Avalanches

Kay Wiese

LPT-ENS, Paris with Pierre Le Doussal, Alberto Rosso, Alain Middleton, Sébastien Moulinet, Etienne Rolley, Alexander Dobrinevski, Andrei Fedorenko

Muenchen, 2.5.20I2

Physical Realizations

Domain-walls in magnets, temperature $T \rightarrow 0$
(Barkhausen noise)

cracks - earthquakes - fracture - contact-line wetting

Contact line wetting

height jumps = avalanches

what is avalanche-

The model

Displacement field $\quad x \in \mathbb{R} \quad \longrightarrow u(x) \in \mathbb{R}$
Elastic energy:

$$
\mathscr{H}_{\mathrm{el}}=\frac{1}{2} \int \frac{\mathrm{~d}^{d} k}{2 \pi}\left|\tilde{u}_{k}\right|^{2} \varepsilon_{k}+\int_{x} \frac{m^{2}}{2}[u(x)-w]^{2}
$$

for contact angle $\theta=90^{\circ}$:
$\kappa^{-1}=m^{-2}$ kapillary length
Disorder energy

$$
\varepsilon_{k} \approx \sqrt{k^{2}+\kappa^{2}}-\kappa
$$

(instead of $\varepsilon_{k}=k^{2}$)

$$
\mathscr{H}_{\mathrm{DO}}=\int \mathrm{d}^{d} x V(x, u(x))
$$

with correlations

$$
\overline{V(x, u) V\left(x^{\prime}, u^{\prime}\right)}=\delta^{d}\left(x-x^{\prime}\right) R\left(u-u^{\prime}\right)
$$

Simple theory for zero temperature $T=0$

Suppose $R(u)$ is analytic. Then to all orders in perturbation theory:

$$
\left\langle[u(x)-u(0)]^{2}\right\rangle \sim-R^{\prime \prime}(0) x^{4-d}+O(T)
$$

shift in dimension by two from thermal 2-point function $\left\langle[u(x)-u(0)]^{2}\right\rangle=T x^{2-d}$: dimensional reduction.
Experimentally wrong beyond Larkin length:

$$
\begin{array}{ll}
\text { elastic energy } & \mathscr{E}_{\mathrm{el}} \\
\text { disorder } & =c L^{d-2} \\
\mathscr{E}_{\mathrm{DO}} & =\bar{f}\left(\frac{L}{r}\right)^{d / 2} \\
\mathscr{E}_{\mathrm{el}}=\mathscr{E}_{\mathrm{DO}} \quad \Rightarrow \quad L_{c} & =\left(\frac{c^{2}}{\bar{f}^{2}} r^{d}\right)^{\frac{1}{4-d}}
\end{array}
$$

critical dimension is $d_{c}=4$
u dimensionless in $d_{c}=4 \quad \Rightarrow \quad$ all powers of u relevant!
Need functional RG!
Old idea: Wegner, Houghton (1973) for disordered systems: D.S. Fisher (1985)

Functional renormalization group (FRG)

(D. Fisher 1986)

$$
\begin{aligned}
\frac{\mathscr{H}[u]}{T}= & \frac{1}{2 T} \sum_{\alpha=1}^{n}\left[\int_{k} \varepsilon_{k}\left|\tilde{u}_{k}^{\alpha}\right|^{2}+\int_{x} m^{2}\left(u^{\alpha}(x)-w\right)^{2}\right] \\
& -\frac{1}{2 T^{2}} \int_{x} \sum_{\alpha, \beta=1}^{n} R\left(u^{\alpha}(x)-u^{\beta}(x)\right)
\end{aligned}
$$

Functional renormalization group equation (FRG) for the disorder correlator $R(u)$ at 1-loop order:

$$
-\frac{m \mathrm{~d}}{\mathrm{~d} m} R(u)=(\varepsilon-4 \zeta) R(u)+\zeta u R^{\prime}(u)+\frac{1}{2} R^{\prime \prime}(u)^{2}-R^{\prime \prime}(u) R^{\prime \prime}(0)
$$

