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Abstract

Rare-earth pyrochlore oxides are considered prime candidates
for quantum spin liquid behavior due to their geometrically frus-
trated magnetism. Though a rich variety of possible ground states
of the effective spin-1/2 model for pyrochlores has been proposed,
the combination of a three-dimensional lattice and frustrated inter-
actions poses great difficulty for methods beyond mean-field theory.
We use the recently developed multiloop pseudofermion fRG ap-
proach to quantum spin systems to compute ground states in all
parts of the phase diagram of this model. This thesis presents the
approach in detail, including information about solutions to practi-
cal challenges that arise during implementation. We derive explicit
expressions for multiloop pseudofermion fRG flow equations for the
XXZ model and some observables of interest, most importantly the
spin-spin correlator. We show results of the application of this ap-
proach to the pyrochlore XXZ model and discuss its reliability.
Comparing physical results such as spin susceptibilities and neu-
tron scattering cross sections obtained from our implementation to
prior theoretical work and experimental results, we find excellent
correspondence in spite of some technical problems.
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Chapter 1

Introduction

The effect of microscopic geometry and quantum behavior on macroscopic
properties of matter is perhaps most direct in quantum spin liquids. Quantum
spin liquids are unusual states of magnetic systems characterized by absence
of long-range order and an extreme degree of entanglement, which have no
classical analogue [1]. In fact, it is precisely the strength of the quantum
fluctuations in the system that prevents order, and thus the macroscopic
behavior is influenced in a very direct way by the quantum nature of the
microscopic constituents.

There is a variety of models that have stable quantum spin liquid phases,
such as a quantum dimer model on a triangular lattice [2] as well as Kitaev’s
toric code [3] and honeycomb [4] models. Another class of models that may
show spin liquid behavior and are arguably closer to real materials are anti-
ferromagnetic Ising, Heisenberg and XYZ models on lattices with geometric
frustration. These models may also be used to describe some materials with
suspected spin-liquid behavior such as herbertsmithite (ZnCu3(OH)6Cl2), a
mineral with kagome lattice structure and antiferromagnetic coupling between
nearest neighbors [1, 5–7]. Thus, both the validity of the models as well as
the methods used to solve them can be tested [1].

Experimentally, signatures of spin liquid behavior have been observed for
many rare-earth pyrochlore oxides [8–25]. This class of materials is also very
well-suited for the theoretical study of spin liquid phases for several reasons:

• The magnetic moments are effectively spin-1/2 and strongly localized.
Therefore, such systems should be well described by a spin-1/2 nearest-
neighbor model [1].

• The exchange coupling constants can be obtained from experimental
observations of excitation spectra [20].

• The lattice structure consists of corner-sharing tetrahedra which induces
a high degree of geometric frustration [12, 26].

1



1. Introduction

Figure 1.1: The pyrochlore lattice from two different points of view. Nearest-
neighbor bonds connect atoms along the edges of the tetrahedra.

These pyrochlore materials are modeled using Ising and XXZ models1on the
pyrochlore lattice (see Fig. 1.1). A variety of phases have been postulated for
these models, most famously quantum spin ice, a gapless U(1) quantum spin
liquid [13, 18, 20, 26–46].

However, all theoretical approaches applied to the pyrochlore XXZ model
in prior work have important limitations. Analytic results based on mean-field
theory are only reliable in limited parts of the phase diagram [1, 13, 38, 44].
Most numerical methods are either biased (such as mean-field approaches), not
applicable to the frustrated part of the phase diagram (such as some quantum
Monte Carlo approaches) or exceedingly expensive due to the three-dimensional
nature of the pyrochlore lattice (such as the density-matrix renormalization
group) [43, 47]. One method that does not suffer from these limitations is the
pseudofermion functional renormalization group (pffRG) [48, 49]. It is able to
treat frustrated spin systems on sufficiently large three-dimensional lattices,
treating ordered and disordered states on equal footing without inherent bias
[50]. However, there are some unsolved questions concerning this approach.
On one hand, its internal consistency has been questioned. The functional
renormalization group is only known to be valid in low to intermediate coupling
regimes, and a pseudofermion system is inherently in the strong-coupling limit
due to lack of a quadratic term in the Hamiltonian. On the other hand, the
reliability of physical statements generated with this method has been doubted
as well, since the operator constraint of the pseudofermion representation is
violated. Both points are discussed in the first sections of chapter 5, and more
detail can be found in a preprint that is partially based on work done for this
thesis [51].

1
In our model, the coupling of the x- and y-components is equal. Thus, the XYZ model

becomes an XXZ model [20].
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Recently, the traditional functional renormalization group (fRG) has been
expanded to the so-called multiloop functional renormalization group (mfRG)
[52–55] which fully incorporates inter-channel feedback and corrects many
shortcomings of the original method. It has proven to be accurate to a quanti-
tative level for the two-dimensional Hubbard model for weak to intermediate
interaction strength [56]. Combining the multiloop and pseudofermion func-
tional renormalization group, we implemented the multiloop functional renor-
malization group for the pseudofermion representation of a spin system. We
have applied this implementation to the kagome Heisenberg model, and results
are presented elsewhere [51]. In parallel and in close cooperation with us, a
collaboration in Cologne, Würzburg and Madras applied the same approach
to Heisenberg models on various three-dimensional lattices [57]. This thesis is
focused on the implementation of this method for the nearest-neighbor XXZ
model on the pyrochlore lattice.

In the next chapter, we start by discussing properties of pyrochlores which
are known from prior work and by deriving the effective pseudo-spin-1/2 XXZ
model which is the main topic of this thesis. The multiloop pffRG approach
used to study this model is presented in chapter 3. As this method is not
straightforward to implement, we give a detailed description of an efficient
parametrization for the building blocks of pseudofermion fRG in chapter 4,
where we also discuss some numerical problems and solutions for the same.
In chapter 5, we present results for the physical behavior of the system as
well as some statements concerning the reliability of the method. In the final
chapter 6, we summarize the results and relate them to prior work. We also
give an outlook on interesting directions future work might take.
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Chapter 2

Models of frustrated quantum
magnetism in pyrochlores

Rare-earth pyrochlores are materials of the type A2B2O7, where A is generally
a trivalent rare earth ion and B is a tetravalent transition metal ion [12]. The
cations of each type form a lattice of corner-sharing tetrahedra (see Fig. 2.1),
and these two lattices interpenetrate such that the tetrahedra of one lattice
sit in voids of the other lattice. This structure of many triangles introduces an
extreme degree of geometric frustration. Combined with the effects of highly
anisotropic magnetic interactions, this causes many forms of exotic behavior.
Phenomena observed in experiments include, among others, spin ice, quantum
spin liquids, superconductivity and unconventional forms of the Hall effect [12,
13, 18, 46]. In this chapter, we will briefly summarize the derivation of the
pseudo-spin-1/2 Hamiltonian that models the magnetic behavior of rare-earth
pyrochlores and give an overview of the known features of the zero-temperature
phase diagram.

2.1 Effective spin-1/2 model for pyrochlores

The magnetic behavior of these pyrochlores can be described using an effective
model of the low-energy behavior. This model is constructed as follows: As
the B ions are non-magnetic, only the lattice of A ions is of interest1. The
low-energy manifold of the A ion is constrained by Coulomb and spin-orbit
interaction to a single total angular momentum value [18, 58]. Within this
manifold, the degeneracy of states is lifted through electric interactions with
the surrounding crystal ions2, i.e. the ‘crystal field’ [18, 58]. The remaining low-
energy states are a doublet, where the degeneracy of the two states is enforced

1
In some materials, the B ions indirectly influence the A ions either through hybridization

or lattice distortions. This type of behavior is outside the scope of this thesis.
2
There are further interactions contributing to this splitting, though the crystal field is

the most important contribution [18].
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2. Models of frustrated quantum magnetism in pyrochlores

(a) (b)

Figure 2.1: (a) Crystal structure of the cations in a pyrochlore material.
The A and B ions form one pyrochlore lattice each, and the two pyrochlore
lattices are displaced with respect to each other such that the tetrahedra of
one lattice sit in voids of the other. For clarity, the oxygen ions are not shown.
(b) Local spin basis vectors on the pyrochlore lattice, where the blue vectors
point in local z-direction and the discs represent the local xy-plane. The cube
is centered on the origin, aligned to the real-space coordinate axes and atom 0
is at position a

2
√

2
(1, 1, 1)T where a is the distance between nearest neighbors.

either by Kramers’ theorem (in case the ion has an odd number of electrons),
or by crystal symmetries (in case of an even number of electrons) [13, 18].
We restrict our model to those Kramers doublets that transform as a spin-1/2,
though the same effective Hamiltonian can be derived for dipolar-octupolar
Kramers doublets as well as non-Kramers doublets [58].

This doublet, which we denote by |+〉 and |−〉, can be described by an
effective spin-1/2 through

S̃z ≡ 1
2 (|+〉 〈+| − |−〉 〈−|) , S̃+ ≡ |+〉 〈−| , S̃− ≡ |−〉 〈+| . (2.1)

Placing one effective spin on each site of the A lattice, the system is described
by the effective Hamiltonian [58, 59]

H = 1
2

∑

ij

∑

µλ

Jµλij S̃
µ
i S̃

λ
j (2.2)

where i, j are site indices, and µ, λ enumerate spin directions [59]. The interac-

tion is symmetric Jµλij = Jλµji and we limit the interaction to nearest neighbors.

The relation between S̃± and S̃x, S̃y is given by

S̃±
i = S̃xi ± iS̃y. (2.3)

6



2.2. Lattice symmetries and the local spin basis

2.2 Lattice symmetries and the local spin basis

We construct the lattice following the convention set by Ross et. al [20], which
has commonly been used in prior work [43, 46]. The unit cell is a tetrahedron
centered on the origin with sites at its corners

r0 =
a

2
√

2
(+1,+1,+1)T , r1 =

a

2
√

2
(+1,−1,−1)T ,

r2 =
a

2
√

2
(−1,+1,−1)T , r3 =

a

2
√

2
(−1,−1,+1)T ,

(2.4)

where a is the distance between nearest neighbors3. This unit cell is then
repeated using the face-centered cubic pattern where the cubes have side
length afcc = 4a√

2
, and each cube contains 16 sites.

Lattice symmetries constrain the interaction to 4 independent components
[20, 46]. For instance, interactions on the bond between r0 and r1 are given
by

J01 =






J2 J4 J4

−J4 J1 J3

−J4 J3 J1




 , (2.5)

where the 4 independent components correspond approximately to [46]
• J1: ‘XY’ interaction with respect to the local bond,
• J2: ‘Ising’ interaction with respect to the local bond4,
• J3: symmetric off-diagonal interaction and
• J4: Dzyaloshinskii-Moriya interaction.
The interaction matrices for other bonds within the same unit cell are

related to J01 by symmetry transforms Qc of the lattice (see Appendix A). It
is therefore more convenient to express the Hamiltonian in a local basis which
encodes these symmetries such that the environment at each site is the same
within the local basis. This can be accomplished by choosing the spin basis
vectors as shown in Fig. 2.1. We label spin operators in the local basis at each
site i by Si; the global spin operators are labeled S̃i. The transformation can
be expressed using site-dependent rotation matrices Ri such that

S̃i = RiSi ⇔ Si = RTi S̃i (2.6)

3
In prior work, the ‘lattice constant’ a has been defined in different ways by different

authors. It may be defined as
• The distance between nearest neighbors, i.e. between two atoms in the same tetrahe-

dron. This is the definition for a used in this thesis.
• The side length of the cube that contains one tetrahedron (see Fig. 2.1). In our

convention, this is a/
√

2.
• The side length of the cubic unit cell of the face-centered cubic lattice that is the

Bravais lattice of a pyrochlore crystal. We refer to this length as afcc = 4a/
√

2.
4
The way in which spin components are coupled by these interactions may be unexpected.

For example, the ‘Ising’ interaction J2, which is usually defined as an interaction between
S̃

z
i spin components, couples S̃

x
i components in J01 instead. The reason for this is that the

matrix is rotated in different directions on each bond; in J03 and J12, the ‘Ising’ interaction
J2 does couple S̃

z
i components.

7



2. Models of frustrated quantum magnetism in pyrochlores

at each site i within the unit cell, and all sites that are related to that site by
fcc translation vectors. The matrices Ri are [43, 46]

R0 =
1√
6






−2 0
√

2

1 −
√

3
√

2

1
√

3
√

2




 , R1 =

1√
6






−2 0
√

2

−1 −
√

3 −
√

2

−1
√

3 −
√

2




 ,

R2 =
1√
6






2 0 −
√

2

1 −
√

3
√

2

−1 −
√

3 −
√

2




 , R3 =

1√
6






2 0 −
√

2

−1
√

3 −
√

2

1
√

3
√

2




 .

(2.7)

At each site, the Szi component points to the center of one of the neighboring
tetrahedra (see Fig. 2.1) [46]. In the local basis, the Hamiltonian can now be
expressed as

H =
∑

〈i,j〉

{

JzSzi S
z
j − J±

[

S+
i S

−
j + S−

i S
+
j

]

− J±±
[

ζ∗
ijS

+
i S

+
j + ζijS

−
i S

−
j

]

+Jz±
[

Szi
(

ζijS
+
j + ζ∗

ijS
−
j

)

+ Szj
(

ζjiS
+
i + ζ∗

jiS
−
i

)]}

, (2.8)

where the matrix ζij performs rotations between local coordinate frames on
different sites within the unit cell [20, 46].

2.3 Zero-temperature phases of the pyrochlore XXZ

model

This thesis will focus on the XXZ model, which corresponds to the limit J±± =
Jz± = 0. From prior theoretical studies, such as Refs. [27, 28, 38, 43, 60], the
model is known to host a U(1) quantum spin liquid for antiferromagnetic Ising
interaction Jz > 0 and small transverse interaction J± ≪ Jz. This case can
therefore be considered the simplest model for quantum spin ice [28, 43].

For our method, it is more convenient to express the Hamiltonian in terms
of Sx and Sy instead of S+ and S−. The XXZ Hamiltonian is

H =
∑

〈i,j〉

{

JzSzi S
z
j − J±

[

S+
i S

−
j + S−

i S
+
j

]}

=

=
∑

〈i,j〉

{

JzSzi S
z
j + Jx

[

Sxi S
x
j + Syi S

y
j

]}

, (2.9)

which implies Jx = Jy = −2J±. The overall energy scale of the model is
arbitrary and has no effect on its behavior. Therefore, we define an energy
unit

J ≡
√

(Jx)
2

+ (Jz)
2

(2.10)

and parametrize the phase diagram using an angle θ, where

Jz = J cos θ and Jx = Jy = J sin θ. (2.11)

8



2.3. Zero-temperature phases of the pyrochlore XXZ model

Jz = J cos θ

Jx = J sin θ

SU
(2

)

QSIπ

QSN⊥

AIAO

AF⊥

QSI0

θ

Figure 2.2: Zero-temperature phase diagram of the pyrochlore XXZ model
found in cluster-variational calculations. Adapted with permission from Benton
et al. [28, Fig. 1(a)].

At θ = π
4 and 3π

4 , the model becomes a SU(2)-symmetric Heisenberg model.
It is difficult to obtain a complete phase diagram of the XXZ model,

simplified as it may seem compared to the variety of possible interactions
in a complete description of a pyrochlore. Quantum Monte Carlo methods
are only applicable in the sector θ ∈ [−π

2 , 0] due to the sign problem [28].
Exact diagonalisation methods are extremely limited in system size. Thus,
theoretical work is forced to rely on inherently approximate methods, such
as methods based on mean-field and perturbation theory. These offer some
advantages in that their description of quantum states is, compared to heavier
numerical methods, more accessible to interpretation in terms of theoretical
concepts and analytic methods such as lattice gauge theories. On the other
hand, predictions of these methods may be unreliable. When calculating a
zero-temperature phase diagram, inaccuracies in the value of the ground-state
energy are particularly problematic, as multiple competing states may have
very similar energies, particularly in frustrated systems.

Nevertheless, approximate phase diagrams may be obtained by combining
and comparing different methods. This approach was pursued by Benton et
al. [28] using cluster mean-field theory combined with variational optimization
and perturbative expansions, supported by exact diagonalisation, analytic
arguments as well as linked-cluster and high-temperature series expansions. A
sketch of the phase diagram they obtained is shown in Fig. 2.2. It contains
two ordered phases, two quantum spin ice phases and one nematic phase:

All-in-all-out phase (AIAO). A state where all spins are parallel or antipar-
allel to local Sz-direction. On one half of all tetrahedra in the lattice, all spins
at the corners of each tetrahedron point towards the centers of the neighboring
tetrahedra, which form the other half of the lattice (see Fig. 2.3(a)) [18].

9



2. Models of frustrated quantum magnetism in pyrochlores

AIAO AF⊥
︷ ︸︸ ︷

(a) (b) (c)

Figure 2.3: States corresponding to ordered phases of the pyrochlore XXZ
model. (a) All-in-all-out order, where all spins point parallel (or antiparallel)
to local Sz direction. (b, c) Two possible ordered states in the easy-plane
antiferromagnetic phase. The rotation symmetry in the easy plane is sponta-
neously broken in one of the directions inside the local Sx-Sy-plane, and the
shown orders are two examples [18].

Easy-plane antiferromagnet (AF⊥). A state where the spins order ferro-

magnetically inside the local Sx-Sy-plane. In the global basis, this order
corresponds to spins aligned in patterns that have antiparallel components
between neighboring spins and is therefore labeled an antiferromagnetic phase
(see Fig. 2.3(b, c)) [18, 43].

Quantum spin ice (QSI). A gapless U(1) spin liquid state. The phase dia-
gram contains two distinct quantum spin ice phases (QSI0 and QSIπ), which
are described by the same effective field theory: a U(1) gauge theory equivalent
to a compact version of quantum electrodynamics5 [38, 60, 61]. This theory
is defined on the so-called dual lattice, which is constructed by replacing each
tetrahedron of the pyrochlore lattice by a vertex and each spin by a bond
between the two adjacent vertices. The resulting lattice is a diamond lattice
[13, 38]. The two quantum spin ice phases differ in the background flux en-
closed by the hexagonal plaquettes of this diamond lattice [60]: For θ < 0, this
background flux is 0, while for θ > 0, the background flux takes the value π.
Following the notation of Benton et al. [28], we label these phases QSI0 and
QSIπ, respectively.

Quantum spin nematic phase (QSN⊥). A phase which breaks the U(1)
spin rotation symmetry in the local Sx-Sy-plane, while preserving translation-
symmetry. This order cannot be detected using expectation values of single
spin operators. Appropriate order parameters can be constructed as combina-

5
A detailed derivation can be found in the original work by Hermele et al. [38] and in

the review by Gingras and McClarty [13].
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2.4. Observables

tions of spin operators, such as6 [62, Eq. (2)]

Oµλij =
1

2

(

Sµi S
λ
j + Sλi S

µ
j

)

− 1

3
δµλ

〈
Si · Sj

〉
. (2.12)

2.4 Observables

Given the quantum nature of some of the above phases, it is necessary to find
observables that characterize the system’s behavior and are suitable for com-
parison to prior work. Here, we have several related goals in mind: Comparison
to prior theoretical work using other methods such as Quantum Monte Carlo,
where applicable, enables us to judge the degree of reliability of multiloop pf-
fRG. Comparison to analytical results such as mean-field theories allows us to
conclude whether the model’s behavior can be understood in these analytical
terms. Finally, comparison to experiment allows us to understand whether the
model itself is a good representation of the physics of frustrated magnetism in
pyrochlores and perhaps reveal the microscopic mechanisms at play.

The microscopic behavior of the above states is most easily interpreted
using spin-spin correlations

〈
Sµi S

λ
j

〉
. On the other hand, comparison to exper-

iments requires predictions for macroscopic observables. The quantity closest
to microscopic spin correlations that has been measured is the neutron scatter-
ing pattern for polarized neutrons. Detailed descriptions of both observables
will be given in the following sections.

2.4.1 Spin-spin correlations

The spin susceptibility is the primary quantity we use to characterize states
obtained by the functional renormalization group flow. It is defined as [48, 66]

χµλij (Ω) =

∫ β

0
dτ eiΩτ

〈
T τ S

µ
i (τ)Sλj (0)

〉
, (2.13)

where µ, λ ∈ {x, y, z} and τ denotes imaginary time.
The susceptibility can be defined using spin operators in the local or the

global spin basis. These quantities have different advantages: The suscepti-
bility in the global basis, which we label χ̃, can be measured in experiments
and describes the reaction of the system to external magnetic perturbations.
The susceptibility in the local basis, which we label χ, is more useful to gain
insight into the behavior of the spin states themselves, as it inherently respects
symmetries of the lattice. For this reason, it also has only 2 independent

6
Many related definitions of the nematic order parameter, which are equally suitable for

our purposes, have been used in prior work [28, 43, 62–65]. Here, we use the convention of
Shannon et al. [62, Eq. (2)].
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2. Models of frustrated quantum magnetism in pyrochlores

components: χz ≡ χzz and χ⊥ ≡ χxx = χyy, and all off-diagonal components
of χ vanish. The two quantities are related by

χ̃µλij (Ω) =

∫ β

0
dτ eiΩτ

〈
T τ S̃

µ
i (τ)S̃λj (0)

〉
=

=

∫ β

0
dτ eiΩτ

∑

κη

(

R−1
i

)µκ (

R−1
j

)λη 〈
T τ S

κ
i (τ)Sηj (0)

〉
=

=
∑

κ

Rκµi Rκλj χκκij (Ω), (2.14)

where the matrices Ri are the basis transform matrices defined in Eq. (2.7).
Though χµλ is diagonal in (µ, λ), the basis transform causes χ̃µλ to acquire
off-diagonal components.

