lattice is given by
jmin(x) = j⇥min

�
imin(x)

⇥
. For x = 0 the minimum posi-

tion is found from Eq. (13). Increasing x, the minimum
remains in imin(x = 0) up to a threshold x1, above which
the minimum takes a new value imin(x1) > imin(0). For
all i > imin(x = 0) we find the value of x satisfying

(i� x)2

2t
+V(i, t) = (imin(0)� x)2

2t
+V(imin(0), t) . (15)

x1 is the smallest value of x for which this condition is
satisfied. One then searches the next minimum and the
procedure is iterated up to x = L, see Fig. 1 (right).

Step 3: Shock sizes. Given the sequence of minima
locations ⇧umin(x) = (imin(x), jmin(x)), the shocks sizes
⇧S are the discontinuities in these piecewise functions of
x. The velocity profile is vx(x, t) = (x � imin(x))/t,
vy(x, t) = �jmin(x)/t. Note that in our discrete model
the shock size is cut o� from below at S0 = 1 and from
above at L. Self-a⇥ne scaling and Eq. (1) are expected
to hold in the continuum limit when S0 ⇤ Sm ⇤ L or
equivalently S0/Sm = 1/(Bt2) ⇤ s ⇤ L/(Bt2).

(iv) Step 4: Numerical implementation. In practice, we
consider a D = 2 square latice (usually of size L = 212),
the correlated random potential V (i, j) is constructed
from L2 independently distributed Gaussian random
numbers via a “fast Fourier transform” of Eq. (11). Note
that the sum over the components of ⇧n are now running
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over integers from �L/2+1 to L/2. The zero mode ⇧n = 0
is set to zero, V0 = 0. We choose ⌅2 = 1, which implies
that B = 1/(3⇤) in formula (2). We collected a large
number of shocks (⇥ 106 � 107) using many samples,
from which we computed Sm and verified the prediction
Sm = t2/(3⇤). From the reduced sizes ⇧s� := ⇧S�/Sm,

we measured Z̃(⇥x,⇥⌅) =
1
N

⌥
�(e

⇤⇥·⇤s� � 1), specifically

Z̃1(⇥) := Z̃(⇥, 0) and Z̃2(⇥) := Z̃(0,⇥). The conjecture
states that for the longitudinal component of the shock

Z1(⇥) =
1

2
(1�

⌅
1� 4⇥) , p1(s) =

1

2
⌅
⇤s3/2

e�s/4 (16)

with p1(sx) :=
�
ds⌅p(sx, s⌅), i.e. the same as obtained

for D = 1 [6, 10] and for the related Galton process
[16, 22]. This is verified on Fig. 2 (left) and Fig. 3 (left).
Since the agreement is very good, we have plotted on
Fig. 2 (left) the di�erence with the analytical prediction
to emphasize the small deviations. These deviations are
more important for large negative ⇥ ⇥ �1/s0, sensitive
to the small lattice cuto� s0 = S0/Sm for the reduced
shock sizes. Increasing the time, s0 decreases as s0 ⇥
1/t2. The prediction for the characteristic function of
the y component of the shock sizes, Z̃2(⇥), is obtained
by elimination of � in the system of equations

⇥(�) = sin �

 
5� cos(4�) + 2

⇤
1� cos(2�) +

 
5� cos(4�)

⌅2 (17)

Z̃2(�) =
cos �
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5� cos(4�)� 2

1� cos(2�) +
 

5� cos(4�)
. (18)

Numerically, the Laplace inversion can be performed
to determine p2(s⌅) =

�
dsx p(sx, s⌅) with high pre-

cision. (It is an integral over a segment of � in the
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The reduced potential V(i, t) is plotted on Fig. 1 (left).
Step 2: Determination of imin(x). The latter is an

increasing piecewise constant function of x. The mini-
mum location in the original D = 2 lattice is given by
jmin(x) = j⇥min
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imin(x)

⇥
. For x = 0 the minimum posi-

tion is found from Eq. (13). Increasing x, the minimum
remains in imin(x = 0) up to a threshold x1, above which
the minimum takes a new value imin(x1) > imin(0). For
all i > imin(x = 0) we find the value of x satisfying

(i� x)2

2t
+V(i, t) = (imin(0)� x)2

2t
+V(imin(0), t) . (15)

x1 is the smallest value of x for which this condition is
satisfied. One then searches the next minimum and the
procedure is iterated up to x = L, see Fig. 1 (right).