Solution for force-force correlator $-R^{\prime \prime}(u)$:

Cusp: $R^{\prime \prime \prime \prime}(0)=\infty$ appears after finite RG-time (at Larkin-length)

FRG at 2-loop order

$$
\begin{aligned}
\partial_{\ell} R(u)= & (\varepsilon-4 \zeta) R(u)+\zeta u R^{\prime}(u)+\frac{1}{2} R^{\prime \prime}(u)^{2}-R^{\prime \prime}(u) R^{\prime \prime}(0) \\
& +\frac{1}{2}\left[R^{\prime \prime}(u)-R^{\prime \prime}(0)\right] R^{\prime \prime \prime}(u)^{2}+\lambda \frac{1}{2} R^{\prime \prime \prime}\left(0^{+}\right)^{2} R^{\prime \prime}(u)
\end{aligned}
$$

$\lambda=-1$ statics, $\lambda=1$ (depinning)

Universality classes

- periodic disorder
- random field disorder: $\Delta(u)=-R^{\prime \prime}(u)$ short-ranged statics: $\zeta=\frac{\varepsilon}{3}$ (exact), depinning $\zeta=\frac{\varepsilon}{3}(1+0.14331 \varepsilon+\ldots)$
- random bond: $R(u)$ short-ranged statics: $\zeta=0.20829804 \varepsilon+0.006858 \varepsilon^{2}$, dynamics $\rightarrow \mathrm{RF}$

Why is a cusp necessary?

...calculate effective action for single degree of freedom...

Renormalized Disorder Correlator in FRG

$$
\mathscr{H}^{w}[u]=\int \frac{1}{2}[\nabla u(x)]^{2}+V(x, u(x))+\frac{m^{2}}{2}[u(x)-w]^{2} \mathrm{~d}^{d} x
$$

Local minimum $u_{w}(x)$ satisfies:

$$
0=\frac{\delta \mathscr{H}^{w}[u]}{\delta u_{w}(x)}=-\nabla^{2} u_{w}(x)-F\left(x, u_{w}(x)\right)+m^{2}\left[u_{w}(x)-w\right]
$$

Center-of-mass u_{w} fluctuates around w
$u_{w}-w:=\frac{1}{L^{d}} \int\left[u_{w}(x)-w\right] \mathrm{d}^{d} x=\frac{1}{L^{d} m^{2}} \int F\left(x, u_{w}(x)\right) \mathrm{d}^{d} x$
Thus naively

$$
\overline{h_{w} h_{w^{\prime}}}=\overline{\left[u_{w}-w\right]\left[u_{w^{\prime}}-w^{\prime}\right]}=\frac{\Delta\left(w-w^{\prime}\right)}{L^{d} m^{4}}
$$

FRG - Legendre-transform ... confirm this picture !

Measuring the cusp = effective action PLD+KW+A. Middleton

$\Delta=$ renormalized disorder correlator

Random Bond (short-range correlated potential), $d=1$

$\zeta=0.208298 \varepsilon+0.006858 \varepsilon^{2}: 0.625$ (1 loop), 0.687 (2 loop), $2 / 3$ (exact).

A. Middleton, P. Le Doussal, KW, PRL 98 (2007) 155701

Random Field Disorder

Interface in RF Ising model in $2+1$ dimensions $(d=2, \varepsilon=2, N=1)$
A. Middleton, P. Le Doussal, KW, PRL 98 (2007) 155701

Depinning in 1+1 dimensions

$\zeta=\frac{\varepsilon}{3}+0.04777 \varepsilon^{2}: 1.0$ (1 loop), 1.2 ± 0.2 (2 loop), 1.25 (numerics).