2.4.2 Neutron-scattering experiments

Neutron-scattering experiments offer a very direct characterization of magnetic
states in a material, as the neutron-scattering intensity is closely related to
the spin-spin correlations in the global basis given by χ̃. Such experiments
have been performed on many pyrochlore oxide materials7, and similarities in
this data would provide evidence for realization of a similar state in nature.

The total scattering intensity is proportional to the neutron scattering
structure factor [43]

Stotal(q,Ω) =
∑

µλ

Sµλtotal(q,Ω) =
∑

µλ

(

δµλ − qµqλ

‖q‖2

)

χ̃µλ(q,Ω), (2.15)

where µ, λ ∈ {x, y, z}, qµ is the µ-component of q, and

χ̃µλ(q,Ω) =
∑

ij

eiq(rj−ri)
∫

dt eiΩt
〈
S̃µi (t)S̃νj (0)

〉
(2.16)

is the Fourier transformed spin-spin correlator. A common choice, pioneered by
Fennel et al. [10], is to fix the neutron polarization vector to P = (1,−1, 0)T /

√
2

and decompose the signal into a spin-flip channel

SSF(q,Ω) =
∑

µλ

(P × q)µ (P × q)λ

‖q‖2 χ̃µλ(q,Ω) (2.17)

and non-spin-flip channel

SNSF(q,Ω) =
∑

µλ

Pµ P λ χ̃µλ(q,Ω). (2.18)

7
See Refs. [1, 9–11, 13–17, 19–21, 24, 32, 36, 37, 43, 46, 67–70].
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2.4. Observables

These two quantities are usually measured for scattering vectors q = (q1, q1, q3)T

and integrated over all energies Ω, though some experiments are able to de-
compose the signal into finite energy intervals.

Signatures of some of the proposed spin liquid states, including the pinch
points of spin ice, appear in only one of the two channels [10, 43]. These are
difficult to observe in a setup that does not track neutron polarization and
measures only the superposition Stotal = SSF + SNSF. In theoretical work, it
is therefore equally important to produce separate predictions for each of the
two channels. In this thesis, the two structure factors SSF and SNSF will be
the quantities used to compare predictions to experiment.
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Chapter 3

Method

To simulate the behavior of quantum spin systems, we will use an approach
that combines the pseudofermion functional renormalization group (pffRG)
method pioneered by Reuther et al. [48, 49] and the multiloop extension to
the functional renormalization group developed by Kugler et al. [53–55]. This
approach consists of the following steps:

1. Reformulation of the spin Hamiltonian through Abrikosov’s pseudo-
fermion representation.

2. Introduction of an artificial infrared cutoff Λ to the bare fermion propa-
gator.

3. Self-consistent solution of the Parquet equations at large Λ.
4. Integration of a multiloop fRG flow to small Λ, using the solution ob-

tained in the previous step as initial condition.
In this chapter, the components of our method, namely the pseudofermion
representation, the Parquet formalism and the multiloop functional renormal-
ization group will be described in order.

3.1 Abrikosov’s pseudofermion representation

As the fRG methods used in this thesis were designed to investigate fermion
rather than spin systems, it is necessary to first transform the spin-1/2 Hamil-
tonian

H =
1

2

∑

ij

∑

µν

Jµνij S
µ
i S

ν
j , (3.1)

where i, j enumerate lattice sites and µ, ν ∈ {x, y, z} enumerate spin direction,
into a Hamiltonian of fermion operators. To this end, we replace

Sµi → 1
2 f

†
i σ

µ
fi, (3.2)
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3. Method

where fi =

(

fi↑
fi↓

)

and fiα are operators with fermionic anti-commutation

relations [71]. The transformed Hamiltonian is

H =
1

2

∑

ij

∑

µν

Jµνij
∑

αβγδ

1

4
σµαβσ

ν
γδf

†
iαfiβf

†
jγfjδ

=
1

8

∑

ij

∑

µν

Jµνij
∑

αβγδ

σµαβσ
ν
γδf

†
iαf

†
jγfjδfiβ +

1

8

∑

i

∑

µ

Jµµii
∑

α

f †
iαfiα (3.3)

in normal-ordered form. The last term ∼ f †f is equivalent to a shift of the
chemical potential in the grand canonical ensemble.

On each site, the spin states |↑〉 , |↓〉 are represented by fermions f †
↑ |0〉 , f †

↓ |0〉
on that site. However, in fermion language, sites can be doubly occupied, |2〉,
or not occupied at all, |0〉; these states do not correspond to any spin state
and are therefore unphysical. To restrict the Hilbert space to physical states,
an additional constraint,

∑

α

f †
iαfiα = 1 ∀i, (3.4)

is necessary [71]. In practice, this constraint is hard to enforce exactly1 and
the weaker constraint

∑

α

〈
f †
iαfiα

〉
= 1 (3.5)

is used instead. This constraint can be fulfilled by tuning the chemical potential
to the particle-hole symmetric value µ = 0 [49]. The fermions f are known as
Abrikosov pseudofermions, auxiliary fermions or partons [48, 71, 73].

When using the average constraint, the ground states we obtain might still
violate the exact constraint through particle number fluctuations. Therefore,
it is necessary to check explicitly whether the constraint is fulfilled. This can
be done by calculating the variation in particle number, which should be zero
for states fulfilling the exact constraint:

∑

α

〈
f †
iαfiα

〉2 −
∑

αβ

〈
f †
iαfiαf

†
iβfiβ

〉
= 0. (3.6)

In practice, it is more convenient to use quadratic expectation values of spin
operators

〈
Sµi S

µ
i

〉
to test whether the ground state we find is part of the

physical sector of the pseudofermion Hilbert space. This test is equivalent to
the above Eq. (3.6), since

〈
Sµi S

µ
i

〉
=

1

4

〈(

σµαβf
†
iαfiβ

)2
〉

=
1

4

∑

α

〈
f †
iαfiα

〉

︸ ︷︷ ︸

1

−1

2

〈
f †
i↑f

†
i↓fi↓fi↑

〉
, (3.7)

1
For systems at finite temperature, this constraint can be enforced using an imaginary

chemical potential µ = −iπ/2β which eliminates unphysical states in the partition function
by shifting the Matsubara frequencies [48, 72]. As this thesis is only concerned with zero-
temperature behavior, this method is not applicable here.
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3.1. Abrikosov’s pseudofermion representation

which should be = 1
4 for physical states and < 1

4 for unphysical states2. This ex-
pectation value is particularly convenient for our purposes, since it is identical
to the equal-site component of the zero-time spin susceptibility,

χµµii |τ=0 =
〈
Sµi (0)Sµi (0)

〉
, (3.8)

which is one of the primary observables used to characterize the results of
pffRG simulations (see Sec. 4.3) [51].

An alternative test for the pseudofermion constraint was proposed in prior
work [74]. This test consists of adding an on-site interaction term

H
S

2 = −J0

∑

i

S
2
i (3.9)

to the Hamiltonian. In terms of pseudofermion operators, it is equal to

H
S

2 = −J0

∑

i

∑

µ

∑

αβγδ

1

4
σµαβσ

µ
γδf

†
iαfiβf

†
iγfiδ

= −J0

∑

i




3

2

∑

α

f †
iαfiα − 3

4

[
∑

α

f †
iαfiα

]2


 , (3.10)

which is 0 for the unphysical states |0〉 (zero occupation) and |2〉 (double
occupation). In a state that fulfills the exact pseudofermion constraint, this
term is effectively a constant shift of −3

4J0 per site. Therefore, any variation
in J0 ≥ 0 should lead to no change in any observable except for a rescaling of
effective energy scales [74]. A value of J0 < 0 would lead to a bias in favor of
unphysical states and should therefore be avoided. On the other hand, large
values of J0 > 0 introduce a bias towards physical states, and in principle
J0 → ∞ should eliminate the unphysical states.

We tested this approach in practice for the kagome Heisenberg model (see
Ref. [51]). There, we found through explicit evaluation of Eq. (3.7) that the
particle number constraint is not fulfilled exactly (see Ref. [51, Sec. IV.C]).
Furthermore, small to moderate values J0 ≤ J did not cause significant changes
in any observable despite the presence of particle number fluctuations. Larger
values of J0 > J reduced these fluctuations, though the introduction of a new,
large energy scale in the Hamiltonian lead to considerable numerical difficulties.
At all values of J0 where simulations did not become unstable, there was still
significant deviation from exact fulfillment of the particle number constraint
[51]. Therefore, we do not repeat this analysis for the pyrochlore XXZ model,
and only discuss the original Hamiltonian without added H

S
2-term. Explicit

tests of the pseudofermion constraint using Eq. (3.7) are shown in Sec. 5.2.

2
This correlator is able to indicate violation of the pseudofermion constraint reliably

despite the lack of an expectation value detecting the presence of |0〉, because any state that

satisfies
∑

α

〈
f

†
iαfiα

〉
= 1 cannot contain zero occupation components |0〉 without an ‘equal

amount’ of double occupation |2〉.
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3. Method

3.2 Parquet Formalism

3.2.1 Definition of the correlators

A system of interacting fermions can be described by an action

S =
∑

1
′
1

ψ̄1
′

[(

−iω1−µ
)

δ1
′
1+H0(1′; 1)

]

︸ ︷︷ ︸

−(G0)
−1

ψ1− 1

4

∑

1
′
2

′
12

Γ0(1′, 2′; 1, 2) ψ̄1
′ψ̄2

′ψ2ψ1,

(3.11)
where the indices 1′, 2′, 1, 2 represent all quantum numbers including Matsub-
ara frequency indices, the ψ̄, ψ are Grassmann fields, H0 is the quadratic part
of the Hamiltonian and Γ0 is the bare interaction vertex, which is propor-
tional to the quartic part of the Hamiltonian. In pseudofermion systems, the
Hamiltonian does not contain a quadratic part and the bare propagator is

G0 =
δ1

′
1

iω1
, (3.12)

where µ = 0 corresponds to the mean particle number constraint (3.5) for
Abrikosov pseudofermions [48, 75].

To understand the behavior of this system, it is necessary to evaluate
correlators of the form

〈
ψ1 . . . ψnψ̄1

′ . . . ψ̄n′

〉
=

1

Z

∫

D
[

ψ̄, ψ
]

ψ1 . . . ψ̄n′e−S[ψ̄,ψ]. (3.13)

The most important correlators are the two-point correlator (propagator)

G(1′, 1) = −
〈
ψ1

′ψ̄1

〉
(3.14)

and the four-point correlator

G(4)(1′, 2′; 1, 2) =
〈
ψ1

′ψ2
′ψ̄2ψ̄1

〉
. (3.15)

The propagator and four-point correlator are already sufficient to calculate
many physical quantities, such as the magnetic susceptibility χ in pseudo-
fermion models. It is, however, not possible to obtain exact expressions in
general models. The parquet formalism, which will be presented in the fol-
lowing sections, first decomposes these correlators into various contributions
and then neglects some of these contributions which are both very difficult to
evaluate and expected to be weaker than other contributions [76].

3.2.2 Self-energy and four-point vertex

The correlators G, G(4) can be decomposed into various parts with useful sym-
metry properties and relations to one another. The propagator G is connected
to the bare propagator G0 and the self-energy Σ via Dyson’s equation [77]

G(1′, 1) = G0(1′, 1) +
∑

23

G0(1′, 2) Σ(2, 3)G(3, 1), (3.16)
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3.2. Parquet Formalism

which can be expressed in diagrammatic language as

= + , (3.17)

where the continuous lines represent full propagators, dashed lines
represent bare propagators and the circle represents the self-energy.

The four-point correlator can be expressed as a perturbation series of dia-
grams. This series contains two disconnected diagrams, and all other diagrams
are connected and one-particle irreducible3. In other words, there are no
connected diagrams that can be decomposed into two disconnected parts by
cutting a single propagator, because to generate such a diagram, a three-point
vertex would be necessary, which is not part of the action (3.11). The one-

particle irreducible part of G(4) defines the full four-point vertex Γ, which we
refer to as ‘the vertex’:

G(4)(1′, 2′; 1, 2) = G(1′, 1)G(2′, 2) −G(1′, 2)G(2′, 1)

+
∑

3
′
4

′
34

G(1′, 3)G(2′, 4) Γ(3, 4; 3′, 4′)G(3′, 1)G(4′, 2) (3.18)

In diagrammatic language, the connectivity becomes more obvious:

G(4)(1′, 2′; 1, 2) =

11
′

2 2
′

−
11

′

2 2
′

+

11
′

2 2
′

, (3.19)

where the vertex is represented by a gray rectangle.
The vertex Γ, already being one-particle irreducible, can be further decom-

posed into two-particle reducible parts γ and a fully two-particle irreducible
part R. Two-particle reducible diagrams are composed of two simpler dia-
grams connected by two propagators. These connecting propagators can be
parallel, anti-parallel or transverse to each other. Based on this property, the
diagrams are categorized as diagrams reducible in the parallel p, anti-parallel a
and transverse t channel, respectively. No diagram is two-particle reducible in
more than one channel [54, 76, 78]. Therefore,

Γ = R+ γa + γp + γt, (3.20)

and we define the class of diagrams not reducible in channel r as [54]

Ir = Γ − γr = R+
∑

r
′ 6=r

γr′ . (3.21)

3
Inserting a vertex into an external leg of an irreducible diagram and connecting the

two remaining legs of the inserted vertex with a propagator would result in a one-particle
reducible diagram, but this contribution is already contained in the self-energy of the external
propagator.
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3. Method

3.2.3 Bethe–Salpeter and Schwinger–Dyson equation

The reducible structure of γr can be made explicit by expressing γr as two parts
connected by an r-bubble of propagators. To avoid overcounting ladder-like
diagrams, which are reducible in multiple places, we demand that one part must
be irreducible in that channel. Furthermore, there are combinatorial factors
due to symmetries, which are chosen consistent with Kugler and von Delft
[54]. Performing this decomposition separately for each channel, we obtain
the so-called self-consistent Bethe–Salpeter relations [54, 76, 79]:

γa = Ia

γp =
1

2
Ip

γt = −
It

(3.22)

The factor 1
2 in the p-channel compensates overcounting of the diagrams in γp,

which are symmetric under exchange of their two indistinguishable internal
propagators. The minus sign occurs because γa and γt are related by exchange
of two fermion legs (see Eq. (3.45)) [52, 54]. For later convenience, we define
the pair propagator, Πr, as a pair of propagators in channel r including the
negative sign in Πt and the combinatorial factor 1

2 in Πp. Understanding all
products as matrix products with respect to suitably chosen indices, we can
summarize the Bethe–Salpeter equations (3.22) as

γr = IrΠrΓ, r ∈ {a, p, t} . (3.23)

These relations form a coupled system of equations: Each γr is part of
the full vertex Γ and the vertex irreducible in other channels Ir′ 6=r. There
are still two unknowns, namely the self-energy Σ of the propagators and the
irreducible part R of the vertex. The self-energy is related to the vertex
through the Schwinger–Dyson equation [54, 77, 80, 81]

= − − 1

2
, (3.24)

where the black dots represent the bare vertex Γ0.

3.2.4 The parquet approximation

Thus, if the irreducible part R of the vertex was known, all reducible parts
γr as well as the self-energy Σ could in principle be obtained through self-
consistent solution of the Bethe–Salpeter equations and the Schwinger–Dyson
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3.3. Multiloop functional renormalization group

Figure 3.1: The fully two-particle irreducible envelope diagram, which is the
lowest-order diagram not included in the parquet approximation.

equation, which are both exact. The simplest approximation for R is to set

R = Γ0, (3.25)

which is called the first-order solution [76] or parquet approximation [54].
The lowest-order diagram not contained in this approximation is the so-called
envelope diagram shown in Fig. 3.1, which is not reducible in any of the three
channels.

With this approximation, the system of Bethe–Salpeter equations (3.22)
together with the Schwinger–Dyson equation (3.24) is fully specified and can be
solved self-consistently. The parquet approximation, though it is the simplest
approximation for R, already ensures full consistency on the one- and two-
particle level [55, 76]. In a logarithmically divergent perturbation theory, it
corresponds to a sum of the leading-order logarithmic contributions, neglecting
all higher orders that would make calculations considerably more difficult [54,
71, 76, 78]. This method has been applied to problems such as meson-meson
scattering [78], the Kondo effect [71], superconductivity in one dimension [82]
and X-ray absorption and emission spectra [76].

In practice, it is not trivial to find a self-consistent solution and for general
problems, numerical methods are necessary. While there are, in principle, nu-
merical methods to solve self-consistent equation systems, obtaining a solution
in a strongly correlated phase of the system requires considerable numerical
effort. This is where the functional renormalization group method (fRG) be-
comes useful, as it is able to obtain a solution in a difficult (strongly correlated)
regime from a solution in an easy (weakly correlated) regime.

3.3 Multiloop functional renormalization group

In condensed matter physics, systems such as the interacting fermions de-
scribed by the action (3.11) show behavior on different energy scales. Renor-
malization group methods are based on the idea of treating each energy scale
successively. Starting from high energy scales, the low-energy behavior can
be approached iteratively, where in each iteration modes at lower energies are
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3. Method

introduced and their effect on the behavior of the system is evaluated. Another
advantage of these methods is that information about the physical behavior
of the system is contained not only in the low-energy solution after the last
iteration step, but also in the renormalization group flow, i.e. the way the
iteration converges to the low-energy fixed points [83, 84]. In the following,
we describe the multiloop functional renormalization group (mfRG) method
without detailed discussion of conventional fRG methods4.

3.3.1 Energy cutoff

To focus on specific energy scales, an infrared energy cutoff5 parameter Λ is
introduced artificially. The functional renormalization group method replaces
the bare propagator G0 contained in the action (3.11) by a scale-dependent
version, which behaves like G0 at large energies and vanishes for small energies,
where the notion of ‘large’ and ‘small’ energy is defined in relation to Λ:

GΛ
0 (ω) =

{

0, |ω| ≪ Λ

G0(ω), |ω| ≫ Λ.
(3.26)

The functional integral expression (3.13) for the correlators then reads

〈
ψ1 . . . ψ̄n′

〉
=

1

Z

∫

D
[

ψ̄, ψ
]

ψ1 . . . ψ̄n′ exp
{∑

ψ̄
(
GΛ

0

)−1
ψ + . . .

}

. (3.27)

The cutoff in GΛ
0 at low energies causes

(
GΛ

0

)−1 → −∞ and thus suppresses
low-energy modes of the Hamiltonian in the functional integral expressions.
Thus, the scale dependence of GΛ

0 introduces a scale dependence into the action
SΛ, and this in turn makes all correlators scale-dependent.

This behavior can be implemented in many different ways. We choose to
multiply the bare propagator by a regulator function ΘΛ which contains all
Λ-dependence

GΛ
0 (ω) = ΘΛ(ω)G0(ω). (3.28)

There is some freedom in choosing a regulator function ΘΛ, and all choices
should lead to identical solutions for Λ → 0, as this choice is not meaningful
for the physical system6 [54, 55].

4
Conventional fRG methods are discussed in the review by Metzner et al. [83] and the

book by Kopietz et al. [85].
5
In principle, the flow parameter Λ is not necessarily an energy cutoff. There are fRG

methods which use a momentum cutoff instead, and some fRG approaches even use a
rescaling of temperatures or interaction strengths as flow parameter [83]. An overview of
these approaches can be found in the review by Metzner et al. [83, pp. 309–311].

6
This condition is fulfilled by multiloop fRG, while conventional fRG fails to give the

same solution independent of regulator choice [55].
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Figure 3.2: Shape of the scale-dependent Green’s function GΛ
0 (ω) as a function

of ω for two possible choices of regulator, the sharp cutoff using a Heaviside
function (3.29) and the smooth Gaussian regulator function (3.30).

If the choice of regulator does not affect the calculated values of physical
observables, this choice can be made based on technical considerations. The
simplest choice for ΘΛ is a sharp Heaviside function

ΘΛ(ω) =







0, |ω| < Λ
1
2 , |ω| = Λ

1, |ω| > Λ,

(3.29)

which is particularly easy to implement and simplifies the form of some inte-
grals. However, the discontinuities at |ω| = Λ lead to some numerical difficul-
ties in expressions that contain sums and products of multiple propagators,
and we use a smooth (Gaussian) step function,

ΘΛ(ω) = 1 − e−ω2
/Λ

2

, (3.30)

instead (see Fig. 3.2).
The scale-dependence of all other correlators can be understood in terms

of a perturbation series as replacing all propagators G0 by GΛ
0 in all diagrams.

Therefore, in the parquet formalism (see Sec. 3.2), G,Σ, G(4),Γ and γa,p,t
become scale-dependent as well. (For brevity, our notation does not display
this scale dependence.) In the parquet approximation, the irreducible part R
remains Λ-independent, since Γ0 does not have any scale-dependence. Oth-
erwise, for example when using an irreducible vertex R obtained from some
other method, one still assumes R to be scale-independent [52].
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3.3.2 Vertex flow

The dependence of G and Γ on Λ can be analyzed using the derivative ∂Λ = ∂
∂Λ ,

which we denote by a dot. The Λ-derivative of Γ is

Γ̇ = ∂ΛΓ = ∂ΛR+
∑

r=a,p,t

∂Λγr =
∑

r=a,p,t

γ̇r. (3.31)

Expanding γr using the Bethe–Salpeter equations (3.22), the vertex can be de-
composed into r-irreducible components connected by r-channel loops. Using
the same symbolic notation Πr as in Eq. 3.23 for the r-channel pair propagator,
this can be expressed as

Γ = Ir + γr = Ir + IrΠrIr + IrΠrIrΠrIr + . . . , (3.32)

where all products are to be understood as matrix multiplication with respect
to suitably chosen indices.