Step 3: Shock sizes. Given the sequence of minima
locations ⇧umin(x) = (imin(x), jmin(x)), the shocks sizes
⇧S are the discontinuities in these piecewise functions of
x. The velocity profile is vx(x, t) = (x � imin(x))/t,
vy(x, t) = �jmin(x)/t. Note that in our discrete model
the shock size is cut o� from below at S0 = 1 and from
above at L. Self-a⇥ne scaling and Eq. (1) are expected
to hold in the continuum limit when S0 ⇤ Sm ⇤ L or
equivalently S0/Sm = 1/(Bt2) ⇤ s ⇤ L/(Bt2).

(iv) Step 4: Numerical implementation. In practice, we
consider a D = 2 square latice (usually of size L = 212),
the correlated random potential V (i, j) is constructed
from L2 independently distributed Gaussian random
numbers via a “fast Fourier transform” of Eq. (11). Note
that the sum over the components of ⇧n are now running
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over integers from �L/2+1 to L/2. The zero mode ⇧n = 0
is set to zero, V0 = 0. We choose ⌅2 = 1, which implies
that B = 1/(3⇤) in formula (2). We collected a large
number of shocks (⇥ 106 � 107) using many samples,
from which we computed Sm and verified the prediction
Sm = t2/(3⇤). From the reduced sizes ⇧s� := ⇧S�/Sm,

we measured Z̃(⇥x,⇥⌅) =
1
N

⌥
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⇤⇥·⇤s� � 1), specifically

Z̃1(⇥) := Z̃(⇥, 0) and Z̃2(⇥) := Z̃(0,⇥). The conjecture
states that for the longitudinal component of the shock

Z1(⇥) =
1

2
(1�

⌅
1� 4⇥) , p1(s) =

1

2
⌅
⇤s3/2

e�s/4 (16)

with p1(sx) :=
�
ds⌅p(sx, s⌅), i.e. the same as obtained

for D = 1 [6, 10] and for the related Galton process
[16, 22]. This is verified on Fig. 2 (left) and Fig. 3 (left).
Since the agreement is very good, we have plotted on
Fig. 2 (left) the di�erence with the analytical prediction
to emphasize the small deviations. These deviations are
more important for large negative ⇥ ⇥ �1/s0, sensitive
to the small lattice cuto� s0 = S0/Sm for the reduced
shock sizes. Increasing the time, s0 decreases as s0 ⇥
1/t2. The prediction for the characteristic function of
the y component of the shock sizes, Z̃2(⇥), is obtained
by elimination of � in the system of equations

⇥(�) = sin �
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Numerically, the Laplace inversion can be performed
to determine p2(s⌅) =

�
dsx p(sx, s⌅) with high pre-

cision. (It is an integral over a segment of � in the
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FIG. 2: 3-d plot of |J(t)e�S2�(t)| with t = x+ iy for S = 5. The plot repeats for x ⇥ x+ 2⇥. The most naive path with t on the imaginary
axis is clearly not optimal. The optimal path is from �⇥� tmax to �⇥± i ln 3

2 , indicated in bold red. Note that a contour going to t ⇥ x± i⇤
is not appropriate, corresponding to � ⇥ 0.

One has with z0 = it0:

J(t)

2i⇤
=

i

3456⇤(t� z0)4
� 23

6912⇤(t� z0)3
+

31i

1296⇤(t� z0)2
+

139

6912⇤(t� z0)
+

278688731i

39813120⇤
+O

�
(t� z0)1

⇥
(236)

⇥(t) = � i

96
⇧
3(t� z0)2

+
47

192
⇧
3(t� z0)

� 4771i

4608
⇧
3
+O

�
(t� z0)1

⇥
(237)

which seems to imply that P (S2) ⇥ S�3/2
2 . Note that here we use the normalization where < S1 >= 1 hence we should get

here < S2 >= 1 and < S4 >= 36 and Kay finds that it works numerically.
On has the asymptotic e��(1/2)S2 at large S2 with Kay guess ⇥(1/2) = 0.267099, however this is probably the maximum of

⇥(t) on the real axis ⇥max = 0.26980622000759375729.