A. Rosso, P. Le Doussal, KW, PRB 75 (2007) 220201

Experiments on contact line

The renormalized force-force correlator

Avalanches

- avalanches appear in many systems: contact-lines, vortex lattices, domain walls, earthquakes, etc.
- Self-Organized Criticality (SOC)
- Abelian Sandpile Model (ASM) is best-known example
- ASM is equivalent to:
- uniform spanning trees (UST)
- loop-erased random walks (LERW)
- Mean-Field (MF) treatment available (Galton process)
- conjecture by Middleton-Narayan that Charge-Density

Waves (CDW) are equivalent to ASM

- leads to field-theory conjecture (Fedorenko, Le Doussal

Wiese), with predictions for sub-leading logs in $d=4$.

- recently checked in numerical simulations by

Grassberger
-Decaying Burgers turbulence

The Galton process

- old quesstion: survival probability of male line (Galton,Watson I873)
- equivalent: driven particle in random force landscape which itself is a Brownian = records with drift

$P(S) \sim S^{-3 / 2} \mathrm{e}^{-S / S_{m}}$

Slope at the cusp and avalanche size moments

$$
\begin{aligned}
& \rho\langle S\rangle\left|w-w^{\prime}\right|=L^{d} \overline{\left|u_{w}-u_{w^{\prime}}\right|}=L^{d}\left|w-w^{\prime}\right| \\
& \text { \#avalanches/unit length } \\
& \rho\left\langle S^{2}\right\rangle\left|w-w^{\prime}\right| \approx L^{2 d} \overline{\left|u_{w}-u_{w^{\prime}}\right|^{2}} \\
& \approx 2 L^{d} \frac{\left|\Delta^{\prime}\left(0^{+}\right)\right|}{m^{4}}\left|w-w^{\prime}\right|
\end{aligned}
$$

together: (exact)

$$
S_{m}:=\frac{\left\langle S^{2}\right\rangle}{2\langle S\rangle}=\frac{\left|\Delta^{\prime}\left(0^{+}\right)\right|}{m^{4}}
$$

Generating function for avalanche size moments

$$
Z(\lambda)=\frac{1}{\langle S\rangle}\left(\left\langle e^{\lambda S}\right\rangle-1-\lambda\langle S\rangle\right)
$$

$$
\overline{e^{\lambda[u(w)-w-u(0)]}}-1=Z(\lambda) w+O\left(w^{2}\right) \text { for } w>0
$$

Tree resummation (1)

Rooted trees:

Resummation:

$$
Z(\lambda)=\lambda-\Delta^{\prime}\left(0^{+}\right) Z(\lambda)^{2}
$$

sufficient for $\mathrm{N}=\mathrm{I}$ avalanche-size distribution

FRG-calculation

calculate the generating function $Z(\lambda)$ of avalanche-sizes S :

Recursion Relation:

$$
Z(\lambda)=\lambda-\underbrace{\Delta^{\prime}\left(0^{+}\right) Z(\lambda)^{2}}_{\text {trees }}+\frac{\Delta^{\prime \prime}(0)}{\Delta^{\prime}\left(0^{+}\right)} \sum_{n \geq 3}(n+1) 2^{n-2} \int_{k} \underbrace{\frac{\left[-\Delta^{\prime}\left(0^{+}\right) Z(\lambda)\right]^{n}}{\left(k^{2}+1\right)^{n}}},
$$

loops with n outgoing legs

Avalanche distribution

$$
\begin{aligned}
P(S) & =\frac{\langle S\rangle}{2 \sqrt{\pi}} S_{m}^{\tau-2} A S^{-\tau} \exp \left(C \sqrt{\frac{S}{S_{m}}}-\frac{B}{4}\left[\frac{S}{S_{m}}\right]^{\delta}\right) \\
\tau & =\frac{3}{2}-\frac{1}{8}(\varepsilon-\zeta)+\ldots \\
\delta & =1+\frac{1}{4}(\varepsilon-\zeta)+\ldots
\end{aligned}
$$

Numerical results for RF interface in $d=3+1$ P. Le Doussal, A. Middleton, KW arXiv:0803.1142