With this decomposition, the various parts of the derivative can be in-
spected separately:

γ̇r = ∂Λ [IrΠrΓ] = ∂Λ [IrΠrIr + IrΠrIrΠrIr + . . .] (3.33)

All parts where the derivative acts on one of the propagator pairs Πr have sums
of repeated IrΠr-patterns on the left and right side, which can be reassembled
to a full vertex. This part is called the one-loop contribution [54]

γ̇(1)
r = (Ir + IrΠrIr + . . .) Π̇r (Ir + IrΠrIr + . . .) = ΓΠ̇rΓ = Γ

(

ĠG+GĠ
)

Γ

(3.34)
since it contains one fermion ‘loop’ Πr connecting full vertices.

The remaining parts are those where the derivative acts on one of the
irreducible vertices Ir. By the same principle as above, the non-differentiated
parts can be reassembled to full vertices, simplifying Eq. (3.33) to [52]

γ̇r = γ̇(1)
r + İrΠrΓ + ΓΠr İrΠrΓ + ΓΠr İr. (3.35)

Since Γ = R+
∑

r γr and Ṙ = 0 in the parquet approximation,

∂ΛIr = ∂Λ (Γ − γr) =
∑

r
′ 6=r

γ̇r′ , (3.36)

which again contains an infinite number of terms.
The summation can be further organized by the total number of fermion

loops Πr contained in each contribution. All terms that contain two loops in

total are γ
(1)

r
′ contributions to ∂ΛIr in the second or last term of Eq. (3.35).

This contribution is called the two-loop contribution [54]

γ̇(2)
r =

∑

r
′ 6=r

γ̇
(1)

r
′ ΠrΓ + ΓΠr

∑

r
′ 6=r

γ̇
(1)

r
′ = γ̇

(1)
r̄ ΠrΓ + ΓΠrγ̇

(1)
r̄ , (3.37)

24



3.3. Multiloop functional renormalization group

where γ̇
(1)
r̄ =

∑

r
′ 6=r γ̇

(1)

r
′ .

Taking γ̇
(2)
r̄ contributions instead of γ̇

(1)
r̄ results in a three-loop contribution.

There is another three-loop contribution that occurs when considering γ̇
(1)
r̄

contributions to the third term of Eq. (3.35). Therefore, [54]

γ̇(3)
r = γ̇

(2)
r̄ ΠrΓ + ΓΠrγ̇

(1)
r̄ ΠrΓ + ΓΠrγ̇

(2)
r̄ . (3.38)

In fact, this construction is not limited to three loops: All contributions of an
arbitrary loop order ℓ ≥ 3 can be constructed by adding one loop to the left

or the right side of γ̇
(ℓ−1)

r
′ and adding one loop to both sides of γ̇

(ℓ−2)

r
′ .

γ̇(ℓ)
r = γ̇

(ℓ−1)
r̄ ΠrΓ + ΓΠrγ̇

(ℓ−2)
r̄ ΠrΓ + ΓΠrγ̇

(ℓ−1)
r̄ (3.39)

Thus, all parts of γ̇r have been organized into contributions γ̇(ℓ)
r and [54]

γ̇r =
∑

ℓ

γ̇(ℓ)
r . (3.40)

The iterative nature of Eq. (3.39) is convenient for numerical applications,
since ℓ-loop contributions can be constructed from earlier iterations ℓ− 1 and
ℓ− 2, thus avoiding repeated numerical effort. The vertex flow equations are
presented in diagrammatic language in Table 3.1.

3.3.3 Self-energy flow

There are different ways of deriving the flow of the self-energy Σ, not all of
which are immediately compatible with the parquet approximation [52, 54].
One derivation that avoids this problem uses the Λ-derivative of the Schwinger–
Dyson equation (3.24)

Σ̇ = ∂Λ








− − 1

2







. (3.41)

Again, the derivative can act on the propagators or the vertex in the second
term and both parts will be analyzed separately. Since some parts involve
lengthy algebra, not all steps in the derivation will be presented; they can be
found in the work by Kugler and von Delft [52].

Contributions from applying ∂Λ to the propagators are

Σ̇G = − − 1

2








+ +







, (3.42)
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1-loop contributions

γ̇
(1)
a = +

γ̇
(1)
p =

1

2
+

1

2

γ̇
(1)
t = − −

2-loop contributions

γ̇
(2)
a = γ

(1)
ā + γ

(1)
ā

γ̇
(2)
p =

1

2
γ

(1)
p̄ +

1

2
γ

(1)
p̄

γ̇
(2)
t = −

γ
(1)

t̄

−
γ

(1)

t̄

contributions of order ℓ ≥ 3

γ̇
(ℓ)
a = γ

(ℓ−1)
ā + γ

(ℓ−2)
ā + γ

(ℓ−1)
ā

γ̇
(ℓ)
p =

1

2
γ

(ℓ−1)
p̄ +

1

4
γ

(ℓ−2)
p̄ +

1

2
γ

(ℓ−1)
p̄

γ̇
(ℓ)
t = −

γ
(ℓ−1)

t̄

+ γ
(ℓ−2)

t̄
−

γ
(ℓ−1)

t̄

Table 3.1: Vertex flow in the multiloop functional renormalization group in
diagrammatic language [54]. Lines correspond to differentiated propagators

∂ΛG
Λ.
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3.3. Multiloop functional renormalization group

where Ġ is represented by . Using γr = IrΠrΓ
PA
= (Γ0 + γr̄) ΠrΓ,

Σ̇G = − − γa − γp + γā +
1

2
γp̄

= − It + γā +
1

2
γp̄ . (3.43)

Applying ∂Λ to the vertex parts in Eq. (3.41) yields

Σ̇Γ = −1

2







γ̇a + γ̇p + γ̇t






. (3.44)

The vertex and its reducible parts are antisymmetric under exchange of two
incoming or two outgoing arguments [52, 86].

Γ(1′, 2′; 1, 2) = −Γ(1′, 2′; 2, 1) = −Γ(2′, 1′; 1, 2) (3.45a)

Γ0(1′, 2′; 1, 2) = −Γ0(1′, 2′; 2, 1) = −Γ0(2′, 1′; 1, 2) (3.45b)

γa(1
′, 2′; 1, 2) = −γt(1′, 2′; 2, 1) = −γt(2′, 1′; 1, 2) (3.45c)

γp(1
′, 2′; 1, 2) = −γp(1′, 2′; 2, 1) = −γp(2′, 1′; 1, 2) (3.45d)

Due to these so-called crossing symmetries, the first and last term in Eq. (3.44)

are equal. With γr = IrΠrΓ =
(

Γ0 + γr̄
)

ΠrΓ,

Σ̇Γ = − Ia γ̇a + γā γ̇a − 1

2
Ip γ̇p +

1

2
γp̄ γ̇p

= − Ia γ̇a + γa İa − 1

2
Ip γ̇a +

1

2
γp İp .

(3.46)

Inserting the vertex flow from Eq. (3.39) and Eq. (3.40) for γ̇r yields

Σ̇Γ = −








γa + γa








− γ̇ā

− 1

2








γp + γp








− 1

4
γ̇p̄ . (3.47)
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For convenience, we define the center part

γ̇
(C)

t̄
= γ̇ā +

1

4
γ̇p̄ . (3.48)

Due to crossing symmetries, the last two terms of Σ̇G in Eq. (3.43) cancel Σ̇Γ

except for the center part:

Σ̇ = Σ̇G + Σ̇Γ = − It − γ̇
(C)

t̄
. (3.49)

The derivative of G is

Ġ = ∂Λ
1

(
GΛ

0

)−1 − Σ
= G

[

−∂Λ

(
GΛ

0

)−1
]

G+GΣ̇G. (3.50)

We define the single-scale propagator
7

S = G
[

−∂Λ

(
GΛ

0

)−1
]

G. (3.51)

As the derivative of the propagator (3.50) contains Σ̇, Eq. (3.49) has Σ̇ on
both sides. Iterating Eq. (3.49) generates chains of ItΠt, which are capped

by either a single-scale propagator or a γ̇
(C)
t̄

-term. The chains can then be
reassembled to full vertices and [52, 54]

Σ̇ = − − γ̇
(C)

t̄
−

γ̇
(C)

t̄

, (3.52)

where the single-scale propagator is represented by .

3.3.4 Integrating the renormalization group flow

Thus, Γ̇ and Σ̇ are known for given Γ,Σ. A given state Ψ = (Γ,Σ) at some
Λ = Λi can be evolved to a target Λf by solving an ordinary differential
equation (ODE)

∂ΛΨ = f(Ψ)

∣
∣
∣
∣
Λ

. (3.53)

The initial condition Ψ|Λi
=
(
Γ|Λi

, Σ|Λi

)
can be chosen in different ways. One

obvious way is to choose a Λi much larger than all other energy scales in the

7
The name refers to the fact that S ∼ δ (|ω| − Λ) when using a sharp cutoff function Θ

Λ

in the propagator (3.28).
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3.3. Multiloop functional renormalization group

system and insert the limΛ→∞GΛ
0 = 0 into the action (3.11). This immediately

implies Γ|Λi
= Γ0, since all other diagrams are suppressed by GΛ

0 [54, 55, 75].
Alternatively, the initial condition can be set equal to an approximation for
the full vertex and self-energy obtained by other methods such as perturbation
theory or dynamical mean-field theory (DMFT)8. Since the multiloop flow was
constructed in accordance with the parquet method, we use a solution of the
parquet equations for some large value of Λi as initial condition. The method
used to solve the parquet equations will be discussed in Sec. 3.3.5.

There are several well-known algorithms for solving ODEs numerically9,
such as the Runge–Kutta family of algorithms [88–90]. As Γ and Σ may
change rapidly or start to diverge at some Λ comparable to J while behaving
smoothly for Λ > J , it is advisable to use an error-estimating adaptive method,
such as the 5th-order method of Cash and Karp [88]. These methods proceed
iteratively from the initial to final Λ via intermediate steps Λm, where the
size of the next step Λm+1 − Λm is adjusted after each iteration m. Assuming
that the difficulty of the problem changes slowly, a heuristic can be used to
predict the approximate error of the next step as a function of step size based
on the estimated error in the last step. The step size may be decreased to
reduce numerical error if the error threatens to become unacceptably large,
or the step size may be increased to reduce numerical effort if the heuristic is
confident that a sufficiently accurate step can be calculated.

For practical reasons, implementations of adaptive Runge–Kutta methods
are inefficient if the difficulty of the problem is drastically different at different
(not necessarily similar) Λ. Underestimation of the error in the step-size
prediction heuristic may lead to very large steps that induce instabilities or
miss features of the ODE entirely. Therefore, the heuristic must be adjusted
such that appropriate step sizes are chosen in the most difficult part of the
ODE, which leads to inefficient choices in less difficult parts. The integration
of the pseudofermion fRG flow is such a problem: At Λ/J > 1, the appropriate
step size (e.g. Λ/J = 4.5 to 3.7) is much larger than at smaller Λ/J ≪ 1 (e.g.
Λ/J = 0.074 to 0.066). This issue can be avoided by a change of variables
in the flow equation Eq. (3.53). Introducing a variable t and an invertible
function Λ(t), Eq. (3.53) can be expressed as

∂tΨ =
∂Λ(t)

∂t

∣
∣
∣
∣
t

f(Ψ)

∣
∣
∣
∣
Λ(t)

≡ f̃(Ψ)

∣
∣
∣
∣
t

. (3.54)

It is more efficient to integrate f̃ in t if the function Λ(t) has been chosen such
that the appropriate step size in t is similar at all values of t. In pseudofermion
fRG problems, this is roughly the case if t ∼ log(Λ/J). We choose

Λ(t) = J e−t (3.55)

8
The combination of DMFT and fRG is known as ‘DMF

2
RG’ [87].

9
These algorithms are also known as ‘time integration’ algorithms.
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and integrate from t = − log (Λi/J) to ∞.
In each Runge–Kutta step, most of the runtime is spent evaluating the fre-

quency integrals in the expressions for Γ̇ and Σ̇. Therefore, within the adaptive
Runge–Kutta methods, a higher-order method is thus generally preferable10,
as the increase in the number of function evaluations is more than compensated
by the increase in step size and the overhead of the ODE solver is negligible
compared to the evaluation of Γ̇, Σ̇. In practice, we use the 5th-order method
of Cash and Karp [88].

3.3.5 Parquet solutions at finite Λ

Since the multiloop flow was constructed to be compatible with the parquet
equations, using a parquet solution as initial condition should lead to a flow
along parquet solutions to the system at each Λ. At sufficiently high Λ, cor-
relations are suppressed by small GΛ

0 . It is therefore possible to quite easily
find a self-consistent solution of the parquet equations at large Λ ≫ J even for
systems which are difficult to solve at Λ / J . To find this self-consistent par-
quet solution Ψparquet =

(
Γparquet,Σparquet

)
, we regard the parquet equations

as describing a fixed point

Ψparquet = F (Ψparquet) (3.56)

of a function F given by the right-hand side of the parquet equations for γr
and Σ. We then find this fixed point by iterating11 [91]

ΨM+1 = z F (ΨM ) + (1 − z) ΨM (3.57)

with a mixing factor z that is generally between 10−3 and 10−1. For well-
behaved F , this iteration converges to a fixed point ΨM → Ψparquet, which is

detected by vanishing12 ‖F (ΨM ) − ΨM‖.

10
While, as Reuther [48] reported, the Euler method is able to perform the Λ-integration,

we found that higher-order adaptive Runge–Kutta methods offer many advantages such as
gain in stability and numerical efficiency when compared to non-adaptive Euler integration.
Furthermore, the error-estimating capabilities of these methods are able to detect difficulties
in the flow, such as the onset of divergence, where non-adaptive methods would silently emit
inaccurate values that are difficult to interpret.

11
There are more sophisticated methods to find fixed points that converge faster and for

a larger class of functions, such as Anderson acceleration [91] or (generalized) Broyden’s
methods [92, 93]. These have not been implemented since the fixed-point iteration with
simple mixing already converges at sufficiently large Λ.

12
Our implementation uses a maximum norm to detect convergence.
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Chapter 4

Implementation

Though the general method was described in the previous chapter, there are
some non-obvious problems that arise in a practical implementation. This
chapter shows how to avoid such problems as well as a few methods to speed
up the algorithm. The first section deals with a clever parametrization of the
vertex that is crucial to the practical success of this method. Thereafter, we
present fully parametrized expressions for the loop and bubble functions which
can be used as building blocks for the parquet equations as well as the mfRG
flow. In the last section, a parametrized expression for the spin susceptibility
is derived, as it cannot be constructed from these building blocks in an efficient
way.

4.1 Parametrization of vertices and propagators

The pseudofermion fRG vertex is constrained by many symmetries which
reduce the number of independent components. Any implementation should
exploit as many of these symmetries as possible to reduce the numerical effort
required. For the systems considered in this thesis, only about 1/100 of all
components of the vertex are independent.

Several types of symmetries are relevant here, namely [86]
• gauge redundancy of the parton construction
• physical symmetries of the Hamiltonian
• lattice symmetries

and the effect of each of these symmetries will be described in the following
sections. The basic idea is to evaluate only the independent components of
all expressions and generate other components as needed using symmetry
transforms. Efficiency can be further improved by decomposing the vertex
into several components with different asymptotic structure in their frequency
dependence [94]. Both symmetries and asymptotic structure have to be taken
into account to find an efficient parametrization in frequency space. Lattice
symmetries will be considered separately in Sec. 4.1.5, as the parametrization
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of the vertex in frequency space and in real space are independent of each
other.

4.1.1 SU(2) gauge redundancy of the parton construction

Usually, the parton or Abrikosov pseudofermion construction is expressed as

Sµi → 1
2 f

†
i σ

µ
fi, where fi =

(

fi↑
fi↓

)

. (4.1)

The SU(2) redundancy is not very obvious in the above equation. It can be
rewritten as a trace over a product of matrices [86, 95]

Sµi → 1
4 Tr

(

F †
i σ

µFi

)

, where Fi =

(

fi↑ f †
i↓

fi↓ −f †
i↑

)

. (4.2)

This construction is invariant under right-multiplication of Fi with a local
matrix gi ∈ SU(2),

Fi → Figi, (4.3)

due to the cyclic structure of the trace and gig
†
i = 1. It is convenient to analyze

this SU(2) symmetry as a composition of a U(1) and a particle-hole symmetry.

U(1) symmetry

Restricting the discussion to complex phases

gi =

(

eiφi

e−iφi

)

∈ SU(2) (4.4)

for the moment, this implies

〈
f †
i
′
1α

′
1
f
i1α1

〉
= e

iφ
i1

− iφ
i
′
1
〈
f †
i
′
1α

′
1
f
i1α1

〉
, (4.5)

〈
f †
i
′
1α

′
1
f †
i
′
2α

′
2
f
i2α2

f
i1α1

〉
= e

iφ
i1

+ iφ
i2

− iφ
i
′
2
− iφ

i
′
1
〈
f †
i
′
1α

′
1
f †
i
′
2α

′
2
f
i2α2

f
i1α1

〉
, (4.6)

which is only true if the phases φ cancel or the correlator is zero. Since these
phases φ can be chosen arbitrarily and independently for each lattice site, it
follows that the propagator must be local,

G(1′, 1) = δi′1i1
G(1′, 1), (4.7)

and the 4-point correlator must be bi-local,

G(4)(1′, 2′; 1, 2) = δi′1i1
δi′2i2

G(1′, 2′; 1, 2) − δi′2i1
δi′1i2

G(2′, 1′; 1, 2). (4.8)

Both relations together imply that the vertex must be bi-local as well [86],

Γ(1′, 2′; 1, 2) = δi′1i1
δi′2i2

Γ(1′, 2′; 1, 2) − δi′2i1
δi′1i2

Γ(2′, 1′; 1, 2). (4.9)

32



4.1. Parametrization of vertices and propagators

Particle-hole symmetry

Furthermore, there are transforms
(

1
1

)

∈ SU(2) (4.10)

that correspond to local particle-hole symmetry. These swap f and f † opera-
tors:

fi↑ ↔ f †
i↓, fi↓ ↔ −f †

i↑. (4.11)

For convenience, we introduce notation where spin indices α appear as coeffi-
cients. We define α to have the numeric values +1 for α = ↑ and −1 for α = ↓,
such that Eq. (4.11) can be expressed as

fiα ↔ αf †
iᾱ. (4.12)

We introduce further notation for multi-indices,

1 ≡ (i1, ω1, α1) , (4.13a)

−1 ≡ (i1,−ω1, α1) , (4.13b)

1̄ ≡ (i1, ω1, ᾱ1) , (4.13c)

where ᾱ is the inverse of α. Invariance under particle-hole symmetry im-
plies [86]

G(1′, 1) = −α′
1α1G(−1̄,−1̄′) (4.14)

and

G(1′, 2′; 1, 2) δi′1i1
δi′2i2

= −α′
1α1G(−1̄, 2′; −1̄′, 2) (4.15a)

= −α′
2α2G(1′,−2̄; 1,−2̄′). (4.15b)

4.1.2 Physical symmetries

Instead of re-deriving symmetries on the correlators, we will list them as
described in the work by Buessen et al. [86].

Time reversal

Time reversal symmetry can be implemented as [86]

f
iα

→ iαf
iᾱ

(4.16)

and implies [86]

G(1′, 1) = α′
1α1

[

G(−1̄′,−1̄)
]∗
, (4.17)

G(1′, 2′; 1, 2) δi′1i1
δi′2i2

= α′
1α

′
2α1α2

[

G(−1̄′,−2̄′; −1̄,−2̄)
]∗
. (4.18)
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Hermitian symmetry

If the Hamiltonian is hermitian, the correlators are further constrained by [86]

G(1′, 1) = α′
1α1G(1̄; 1̄′) (4.19)

and
G(1′, 2′; 1, 2)δi′1i1

δi′2i2
= α′

1α
′
2α1α2G(1̄, 2̄; 1̄′, 2̄′). (4.20)

SU(2) spin rotation

In Heisenberg models with equal interaction strength in all directions Jµλ =
Jδµλ, the Hamiltonian is invariant under global spin rotations gspin ∈ SU(2)

Sµ → g†
spinS

µgspin, (4.21)

which can be implemented for Abrikosov pseudofermions as [86, 95]

Fi → gspinFi, (4.22)

where the matrix F is the same as the one in Eq. (4.2). This symmetry
under a global transformation gspin of the spin operators is distinct from the
local transformation gi corresponding to the SU(2) gauge redundancy (4.3)
of Abrikosov’s pseudofermion representation, which does not change the spin
operators.

In XXZ models, the symmetry between the Sz component and the other
components is broken, reducing the SU(2) symmetry of a fully symmetric
Heisenberg model to a U(1) symmetry within the Sx-Sy plane. In this case,
the transformation matrices gspin are constrained to

gspin =

(

eiφ

e−iφ

)

, φ ∈ R. (4.23)

4.1.3 Parametrized form of the propagator and self-energy

Combined, the various constraints on the propagator imply that it is diagonal
in all arguments [86]:

G(1′, 1) = δi′1i1
δω′

1ω1
δα′

1α1
G(ω1). (4.24)

It is also purely imaginary and antisymmetric:

G(ω) = −G(−ω) ∈ iR. (4.25)

Due to Dyson’s equation

G(1′, 1) = G0(1′, 1) +G0(1′, 1′) Σ(1′, 1)G(1, 1), (4.26)
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the self-energy is constrained by the same symmetries as the propagator [75,
86]. We parametrize the self-energy as

Σ(1′, 1) = δi′1i1
δω′

1ω1
δα′

1α1
Σ(ω1), (4.27)

and Eq. (4.25) implies
Σ(ω) = −Σ(−ω) ∈ iR. (4.28)

Because of the simple structure of the propagator and the definition of the
vertex,

G(4)(1′, 2′; 1, 2) = G(1′, 1)G(2′, 2) −G(2′, 1)G(1′, 2)

+
∑

3
′
4

′
34

G(1′, 3′)G(2′, 4′) Γ(3′, 4′; 3, 4)G(3, 1)G(4, 2), (4.29)

all symmetries of the 4-point correlator G(1′, 2′; 1, 2) apply directly to the
vertex Γ(1′, 2′; 1, 2) as well [86].