One can solve ⇥⇥(t) = 0 and find cos 2t = 1� 22/3

3
⇧⇤

3�1
+ 3

↵
2
�⇧

3� 1
⇥
= 0.37418318104153328399 and then t = tmax =

0.59364025710381562899 hence the value given above. One finds:

⇥c = ⇥max =

�
22/3

3
⇧⇤

3�1
� 3

↵
2
�⇧

3� 1
⇥
⌥

 ⇧
2 +

�

3�
⇧
1� 22/3

3
⇧⇤

3�1
+ 3

↵
2
�⇧

3� 1
⇥⌃2
�

⌦

⌥

 22/3
3
⇧⇤

3�1
� 3

↵
2
�⇧

3� 1
⇥
+

�

6� 2

⇧
1� 22/3

3
⇧⇤

3�1
+ 3

↵
2
�⇧

3� 1
⇥⌃2
�

⌦
2 (238)

= 0.26980622000759375728898193319249651641588713049537596924945476775879228108563394888... (239)

Around that point one has ⇥� ⇥max = �C(t� tmax)2.
One finds that around ⇥c = 0.269806...

Z(⇥) = 0.0537935� 1.01815(⇥c � ⇥) + 4.08941(⇥c � ⇥)3/2 � 14.5049(⇥c � ⇥)2 +O
⇤
(⇥� ⇥c)

5/2
⌅

(240)

This gives the asymptotic behavior – up to �-functions and their derivatives at zero:

Pasymp(s) =
1.73040189364e�0.269806s

s5/2
for s ⇤ ⌅ (241)asymp

Check: For s = 2500, we have P (s)/Pasymp(s) = 0.985976.
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and Eq. (12) becomes

V̂ (x⇧e1, t) = min
1⇤i⇤L

⇧
(i� x)2
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+ V(i, t)

⌃
. (13)

V(i, t) = min
1⇤j⇤L
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+ V (i, j)

⌃
. (14)

The reduced potential V(i, t) is plotted on Fig. 1 (left).
Step 2: Determination of imin(x). The latter is an

increasing piecewise constant function of x. The mini-
mum location in the original D = 2 lattice is given by
jmin(x) = j⇥min

�
imin(x)

⇥
. For x = 0 the minimum posi-

tion is found from Eq. (13). Increasing x, the minimum
remains in imin(x = 0) up to a threshold x1, above which
the minimum takes a new value imin(x1) > imin(0). For
all i > imin(x = 0) we find the value of x satisfying

(i� x)2

2t
+V(i, t) = (imin(0)� x)2

2t
+V(imin(0), t) . (15)

x1 is the smallest value of x for which this condition is
satisfied. One then searches the next minimum and the
procedure is iterated up to x = L, see Fig. 1 (right).

Step 3: Shock sizes. Given the sequence of minima
locations ⇧umin(x) = (imin(x), jmin(x)), the shocks sizes
⇧S are the discontinuities in these piecewise functions of
x. The velocity profile is vx(x, t) = (x � imin(x))/t,
vy(x, t) = �jmin(x)/t. Note that in our discrete model
the shock size is cut o� from below at S0 = 1 and from
above at L. Self-a⇥ne scaling and Eq. (1) are expected
to hold in the continuum limit when S0 ⇤ Sm ⇤ L or
equivalently S0/Sm = 1/(Bt2) ⇤ s ⇤ L/(Bt2).

(iv) Step 4: Numerical implementation. In practice, we
consider a D = 2 square latice (usually of size L = 212),
the correlated random potential V (i, j) is constructed
from L2 independently distributed Gaussian random
numbers via a “fast Fourier transform” of Eq. (11). Note
that the sum over the components of ⇧n are now running
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and S⇥ = 0. The plateau value is consistent with 4�c1L
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over integers from �L/2+1 to L/2. The zero mode ⇧n = 0
is set to zero, V0 = 0. We choose ⌅2 = 1, which implies
that B = 1/(3⇤) in formula (2). We collected a large
number of shocks (⇥ 106 � 107) using many samples,
from which we computed Sm and verified the prediction
Sm = t2/(3⇤). From the reduced sizes ⇧s� := ⇧S�/Sm,

we measured Z̃(⇥x,⇥⌅) =
1
N

⌥
�(e

⇤⇥·⇤s� � 1), specifically

Z̃1(⇥) := Z̃(⇥, 0) and Z̃2(⇥) := Z̃(0,⇥). The conjecture
states that for the longitudinal component of the shock