RF, $d=3+I$, simulation

$$
\begin{aligned}
Z(\lambda)= & \overbrace{\frac{1}{2}[1-\sqrt{1-4 \lambda}]}^{\mathrm{MF}=\text { trees }} \\
& -\frac{\underbrace{\frac{\Delta^{\prime \prime}(0)}{4 \sqrt{1-4 \lambda}}[\log (1-4 \lambda)(3 \lambda+\sqrt{1-4 \lambda}-1)-2(2 \lambda+\sqrt{1-4 \lambda}-1)]}_{1 \text { loop }}+\ldots}{}
\end{aligned}
$$

Experiments contact line

$$
\begin{aligned}
P(S)= & A^{\prime} \frac{\langle S\rangle}{2 \sqrt{\pi}} S_{m}^{-2}\left[\left(\frac{S}{S_{m}}\right)^{-\tau}+D^{\prime}\right] \\
& \times \exp \left(C^{\prime} \sqrt{\frac{S}{S_{m}}}-\frac{B^{\prime}}{4}\left[\frac{S}{S_{m}}\right]^{\delta^{\prime}}\right)
\end{aligned}
$$

Velocity distribution in an avalanche

classical Langevin equation

$$
\begin{aligned}
\eta \partial_{t} u(x, t) & =-\frac{\delta \mathscr{H}[u(t)]}{\delta u(t)} \\
& =\nabla^{2} u(x, t)+m^{2}[w-u(x, t)]-\partial_{u} V(x, u(x, t))
\end{aligned}
$$

moments are again trees...

8

A little field theory

$$
\begin{aligned}
& S_{0}=\int_{x t} \tilde{u}_{x t}\left(\eta \partial_{t}-\nabla_{x}^{2}+m^{2}\right) \dot{u}_{x t} \\
& \begin{array}{c}
S_{\text {dis }}=-\frac{1}{2} \int_{x t t^{\prime}} \tilde{u}_{x t} \tilde{u}_{x t^{\prime}} \partial_{t} \partial_{t^{\prime}} \Delta\left(v\left(t-t^{\prime}\right)+u_{x t}-u_{x t^{\prime}}\right) \\
\quad \text { Disorder Vertex } \\
\partial_{t} \partial_{t^{\prime}} \Delta\left(v\left(t-t^{\prime}\right)+u_{x t}-u_{x t^{\prime}}\right) \\
=\left(v+\dot{u}_{x t}\right) \partial_{t^{\prime}} \Delta^{\prime}\left(v\left(t-t^{\prime}\right)+u_{x t}-u_{x t^{\prime}}\right) \\
=\left(v+\dot{u}_{x t}\right) \Delta^{\prime}\left(0^{+}\right) \partial_{t^{\prime} \operatorname{sgn}\left(t-t^{\prime}\right)+\ldots}^{\quad \text { simplifies to }} \\
S_{\text {dis }}^{\text {tree }}=\Delta^{\prime}\left(0^{+}\right) \int_{x t} \tilde{u}_{x t} \tilde{u}_{x t}\left(v+\dot{u}_{x t}\right) \\
\quad!!!\text { simple cubic theory !!!! }
\end{array} .
\end{aligned}
$$

Avalanche Instanton

If $\lambda(x, t)=\lambda \delta(t)$ then the instanton equation is

$$
\left(\partial_{t}-1\right) \tilde{u}_{t}+\tilde{u}_{t}^{2}=-\lambda \delta(t)
$$

Solution

$$
\begin{aligned}
& \tilde{u}_{t}=\frac{\lambda}{\lambda+(1-\lambda) e^{-t}} \theta(-t) \\
& Z_{\text {tree }}(\lambda)=\left.\left\langle\mathrm{e}^{\lambda \dot{u}(t)}-1\right\rangle\right|_{t=0}=\int_{t<0} \tilde{u}_{t}=-\ln (1-\lambda) \\
& \mathscr{P}_{\text {tree }}(\dot{u})=\frac{\mathrm{e}^{-\dot{u}}}{\dot{u}}
\end{aligned}
$$

higher-point functions also possible.