4.1.4 Parametrization of spin and site dependence of the vertex

This enables us to parametrize the 4-point vertex as [86]

Γ(1′, 2′; 1, 2) = Γ
(

i′1, ω
′
1, α

′
1, i

′
2, ω

′
2, α

′
2; i1, ω1, α1, i2, ω2, α2

)

=

=
3∑

µ,λ=0

[

Γ µλ
i1i2

(

ω′
1, ω

′
2;ω1, ω2

)

σµ
α

′
1α1

σλ
α

′
2α2

δi′1i1
δi′2i2

−Γ µλ
i1i2

(

ω′
1, ω

′
2;ω2, ω1

)

σµ
α

′
1α2

σλ
α

′
2α1

δi′1i2
δi′2i1

]

δω′
1+ω

′
2,ω1+ω2

, (4.30)

where i are site indices, ω are frequencies, α ∈ {↑, ↓} are spin indices and
{σµ}µ∈{0...3} are Pauli matrices with σ0

α
′
α

= δα′
α. In the following, we use the

notations µ = x, y, z and µ = 1, 2, 3 interchangeably.
The same parametrization can be used for the reducible parts of the ver-

tex. While Γ = Γ for the full vertex because of crossing symmetries (see
Eq. (3.45)), the reducible parts γa and γt are exchanged by this symmetry as
γa = γt and vice versa. In the following, - and -components will be referred
to explicitly only where necessary. Relations with omitted indices (including

and ) hold separately for each component. In addition, the crossing sym-
metries impose constraints on the frequency structure of the reducible vertex
parts, which are discussed in Sec. 4.1.6 after some further refinement to the
parametrization.

If the interaction Jµλ is diagonal in µλ, the vertex Γµλ is diagonal in µλ
as well:

Γµλ = δµλΓµ. (4.31)
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This is because the initial vertex is proportional to J and the fRG flow for
a vertex ∼ δµλ does not generate off-diagonal terms. In Heisenberg models
with isotropic coupling Jµλ = Jδµλ, there is additionally a SU(2) spin rotation
symmetry (4.21) of the Hamiltonian, which reduces independent spin compo-
nents of the vertex to Γ0 and Γ1 = Γ2 = Γ3. In prior work [48, 49, 75, 96],
the two components are referred to as the density part Γd = Γ0 and spin part

Γs = Γ1 of the vertex. In an XXZ model, only the components Jx = Jy are
equal, leading to the reduced symmetry Γ1 = Γ2 6= Γ3 in the vertex.

Furthermore, the flow does not generate imaginary terms for real interac-
tion strength Jµλ ∈ R. Therefore, for hermitian Hamiltonians,

Γµi1i2(. . .) ∈ R (4.32)

as well. These properties of the flow are shown explicitly in Sec. 4.2.
In diagrams, vertices are denoted as boxes with lines connecting the indices

at equal sites:

Γ(1′, 2′; 1, 2) =

1

2

1
′

2
′

, (4.33)

Γ µ
i1i2

(

ω′
1, ω

′
2;ω1, ω2

)

δi′1i1
δi′2i2

δω′
1+ω

′
2,ω1+ω2

= µ

1

2

1
′

2
′

. (4.34)

Thus, Eq. (4.30) can be expressed diagrammatically as

1

2

1
′

2
′

=
3∑

µ=0










µ

1

2

1
′

2
′

σµ
α

′
1α1

σµ
α

′
2α2

− µ

1

2

1
′

2
′

σµ
α

′
1α2

σµ
α

′
2α1










. (4.35)

4.1.5 Lattice symmetries

Given some basis vectors a1, . . . ,ad ∈ R
d, a lattice in d dimensions can be

constructed by repetition of a unit cell using a group of translation operators
T =

{
Tr

}

r∈Z
d where r = (r1, . . . , rd) and the action of Tr is a translation

by
∑d
α=1 r

α
aα. The group composition law is Tr1

Tr2
= T(r1+r2). All unit

cells contained in the lattice can be indexed by r such that the operator Tr

transforms the original unit cell to the unit cell being indexed.
In Hubbard or Heisenberg type models, the unit cell is a collection of sites

connected by edges. We index the sites using c ∈ JB
∼= {1, . . . , B} ⊂ Z and
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each site can now be specified by a unique tuple (r, c) ∈ L ≡ Z
d × JB. The

translation operators do not change the inner structure of each unit cell:

Tj (r, c) =
(

r + j, c
)

. (4.36)

The fRG vertex Γ is invariant under lattice translation operations1, i.e. for
two sites i1 ≡ (r1, c1) , i2 ≡ (r2, c2),

Γi1i2 = Γc1c2
(r1, r2) = T−r2

Γc1c2
(r1, r2) = Γc1c2

(r1 − r2, 0) , (4.37)

and only vertex components with r2 = 0 have to be kept in memory.
Most lattices have further symmetries that can be exploited to reduce both

runtime and memory usage. All other symmetries Q must be bijective and
compatible with lattice translation symmetries. Therefore, they are length-
preserving symmetries, i.e. rotation and reflection operators composed with
translation operators. For each lattice site i, a symmetry operator Q generates
an orbit

{
i, Qi,Q2i, . . .

}
. The vertex is symmetric under lattice symmetries,

Γi1i2 = QΓi1i2 = ΓQi1Qi2 . (4.38)

Therefore, vertex components on sites that are part of the same orbit are always
equal and it is sufficient to evaluate and keep only one of these components.

A symmetry Q generally acts on both the translation index r as well as
the unit cell index c and the action on each part is strongly constrained by
the compatibility with translation symmetries mentioned above. Because Q is
bijective, its action on JB can only be a permutation P . There is a redundancy
in the action of Q on the Z

d part of the lattice, as for any symmetry Q, the
operators in QT =

{
QTr

}

r∈Z
d are symmetries as well. For each family of such

symmetry operators, it is sufficient to pick one operator and investigate its
action on L. Due to the length-preserving property, there is always an operator
in QT that acts on Z

d like a linear operator U and a translation by j
c
, which

may depend on the site index c of the original site. In total,

Q (r, c) =
(

Ur + j
c
, P c

)

. (4.39)

1
The ground state may break symmetries of the Hamiltonian. In this case, correlators

including the 2-particle correlator and the vertex may lose a subset of the translation invari-
ance. If this leads to an ordered state, correlations describing the corresponding instability
will diverge as described in [48, 97], and this divergence is taken as an indicator for order.
If the symmetry-broken state is not ordered, but a valence bond solid or similar state with
correlations whose strength differs on different bonds, representing such a state is only possi-
ble by defining r2 to be part of a cluster of the required size. As the fRG flow equations are
symmetric, such a state can only be investigated by introducing a bias to the initial state.
This type of construction was used in standard pffRG to investigate Heisenberg models by
Suttner et al. [98] and Iqbal et al. [50]. Due to the numerical effort required to evaluate such
a scheme for the pyrochlore XXZ model in multiloop fRG, this approach was not pursued
in the course of this thesis and all vertices considered here are invariant under all lattice
symmetries.
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This form is useful to describe symmetry relations in practice, because the
linear operator U can be expressed and analyzed as a matrix2. With this
decomposition, lattice symmetries of the vertex (4.38) impose constraints

Γc1c2
(r1, r2) = ΓPc1Pc2

(

Ur1 + j
c1
, Ur2 + j

c2

)

, (4.40)

which can be implemented directly once U and j
c

are known. Expressions for
the symmetries of the pyrochlore lattice are given in Appendix A.

In total, to exploit lattice symmetries, it is necessary to input the following
information manually:

1. A unit cell JB of the lattice and the corresponding basis vectors. It is
advantageous to choose a unit cell that contains as few sites as possible
and has similar length in all directions.

2. A generating set of symmetry operators Q of the lattice, where each Q
is represented by a matrix U , a set of displacements {j

1
, . . . , j

B
} and

a permutation P . Compositions of these operators should describe all
symmetries of the lattice.

3. The symmetry-reduced unit cell J′
B that contains only those sites within

the unit cell that are not related by any symmetry. For many lattices,
including the kagome and pyrochlore lattice, J′

B contains only one site.
4. For each site i ∈ J

′
B, declare which sites are coupled to i by the bare

interaction in the Hamiltonian.
This information is sufficient to symmetry-reduce the real-space components
of the vertex. For this, a lattice-generation algorithm first obtains all sites
within a certain cutoff distance rmax from the origin. It then applies all
symmetry operators to each site and categorizes all sites into sets of sites that
are symmetric to one another. For each of these sets, only one component of
the vertex is kept in memory.

4.1.6 Asymptotic structure and natural frequency parametrization
of the vertex

The parquet equations show that the vertex Γ is a sum of the fully irreducible
part R and the reducible parts γa, γp and γt (see Eq. (3.20)). The reducible
parts have asymptotic structure along different directions, which we call natural

frequency directions [75, 94]. These natural frequencies νr, ν
′
r,Ωr will be used

to parametrize the vertex in frequency space instead of ω′
1, ω

′
2, ω1, ω2, which

have to respect the constraint ω′
1 +ω′

2 = ω1 +ω2. Conversion formulae between
the different frequency parametrizations are listed in Tab. 4.1.

The diagrams that contribute to each reducible vertex class can be clas-
sified by their asymptotic behavior in the limits νr → ±∞ and ν ′

r → ±∞.

2
As the operator U acts on index tuples ∈ Z

d
which are defined depending on unit

vectors a1, . . . , ad, the matrix representing U may have very different entries compared to
the matrix that represents an equivalent operation in real space. For specific examples, see
Appendix A.
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fermionic frequencies

ω1

ω2

ω
1

′

ω
2

′

ω′
1 = ν ′

a − Ωa

2 = ν ′
p +

Ωp

2 = νt + Ωt

2

ω′
2 = νa + Ωa

2 = −ν ′
p +

Ωp

2 = ν ′
t − Ωt

2

ω1 = νa − Ωa

2 = νp +
Ωp

2 = νt − Ωt

2

ω2 = ν ′
a + Ωa

2 = −νp +
Ωp

2 = ν ′
t + Ωt

2

a-channel

γa

νa − Ωa

2

ν
′
a +

Ωa

2

ν
′
a − Ωa

2

νa +
Ωa

2 2ν ′
a = ω′

1 + ω2 = ν ′
p − νp + Ωp = ν ′

t + νt + Ωt

2νa = ω′
2 + ω1 = νp − ν ′

p + Ωp = ν ′
t + νt − Ωt

Ωa = ω2 − ω′
1 = −ν ′

p − νp = ν ′
t − νt

p-channel

γp

νp +
Ωp

2

−νp +
Ωp

2

ν
′
p +

Ωp

2

−ν′
p +

Ωp

2 2ν ′
p = ω′

1 − ω′
2 = ν ′

a − νa − Ωa = νt − ν ′
t + Ωt

2νp = ω1 − ω2 = νa − ν ′
a − Ωa = νt − ν ′

t − Ωt

Ωp = ω1 + ω2 = ν ′
a + νa = ν ′

t + νt

t-channel

γt

νt − Ωt

2

ν
′
t +

Ωt

2

νt +
Ωt

2

ν
′
t − Ωt

2 2ν ′
t = ω′

2 + ω2 = ν ′
a + νa + Ωa = −ν ′

p − νp + Ωp

2νt = ω′
1 + ω1 = ν ′

a + νa − Ωa = ν ′
p + νp + Ωp

Ωt = ω′
1 − ω1 = ν ′

a − νa = ν ′
p − νp

Table 4.1: Natural frequency convention for reducible vertices and conversion
formulae.
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νa − Ωa

2

ν
′
a +

Ωa

2

ν
′
a − Ωa

2

νa +
Ωa

2

∈ K1a

νa − Ωa

2

ν
′
a +

Ωa

2

ν
′
a − Ωa

2

νa +
Ωa

2

∈ K2a

νa − Ωa

2

ν
′
a +

Ωa

2

ν
′
a − Ωa

2

νa +
Ωa

2

∈ K2
′
a

νa − Ωa

2

ν
′
a +

Ωa

2

ν
′
a − Ωa

2

νa +
Ωa

2

∈ K3a

Figure 4.1: Examples for diagrams reducible in the a-channel that belong to
the asymptotic classes K1a,K2a,K2

′
a,K3a.

The asymptotic behavior of each diagram is dictated by the manner in which
the external legs are connected to bare vertices, as the bare vertex by itself
does not have any frequency dependence. If two external legs are connected
to the same bare vertex, the contribution of that diagram is depends only
on either the difference (a- and t-channel) or the sum (p-channel) of the fre-
quency arguments of those external propagators. In each channel, the natural
frequency arguments are chosen such that the frequency Ωr parametrizes this
dependence, while νr and ν ′

r correspond to an offset that does not affect the
bare vertex. Thus, a diagram is independent of νr if the external legs on one
side connect to the same bare vertex and independent of ν ′

r if the external legs
on the other side connect to the same bare vertex. We label these diagram-

matic classes K
Ωr

1r
,K

Ωr,νr

2r
,K

Ωr,ν
′
r

2
′
r

and K
Ωr,νr,ν

′
r

3r
. These classes are disjoint

and for each channel r ∈ {a, p, t}, the reducible vertex is just the sum of the
asymptotic classes3, i.e. [75, 94]

γµ;Ωr,νr,ν
′
r

r = K
µ;Ωr

1r
+K

µ;Ωr,νr

2r
+K

µ;Ωr,ν
′
r

2
′
r

+K
µ;Ωr,νr,ν

′
r

3r
. (4.41)

Examples for each class of diagram in the a-channel are shown in Fig. 4.1.
As the external frequency arguments of propagators not connected to the

same vertex always end up as part of the frequency arguments of internal
propagators, asymptotic classes that are dependent on some frequency vanish
in the limit where that frequency → ∞ [75, 94]. Therefore,

lim
νr→∞

lim
ν

′
r→∞

γµ;Ωr,νr,ν
′
r

r = K
µ;Ωr

1r
, (4.42a)

3
In a slight abuse of notation, we use the symbols K

1
, K

2
, K

2
′ , K

3
for both the set of

diagrams in an asymptotic class and for the sum of these diagrams.
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lim
ν

′
r→∞

γµ;Ωr,νr,ν
′
r

r = K
µ;Ωr

1r
+K

µ;Ωr,νr

2r
, (4.42b)

lim
νr→∞ γµ;Ωr,νr,ν

′
r

r = K
µ;Ωr

1r
+K

µ;Ωr,ν
′
r

2
′
r

. (4.42c)

The asymptotic classes in each channel are constrained by the symmetries
listed in Sec. 4.1.1 and 4.1.2 as well as the crossing symmetries given in
Eq. (3.45). Deriving symmetry relations for these asymptotic classes from
symmetries of the reducible vertex components can be done most easily by
inserting the natural frequency parametrization and taking one of the limits
given in Eq. (4.42). As this procedure is straightforward, but somewhat lengthy,
we do not show it explicitly here. The results are given elsewhere [51, Appendix
B]. Equivalent symmetry relations have been derived independently by Kiese
et al. as well [57, Appendix C]. These symmetries reduce the number of
independent components drastically. Additionally, antisymmetry of the vertex

component γ
0;Ωt,νt,ν

′
t

t in its fermionic frequency arguments νt and ν ′
t implies

γ
0;Ωt,νt,ν

′
t

t = K
0;Ωt,νt,ν

′
t

3t
, (4.43)

as all other components are equal to 0 at all frequencies [51].
The relations in Eq. (4.42) are crucial when constructing a numerical

frequency mesh to sample the frequency dependence of the vertices. Using
the asymptotic falloff → 0, it is possible to choose boundaries for each class
that contain all structures in the vertex which are larger than a given cutoff
value. As these structures change during the flow, it is crucial to dynamically
adjust these meshes after each Λ integration step. In principle, any choice
of frequency mesh and dynamic adjustment algorithm that leads to sufficient
resolution of all features at all values of Λ can be used for this. However, we
encountered many subtle problems during implementation of the frequency
meshes, and a very detailed description of our method is therefore included in
this thesis as Appendix B.

4.2 Parametrized building blocks for the XXZ model

The multiloop functional renormalization group flow equations (see Tab. 3.1)
relate derivatives of reducible vertex parts to diagrams that contain vertices
connected by propagator bubbles. The propagators forming each bubble are
either two full propagators G or one propagator G and one differentiated
propagator Ġ. Therefore, to get the fully parametrized form of these equations,
it is sufficient to parametrize the bubbles in the a, p and t channel, insert the
required vertex parts, and replace G by Ġ as needed [48, 75]. Similarly,
the fully parametrized self-energy flow equation (3.52) can be obtained by
inserting appropriate vertex parts and propagators into the fully parametrized
self-energy loop, which will be derived in the next section.
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Due to the bi-local nature of the vertex (see Eq. (4.9)), the fully parametrized
bubble functions consist of a sum of two terms. One of these terms is pro-
portional to δi′1i1

δi′2i2
, which we denote as , and the other is proportional

to δi′2i1
δi′1i2

, which we denote as . The crossing symmetries (3.45) relate all
-components to -components and it is therefore unnecessary to evaluate
-components explicitly.

4.2.1 Self-energy loop

We define the self-energy loop as

L [Γ, G]
(
1′, 1

)
= −

∑

2

Γ
(
1′, 2; 1, 2

)
G
(
2
)

= −
∑

2
11

′

2

, (4.44)

where the sign has been chosen according to the convention of Kugler and
von Delft [54]. The fully parametrized form can be found by inserting the
parametrized vertex from Eq. (4.30) and using the algebra of Pauli matrices:

L [Γ, G]
(
1′, 1

)
= −

∑

2
11

′

2

= − 1

β

∑

ω2

3∑

µ=0









∑

i2

µ

11
′

ω2, i2

∑

α2

σµ
α2α2

σµ
α

′
1α1

− µ

11
′

ω2, i1

∑

α2

σµ
α

′
1α2

σµ
α2α1









=

= − 1

β
σ0

α
′
1α1

∑

ω2










2
∑

i2

0

11
′

ω2, i2

−
3∑

µ=0

µ

11
′

ω2, i1










. (4.45)

Translated back into symbolic language, this is

L [Γ, G]
(
1′, 1

)
= − 1

β
σ0

α
′
1α1

∑

ω2



2
∑

i2

Γ 0
i1i2

(
ω′

1, ω2;ω1, ω2

)

−
3∑

µ=0

Γ µ
i1i1

(
ω′

1, ω2;ω1, ω2

)



G
(
ω2

)
. (4.46)
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4.2.2 a-bubble

Starting from the definition of the a-bubble

Ba
(
1′, 2′; 1, 2

)
=

1

β

∑

34

Γ
(
1′, 3; 4, 2

)
Γ
(
4, 2′; 1, 3

)
G
(
3
)
G
(
4
)

=
1

β

∑

34
1

2

1
′

2
′3

4

, (4.47)

and inserting the vertex parametrization (4.30), we obtain

1

β

∑

34

1

2

1
′

2
′3

4

=

=
1

β

∑

34

3∑

µ,λ=0










µ

4

2

1
′

3

σµ
α

′
1α4

σµ
α3α2

− µ

4

2

1
′

3

σµ
α

′
1α2

σµ
α3α4










×









λ

1

3

4

2
′

σλ
α4α1

σλ
α

′
2α3

− λ

1

3

4

2
′

σλ
α4α3

σλ
α

′
2α1









G
(
ω3

)
G
(
ω4

)
. (4.48)

As mentioned above, evaluating only -components is sufficient, as all -
components can be generated by symmetry. The only contribution that is
proportional to δi′1i1

δi′2i2
and therefore a -component is

1

β

∑

34

∣
∣
∣
∣
∣
∣

=
1

β

∑

34

3∑

µ,λ=0

µ λ σµ
α

′
1α4

σµ
α3α2

σλ
α4α1

σλ
α

′
2α3

.

(4.49)
The sum over spin indices α3 and α4 can now be evaluated. If at least one of
µ, λ = 0, the sum collapses to a single term. For example, µ = 0 immediately
gives

∑

α3α4

σ0

α
′
1α4

σ0

α3α2
σλ
α4α1

σλ
α

′
2α3

= σλ
α

′
1α1

σλ
α

′
2α2

. (4.50)

The case where µ 6= 0 and λ 6= 0 is less trivial. This combination generates
two distinct terms:

∑

α3,α4

σµ
α

′
1α4

σµ
α3α2

σλ
α4α1

σλ
α

′
2α3

=




∑

α3

σλ
α

′
2α3

σµ
α3α2








∑

α4

σµ
α

′
1α4

σλ
α4α1



 =
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=

(

δλµσ0
α

′
2α2

+ i
3∑

κ=1

ελµκσκ
α

′
2α2

)

δµλσ0
α

′
1α1

+ i
3∑

η=1

εµληση
α

′
1α1



 =

= δµλσ0
α

′
2α2

σ0
α

′
1α1

+
3∑

κ=1

∣
∣
∣ε
λµκ
∣
∣
∣σ

κ

α
′
2α2

σκ
α

′
1α1

, (4.51)

where the Levi-Civita symbol ελµκ in the last expression is 0 if any two of λ, µ, κ
are equal. In other words, only combinations (λ, µ, κ) that are permutations
of (1, 2, 3) contribute. We define P(1, 2, 3) as the set of all such permutations.
In total, the -component of the a-bubble is

1

β

∑

34

∣
∣
∣
∣
∣
∣

=
1

β

∑

ω3ω4







3∑

µ=0

µ µ σ0
α

′
2α2

σ0
α

′
1α1

+
3∑

µ=1



 0 µ + µ 0



σµ
α

′
2α2

σµ
α

′
1α1

+
∑

(µ,κ,λ)∈P(1,2,3)

κ λ σµ
α

′
2α2

σµ
α

′
1α1






(4.52)

for an XYZ model without off-diagonal interaction terms.
For later convenience, we introduce the abbreviation

[

Γ
]

sym

(
1′, 2′; 1, 2

)
= Γ

(
1′, 2′; 1, 2

)
+ Γ

(
2′, 1′; 2, 1

)
(4.53)

to express sums that symmetrize vertex-like objects according to the crossing
symmetry Γ

(
1′, 2′; 1, 2

)
= Γ

(
2′, 1′; 2, 1

)
. For example, in



 µ λ





sym

= µ λ + λ µ , (4.54)

the summands do not necessarily fulfill crossing symmetries, while the whole
expression does.