Z1(⇥) =
1

2
(1�

⌅
1� 4⇥) , p1(s) =

1

2
⌅
⇤s3/2

e�s/4 (16)

with p1(sx) :=
�
ds⌅p(sx, s⌅), i.e. the same as obtained

for D = 1 [6, 10] and for the related Galton process
[16, 22]. This is verified on Fig. 2 (left) and Fig. 3 (left).
Since the agreement is very good, we have plotted on
Fig. 2 (left) the di�erence with the analytical prediction
to emphasize the small deviations. These deviations are
more important for large negative ⇥ ⇥ �1/s0, sensitive
to the small lattice cuto� s0 = S0/Sm for the reduced
shock sizes. Increasing the time, s0 decreases as s0 ⇥
1/t2. The prediction for the characteristic function of
the y component of the shock sizes, Z̃2(⇥), is obtained
by elimination of � in the system of equations
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5� cos(4�) + 2
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⌅2 (17)

Z̃2(�) =
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Numerically, the Laplace inversion can be performed
to determine p2(s⌅) =

�
dsx p(sx, s⌅) with high pre-

cision. (It is an integral over a segment of � in the
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Hence we arrive at:
A more compact representation is as a function of Y1 = y cos t and Y2 = y sin t and reads:

�1 = F1(y, t) =

�
4y2 � 7

⇥
cos(t)� 8y sin2(t) + 3 cos(3t)

16y2
(222)222

�2 = F2(y, t) =
sin(t)

�
4y cos(t) + 3 cos(2t) + 2y2 � 1

⇥

8y2
(223)223

Z = X1 =
2y cos(t) + cos(2t)� 3

4y
(224)224

X2 =
sin(t)(cos(t) + y)

2y
(225)225

J(y, t) =
4
�
y2 + 9

⇥
cos(2t) + 4y cos(t) + 12y cos(3t) + 3 cos(4t) + 4y2 � 31

64y5
(226)

Let us try �1 = 0. Then:

y =
1

2 cos t

⇤⌃
5� cos(4t) + 2

⌅
� cos(t) (227)

�2 =
sin(t)

⇤⌃
5� cos(4t) + 2

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅2 (228)

X1 =
cos(t)

⇤⌃
5� cos(4t)� 2

⌅

2
⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅ (229)

Elimination of t between these equations yields X1 as a function of �2. Using series inversion it gives very easily many terms
in the series expansion:

Z̃(�2) =
�2
2

2
+

3�4
2

2
+

135�6
2

16
+

977�8
2

16
+

129963�10
2

256
+

1180377�12
2

256
+

91202891�14
2

2048
+

921684933�16
2

2048
(230)

+
308622997395�18

2

65536
+

3319859088105�20
2

65536
+

292183179645897�22
2

524288
+

3274855720092783�24
2

524288
(231)

+
596584725561431519�26

2

8388608
+

6884384627001260037�28
2

8388608
+

642973844837708624403�30
2

67108864
+O

�
�31
2

⇥
(232)

We have determined that �(t) diverges along the imaginary axis for t at t = it0 with t0 = ± 1
2 ln 3. We could in principle

choose to integrate t in the imaginary axis interval ]� it0, it0[. However then the real part of � is zero and the integral oscillates.
To get a positive real part we consider contours C where �(t) is positive for S2 > 0, and negative for S2 < 0.

P (S2) =

⇧
d�

2i⇥
X1(�)e

�S2� =

⇧

C

dt

2i⇥
J(t)e�S2�(t) (233)

J(t) =
cos4(t)

⇤⌃
5� cos(4t)� 2

⌅⇤
2 cos(2t)

⇤⌃
5� cos(4t) + 6

⌅
� cos(4t)� 7

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅4 ⌃
5� cos(4t)

(234)

�(t) =
sin(t)

⇤⌃
5� cos(4t) + 2

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅2 (235)

Hence we need a contour C going from �it0 to +it0. For the contour C Pierre chooses t = xt1 � (1 � x)it0 followed by
t = (1� x)t1 + xit0 where each time x varies from 0 to 1. Kay found the best value to be t1 = 1/2 as then the contour in the �
complex plane does not wind to much.
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FIG. 3: Two possible paths. The first one (left) starts at t = �⇥� i ln(3)2, goes straight to t = 1� ⇥ and then straight to t = �⇥+ i ln(3)2.
It makes some additional loops (some small ones close to �max are not visible on the plot). The second path starts at t = �⇥� i ln(3)2, goes
straight to t = tmax � ⇥ and then straight to t = �⇥ + i ln(3)2. �(t) has slope ⇥ at ⇤� = 0 (but is non-analytic).