Velocity distribution in avalanche: tree + loops

Decaying Burgers

$$
\begin{array}{r}
\partial_{t} \vec{v}(\vec{r}, t)+[\vec{v}(\vec{r}, t) \cdot \nabla] \vec{v}(\vec{r}, t)=\underset{\uparrow}{v} \nabla^{2} \vec{v}(\vec{r}, t) \\
\text { inviscid limit } v \rightarrow 0
\end{array}
$$

curl-free velocity field: $\vec{v}(\vec{r}, t)=\nabla V(\vec{r}, t)$ in practice: specify $V(\vec{r}, t=0)$

Solution

$$
V(\vec{r}, t)=\min _{\vec{u}}\left[\frac{1}{2 t}(\vec{u}-\vec{r})^{2}+V(\vec{u}, t=0)\right]
$$

particle in parabola with curvature $m^{2}=\frac{1}{t}$

Decaying Burgers

Decaying Burgers with random walk initial

condition

$$
\begin{gathered}
d=1: \quad \frac{1}{2}\left\langle\left[v(r, t=0)-v\left(r^{\prime}, t=0\right)\right]^{2}\right\rangle=A\left|r-r^{\prime}\right| \\
\Delta(r)=\Delta(0)-A|r-r|
\end{gathered}
$$

FRG magic: $\Delta(r)$ does not renormalize!
\Rightarrow tree result is exact

$$
P(S)=\frac{\mathrm{e}^{-S / S_{m}}}{S^{3 / 2}} \quad S_{m}=A t^{2}
$$

Analytical Results for Decaying Burgers in 2 dimensions

Analytical Results for Decaying Burgers in 2 dimensions

Funtional RG still exact for

$$
\frac{1}{2}\left\langle\left[\vec{v}(\vec{r}, t=0)-\vec{v}\left(\vec{r}^{\prime}, t=0\right)\right]^{2}\right\rangle=A\left|\vec{r}-\vec{r}^{\prime}\right|
$$

but tree summation becomes difficult, since non-rooted trees contribute

Tree resummation (2): several "roots"

standard recursion relation overcounts - correct

more complicated consitency relation

$$
\vec{\lambda} \vec{u}=\lim _{v \rightarrow 0} \frac{1}{v} \ln \left(\mathrm{e}^{-v \sum_{i, j} r_{i j} \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial u_{j}}} \mathrm{e}^{\frac{1}{v} Z(\vec{\lambda}, \vec{u})}\right)
$$

$$
\begin{aligned}
& \vec{\lambda} \vec{u}=\lim _{v \rightarrow 0} \frac{1}{v} \ln \left(\mathrm{e}^{-v \sum_{i, j} r_{i j} \frac{\partial}{\partial u_{i}} \frac{\partial}{\partial u}} \mathrm{e}^{\frac{1}{z}(\vec{\lambda}, \vec{u})}\right) \\
& \vec{\lambda} \vec{u}=\cdots \cdot \cdots+2 \cdots \cdots-\left[\frac{4}{3} \cdot \cdots,+4 \cdots \cdots \cdot\right] \\
& \Leftrightarrow \quad+\left[\frac{2}{3} \cdot!+8 \cdots \cdots+8, \cdots, \cdot\right] \\
& -\left[\frac{4}{15} \cdots+4, \ldots+16 \cdots \cdots+\frac{16}{3} \cdots, \cdot\right. \\
& \left.+\frac{64}{3}, \ldots \ldots,+\frac{32}{3}, \ldots, \ldots\right]+\ldots \\
& \vec{u} \vec{\lambda}=Z_{\lambda}(y)+\sum_{i j} r_{i j} \partial_{i} Z_{\lambda}(y) \partial_{j} Z_{\lambda}(y) \\
& \Leftrightarrow \quad r_{i j}=\frac{1}{2}\left[\frac{u_{i} u_{j}}{|\vec{u}|}+\delta_{i j}|\vec{u}|\right] \frac{h^{\prime \prime \prime}(0)}{m^{4}} \\
& y_{i}=u_{i}-2 r_{i j} \partial_{j} Z_{\lambda}(y)
\end{aligned}
$$