For an XXZ model, where Γ1 = Γ2, Eq. (4.52) can be simplified to

1

β

∑

34

∣
∣
∣
∣
∣
∣

=
1

β

∑

ω3ω4









 0 0 + 3 3



σ0
α

′
2α2

σ0
α

′
1α1

+ 2 1 1

(

σ0
α

′
2α2

σ0
α

′
1α1

+ σ3
α

′
2α2

σ3
α

′
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The parametrized form of bubbles in the other channels can be found anal-
ogously by inserting the parametrized vertex and evaluating the summations
over spin indices. As this derivation is straightforward if a bit lengthy, we
do not show it in detail for the other channels, where we only show the final
result.

4.2.3 t-bubble

The fully parametrized t-bubble can be found analogously by inserting the
parametrized vertex into the definition of the t-bubble. This definition contains
a combinatorial minus sign consistent with the convention of Kugler and
von Delft [54].

Bt
(
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)
=

= − 1
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)
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2
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34 . (4.56)

Inserting the fully parametrized vertex yields
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(4.57)

for the -components.
The diagrams in this expression have two different types of real-space

structure, which is important in practice as it leads to large differences in
numerical effort required for evaluation of these diagrams. Diagrams with
one vertex and one vertex, sometimes labeled ‘cup’ or ‘chalice’ diagrams,
have two site arguments, of which only a few are independent after symmetry
reduction. The numerical effort spent on evaluating these diagrams is therefore
comparable to the diagrams in the a and p channel. The diagrams with
two vertices, called ‘RPA-type diagrams’, have a closed internal loop, i.e.
an additional, internal site parameter that is not constrained by external
parameters. Therefore, all possibilities that are not related by symmetry must
be evaluated and summed over. RPA-type diagrams are the only diagrams
that require such an internal site summation, which makes them significantly
more costly to evaluate than all other diagrams. For some systems, the runtime
spent on evaluating these diagrams can be reduced by exploiting an internal
convolution structure of the RPA-type diagrams. This approach is presented
in Appendix C, though we did not implement it for the pyrochlore XXZ model,
as it is inefficient for systems with a unit cell that contains more than one site.

4.2.4 p-bubble

Again proceeding analogously as in the other channels, we start from the
definition of the p-bubble, which contains a combinatorial factor 1

2 consistent
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with the convention of Kugler and von Delft [54]:

Bp
(
1′, 2′; 1, 2

)
=

1

2β

∑

34

Γ
(
1′, 2′; 4, 3

)
Γ
(
4, 3; 1, 2

)
G
(
3
)
G
(
4
)

=
1

2β

∑

34
1

2

1
′

2
′

3

4

. (4.58)

After some algebra, we obtain
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This can be simplified using symmetries known from the vertex parametrization
(see Eq. (4.30)). Because the vertex is antisymmetric under exchange of two
legs, the -component and -component satisfy

Γ µ
i1i2

(
ω′

1, ω
′
2;ω1, ω2

)
= Γ µ

i1i2

(
ω′

1, ω
′
2;ω2, ω1

)
. (4.60)

Therefore, the contributions with two -components are equal to those with
two -components:
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=
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. (4.61)
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Inserting this relation as well as Γ1 = Γ2, we obtain
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. (4.62)

4.2.5 Symmetries preserved by the flow

There are several symmetries of the vertex that, if present in the bare vertex
Γ0, remain unchanged over the entire flow. This enables us to conclude by
induction that the full vertex has these properties at all points in the flow.
As the reducible parts of the vertex are obtained by evaluating a subset of
the same bubble diagrams, these properties are preserved for each individual
reducible part as well, which can be checked explicitly by inspecting the bubble
equations in the preceding sections. In the following, these symmetries will be
explained for the full vertex Γ, but apply to reducible parts γa, γp and γt as
well [48, 75].

Firstly, the bubble equations do not generate imaginary parts for real
vertices. If the interaction Jµλ in the Hamiltonian is real, it follows by induction
that the vertex is real as well, i.e.

Im Γ = 0. (4.63)

Furthermore, we are now able to check our previous statement that the flow
does not generate off-diagonal terms if the interaction is diagonal in µλ by
simply examining the explicit form of the bubble functions. Since there is never
an off-diagonal combination of Pauli matrices such as σµσλ where λ 6= µ,

Γµλ = δµλΓµ (4.64)

throughout the flow. If some of the components of the interaction are equal,
the same components are equal in the full vertex as well. For example, in the
XXZ model, J1 = J2 and the same is true for the vertex: Γ1 = Γ2.
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4.3 Spin susceptibility

The spin susceptibility is the primary quantity we use to characterize the states
obtained by the fRG flow. It is defined as [48, 66]

χµλij (Ω) =

∫ β

0
dτ eiΩτ

〈
T τ S

µ
i (τ)Sλj (0)

〉
, (4.65)

where µ, λ ∈ {x, y, z} ∼= {1, 2, 3}. Both the susceptibility in the global basis χ̃
as well as the neutron scattering structure factor S can be derived from χ using
the equations in Sec. 2.4. As the parametrized expression for the susceptibility
contains some diagrams which are not part of the building blocks defined in
the previous sections, it will be derived separately in the following, starting
from the general pffRG expression for an XYZ model.

4.3.1 Evaluation of the spin susceptibility in pffRG

In pseudofermion terms, the expectation value in the definition of the suscep-
tibility (4.65) is a two-particle correlation function. It can be calculated from
Green’s functions and the two-particle vertex as follows:
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. (4.66)

In the last step, the other possible pairing of ψ̄ψψ̄ψ that gives a non-interacting
propagator bubble does not contribute: It is ∼ δ(Ω) (

∑

ω G(ω))2, which is zero
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due to antisymmetry of the propagators. Shifting the frequencies by Ω/2 for
convenience and inserting the vertex parametrization of Eq. (4.30), we get
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These combinations of Pauli matrices evaluate to
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and
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Thus,
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In the XXZ model, the sum in the second-to-last line of (4.70) collapses to

δij

3∑

λ=1

(

2δµλ − 1
)

Γ λ
ii = δij ×


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(

−Γ 3
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)
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(

−2Γ 1
ii + Γ 3

ii

)

, µ = 3.
(4.71)

The susceptibility in the Heisenberg model can be obtained from this by setting
Γ1 = Γ2 = Γ3. The expression for χzij(Ω) thus obtained is consistent with the
one in Refs. [51, 75].

The static susceptibility is obtained by direct evaluation of Eq. (4.70) at
Ω = 0. In contrast, obtaining the zero-time susceptibility by integrating over
Ω in Eq. (4.70) is not straightforward. The numerical quadrature that has
to be evaluated suffers from numerical inaccuracy due to partial cancellation
of components. In the next subsection, we discuss a more efficient way to
compute this quantity.

4.3.2 Efficient evaluation of the zero-time susceptibility

The numerical problems one encounters when trying to evaluate the zero-
time susceptibility directly from Eq. (4.70) can be solved using the vertices’
asymptotic behavior described in Sec. 4.1.6. As all vertices on the right-hand
side of Eq. (4.70) are integrated over all frequency arguments, the integration
variables ν, ν ′ and Ω can be freely transformed within the three-dimensional
space on which the vertices are defined. Thus, each reducible vertex γr can be
integrated separately using the natural frequency arguments of channel r (see
Tab. 4.1). This is advantageous, as parametrization of the reducible vertices
using asymptotic classes K1,K2,K2

′ and K3 can now be exploited as follows:
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(4.72)

where Π(Ω) = 1
β

∑

ν G
(
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2

)
G
(
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)
. The integration within Π(Ω) can be

performed in advance, reducing overall numerical effort. The contribution of

Γ 0
ii is zero because γ0;Ω,ν,ν

′

a;ii = −γ0;−Ω,ν,ν
′

p;ii and γ0;Ω,ν,ν
′

t;ii = −γ0;Ω,−ν,ν′

t;ii . Further-
more, the non-interacting contribution to the zero-time susceptibility (first
term in Eq. (4.70)) can be evaluated analytically [51]:
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where the indices α, β in the last line take an arbitrary single value and are
not summed over. The last line shows that χzii|τ=0 is identical to the non-
interacting contribution to

〈
Szi S

z
i

〉
, consistent with Ref. [51]. Thus, violation

of the pseudofermion constraint can be detected efficiently using the zero-time
susceptibility.

Now, each term in Eq. (4.70) can be decomposed by channel and asymptotic
class, leading to a somewhat lengthy expression. Since each integration in the
fully decomposed expression has much less structure to contend with compared
to an integration over the full vertex, it is now possible to perform each integral
with sufficient numerical accuracy.

When evaluated at equal sites, horizontal Γii and vertical Γii contribu-
tion to the zero-time susceptibility in Eq. (4.70) are equal, because they can
be transformed into each other using crossing symmetry and substitution of
integration variables as
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. (4.74)

Thus, only contributions of Γ have to be evaluated explicitly. The value of
χµµii |τ=0 can be obtained by inserting the above relation into Eq. (4.70), which
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yields
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This expression is independent of µ and thus guarantees the equality
〈
Sxi S

x
i

〉
=

〈
Syi S

y
i

〉
=
〈
Szi S

z
i

〉
by construction.
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Chapter 5

Results

In this chapter, we present results obtained from the multiloop pffRG flows. To
establish whether our approach is suitable for all parts of the phase diagram,
we performed one calculation in each phase predicted in prior work by Benton
et al. [28] (see Fig 5.1). The symbols , , , , and used in the following
refer to Fig. 5.1. We expect to find two ordered phases, the all-in-all-out
phase (AIAO) at θ = 180◦ ( ) and an easy-plane antiferromagnet (AF⊥) at
θ = −90◦ ( ). The quantum spin ice phases QSI0 and QSIπ should be present
at θ = −1◦ ( ) and 20◦ ( ), respectively. At θ = 90◦ ( ), prior work found
a quantum spin nematic phase [28, 43]. Results for physical observables will
follow after a discussion of loop convergence and the pseudofermion constraint,
which may be seen as an indicator for the degree of reliability of our results
in different domains.

All results, at all points θ in the phase diagram and for all loop orders ℓ,
were obtained from mfRG flows on a spherical correlation graph with radius

Jz = J cos θ

Jx = J sin θ

SU
(2

)

QSIπ

QSN⊥

AIAO

AF⊥

QSI0

θ

Figure 5.1: Zero-temperature phase diagram of the pyrochlore XXZ model
found in cluster-variational calculations. Symbols mark the values of θ where
we performed multiloop pffRG calculations, namely at θ = 180◦ ( ), at θ =
−90◦ ( ), at θ = −1◦ ( ), at θ = 20◦ ( ), and at θ = 90◦ ( ). Adapted with
permission from Benton et al. [28, Fig. 1(a)].
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5. Results

Quantity Symbol Value

cutoff radius for correlations rmax/a 6

⇒ number of real-space vertex components i′ BN 651
⇒ number of independent components 68

initial IR cutoff Λi/J 8.0
⇒ initial integration parameter t(Λi) -2.08
minimal step size in t δtmin 0.01
maximal step size in t δtmax 0.5

mixing factor for initial parquet iteration z 0.5
maximum number of iterations Mmax 200

Table 5.1: Choice of numerical parameters used to obtain the results presented
in this chapter.

rmax = 6a that contains 651 sites, initialized with self-consistent parquet states
at1 Λi/J = 8.0. A detailed list of numerical parameters is shown in Tab. 5.1;
the representation of the structure of vertex components in frequency space is
more complicated and discussed in Appendix B.

5.1 Loop convergence

With growing loop order ℓ → ∞, the multiloop fRG solutions are expected to
converge to the parquet solution of the regulated system [55]. All features of
parquet solutions, such as fulfillment of the Mermin-Wagner theorem, therefore
apply to converged mfRG solutions as well. In this sense, loop convergence
is a central feature of the mfRG approach, and statements about physical
observables should be obtained from a loop-converged solution at small Λ/J .

However, loop convergence is not guaranteed, as it requires the contribution
of diagrams to decrease quickly with their loop order. This is a highly non-
trivial property of the system and may depend on system-specific parameters
such as interaction strength [55]. Thus, eventual convergence of the solution
in loop order is an assumption that has to be tested for each application of
multiloop fRG. In prior work, this has been done already for the X-ray edge
singularity [55] and the Hubbard model [56].

1
This value of Λi is larger than the one used in kagome Heisenberg calculations [51].

Although the initial parquet iteration converges at Λi/J ≈ 5, further increase of Λi leads to
quicker convergence at the cost of more runtime used for integration of the mfRG flow. As
we found that the parquet iteration generally needed a larger fraction of the total runtime
for the pyrochlore XXZ model than for the kagome Heisenberg model, we increased Λi to
decrease the total runtime. Provided that the parquet iteration converges, this choice has
no effect on loop-converged results, which satisfy the parquet relations (see Sec. 3.3 and
Refs. [51, 55]).
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Figure 5.2: Extended Brillouin Zone of the pyrochlore lattice (orange) and
plane that will be used for contour plots of the susceptibility (gray) relative to
the reciprocal cubic coordinate axes (black). High-symmetry points Γ, X, U,
L and K are labeled for later use. Their coordinates are shown on the right,
where a is the distance between nearest neighbors.

In this respect, reaching loop convergence in multiloop pffRG seems par-
ticularly difficult: Due to the lack of a kinetic term in the pseudofermion
Hamiltonian, pffRG is inherently in the strong-coupling limit. Consistent with
our results for the kagome Heisenberg model [51], we find that spin suscepti-
bilities for the XXZ model in disordered phases2 (see Fig. 5.3) do not change
significantly for loop orders ℓ > 2 down to Λ/J ≈ 0.25. At smaller Λ, de-
viations between loop orders become visible. This dependence on the ratio
Λ/J is not surprising, since the IR cutoff Λ is the only bare energy scale that
regularizes interactions in the absence of a kinetic term. Between Λ/J = 0.2
and 0.1, numerical artifacts caused by insufficient resolution of the K0

3t vertex
component become visible. These are discussed further below.

In the vertex and self-energy, convergence is more difficult to reach than
in the susceptibility. Fig. 5.4 shows the evolution of the self-energy Σ and the
vertex reducible in the t-channel γµ;Ω,ν,ν

′

t;〈ij〉 for two nearest-neighbor sites i and
j at θ = 20◦ ( in Fig. 5.1). For all vertex components µ 6= 0, a cut along the
bosonic Ω axis and a cut along the fermionic diagonal ν = ν ′ is shown. For
µ = 0, the plot along the bosonic axis is omitted as γ0;Ω,ν,ν

′

t;ij = 0 for ν = ν ′ = 0.
Already at Λ/J = 3.0, where the susceptibilities are almost identical across all
loop orders, differences between ℓ = 1 and higher loop orders become visible.
The deviations between loop orders increase slowly as Λ is lowered, until at
Λ/J = 0.1, the ℓ = 2 and ℓ = 3 curves do not seem converged any more.

2
Correlations diverge in ordered phases, and reaching loop convergence in such phases is

rather challenging, though it has been demonstrated by Kiese et al. [57] for the cubic and fcc
lattice. Since the present analysis focuses on disorder due to frustration, the specific manner
of divergence is not of particular interest and we did not attempt to reach loop convergence
for choices of θ where we found ordered states in an ℓ = 1 calculation.
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Figure 5.3: Loop convergence in the susceptibility flow in the disordered
phases at θ = −1◦, 20◦ and 90◦ ( , and in Fig. 5.1). Shown are components
of the static susceptibility χµµΩ=0(qK) as a function of Λ at qK in reciprocal
space (see Fig. 5.2). In each phase, the component µ has been chosen to
correspond to the dominant component, where χz ≡ χzz and χ⊥ ≡ χxx. In all
phases, the susceptibility flow converges with loop order ℓ, though numerical
artifacts make data for θ = −1◦ and 20◦ unreliable below Λ/J ≈ 0.1.
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Figure 5.4: Loop convergence in the pseudofermion self-energy and four-point
vertex at θ = 20◦ ( in Fig. 5.1). Each column corresponds to a specific
component, and each row corresponds to a specific value of Λ, decreasing from
top to bottom. Colors signify loop order ℓ. First column: The pseudofermion
self-energy Σν as a function of fermionic frequency ν. Second to fourth col-
umn: Selected components of the t-reducible vertex γµ;Ω,ν,ν

′

t;〈ij〉 are shown as a
function of bosonic frequencies Ω and fermionic frequencies ν. As expected
from observations for the Heisenberg J1-J2 model on the kagome lattice [51],
loop convergence in the self-energy and vertex requires higher loop order ℓ
compared to convergence in the spin susceptibility. At Λ/J = 0.1, numerical
artifacts are visible, which cause those present in the susceptibility flow (see
Fig. 5.3). Data for ℓ = 5 was not available at Λ/J = 0.1 due to insufficient
computation time.
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Figure 5.5: Equal-time same-site spin-spin correlator
〈
Szi S

z
i

〉
, which is an

indicator for the violation of the pseudofermion constraint (3.4), at θ = −1◦,
20◦ and 90◦ ( , and in Fig. 5.1). The pseudofermion constraint is not
inherently fulfilled by multiloop pffRG ground states, independent of loop
order, though the violation is rather small for ℓ > 1 at θ = 90◦. At θ = −1◦,
the same numerical artifacts as in the susceptibility (see Fig. 5.3) and vertex
(see Fig. 5.4) are visible around Λ/J = 0.1.

The numerical artifacts in the susceptibility at Λ/J = 0.1 have their origin
in oscillations close to Ω = ν = 0 in vertex components which are likely caused
by insufficient resolution of the structure of γ0

t . Already for the kagome Heisen-
berg model3 [51], we found that γ0

t was particularly difficult to evaluate and
represent accurately because of two unique properties of this component: This
component of the vertex is generally more than one order of magnitude smaller
than all other components, leading to numerical problems due to evaluation of
differences of similar large values. It is the only component of the vertex that
is antisymmetric in its fermionic frequencies [51, 57]. Therefore, K0

1t and K0
2t

are identically zero, and the entire component is represented by γ0
t = K0

3t. As
increased resolution in the K3 class is expensive in both runtime and memory
requirements, it is necessary to work with limited frequency resolution and
adjust the frequency meshes used to represent vertices dynamically during the
flow (see Appendix B). Finding an appropriate heuristic to ensure accurate
representation of all vertex components is difficult, and our choice that worked
well for the Heisenberg model (see Ref. [51]) appears unsuitable for pffRG
flows in the XXZ model. Further work is required to design an algorithm that
generates appropriate meshes for arbitrary models. Should this prove too diffi-
cult, at least a heuristic specifically tailored to the XXZ model is necessary to
reach reliable conclusions for the zero-temperature behavior at small Λ ≪ J .
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5.2. Pseudofermion constraint

5.2 Pseudofermion constraint

Pseudofermion fRG enforces the constraint that excludes unphysical states
of the pseudofermion Hilbert space (Eq. (3.4)) only on average. Another
assumption inherent in the multiloop pffRG approach is therefore either the
convergence of solutions to exact fulfillment of the constraint, or the irrelevance
of violation of this constraint for physical observables. As described in Sec. 3.1,
deviations from the exact constraint for each site can be measured through
evaluation of the equal-time same-site spin-spin correlator

〈
Sµi S

µ
i

〉
. At large

Λ > J , this correlator takes the free-fermion value 4
〈
Sµi S

µ
i

〉
= 1

2 , and with
progressively smaller Λ/J , the correlator should approach the physical value
of 4

〈
Sµi S

µ
i

〉
= 1 [51].

Our results for 4
〈
Sµi S

µ
i

〉
(see Fig. 5.5) indicate that multiloop pffRG solu-

tions generally do not satisfy the pseudofermion constraint, which is consistent
with the behavior for the kagome Heisenberg model (see Ref. [51]). The be-
havior of the correlator is highly dependent on θ: At θ = −1◦, the correlator
4
〈
Sµi S

µ
i

〉
remains far from reaching the correct value 1. On the other hand,

it reaches and exceeds 1 in all loop orders at θ = 20◦. Perhaps closest to the
satisfying the constraint are the multiloop ℓ > 1 solutions at θ = 90◦, where
4
〈
Sµi S

µ
i

〉
approaches 1 at small Λ < J , reaching a value of 0.9 at Λ/J ≈ 0.05.

Our data demonstrates that pffRG does not inherently enforce the pseudo-
fermion constraint, and that violation of the pseudofermion constraint is highly
system-dependent. This dependence includes sensitivity to changes in the sys-
tem’s interaction parameters, which was not observed in the Heisenberg model
[51].