0 5 10 15 20 25 30

S0.00

0.05

0.10

0.15

0.20

0.25

S2 p!S"

FIG. 4: S2p1(S) (red, dashed line) versus 2S2p2(S) (blue, solid line).

C. other variables

In terms of the Y variables, for �1 = 0 one can solve for Y2 and get:

�2 =
(Y1 � 2)

�
�2Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

⇥⌃
(Y1 � 1)Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

2Y1

�
Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

⇥5/2
(242)

X1 = �
Y1

�⇥
2
⇧
�Y 2

1 + Y1 + 2� 2
⇥

2

⇤
Y1

�
Y1+

⇥
2
⇥

�Y 2
1 +Y1+2�2

⇥

2�Y1

⌅3/2
(243)

where Y1 is perturbatively close to 1 and I had to assume Y1 < 2.

2

It implies universal moment ratios, in particular

⇧S2
x⌃

⇧S2
⌃⌃

=
2

⇧s2⌃⌃
=

2

D � 1
. (8)

where here �S⌃ and �s⌃ denote the component of the shock
orthogonal to x. While the set of shocks along x are un-
correlated both in position and size, a property which
indeed implies (3), by contrast, longitudinal and trans-
verse components of a given shock are correlated, as from
(7) one can calculate higher moments, e.g.

4
⇧SxS2

⌃⌃⇧Sx⌃
⇧S2

x⌃2
= ⇧sxs2⌃⌃ = 4(D � 1) . (9)

We now indicate the origin of our conjecture, by recalling
the connection to disordered systems. Eq. (1) is solved
by the Cole-Hopf transformation [2] in the limit ⌅ ⇥ 0:

V̂ (�r, t) = min
⇤u

�
1

2t
(�u� �r)2 + V (�u)

⇥
, (10)

where V (�u) is the potential associated with the initial
condition, i.e. �v(�r, t = 0) = �⌥V (�r). Hence for a ran-
dom initial condition the problem is equivalent to find-
ing the minimum energy position of a particle in a ran-
dom potential, plus a harmonic well. Denoting by �u(�r)
the position of the minimum in (10), the velocity field is
�v(�r, t) = [�r��u(�r)]/t. At the shocks, the minimum jumps,
and the shock size is �S = �u(x� +0+)� �u(x� � 0+). Note
that u(�r) = �r which implies ⇧Sx⌃ = 1 as stated above.

The random potential V (�u) corresponding to the
present model (2) is a generalization of the 1D random
acceleration process [20, 21] toD dimensions. To define it
one needs a large-scale regularization; we choose periodic
boundary conditions of period L in all D directions,

V (�u) = L�D
2

⇤

⇤q ⇧=0

V⇤qe
i⇤q·⇤u, V⇤qV⇤q� =

⌃2�⇤q,�⇤q�

(q2)
D
2 +H

, (11)

where �q = 2⇥
L �n, �n ⌅ {�L/2 + 1, . . . , L/2� 1, L/2}D,

in the limit L ⇥ ⇤, and H = 3/2. In real space
this leads to a non-analytic cubic potential correlator
V (�u)V (�u⌅) = R0(�u��u⌅) with R0(�u)�R0(0) = � 1

2ALu2+
B
6 |u|

3 + O(1/L) with AL = 0.0182L⌃2 + O(L0) and
B = ⌃2/(3⇧) +O(1/L). The initial velocity correlator is
vi(�r, t = 0)vj(0, t = 0) = �⌥i⌥jR0(�r) with independent
increments distributed as in (2).