Tree resummation (3)

"time" evolution equation

$$
\begin{aligned}
\partial_{t} Z(\vec{\lambda}, \vec{u}) & =-\frac{\partial}{\partial u} Z(\vec{\lambda}, \vec{u}) \frac{\partial}{\partial \lambda} Z(\vec{\lambda}, \vec{u}) \\
Z_{t=0}(\vec{\lambda}, \vec{u}) & =\vec{\lambda} \cdot[\Delta(0)-\Delta(\vec{u})] \cdot \vec{\lambda}
\end{aligned}
$$

Results

Finite moments

$$
\begin{aligned}
\frac{Z(\vec{\lambda}, \vec{u})}{|\vec{u}|}= & \lambda_{1}+\frac{1}{2}\left[\lambda_{1}^{2}+\vec{\lambda}^{2}\right]+2 \lambda_{1} \vec{\lambda}^{2}+\left[\frac{3}{2}\left(\vec{\lambda}^{2}\right)^{2}+\frac{9}{2} \vec{\lambda}^{2} \lambda_{1}^{2}-\lambda_{1}^{4}\right]+\left[-\frac{3}{2} \lambda_{1}^{5}+3 \lambda_{1}^{3} \vec{\lambda}^{2}+\frac{25}{2} \lambda_{1}\left(\vec{\lambda}^{2}\right)^{2}\right] \\
& +\frac{3}{16}\left[13 \lambda_{1}^{6}-93 \lambda_{1}^{4} \vec{\lambda}^{2}+259 \lambda_{1}^{2}\left(\vec{\lambda}^{2}\right)^{2}+45\left(\vec{\lambda}^{2}\right)^{3}\right]+\left[14 \lambda_{1}^{7}-57 \lambda_{1}^{5} \vec{\lambda}^{2}+72 \lambda_{1}^{3}\left(\vec{\lambda}^{2}\right)^{2}+103 \lambda_{1}\left(\vec{\lambda}^{2}\right)^{3}\right] \\
& +\frac{1}{16}\left[977\left(\vec{\lambda}^{2}\right)^{4}+9017 \lambda_{1}^{2}\left(\vec{\lambda}^{2}\right)^{3}-3611 \lambda_{1}^{4}\left(\vec{\lambda}^{2}\right)^{2}+287 \lambda_{1}^{6} \vec{\lambda}^{2}+194 \lambda_{1}^{8}\right] \\
& +\frac{1}{8}\left[7741\left(\vec{\lambda}^{2}\right)^{4} \lambda_{1}+10644\left(\vec{\lambda}^{2}\right)^{3} \lambda_{1}^{3}-10842\left(\vec{\lambda}^{2}\right)^{2} \lambda_{1}^{5}+4548\left(\vec{\lambda}^{2}\right) \lambda_{1}^{7}-651 \lambda_{1}^{9}\right]+O\left(\lambda^{9}\right)
\end{aligned}
$$

Universal ratio

$$
\frac{\left\langle S_{x}^{2}\right\rangle}{\left\langle S_{\perp}^{2}\right\rangle}=\frac{2}{\left\langle s_{\perp}^{2}\right\rangle}=\frac{2}{D-1}
$$

Generating function (y direction)

$$
\begin{aligned}
\lambda(\theta) & =\sin \theta \frac{\sqrt{5-\cos (4 \theta)}+2}{[1-\cos (2 \theta)+\sqrt{5-\cos (4 \theta)}]^{2}} \\
\tilde{Z}_{2}(\theta) & =\frac{\cos \theta}{2} \frac{\sqrt{5-\cos (4 \theta)}-2}{1-\cos (2 \theta)+\sqrt{5-\cos (4 \theta)}}
\end{aligned}
$$

Probability distribution function for shocks