Moreover, while the correlator is bounded by 4
〈
Sµi S

µ
i

〉
≤ 1 in the operator

formalism (see Sec. 3.1), this bound is violated for flows at θ = 20◦ and for ℓ = 1
at θ = 90◦. This is partially due to the sensitive dependence of the evaluation
of the zero-time susceptibility on partial cancellation of contributions: In
its frequency arguments, the vertex components have regions with differing
sign in three-dimensional frequency space, which are integrated over. As
already mentioned in Sec. 4.3.2, this makes accurate evaluation of the zero-
time spin susceptibility rather challenging. The method presented there is able
to mitigate problems with the numerical evaluation of these integrals; however,
the accuracy of the value thus obtained is limited by the accuracy of the
integrand. Thus, inaccuracies in the representation of the vertex are apparent
in the zero-time susceptibility as well. Indeed, the numerical artifacts due
to limited resolution of the vertex components in their frequency arguments
are clearly visible at θ = −1◦. Furthermore, inaccuracies are also caused by
exclusion of diagrams due to finite loop order, the parquet approximation
as well as finite maximal correlation length rmax in real space. It may be

3
In the Heisenberg model, the components γ

1
r = γ

2
r = γ

3
r are equal because of the SU(2)

symmetry of the Hamiltonian (see Sec. 4.1.2 and 4.1.4). Therefore, work on the Heisenberg

model generally uses the labels ‘density part’ γ
d
r = γ

0
r and ‘spin part’ γ

s
r = γ

1
r = γ

2
r = γ

3
r .

61



5. Results

worthwhile to investigate the effect of a finer frequency mesh and increased
real-space cutoff radius rmax on

〈
Sµi S

µ
i

〉
systematically, though this is outside

the scope of this thesis due to the required numerical resources. Nevertheless,
work on the kagome Heisenberg model indicates that the spin susceptibilities
are barely affected by violation of the pseudofermion constraint [51].

5.3 Physical observables

As mentioned in Sec. 2.4.1, the primary observable we use to characterize
states is the spin susceptibility. Of the many possible ways of interpreting the
susceptibility, we focus on two specific points of view. Microscopic correlations
and ordering instabilities are most obvious in the static spin-spin correlator in
the local basis, which is equal to the spin susceptibility

χµµΩ=0(q) =
1

N

∑

ij

eiq
(

ri−rj

) ∫

dτ
〈
T Sµi (τ)Sµj (0)

〉
. (5.1)

This correlator has only two independent components due to the U(1) symme-
try of the XXZ Hamiltonian, namely χz ≡ χzz and χ⊥ ≡ χxx = χyy.

To compare to experiments, we calculate the inelastic neutron scattering
structure factor (see Sec. 2.4.2), which is very directly related to the spin-spin
correlator in the global basis. Following Fenell et al. [10], we decompose the
inelastic neutron scattering structure factor S(q) into the spin-flip

SSF(q) ≡
∫

dΩ SSF(q,Ω) =
∑

µλ

(P × q)µ (P × q)λ

‖q‖2 χ̃µλ(q)
∣
∣
∣
τ=0

(5.2)

and non-spin-flip channels

SNSF(q) ≡
∫

dΩ SNSF(q,Ω) =
∑

µλ

PµP λ χ̃µλ(q)
∣
∣
∣
τ=0

, (5.3)

where the neutron polarization vector is P = (+1,−1, 0). This decomposition
helps to identify signature patterns of dipole correlations, which predominantly
occur in the spin-flip channel. Furthermore, experimental data to compare to
is available for this setup.

These two quantities thus form a connection between microscopic theory
and experimental observables, though they are both merely different compo-
nents of the same type of correlator.

5.4 Ordered phases

At4 θ = 180◦ and −90◦ ( and in Fig. 5.1), interactions are not frustrated and
ferromagnetic order develops. This is visible in Fig. 5.6(b, c) as a divergence

4
In this section, we only discuss results for θ = 180

◦
and θ = −90

◦
, where the system

shows conventional long-range order in
〈
S

µ
i S

µ
j

〉
. The state at θ = 90

◦
will be discussed

separately in Sec. 5.6, though a nematic order has been proposed for this point in the phase
diagram in prior work [28, 43, 63].
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Figure 5.6: Static susceptibility in the local basis χµµΩ=0(q) at θ = 180◦ and
−90◦ ( and in Fig. 5.1), where we find orderd phases. Shown is the qx = qy
plane in reciprocal space (see Fig. 5.2), where plot axes are expressed in terms
of the rescaled (unitless) wave vector q̃ =

√
2
π aq, and dashed lines show the

boundary of the extended Brillouin zone. Data shown is the last stable solution
obtained from multiloop pffRG flows with ℓ = 1. (a, b) Static susceptibility at
θ = 180◦ showing a sharp Bragg peak at qΓ = (0, 0, 0)T in the χz component,
indicating AIAO order. (c, d) Static susceptibility at θ = −90◦ showing a
sharp Bragg peak at qΓ = (0, 0, 0)T in the χ⊥ component, indicating AF⊥
order.

in the spin-spin correlator at qΓ = (0, 0, 0)T in the component with nonzero
coupling. The resulting ordered ground state can be identified by the position
of the divergences. At θ = 180◦, there is no interaction in the Sx-Sy plane
and the model is effectively an Ising ferromagnet. The local Sz-components of
the spins are aligned due to ferromagnetic interaction Jz, which corresponds
to the all-in-all-out (AIAO) order shown in Fig. 2.3. Thus, all correlations
〈Sxi Sxj 〉 and 〈Syi S

y
j 〉 are zero except for the on-site component i = j. In

Fourier space, this corresponds to an entirely featureless constant correlator
χ⊥

Ω=0(q) (see Fig. 5.6(a)). At θ = −90◦, the spins align in the local Sx-Sy

plane due to ferromagnetic interaction Jx = Jy, leading to large antiparallel
components in the global basis. Therefore, this type of order is called the easy-

plane antiferromagnet (AF⊥). As the XXZ model is symmetric under global
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Figure 5.7: Decay of equal-time spin-spin correlations
〈
Sµi S

µ
j

〉
as a function

of distance in real space in the orderd phases at θ = 180◦ and θ = −90◦

( and in Fig. 5.1). Shown is the dominant component of the zero-time spin
susceptibility χµµτ=0(r) as a function of distance ‖r‖. To test whether the decay
for large distances is algebraic or exponential, we fit an algebraic decay ∼ ‖r‖η
(dark red) and an exponential decay ∼ e−‖r‖/ξ (light orange) to the data points
in [100]-direction (triangles) at distances ‖r‖ > 2a (one unit cell). In both
ordered phases, the data is consistent with exponential decay. Fit results are
shown in detail in Tab. 5.2.

rotation of spins within the local Sx-Sy plane, there is an infinite number of
equivalent states that satisfy this order; two examples are shown in Fig. 2.3.

The behavior of the divergent component χ⊥
Ω=0 at θ = −90◦ is extremely

similar to the behavior of χzΩ=0 at θ = 180◦, as may be expected due to
the similar structure of interactions (see Fig. 5.6(b, c)): At θ = 180◦, the
interaction is Ising-like (Jz = −J and Jx = Jy = 0), while at θ = −90◦, the
interaction is purely transverse (Jx = Jy = −J and Jz = 0). However, going
from θ = 180◦ to θ = −90◦ is not simply a rotation in spin space that would
correspond to an exchange of the corresponding components χz and χ⊥, as is
evident from comparison of the non-divergent channels (see Fig. 5.6(a, d)). The
reason for this is that the effective Ising Hamiltonian at θ = 180◦ only contains
Sz terms, while the Hamiltonian at θ = −90◦ contains two distinct terms, one
quadratic in Sx and one quadratic in Sy. These generate correlations between
Sz components indirectly. In pseudofermion fRG, this is implemented in the
flow equations, which generate correlations in Γ3 from a bare vertex which is
only nonzero in the Γ1

0 = Γ2
0 component, but not vice versa.

In real space, an ordered state is expected to show exponential decay in
the spin-spin correlator

〈
Sµi S

µ
j

〉
, with a correlation length ξ that diverges as

Λ → 0. This divergence is limited by the finite cutoff radius rmax in our
calculations. Quantum spin ice states, on the other hand, are predicted to
show algebraic decay in the equal-time spin-spin correlator

〈
Sµi S

µ
j

〉
[38, 42,

99]. To study the type of decay, we fit both an algebraic function ∼ ‖r‖−η

and an exponential ∼ e−‖r‖/ξ to data points at a distance > 2a (one unit cell)
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5.4. Ordered phases

θ = 180◦ θ = −90◦

alg. fit exponent η 4.06 2.61
standard deviation 0.22 0.20

SSR 4.4 × 10−8 7.4 × 10−7

exp. fit correlation length ξ 0.9097 1.487
standard deviation 0.0032 0.022

SSR 1.6 × 10−10 2.4 × 10−8

Table 5.2: Results of fitting algebraic decay ∼ ‖r‖−η and exponential decay
∼ e−‖r‖/ξ to the spin-spin correlations in real space at θ = 180◦ and −90◦

shown in Fig. 5.7. Shown are the best fit parameters η and ξ, the standard
deviation in that parameter and the sum of squared residuals (SSR). The SSR
for the exponential decay fit is more than one order of magnitude smaller
than for algebraic decay. This indicates that exponential decay fits the data
significantly better, as is expected for an ordered state.

in the direction5 [100], i.e. along the first unit vector a1 =
√

2a(1, 1, 0)T . This
direction is where we observe the slowest decay of correlations, though the
decay is almost uniform in all directions. Data points and the result of these
fits are shown in Fig. 5.7. As an indicator of how well the data is modeled by
the decay function, we calculate the sum of squared residuals (SSR)

SSR =
∑

n

∣
∣
∣
∣f(‖rn‖) − χµµτ=0(rn)

∣
∣
∣
∣

2

, (5.4)

where rn are the available data points in [100] direction and f is the fit function.
A small SSR indicates good fit of the data to the chosen decay function. The
values we obtained for the best fit as well as the standard deviation and SSR
resulting from this procedure are listed in Tab. 5.2. The SSR for exponential
decay is more than one order of magnitude smaller than for algebraic decay,
confirming our expectation of an exponential decay.

Patterns of scattering peaks in the neutron scattering structure factors,
shown in Fig. 5.8, clearly indicate the presence of long-range order. Clear
differences in the pattern between θ = 180◦ and θ = −90◦ allow identification
of the state in experiment. For example, neutron scattering at NaCaCo2F7

with small energy transfer6 produces a pattern [19, Figs. 4(a) and 8(a)] that

5
This is the direction along one of the nearest-neighbor bonds. Depending on the

definition of the basis vectors, the same direction may be labeled differently in terms of
Miller indices: Our convention uses the basis vectors corresponding to a minimal, non-cubic
unit cell; thus, there is a basis vector parallel to the nearest-neighbor bond and this direction
is considered [100]. Some prior work prefers a cubic unit cell, in which case the definition of
the basis vectors changes such that this direction is considered ‘[110]’.

6
The pattern for large energy transfer includes excitation into states with symmetry-

breaking collinear order [19] that are inaccessible to our method due to enforced symmetries
of the vertex (see Sec. 4.1.5).
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Figure 5.8: Neutron scattering structure factor as a function of the rescaled
scattering vector q̃ =

√
2
π aq in the ordered phases. Shown is (a, d) the total

structure factor Stotal(q) and its decomposition into (b, e) the spin-flip channel
SSF and (c, f) non-spin flip channels SNSF (see Sec. 2.4.2). (a–c) Neutron
scattering structure factor for the state at θ = 180◦ ( in Fig. 5.1), where we
find AIAO order. (d–f) Neutron scattering structure factor for the state at
θ = −90◦ ( in Fig. 5.1), where we find AF⊥ order. Data shown is the last
stable solution obtained from multiloop pffRG flows with ℓ = 1. Both phases
show patterns of scattering peaks indicating presence of long-range order.
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5.5. Quantum spin ice

matches our results for θ = −90◦ (see Fig. 5.8(d)), indicating presence of
easy-plane antiferromagnetic (AF⊥) order.

5.5 Quantum spin ice

For antiferromagnetic Jz at θ = −1◦ and 20◦ ( and in Fig. 5.1), the system
is highly frustrated. Prior analytical work [38, 60] predicted two quantum spin
ice phases in the vicinity of θ = 0◦ that are described by the same effective
U(1) field theory. The two phases differ in the background flux enclosed by
each hexagonal plaquette of the dual lattice (see Sec. 2.3). For θ < 0, this
background flux is 0, while for θ > 0, the background flux takes the value π [60].
Following the notation of Benton et al. [28], we label these phases QSI0 and
QSIπ, respectively. The QSIπ is predicted to be stable phase up to the SU(2)
point at θ = 45◦ [28, 60]. This claim cannot be confirmed using Quantum
Monte Carlo techniques due to a sign problem in this part of the phase diagram
[28, 43]. The predicted transition point at θ = 45◦, where the XXZ model
becomes a SU(2)-symmetric Heisenberg model, has been studied extensively
in the past. Prior work consistently predicted absence of order at this point,
though the exact nature of the ground state has proven difficult to identify
[31, 32, 39, 40, 44, 47, 57, 100–106].

Our results for the static spin susceptibility at θ = −1◦ and θ = 20◦,
shown in Fig. 5.9, have smooth structures without sharp divergent peaks.
This indicates the absence of any long-range order, consistent with the above-
mentioned predictions [38, 58, 60]. The structure of the χz component with a
minimum at qΓ and a plateau along the edge of the extended Brillouin zone
corresponds to antiferromagnetic correlations. The bow tie and pinch point
structures at qX and qL are signatures of algebraic decay in correlations typical
for spin liquid states. The pattern we obtain at θ = −1◦ for χz is consistent
with prior work on quantum spin ice [107, Fig. 9].

At θ = 20◦, the χz component (see Fig. 5.9(d)) shows antiferromagnetic
correlations that are very similar to those at θ = −1◦ (see Fig. 5.9(b)), indi-
cating behavior close to quantum spin ice. Due to the frustrated transverse
coupling Jx, the transverse component χ⊥ shows similar antiferromagnetic
correlations as well (see Fig. 5.9(c)). The patterns we obtain are similar to
results for the antiferromagnetic SU(2) Heisenberg model (θ = 45◦) from prior
work7 [31, 32, 39, 47, 57, 105, 106]. This is evidence in favor of the stability of
the QSIπ phase up to θ = 45◦ claimed in Ref. [28]. A careful analysis of the
quantum phase transition near θ = 45◦ would be intriguing, though accessing
the low-temperature behavior at this point in the phase diagram is notoriously

7
See Refs. [31, Fig. 4, 32, Fig. 6, 39, Fig. 3, right panel, 47, Fig. 5(d), 57, Fig. 13(a),

105, Fig. 7, upper left panel, 106, Fig. 6, last column]. Note that these prior publications
exclusively use the local spin basis S

µ
. Therefore, the definition of the ‘static structure factor

S(Q)’ used there is proportional to our definition of the ‘static susceptibility in the local
spin basis χ

µµ

Ω=0(q)’.
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Figure 5.9: Static susceptibility in the local basis χµµΩ=0(q) at θ = −1◦ and
20◦ ( and in Fig. 5.1), where we find quantum spin ice phases. Shown
is the qx = qy plane in reciprocal space (see Fig. 5.2), where plot axes are
expressed in terms of the rescaled (unitless) wave vector q̃ =

√
2
π aq, and

dashed lines show the boundary of the extended Brillouin zone. At both
points in the phase diagram, we find absence of sharp Bragg peaks, indicating
a state without long-range order. (a, b) Static susceptibility at θ = −1◦. The
dominant χz component has a maximal plateau along the edge of the extended
Brillouin zone, corresponding to antiferromagnetic correlations, and bow tie
patterns consistent with a quantum spin ice state. The χ⊥ component shows
ferromagnetic correlations, indicated by the maximum at the origin qΓ. These
are much weaker than the correlations in Sz-direction because of the much
weaker coupling Jx < Jz. (c, d) Static susceptibility at θ = 20◦. The χz

component is very similar to χz at θ = −1◦, and we conclude that θ = 20◦

corresponds to a quantum spin ice state as well. The χ⊥ component shows
antiferromagnetic correlations instead of ferromagnetic ones due to the sign
change in Jx at θ = 0◦.
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Figure 5.10: Decay of spin-spin correlations in real space in the quantum
spin ice phases at θ = −1◦ and θ = 20◦ ( and in Fig. 5.1). Shown is the
dominant component of the zero-time spin susceptibility χzτ=0 as a function
of distance ‖r‖. To test whether the decay for large distances is algebraic or
exponential, we fit an algebraic decay ∼ ‖r‖η (dark red) and an exponential
decay ∼ e−‖r‖/ξ (light orange) to the data points in [100]-direction (triangles)
at distances ‖r‖ > 2a (one unit cell). In the spin ice phases, both fits produce
similar sums of squared residuals. Fit results are shown in detail in Tab. 5.3.

θ = −1◦ θ = 20◦

alg. fit exponent η 3.87 4.637
standard deviation 0.13 0.089

SSR 3.5 × 10−5 6.2 × 10−5

exp. fit correlation length ξ 0.954 0.783
standard deviation 0.077 0.028

SSR 3.5 × 10−5 6.2 × 10−5

Table 5.3: Results of fitting algebraic decay ∼ ‖r‖−η and exponential decay
∼ e−‖r‖/ξ to the spin-spin correlations in real space at θ = −1◦ and 20◦ shown
in Fig. 5.10. Shown are the best fit parameters η and ξ, the standard deviation
in that parameter and the sum of squared residuals (SSR). The almost identical
SSR indicates that both functions fit the decay of correlations equally well
within the available data. To distinguish algebraic and exponential decay,
simulations on larger lattices are necessary.

difficult [57, 106, 108]. Therefore, it is left for future work, where we plan to
map out the phase diagram of the XXZ model on the pyrochlore lattice.

For quantum spin ice phases, prior work predicts a power-law decay of
spin-spin correlations in real space

〈
Szi (0)Szj (0)

〉
∼
∥
∥ri − rj

∥
∥−η

(5.5)
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Figure 5.11: Neutron scattering structure factor at θ = −1◦ ( in Fig. 5.1)
as a function of rescaled scattering vector q̃ =

√
2
π aq. Shown is (a) the total

structure factor Stotal(q), and its decomposition into (b) the spin-flip channel
SSF and (c) the non-spin flip channel SNSF (see Sec. 2.4.2). We find a pattern
of pinch points and a minimum at the origin q̃ = (0, 0, 0)T , consistent with
prior work on QSI0.

at large distances
∥
∥ri − rj

∥
∥, where η = 4 near θ = 0◦ [38, 42, 99]. We are

able to extract predictions for this correlator
〈
Szi (0)Szj (0)

〉
= χzτ=0(r) from

our data, and these are shown in Fig. 5.10. To study the type of decay, we fit
both algebraic decay ∼ e−‖r‖/ξ and exponential decay ∼ ‖r‖−η to data points
at a distance > 2a (one unit cell) in the direction [100], where we observe
the slowest decay of correlations. Contrary to the fairly uniform decay of
correlations in all directions for the ordered states discussed in the previous
section, the data points at θ = −1◦ and 20◦ show complex dependence on
direction, as is typical for frustrated antiferromagnetic correlations [38]. The
best fits produce nearly identical sums of squared residuals (see Tab. 5.3), in
contrast to the ordered case, where exponential decay was clearly preferred.
However, this is not enough to conclude that algebraic decay is indeed present,
and simulations with increased maximum correlation length rmax are necessary
to determine the type of decay at large distance. Already with the cutoff used
here, the exponent η = 3.87 ± 0.13 we obtain for algebraic decay is remarkably
close to the analytical value of η = 4 at θ = −1◦, though it is unclear whether
this will still be true for increased rmax.

To compare to prior work, both experimental and theoretical, we calculate
the neutron scattering structure factors, which are shown in Fig. 5.11 and
Fig. 5.13. For instance, our result for the spin-flip structure factor at θ = −1◦,
shown in Fig. 5.11(b), is similar to patterns observed in the low-energy part8

for the quantum spin ice candidate Pr2Zr2O7 [16, Fig. 3, 24, Fig. 3(c)], as

8
Scattering with high energy transfer in Pr2Zr2O7 is affected by structural disorder [24],

which is not part of our model.
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5.5. Quantum spin ice

Figure 5.12: Comparison between Quantum Monte Carlo neutron scattering
structure factors in the spin-flip channel, SSF, for a quantum spin ice state at
different temperatures. Our results for θ = −1◦ at zero temperature, shown
in Fig. 5.11(b), are most similar to the second and third panel as opposed to
the zero-temperature Quantum Monte Carlo result. Units used in this plot:
h = q̃x = q̃y, l = q̃z. Note that the unit lengths on the vertical and horizontal

axis have an aspect ratio of 1 :
√

2 here, whereas we use an aspect ratio of
1 : 1 in all other figures. The unit of temperature corresponds to ca−1

0 ≈ 0.02J .
Adapted with permission from Benton et al. [107, Fig. 16].

well as the pattern produced by the classical spin ice material Ho2Ti2O7 [10,
Fig. 2A]. Prior work indicates that the differences in the non-spin-flip channel
are due to additional, longer-ranged interactions, which are not part of our
model [10].

To determine whether the state predicted here is closer to classical or
quantum spin ice, we compare to prior theoretical work. Our results for
θ = −1◦ (see Fig. 5.11) reproduce the quantum spin ice structure factor close
to the Ising point θ = 0◦ that was found in prior work [107, Fig. 1(b, c) and
Fig. 16, 109, Fig. 3(a)]. For ease of reference, an adapted version of Fig. 16
from Ref. [107] is included here as Fig. 5.12. This figure shows the spin flip
channel SSF(q) and can therefore be compared directly with our Fig. 5.11(b).