In a nutshell the basis for the conjecture is as follows.
The present model is the d = 0 limit of a model of an
elastic manifold (of internal dimension d) in a random
potential and a quadratic well of curvature 1/t. The anal-
ogous variable to �u(�r) is the center of mass of the mani-
fold, and V̂ (�r) the energy of the optimal configuration as
a function of well position. Its second cumulant defines
a renormalized potential disorder correlator R(�r) for any
d, which is shown to obey a Functional RG equation as
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FIG. 1: Left. Step One: reduction to one dimension. E�ective
1-dimensional potential V(i, t) after the minimization over j,
as given in Eq.(14), at di�erent times (from top to bottom
t = 0, 2, 8). The potential becomes deeper and deeper as time
increases. Right. Step Two: location of the minimum. Solid
stair-case line is imin(x), dashed line is jmin(x) for t = 8. The
drift x is indicated. Shocks are only forward in x direction.

t is varied. This equation can be solved perturbatively
in R in a d = 4 � ⇥ expansion. It turns out that the
initial correlator R0(�r) corresponding to (2) solves the
FRG equation to all orders in ⇥, i.e. there are no loop
corrections. This implies that the correlation functions
need only be computed to tree-level, either by recursion
or from a saddle-point method, as detailed in [17]. This
leads to (3) and to Zt(⇤), which hold for any D and any
d, for this choice of initial conditions, although we need
only d = 0 (Burgers). A further result, proved to low-
est order in ⇥ = 4 � d [17] but which we expect to hold
for any d, is that (2) is an attractive fixed point of the
RG, hence for velocity correlations which di�er from (2)
only at small r, the behaviour at large t again follows
(3) [18]. Of course we cannot exclude non-perturbative
corrections, hence our prediction is, strictly, a conjecture.
In support we note that for D = 1 it has been proven in
[6]. To check it in D = 2 we now turn to numerics.

A powerful algorithm allows to solve this problem for
a slightly modified version of Eq. (10), with a discretized
variable �u = (i, j) and a continuous variable �r = x�e1

V̂ (x�e1, t) = min
1⇤i,j⇤L

�
(i� x)2

2t
+

j2

2t
+ V (i, j)

⇥
, (12)

for any x in the interval (0, L). Let us now discuss how
the algorithm finds the site �umin(x) = (imin(x), jmin(x))
which satisfies the minimization condition (12):

Step 1: Reduction to a 1-dimensional problem. For
each value of i we perform a minimization over the trans-
verse coordinate j, keeping in memory the location of the
minimum, j⇥min(i). Since this operation does not involve
x, the e�ective dimension of the problem is reduced to 1,
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FIG. 5: 2p2(s) (blue solid line) versus p1(s) (orange, dashed) in linear, log-linear and log-log scaling. The green dashed line is the asymptotics
241.

D. P (S1, S2)

We now start from Eqs. (222) to (225). We can eliminate y in favor of Z:

y =
cos(2t)� 3

4Z � 2 cos(t)
(244)

In these variables,

�1 =
Z2(3 cos(3t)� 7 cos(t))

(cos(2t)� 3)2
� Z(2 cos(2t) + cos(4t)� 7)

(cos(2t)� 3)2
� 2 sin2(t) cos3(t)

(cos(2t)� 3)2
(245)

�2 =
2Z2 sin(t)(3 cos(2t)� 1)

(cos(2t)� 3)2
� 8Z sin(t) cos3(t)

(cos(2t)� 3)2
+

sin(t)(cos(4t) + 15)

4(cos(2t)� 3)2
(246)

We have checked expanding the last equation above in a Taylor series in t, solving for t = t(�2), inserting in the first, that the
result obtained earlier for Z(�1,�2) is correctly reproduced up to order �8. The Jacobian is

det

�
⇥�1
Z

⇥�1
t

⇥�2
Z

⇥�2
t

⇥
= �cos3(t)(�32 cos(2t) + cos(4t) + 15)

(cos(2t)� 3)4
+

2Z cos2(t)(�88 cos(2t) + cos(4t) + 55)

(cos(2t)� 3)4

+
Z2(�74 cos(t) + 151 cos(3t) + 3 cos(5t))

(cos(2t)� 3)4
� 4Z3(36 cos(2t) + 3 cos(4t)� 31)

(cos(2t)� 3)4
(247)

We note that for t = 0

�1 = Z(�1, 0)� Z2(�1, 0) (248)