We find pinch points at q̃ = (1, 1, 1)T in the spin-flip structure factor,
indicating presence of algebraic correlations characteristic for a U(1) spin
liquid [43]. Compared to the classical spin liquid state at θ = 0◦, quantum
fluctuations induced by finite Jx = Jy have been predicted to suppress the
value of SSF at the pinch points and at the origin q̃ = (0, 0, 0)T [107]. In
our results, these effects seem to be much weaker than in prior work, though
the reason may simply be proximity to the classical spin ice phase at θ = 0◦.
Direct comparison to data at finite temperature, shown in Fig. 5.12, reveals
that our results match predictions for small but non-zero temperature more
closely than zero-temperature data. This can be explained by the role of
the IR cutoff Λ, which acts similar to a finite temperature T in the sense
that it suppresses low-energy modes [50]. Based on arguments in the large N
limit, a direct mapping Λ → 2

πT has been proposed in prior work [47, 50, 57],
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Figure 5.13: Neutron scattering structure factor at θ = 20◦ ( in Fig. 5.1)
as a function of rescaled scattering vector q̃ =

√
2
π aq. Shown is (a) the total

structure factor Stotal(q), and its decomposition into (b) the spin-flip channel
SSF and (c) the non-spin flip channel SNSF (see Sec. 2.4.2).

though this mapping from the energy cutoff in our zero-temperature formalism
should be carefully distinguished from a true finite-temperature calculation.
Nevertheless, through this correspondence, our results at finite Λ/J ≈ 0.1
are expected to be roughly similar to a system at T/J of the same order
of magnitude. With this assumption, there is excellent agreement between
our data and Quantum Monte Carlo simulations (see Fig. 5.12, see also [109,
Fig. 3(a)]). It would be interesting to observe whether the predicted structure
factor still undergoes significant changes when integrated to smaller Λ/J . This
is possible in principle as we showed for the Heisenberg model [51], though more
work is necessary to overcome some technical challenges related to accurate
representation of the vertex at all values of Λ/J (see Sec. 5.1).

At θ = 20◦, the structure factor, shown in Fig. 5.13, forms patterns that
are qualitatively different from the case at θ = −1◦. In the spin-flip channel
(see Fig. 5.13(a)), a chain of bow ties replaces the very prominent diagonals of
the θ = −1◦ case (compare Fig. 5.11(b)). The bow tie patterns at q̃x = q̃y > q̃z
that indicate algebraic correlations remain, consistent with our expectation of
a spin liquid state. In the non-spin-flip channel, which is almost featureless
at θ = −1◦ (see Fig. 5.11), a pattern of diamond shapes arranged in a regular
grid appears (see Fig. 5.13(c)). These qualitative differences make the neutron
scattering structure factor a suitable indicator for the low-temperature phase
in experiments.

Since interactions are frustrated in all components at values of θ > 0◦,
Quantum Monte Carlo methods are not applicable due to the sign problem.
Predictions for the structure factor that can be compared with our results are
therefore scarce in this region of the phase diagram. Classical Monte Carlo
calculations give results similar to ours for the structure factors in the SU(2)
Heisenberg model at θ = 45◦ [43, Fig. 2(c)]. From this perspective, the state at
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Figure 5.14: Static susceptibility in the local basis χµµΩ=0(q) at θ = 90◦ ( in
Fig. 5.1), where we find an easy-plane quantum spin liquid phase. Shown
is the qx = qy plane in reciprocal space (see Fig. 5.2), where plot axes are
expressed in terms of the rescaled (unitless) wave vector q̃ =

√
2
π aq, and

dashed lines show the boundary of the extended Brillouin zone. We find
absence of sharp Bragg peaks, indicating a state without long-range order. (a)
The χ⊥ component has maxima along the boundary of the extended Brillouin
zone, consistent with antiferromagnetic correlations in the Sx-Sy plane found
in an easy-plane quantum spin liquid. (b) The χz component shows strong
ferromagnetic correlations as maximum around the origin, which are generated
indirectly by the Jx = Jy coupling.

θ = 20◦ seems to be remarkably similar to θ = 45◦ despite the different ratio
Jx/Jz, as we already noted based on similarities in the spin-spin correlations.

5.6 Easy-plane quantum spin liquid

At θ significantly above9 45◦, the dominant component of the coupling is Jx =
Jy > Jz. Since the system is still frustrated in all components, a transition
from QSIπ with dominant correlations in Sz to some form of U(1) × U(1) spin-
liquid state with dominant correlations in the Sx-Sy plane may be expected,
and has indeed been proposed in the past [28]. Schematically, such states can
be generated by

|nematic⊥〉 = gz(φ) gy
(
π
2

)
|QSIπ〉 , (5.6)

9
We do not discuss θ ≈ 45

◦
here, as it is unknown whether the ground state of the SU(2)

Heisenberg model at θ = 45
◦

is a third phase distinct from those at θ significantly above
and below 45

◦
. As mentioned previously, there has been extensive research on this ground

state [31, 32, 39, 40, 44, 47, 57, 100–106], without consensus so far. Additionally, behavior
similar to quantum criticality might also influence the states around the SU(2) point [28].
Therefore, study of this transition is left to future work, where we plan to map out the phase
diagram of the XXZ model on the pyrochlore lattice.
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Figure 5.15: Results of fitting exponential decay ∼ e−‖r‖/ξ and algebraic
decay ∼ ‖r‖−η to the spin-spin correlations in real space at θ = 90◦ ( in
Fig. 5.1). Shown are the best fit parameters η and ξ, the standard deviation in
that parameter and the sum of squared residuals (SSR). The almost identical
SSR indicates that both functions fit the decay of correlations equally well
within the available data. To distinguish algebraic and exponential decay,
simulations on larger lattices are necessary.

where gµ(φ) is a rotation around axis µ by φ in spin space. However, there
is an important difference to the quantum spin ice states discussed in the
previous section: As the Hamiltonian is symmetric under rotations gz, such a
state is necessarily symmetry-breaking, i.e. it shows nematic order. Prior work
based on cluster variational methods [28, 43] predicts a nematic spin liquid
ground state for 45◦ < θ < 110◦.

Our result for the spin susceptibility at θ = 90◦ ( in Fig. 5.1) is shown
in Fig. 5.14. As no Bragg peaks form at any q, this state is paramagnetic.
The shape of χ⊥ with its plateau along the edge of the extended Brillouin
zone, shown in Fig. 5.14(a), confirms our expectation of antiferromagnetic
correlations in the Sx-Sy plane. Similar to the ferromagnetic case at θ = −90◦,
the coupling in Jx and Jy indirectly generates ferromagnetic correlations in χz,
which are visible as a maximum at qΓ = (0, 0, 0)T (see Fig. 5.14(b)). Though
these correlations are remarkably strong, the peak has a finite width much
larger than that of a divergent peak that would indicate an instability to
long-range order.

In real space, the decay of correlations is again consistent with a spin liquid
in the Sx-Sy plane (see Fig. 5.15). We find very similar behavior in χ⊥

τ=0(r)
as we observed for χzτ=0(r) at θ = −1◦ and 20◦, with complex dependence of
correlations on direction. The fit to exponential and algebraic decay produces
an inconclusive result with nearly identical SSR, as it did for θ = −1◦ and 20◦.

The neutron scattering structure factor, shown in Fig. 5.16, shows features
that are easily distinguishable from those in quantum spin ice: While bowtie
structures remain at large qx = qy in the spin-flip channel (Fig. 5.16(b)), the
6-spoke wheel structure that is characteristic for quantum spin ice is absent.
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Figure 5.16: Neutron scattering structure factor at θ = 90◦ ( in Fig. 5.1)
as a function of rescaled scattering vector q̃ =

√
2
π aq. Shown is (a) the total

structure factor Stotal(q), and its decomposition into (b) the spin-flip channel
SSF and (c) the non-spin flip channel SNSF (see Sec. 2.4.2).

At large qz > qx = qy, a broad, diffuse structure becomes visible. The non-
spin-flip channel (see Fig. 5.16(c)) shows a grid of diamonds similar to its
structure at θ = 20◦ (see Fig. 5.13(c)). Thus, an easy-plane quantum spin
liquid is most easily identified in the spin-flip channel.

Concerning the symmetry-breaking, nematic nature of the QSN⊥ phase
described by Taillefumier et al. [43], our analysis has to remain incomplete
within the scope of this thesis. Though an expectation value for the nematic
order parameter from Eq. (2.12) for the Sx-Sy plane,

Oxyij =
1

2

(
Sxi S

y
j + Sxj S

y
i

)
, (5.7)

can be evaluated in our formalism, the value of
〈
Oxyij

〉
is zero because of the

enforced U(1) symmetry of the vertex (see Sec. 4.1.2 and 4.1.4). Positive
identification of nematic order can be made in two ways: Evaluation of the
order parameter susceptibility, a quadrupolar expectation value with four spin
operators [43, Appendix B], is difficult within our formalism, though it might
in principle be possible to obtain an estimate. Alternatively, an approach
in the spirit of prior pffRG investigations of possible dimer and plaquette
orders [50] can be pursued by introducing a slight asymmetry Jx = Jy + ε,
which should be enhanced during the flow and lead to significant asymmetry
in correlations for a nematic state.
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Chapter 6

Summary and outlook

We implemented a multiloop functional renormalization group approach to
spin systems in the pseudofermion representation. We derived explicit flow
equations for the XXZ model and implemented multiple lattices, among them
the pyrochlore lattice, as well as many technical improvements to the numer-
ical approaches that are used by our implementation. At many points, in
particular concerning the frequency parametrization, we found that implemen-
tation details are crucial for the success of this method. On the technical level,
our results show loop convergence for large Λ, though some numerical prob-
lems lead to numerical artifacts below Λ/J = 0.1 for some parameter choices.
Consistent with our work on the kagome Heisenberg model [51], we find that
the pseudofermion constraint is not inherently fulfilled in pseudofermion fRG,
independent of loop order.

On the physical side, our method is able to give predictions for spin-spin
correlators and neutron scattering cross sections. These physical observables
can be directly compared to prior theoretical work and experimental data.
Guided by the phase diagram Benton et al. [28] obtained using cluster mean-
field and cluster variational methods, we chose five values of θ that are predicted
to have different ground states to test the method. Comparison of our data to
predictions given by other methods, including Quantum Monte Carlo where
available, shows excellent correspondence for all choices of θ. This includes
three quantum spin liquids and two ordered states. For some values of θ, the
calculated neutron scattering cross section is recognizably similar to those
found in some experiments on rare-earth pyrochlore oxides. Concerning the
algebraic decay of correlations predicted for quantum spin ice in prior work [38],
further investigation with larger system size is necessary to verify whether the
states found by our method satisfy that prediction.

Our results reinforce that multiloop fRG is a powerful, versatile tool suit-
able for many systems, and that this includes spin systems in the pseudo-
fermion representation. The latter in particular is a non-trivial statement, as
the validity of the pffRG approach is not clear a priori due to its inherent
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6. Summary and outlook

strong-coupling nature. Together with results presented elsewhere [51] and the
parallel work of Kiese et al. [57], we conclude that multiloop pffRG is a consis-
tent approach with applicability to arbitrary Heisenberg-type spin systems. In
particular, it is one of very few approaches to frustrated three-dimensional sys-
tems. The consistency of our results with those obtained using other methods,
where available, is strong evidence for the reliability of multiloop pffRG.

However, there are many open questions. Numerical artifacts caused by
insufficient resolution of some vertex components prevent us from exploring
the small-Λ regime of the spin liquid states. Though we find loop convergence
at large Λ/J > 0.1, this does not imply loop convergence for smaller values of
Λ, and further work is required to find a way to construct dynamic frequency
meshes that resolve all vertex components accurately at all values of Λ in the
XXZ flow. We do not expect this to be more difficult than for the Heisenberg
model in principle, though a practical implementation is non-trivial.

Once this problem has been resolved, states at very small Λ/J can be in-
vestigated further. One quantity that is particularly interesting in this context
is the self-energy Σ, as there are analytical predictions for its behavior in dif-
ferent types of states. Verifying consistency with other analytical predictions
such as the power-law decay of correlations in real space would then also be
possible through numerically more expensive simulations with larger cutoff
radius rmax.

Another physical prediction that has not yet been verified is the nematic
instability of the easy-plane quantum spin liquid at θ = 90◦. This may
be investigated by breaking the U(1) symmetry of the XXZ Hamiltonian
with a small asymmetric term in the interaction. The implementation of the
mfRG flow for the non-symmetric system would require some further effort.
Furthermore, the reduced symmetry of the system leads to more required
computation time, though there are no conceptual obstacles to this approach.
Using a similar method, possible dimer order can be investigated as well.

Finally, having shown that multiloop pseudofermion fRG is applicable to
this model for all θ, the next step would be to produce a phase diagram of
the pyrochlore XXZ model. This would be particularly valuable as pseudo-
fermion fRG does not suffer the drawbacks commonly associated with mean-
field methods and related approaches. Most important for accurate prediction
of quantum phase transition points is its ability to treat disordered and ordered
phases on equal footing without bias. At the cost of increased computation
time and memory requirements, this phase diagram can also be extended to
the case of less symmetric interactions. Once a general model is implemented,
an intriguing possibility might be to use values for the bare coupling constants
in the Hamiltonian obtained using an experimental setup described by Ross
et al. [20]. Thereby, multiloop pffRG predictions for observables could be
compared to experiment in an even more direct way.
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Appendix A

The pyrochlore lattice

Though the general approach to handling lattice symmetries of the vertex was
already presented in Sec. 4.1.5, the steps described there are not entirely trivial
and we will briefly show how the pyrochlore lattice is represented in practice.

A.1 Definition

The pyrochlore lattice is a face-centered cubic lattice with a 4-site unit cell
[20, 70]. The unit cell is a tetrahedron centered on the origin with sites at its
corners

r0 =
a

2
√

2
(+1,+1,+1)T , r1 =

a

2
√

2
(+1,−1,−1)T ,

r2 =
a

2
√

2
(−1,+1,−1)T , r3 =

a

2
√

2
(−1,−1,+1)T ,

(A.1)

where a is the distance between nearest neighbors. This unit cell is repeated
with the translation operator group

{
Tr

}

r∈Z
3 , where the action of Tr is a

translation by r1
a1 + r2

a2 + r3
a3. The vectors a1,2,3 are standard fcc basis

vectors

a1 =
2a√

2
(1, 1, 0)T , a2 =

2a√
2

(1, 0, 1)T , a3 =
2a√

2
(0, 1, 1)T , (A.2)

corresponding to a cubic unit cell with side length afcc ≡ 4a/
√

2. Now, each
site can be enumerated by a tuple r and an index c ∈ {0, 1, 2, 3}, such that the
site (r, c) is at position Trrc.

A.2 Symmetries of vertices on a pyrochlore lattice

In the following, we will present the symmetries of the pyrochlore lattice in a
slightly unusual way. Our goal when using these symmetries is to automatically
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A. The pyrochlore lattice

detect those components of the vertex that are related by symmetry. As

the two-particle vertices γµ;Ω,ν,ν
′

r;i1,i2
have two site arguments i1 and i2, this is

effectively a discussion of the symmetries of pairs of sites on the pyrochlore
lattice.

We will identify symmetry-related components in a multi-step process.
Given a pair of sites i1 = (r1, c1) and i2 = (r2, c2), the first goal is to find a
site i′ such that the pair

{
i′, (0, 0)

}
is equivalent to

{
i1, i2

}
. To this end, we

apply the translation operator T−r2
to both sites and get

T−r2

{

(r1, c1)
(r2, c2)

}

=

{

(r1 − r2, c1)
(0, c2)

}

. (A.3)

Now, symmetry operators can be used to transform both sites such that c2 is
mapped to 0, reducing the two-argument pair to a single, equivalent argument
i′. One possible choice of symmetry operators are the rotations {Qc}c=0,1,2,3

described below. These operators satisfy Qc (0, c) = (0, 0) for each c, such that

Qc2T−r2

{

(r1, c1)
(r2, c2)

}

=

{

Qc2 (r1 − r2, c1)
(0, 0)

}

, (A.4)

and we can identify i′ = Qc2 (r1 − r2, c1) = Qc2T−r2
i1.

To give explicit expressions for the operators Qc, some notation has to
be introduced. We denote symmetry operators Q in terms of a matrix U , a
displacement j

c
and a permutation P . The effect of Q acting on an arbitrary

site (r, c) is
Q (r, c) =

(
Ur + j

c
, P c

)
. (A.5)

Permutations are specified by listing their cycles, where each cycle is enclosed
by parentheses. For example, P = (123) means that P maps 1 to 2, 2 to 3
and 3 to 1; 0 is unchanged by P and not denoted explicitly.

Using this notation, the operators Qc are

U0 =






1 0 0
0 1 0
0 0 1




 , j0

c
= (0, 0, 0), P 0 = (), (A.6a)

U1 =






0 1 0
1 0 0

−1 −1 −1




 , j1

c
= (0, 0, 0), P 1 = (01)(23), (A.6b)

U2 =






0 0 1
−1 −1 −1

1 0 0




 , j2

c
= (0, 0, 0), P 2 = (02)(13), (A.6c)

U3 =






−1 −1 −1
0 0 1
0 1 0




 , j3

c
= (0, 0, 0), P 3 = (03)(12), (A.6d)
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where P 0 = () is the identity. Now that an effective displacement i′ =
Qc2T−r2

i1 has been obtained such that the pair
{
i′, (0, 0)

}
is equivalent to

{
i1, i2

}
, all vertex components can be held in memory as function of a single

site argument. There are some remaining symmetries that reduce the number
of independent arguments even further. However, these symmetries have to be
formulated such that each symmetry operator Q always leaves (0, 0) invariant
to avoid spoiling the equivalence of i′ to the original pair of arguments.

A.3 Symmetry reduction of the effective displacement

In the following, we will list a generating set for the point group of the py-
rochlore lattice that leaves (0, 0) invariant1.

Inversion symmetry The pyrochlore lattice is symmetric under inversion at
site (0, 0). In terms of the index tuples, this symmetry operator is defined
through

U inv =






−1 0 0
0 −1 0
0 0 −1




 ,

jinv
0

= (0, 0, 0) ,

jinv
1

= (0, 0, 1) ,

jinv
2

= (0, 1, 0) ,

jinv
3

= (1, 0, 0) ,

P inv = (). (A.7)

Three-fold rotation symmetry There is a three-fold rotation symmetry around
the (1, 1, 1)T axis, corresponding to

U rot =






0 1 0
0 0 1
1 0 0




 , jrot

c
= (0, 0, 0), P rot = (123). (A.8)

Mirror symmetry The lattice is symmetric under reflection at the plane
perpendicular to (+1,−1, 0)T . This corresponds to

Umirr =






0 1 0
1 0 0
0 0 1




 , jmirr

c
= (0, 0, 0), Pmirr = (12). (A.9)

This set
{
Qinv, Qrot, Qmirr} can be used to find all displacements i′ that

are equivalent through a simple search algorithm. It is sufficient to apply
all symmetry operators to i′ and then iteratively to all displacements that

1
The set presented here is not the generating set with the minimal number of elements.

A minimal set with only two operators, a screw-rotation and a six-fold rotoreflection, is
analyzed in the work by Liu et al. [70].The operators in that set contains operators that do
not preserve (0, 0).
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A. The pyrochlore lattice

were newly generated in the previous iteration until no new displacements are
generated any more. The set of all displacements thus generated corresponds
to vertex components that are identical. Thus, all components within the set
can be symmetry-reduced to a single one.
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Appendix B

Frequency meshes for pffRG

The frequency meshes we use to represent the self-energy and two-particle
vertex are specified here. The basic structure of the frequency meshes is a
cartesian product of symmetric 1d meshes with equidistant points around the
origin and algebraic scaling at large frequencies. While the maximum frequency
that is part of the mesh, i.e. the last frequency point, is pre-determined, the
linear part is expanded or shrunk dynamically according to the structures that
form in the vertex during the flow.

This approach is the same we used for the kagome Heisenberg model [51].
The algorithm was designed and implemented by Julian Thönniß. It is de-
scribed here, as our results would not be reproducible otherwise.

B.1 Structure of the frequency meshes

The meshes for bosonic frequencies Ω and fermionic frequencies ν, ν ′ have the
same structure. We use w to describe general properties of both meshes, and
substitute w with Ω and ν, ν ′ to recover the distinction between bosonic and
fermionic arguments where necessary.

Each frequency mesh {wi}i is symmetric around w = 0. The positive half
contains two parts, divided by a threshold frequency wlin: a linear mesh for
small frequencies w ∈ [0, wlin], and an algebraic mesh for large frequencies
w ∈ (wlin, wmax]. On the linear part, the i-th frequency point wi is at

wi = δlin · i, i ∈ {0, . . . , nlin} , (B.1)

where δlin · nlin = wlin. On the algebraic part, the i-th frequency point wi is at

wi = wlin + δlin · (i− nlin)α , i ∈ {nlin + 1, . . . , ntot} , (B.2)

where wlin + δlin · (ntot − nlin)α = wmax and α ≥ 1. The mesh of negative
frequencies is obtained from this by mirroring the positive mesh at w = 0.
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B. Frequency meshes for pffRG

component frequency mesh size linear part maximum frequency
ntot nlin Ωmax, νmax

Σν ν 4000 2400 max(150Λ, 70J)
Kη;ω

1r ω 500 150 max(500Λ, 500J)
Kη;ω,ν

2r ω 125 37 max(300Λ, 140J)
Kη;ω,ν

2r ν 75 22 max(150Λ, 70J)

Kη;ω,ν,ν
′

3r ω 30 9 max(150Λ, 70J)

Kη;ω,ν,ν
′

3r ν, ν ′ 22 13 max(70Λ, 35J)

Table B.1: Values of some constants as they were chosen to produce the
data shown in this thesis. The values given here describe the positive part of
each mesh; the full mesh has twice the number of frequency points in each
dimension.

The frequency mesh as defined above is entirely determined by the param-
eters nlin, ntot, wlin, wmax. To control runtime and memory usage, the number
of frequency points nlin and ntot is manually set before the start of each simu-
lation run and needs to be chosen such that the required resolution is achieved.
During the simulation, i.e. while integrating the fRG flow, the parameters
wlin, wmax are adjusted such that all features in the data are properly resolved,
even as their position and width changes.

Generally, the linear part of the mesh contains 30% of the frequency points
(i.e. nlin = 0.3ntot). As the Kη;ω,ν,ν

′

3 class also contains sharp features that are
not centered at the origin in the fermionic frequencies ν and ν ′, the mesh of
fermionic frequencies for K3 is constructed with nlin = 0.6ntot, such that also
these features are well resolved. Values are shown in Tab. B.1.

B.2 Dynamic adjustment algorithm

When adjusting a frequency mesh to a given vertex, our algorithm first chooses
an appropriate wmax large enough to contain all features. It is generally
sufficient to let wmax shrink proportional to Λ with the flow, until a minimum
wmax is reached. The minimum wmax is chosen based on observation. Values
are shown in Tab. B.1.

Having chosen wmax, an iterative algorithm searches for an appropriate
value of wlin. In each iteration, a heuristic is evaluated to determine whether
a given linear frequency mesh is appropriate to resolve the central part of
a given function. Depending on the heuristic, the mesh spacing δlin is then
reduced or expanded, and the same heuristic is applied to the new mesh. The
function is represented using the old mesh throughout this adjustment process,
as multiple interpolation might distort features.

The heuristic used to determine whether to shrink or expand the mesh
spacing comprises a set of criteria, given below. As these criteria examine the
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B.3. Criteria for the adjustment heuristic

data only at a few frequency points, they are only useful in connection with
a few assumptions about the shape of the function. These assumptions are
fulfilled by the vertex components in all phases and at all values of Λ; however,
the algorithm using this heuristic should not be regarded as a general-purpose
algorithm for arbitrary functions.

These criteria might give conflicting information. The heuristic is biased
towards shrinking the mesh spacing in this case. This has a few reasons: The
conflicting information might be due to improperly resolved features around
the origin. Furthermore, features move closer to the origin with the flow; many
features scale proportional to or quicker than Λ. Expanding the mesh spacing
is also generally more dangerous, as information about features close to the
origin might be lost.

B.3 Criteria for the adjustment heuristic

The following is a list of criteria the heuristic uses to examine a frequency mesh,
given data points (w, f(w)) of a vertex component that should be represented
on the new mesh. Except where stated explicitly, all other frequencies are set
to 0 when evaluating criteria for vertex components with multiple dimensions,
e.g. f(w) = Kη;0,w

2r for the fermionic mesh of the K2 class.
1. Curvature close to the origin. Instead of directly evaluating the curvature,

we use the quantity

C =
f(wc+1) − f(wc)

f(wc) − f(wc−1)
, (B.3)

for some index c close to the origin. This is an approximation to a ratio
of slopes that changes depending on the curvature at wc:

C ≈ f ′(wc + δlin/2)

f ′(wc − δlin/2)
. (B.4)

To measure the curvature close to the origin, c should be close to 0. The
algorithm then tries to adjust the frequency mesh such that C is close to
a target value Ctarget. If it is significantly larger, the distance between
mesh points is too small. If C < 0, the mesh spacing is too large. As
the mesh contains significantly more frequencies in K1 than in all other
classes, we choose a target Ctarget = 0.45 at c = 6 for K1, and a target
Ctarget = 0.75 at c = 3 for all other components.

2. Sign change. Some components change their sign as a function of fre-
quency and therefore contain two peaks, as all components fall off to 0 at
large frequencies. Enough frequency points must be distributed before
and after the sign change to properly resolve both the peak around the
origin and the peak that follows the sign change. If there is a sign change
between w0 and some frequency point wz, the mesh spacing is too large.
We choose z = 3.
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B. Frequency meshes for pffRG

3. Slope between the origin and the first frequency point. If the slope
L = |f(w0) − f(w1)| is very small, one can afford a larger frequency
spacing. We demand L ≥ 0.2 |f(w0)|.

4. Minimum mesh spacing. Some components develop very sharp cusp-like
features around the origin at Λ < J . This, together with the bias to
shrink the mesh, might lead to very small linear meshes and insuffi-
cient resolution of features not directly at 0 frequency. Therefore, the
algorithm is prevented from choosing δlin < 0.05Λ.

5. Monotonic behavior close to the origin in K0
3t. The component K0;ω,ν,ν

′

3t

is antisymmetric in ν and ν ′. Apart from a cusp at the origin, all features
(several peaks) are at finite ν, ν ′. To ensure sufficient resolution of these
features, the values of f(w) = K0;0,w,w

3t should be monotonically growing
across the first M frequency points, i.e. |f(w0)| < |f(w1)| < . . . <
|f(wM )|. We choose M = 5.
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Appendix C

Fast convolution for RPA-type
diagrams

The main numerical effort in calculating diagrams is the numerical integration
over Matsubara frequencies. Therefore, reducing the number of integrations
that need to be performed leads to a near-proportional reduction in runtime
and memory usage.

In principle, the frequency integrals in a particular bubble diagram have
to be executed for every combination of non-frequency arguments (site indices
and spin direction indices) separately. The number of permissible combinations
is reduced significantly by constraints that are imposed by the structure of the
vertex, such as the bi-local structure (see Eq. (4.9)). RPA diagrams, that is,
diagrams that contain free bubbles such as

µ

ν

1

2

1
′

2
′

34

are not constrained in the site argument i3 = i4 of the internal propagators,
while all other bubble diagrams are. Because of this, RPA diagrams require
far more runtime to evaluate. For translation-invariant systems, the cost of
non-RPA diagrams such as

µ

ν

1

2

1
′

2
′

34
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C. Fast convolution for RPA-type diagrams

is proportional to the number of independent real-space components of the
vertex, which is parametrized according to Eq. (4.37) as Γc1c2

(r). We use the

definitions

N number of unit cells used in the calculation,
B number of sites per unit cell, and
b number of sites in the symmetry-reduced unit cell, where (1 ≤ b ≤ B).

As r enumerates unit cells, there are N independent values of r. The indices
c1 and c2 can take B2 different values, of which only Bb are independent after
symmetry reduction. Therefore, the total number of components of Γ scales
O(BbN), and the cost of evaluating non-RPA diagrams is proportional to this.

RPA diagrams, meanwhile, scale O(B2bN2) due to the additional site
summation over i3, which can take BN distinct values. The cost of evaluating
each combination of argument values is similar, and RPA-type diagrams are
therefore much more costly to integrate than other diagrams. In practice, the
majority of computation time is spent calculating the RPA bubble for usual
parameter choices.

C.1 Convolution structure of the RPA bubble

In a translation-invariant system, the scaling behavior of the RPA bubble can
be improved using fast convolution algorithms. Going back from diagrammatic
to symbolic notation, the RPA bubble reads

Bi1i2
(
ω′

1, ω
′
2;ω1, ω2

)
= −

∑

34
Γ

Γ
′

1

2

1
′

2
′

34 =

= −
∑

i3

∑

ω3ω4

Γi1i3
(
ω′

1, ω3;ω1, ω4

)
Γ′
i3i2

(
ω4, ω

′
2;ω3, ω2

)
G(ω3)G(ω4), (C.1)

where Γ,Γ′ are arbitrary vertex-like quantities such as the full vertex or some
reducible parts. For clarity, the frequency indices will be dropped in the
following. Due to the local structure of the propagators the real-space structure
is entirely contained in the indices of ΓΓ′:

Φi1i2
≡
∑

i3

Γi1i3Γ′
i3i2

. (C.2)

On a lattice, all unit cells are translation-symmetric to one another, while
the sites within each unit cell are not necessarily symmetric to one another.
To exploit lattice symmetries of the vertices, we use the same notation as in
Sec. 4.1.5 and decompose each site index i into a translation index r ∈ Z

d
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C.2. Circular convolution theorem

and an index for sites within each unit cell c ∈ JB = {1, . . . , B}. Translation
symmetry of the vertex (4.37)

Γi1i2 = Γc1c2
(r1, r2) = Γc1c2

(r1 − r2) (C.3)

immediately leads to translation symmetry of Φ

Φc1c2
(r1, r2) =

B∑

c3=1

∑

r3

Γc1c3
(r1 − r3) Γ′

c3c2
(r3 − r2) = Φc1c2

(r1 − r2) , (C.4)

and there is a convolution structure in the r arguments in the sum. Therefore,
the scaling behavior of the calculation can be improved using one of the known
fast convolution algorithms. In the next sections, an algorithm with better
scaling behavior based on the convolution theorem and fast Fourier transform
(FFT) will be derived.

C.2 Circular convolution theorem

Restricting the discussion to one dimension for simplicity, the convolution of
two functions f, g : R → R is defined as

(

f ∗ g
)

(x) =

∫

R

dy f(x− y) g(y). (C.5)

The convolution theorem states that the Fourier transformed convolution of two
functions f, g is equal to the product of the Fourier transformed functions [110],
i.e.1

FT[f ∗ g](k) =
√

2π FT[f ](k) · FT[g](k) . (C.6)

However, the above equation is not immediately useful for numerical ap-
plications since the functions f and g as well as their Fourier transformed
counterparts have continuous and infinite support R. As only a finite number
of samples can be held in memory, we require a version of the convolution
theorem that makes it possible to calculate a discrete convolution of discrete
functions (sequences) f, g : Z → R, defined as

(

f ∗ g
)

(x) =
∑

y∈Z

f(x− y) g(y), (C.7)

using only discrete functions with finite support. Unfortunately, the Fourier
transform of f and g is still continuous unless f and g are periodic.

Restricting f, g to be periodic functions f(x+ n) = f(x), g(x+ n) = g(x)
with period n for the moment, there is indeed an analogue of the convolution

1
Depending on the normalization of the Fourier transform, the normalization factor in

this equation may be different.
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C. Fast convolution for RPA-type diagrams

theorem (C.6). The appropriate version of the Fourier transform to use here is
the discrete Fourier transform (DFT), which transforms discrete and periodic
functions [110, 111]:

F [f ](k) =
1√
n

n−1∑

x=0

e−ikxf(x), (C.8)

where k ∈ 2π
n Z and F [f ](k) is 2π-periodic, with n values of k in each period.

The circular convolution theorem states that for two such functions f, g,
the DFT of the circular convolution,

(

f ~ g
)

(x) =
n−1∑

y=0

f(x− y) g(y), (C.9)

is equal to the product of the DFTs of the functions2 [110]:

F [f ~ g](k) =
√
n F [f ](k) · F [g](k) . (C.10)

While superficially similar to (C.6), this equation requires f and g to be
periodic, as an aperiodic function has a continuous Fourier transform and the
DFT would not be applicable here. To calculate the discrete convolution of

aperiodic functions with finite support x ∈
{

−
⌊
L
2

⌋

, . . . ,
⌈
L
2

⌉

− 1
}

using the

circular convolution theorem, we define helper functions fn, gn with period n.
Inside the first period, i.e. between −

⌊
n
2

⌋
and

⌈
n
2

⌉
− 1, they are defined as

fn(x) =







0 −
⌊
n
2

⌋
≤ x < −

⌊
L
2

⌋

,

f(x) −
⌊
L
2

⌋

≤ x <
⌈
L
2

⌉

,

0
⌈
L
2

⌉

≤ x <
⌈
n
2

⌉
,

(C.11)

which effectively means zero-padding the function on both sides of the original
domain. This period is then repeated infinitely:

fn(x) = fn(x+ n) ∀x. (C.12)

The same procedure is applied for gn. Because of the zero-padding, the circular
convolution of fn and gn coincides with the discrete convolution of f and g on

some interval. The smallest n that is sufficient for our purposes is n =
⌈

3
2L
⌉

−1,

in which case this interval is exactly the domain where f and g were originally
defined [110]:

(

fn ~ gn
)

(x) =
(

f ∗ g
)

(x) for −
⌊
L

2

⌋

≤ x <

⌈
L

2

⌉

. (C.13)

2
This property can also be understood in terms of linear algebra: Sequences of real

numbers form a vector space, and because both the convolution and the DFT are linear, they
can be described using matrices. Then, the Fourier basis is the basis in which the convolution
is diagonal, and the Fourier transform is the matrix that diagonalizes the convolution.
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C.3. Discrete Fourier transform of vertices

Outside of this interval, the circular convolution and the discrete convolution
differ3.

Therefore, the discrete convolution can be obtained through

(

f ∗ g
)

(x) =
√
n F -1

[

F [fn] · F [gn]
]

(x) for −
⌊
L

2

⌋

≤ x <

⌈
L

2

⌉

, (C.14)

where F is a length-n DFT. The generalization of this result to multiple
dimensions is straightforward, as a multidimensional DFT can be defined by
simply taking DFTs in orthogonal directions.

Using (C.14) combined with an FFT algorithm, discrete convolutions can
be calculated with computational effort scaling as O(n logn) = O(L logL)
where L is the number of data points. For comparison, directly executing the
sum in the definition of the convolution (C.7) yields an algorithm scaling as
O(L2), because L values of f and g must be added for each of the L values of
x.

C.3 Discrete Fourier transform of vertices

Returning to the discussion of the RPA diagrams, their evaluation can be
accelerated using (C.14). Before executing the DFT, a zero-padded and peri-
odically repeated version Γp,Γ′p of the vertices Γ,Γ′ must first be constructed.
If the vertex is calculated on a N1 × . . . × Nd grid4, the repeated version of

the vertex has n1 × . . .× nd entries, where nj ≥
⌈

3
2Nj

⌉

− 1.

The DFT of a padded and repeated vertex Γp in its r-argument (and all
other objects with the same real-space structure) can be defined as

F
[

Γpc1c2

]

(k) ≡ 1√
n

∑

r

e−ikT
r Γpc1c2

(r) , (C.15)

where n =
∏d
j=1 nj , k ∈ 2π

n1
Z × . . . × 2π

nd
Z and kT r is to be understood as a

matrix product:

kT r =
d∑

j=1

kjrj . (C.16)

3
The interval where circular and discrete convolution coincide can be enlarged by choosing

larger n, which is not necessary for our purposes. For example, for n ≥ 2L − 1, the circular
and discrete convolution are equal for −

⌊
n
2

⌋
≤ x <

⌈
n
2

⌉
, i.e. the interval where the discrete

convolution has potentially nonzero value.
4
When using a grid with boundaries that are not orthogonal (box-shaped) in r-index

space, it is necessary to temporarily switch to such a grid to perform the DFT. For example, in
this thesis, we generally use a distance-based spherical cutoff in real space, which corresponds
to an ellipsoid-like shape in index space. The DFT is then performed over the smallest box
that contains all sites that fulfill the original cutoff criteria. Similarly, the inverse DFT
results in a vertex that has values in a box-shaped region in index space, and all values
outside the original cutoff boundary are discarded.
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C. Fast convolution for RPA-type diagrams

The inverse Fourier transform corresponding to (C.15) is

Γpc1c2
(r) =

1√
n

∑

k

e+ik
T

r F
[

Γpc1c2

]

(k) , (C.17)

because
1

n

∑

s

∑

k

eik
T

(r−s) Γpc1c2
(s) = Γpc1c2

(r) . (C.18)

as all terms where s 6= r cancel.
Inserting the inverse DFT (C.17) into (C.4),

Φc1c2
(r1 − r2) =

=
B∑

c3=1

∑

r3

1

n

∑

k1,k2

eik
T
1 (r1−r3)+ik

T
2 (r3−r2) F

[

Γpc1c3

]

(k1) F
[

Γ′p
c3c2

]

(k2) =

=
B∑

c3=1

∑

k

eik
T (r1−r2) F

[

Γpc1c3

]

(k) F
[

Γ′p
c3c2

]

(k) . (C.19)

Thus, the whole bubble (C.1) can be evaluated as

Bt c1c2
(r1 − r2; . . .) =

=
∑

k

eik
T (r1−r2)

∑

ω3ω4

∑

c3

F
[

Γpc1c3

]

(k; . . .) F
[

Γ′p
c3c2

]

(k; . . .)G(ω3)G(ω4),

(C.20)

where the structure of the omitted frequency arguments is the same as in
(C.1).

C.4 Symmetries of the Fourier-transformed vertex

Symmetries of the vertex in real space carry over to the Fourier-transformed
vertex, as the information content of the Fourier-space vertex must be the
same as in real space. While symmetries in frequency space remain the same,
the Fourier-space version of other symmetries of the real-space vertex is less
obvious.

In pseudofermion models without off-diagonal spin interactions, the vertex
in real space is real [86]

Im Γ
(
r, . . .

)
= 0, (C.21)

which corresponds to

Γp
(
k, . . .

)
=
[
Γp
(
−k, . . .

)]∗
(C.22)

in Fourier space.
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C.5. Complexity of the fast convolution

In addition, the model may be symmetric under lattice symmetries

Q
(
r, c
)

=
(
Ur + j

c
, P c

)
, (C.23)

as described in Sec. 4.1.5. For a vertex, this means there is a set of constraints

Γc1c2
(r1 − r2) = S Γc1c2

(
r1 − r2

)
=

= ΓPc1Pc2

(
Ur1 + j

c1
− Ur2 − j

c2

)
= ΓPc1Pc2

(
U [r1 − r2] + j

c1c2

)
, (C.24)

where jc1c2
= jc1

− jc2
. These constraints induce equivalent constraints in

Fourier space:

F
[

Γpc1c2

]

(k) =
1√
n

∑

r

e−ikT
r Γpc1c2

(
r
)

=

=
1√
n

∑

r

e−ikT
r ΓpPc1Pc2

(
Ur + j

c1c2

)
=

=
1√
n

∑

r

e
−ikT

U
−1
(

r−j
c1c2

)

ΓpPc1Pc2

(
r
)

=

= e
ik

T
U

−1
j
c1c2 F

[

ΓpPc1Pc2

]((
U−1)Tk

)

. (C.25)

Thus, the gain in efficiency due to lattice symmetries is almost the same
in real and Fourier space. There is, however, some overhead for the fast
convolution algorithm, as these symmetries cannot be used efficiently by the
fast Fourier transform algorithm. Before performing the FFT, the vertex has
to be expanded from its symmetry-reduced form to a memory layout that does
not use any lattice symmetries. After the FFT, the Fourier-space symmetries
can be used to reduce the Fourier-space vertex to a more efficient memory
layout again. In practice, this overhead leads to a negligible increase in runtime,
though it does increase memory consumption.

C.5 Complexity of the fast convolution

In total, the RPA bubbles can be evaluated using fast convolution as follows:
1. Expand the vertices from their symmetry-reduced form to a form suitable

for FFT
2. Apply zero-padding in all directions
3. Fourier-transform the vertex
4. Symmetry-reduce the vertex in Fourier space
5. Evaluate (C.20)
6. Symmetry-expand the result in Fourier space
7. Apply the inverse Fourier transform to the result
8. Symmetry-reduce the result
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C. Fast convolution for RPA-type diagrams
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Figure C.1: Comparison of the runtime used to evaluate RPA-type diagrams
over a 1-loop fRG flow from Λi = 5 to Λf ≈ 0.01 in a disordered phase. tFC is
the runtime of the fast convolution algorithm and tdirect is the runtime needed
for direct evaluation of (C.1).

Of these steps, the Fourier transform and its inverse scale most strongly with
the number of unit cells N =

∏
Nj . The zero-padded vertex has

Bbn = Bb
∏

j

nj = Bb
∏

j

(⌈
3
2Nj

⌉

− 1
)

= O
((

3
2

)d
BbN

)

(C.26)

entries. The Fourier transform (C.15) and its inverse (C.17) can be calculated
with O(n logn) = O(N logN) complexity using standard FFT algorithms
described in the literature, such as the algorithm of Cooley and Tukey [112].
Implementations of these algorithms are widely available; our implementation
uses the FFTW library [111]. As the algorithm involves one forward and
one backward Fourier transform for each of the Bb combinations of two c
parameters, the FFT steps scale as O(BbN logN) in total.

In the evaluation of Φ and frequency integration (step 5, see Eq. (C.20)),
there are B2b distinct combinations of (c1, c2, c3) and N distinct values of k.
The runtime scaling of the frequency integration is therefore O(B2bN) for
constant number of frequencies. As these integrations require ≥ 90% of the
runtime for practical values of N , this is the most important dependence.

The runtime complexity of symmetry expansion and reduction as well as
zero-padding of a vertex scales proportional to the number of entries in the
vertex, which in turn scales as O(BbN) and therefore of a lower order than
either the FFT or the frequency integration. This part is never dominant.

The numerical effort required for direct evaluation of (C.1) scales O(B2bN2),
as BN expressions must be summed for each of the BbN combinations of ex-
ternal site parameters. This means that direct evaluation of (C.1) is faster for
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C.5. Complexity of the fast convolution

small N due to the overhead of the fast convolution, while fast convolution is
faster for large N due to better runtime scaling (see Fig. C.1). Furthermore,
the efficiency of the fast convolution algorithm and the value of N at which
the benefits of the fast convolution compensate the added overhead depend
strongly on properties of the lattice. For example, Fig. C.1 shows that on a
square lattice, the fast convolution is beneficial for all but the smallest lattice
sizes. On a kagome lattice, however, the lattice would have to be very large
to compensate the overhead of fast convolution.

In 3d, the number of sites N required to extract meaningful results about
physics of the system are expected to be larger than in 2d due to the additional
dimension. Therefore, the fast convolution is expected to outperform direct
evaluation on a cubic lattice. On a pyrochlore lattice, it seems unlikely that the
increase in N which is expected for the same reason as on the cubic lattice is
enough to compensate the overhead due to B = 4. Therefore, the FFT-based
fast convolution was not implemented for the pyrochlore XXZ model.
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