9

We checked that if we replace in this equation recursively y by u� 2rZ �(y), then we get back (99).
In components, this reads with the definition that one first calculates ⇧iZ�(u), then put u ⇥ y, i.e. ⇧iZ�(y) := ⇧iZ�(u)|u=y:

⌃u⌃⇤ = Z�(y) +
⌥

ij

rij⇧iZ�(y)⇧jZ�(y)

rij =
1

2

⇧
uiuj

|⌃u| + �ij |⌃u|
⌃
h���(0)

m4

yi = ui � 2rij⇧jZ�(y)

(106)tree-2

Explanation: We have written Z�(y). It is indeed a function of 3 scalar arguments, ⌃⇤⌃y, ⌃⇤2, and ⌃y2. We only need the order
proportional to |u|.

Note that the first equation can also be written as

⌃u⌃⇤ = Z�(y) +
1

2

⌥

i

⇧iZ�(y) (ui � yi) (107)107

Check 1: Expanding (105) in u at N = 1 gives u⇤ = Z�u(1� 2Z�) + uZ2
�, equivalent to (101).

Check 2: Expanding the set of equations (106) in powers of ⇤ and solving for the coefficients of Z�(u), we find agreement with
eq. (102) up to order ⇤6 included, see “/Users/wiese/tex/pinning/avalanches/shocksN/math/contractions3.nb, (* solution of the
new cactus recursion relation *)”. Note that our algorithm to arrive at (102) was more efficient. This algorithm was sped up by
working on a Taylor series in ⇤ only, so that Mathematica could discard lower-order terms immediately. We give the result

Z(⌃⇤, ⌃u)

|⌃u| = ⇤1 +
1

2

�
⇤2
1 + ⌃⇤2

 
+ 2⇤1

⌃⇤2 +

⇧
3

2
(⌃⇤2)2 +

9

2
⌃⇤2⇤2

1 � ⇤4
1

⌃
+

⇧
�3

2
⇤5
1 + 3⇤3

1
⌃⇤2 +

25

2
⇤1(⌃⇤

2)2
⌃

+
3

16

�
13⇤6

1 � 93⇤4
1
⌃⇤2 + 259⇤2

1(⌃⇤
2)2 + 45(⌃⇤2)3

 
+

�
14⇤7

1 � 57⇤5
1
⌃⇤2 + 72⇤3

1(⌃⇤
2)2 + 103⇤1(⌃⇤

2)3
 

+
1

16

�
977(⌃⇤2)4 + 9017⇤2

1(⌃⇤
2)3 � 3611⇤4

1(⌃⇤
2)2 + 287⇤6

1
⌃⇤2 + 194⇤8

1

 

+
1

8

�
7741(⌃⇤2)4⇤1 + 10644(⌃⇤2)3⇤3

1 � 10842(⌃⇤2)2⇤5
1 + 4548(⌃⇤2)⇤7

1 � 651⇤9
1

 
+O(⇤9) (108)102bis

Note that both (102) and (108) reproduce the N = 1 result Z(⇤) = ⇤+ ⇤2 + 2⇤3 + 5⇤4 + 14⇤5 + 42⇤6 + 132⇤7 +O
�
⇤8

⇥
.

Note that the rij we used is the one with u not replaced by y. We tried to replace systematically u by y in R too, with absurd
results. ***RECHECK***

V. SOLUTIONS !?

We try to solve the tree equations (106) for N = 2. Define
⇤
u1

u2

⌅
= u

⇤
sin ⇥

cos ⇥

⌅
(109)

Define Z�(u, ⇥), and ⇧iZ(u, ⇥), etc. the partial derivatives w.r.t. first and second argument. (106) becomes

u (⇤1 sin ⇥ + ⇤2 cos ⇥) = Z�(y,⌅) + u [⇧1Z(y,⌅)]2

+
1

2u
[⇧2Z(y,⌅)]2 (110)

y = complicated ??? (111)
⌅ = complicated ??? (112)

Second try:

x =
u1u2

u2
, u2 = u2

1 + u2
2 (113)

(106) becomes even more complicated.

⇥ 2Ld |�⇤(0+)|
m4 |w�w⇤|

x u(x) S

Sm :=
�
S2
⇥

2⌅S⇧ =
|�⇤(0+)|

m4

3

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

2

??? WHERE ARE THE EXPERIMENTS ???
42


