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Multivariate functions of continuous variables arise in countless branches of science. Numerical
computations with such functions typically involve a compromise between two contrary desiderata:
accurate resolution of the functional dependence, versus parsimonious memory usage. Recently, two
promising strategies have emerged for satisfying both requirements: (i) The quantics representation, which
expresses functions as multi-index tensors, with each index representing one bit of a binary encoding of one
of the variables; and (ii) tensor cross interpolation (TCI), which, if applicable, yields parsimonious
interpolations for multi-index tensors. Here, we present a strategy, quantics TCI, which combines the
advantages of both schemes. We illustrate its potential with an application from condensed matter physics:
the computation of Brillouin zone integrals.
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Introduction.—Let f be a multivariate function of n
continuous real variables ui (i ¼ 1;…; n):

f∶ U ⊂ Rn → C; u ¼ ðu1;…; unÞ ↦ fðuÞ: ð1Þ

Such functions arise in essentially all branches of science.
In physics, e.g., they could stand for the fields used in
classical or quantum field theories, with u ¼ ðx; tÞ or u ¼
ðk;ωÞ representing space-time or momentum-frequency
variables in n ¼ Dþ 1 dimensions, respectively; or for
m-point correlation functions of such fields, with u ¼
ðx1; t1;…;xm; tmÞ and n ¼ mðDþ 1Þ, etc.
Often such functions have structure (peaks, wiggles,

divergences, even discontinuities) on length scales, time-
scales, or momentum or frequency scales differing by
orders of magnitude. Then, their numerical treatment
is challenging due to two contrary requirements: On the
one hand, accurate resolution of small-scale structures
requires a fine-grained discretization grid, while large-scale
structures require a large domain of definition U; and, on
the other hand, memory usage should be parsimonious,
hence a fine-grained grid cannot be used throughout U. In
practice, compromises are needed, sacrificing resolution
and/or restricting U to limit memory costs, or using
nonuniform grid spacings to resolve some parts of U more
finely than others.
Very recently, in different branches of physics, it was

pointed out that if the structures in f exhibit scale
separation, in a sense made precise below, they can be

encoded both accurately and parsimoniously, on both small
and large scales [1–5]. This is done using a representation
first discussed in the context of quantum information [6–9],
independently introduced in the mathematics literature by
Oseledets [10], and dubbed the quantics representation by
Khoromskij [11]: it encodes each variable ui through R
binary digits, or bits, and expresses fðuÞ as a multi-index
tensor fσ1…σL, with L ¼ nR, where each index represents a
bit. If f exhibits scale separation, this tensor is highly
compressible, i.e., it can be well approximated by a tensor
train (TT) of fairly low rank. These previous works found
the TT via singular value decomposition (SVD) of the full
tensor, demonstrating that low-rank quantics TT (QTT)
representations exist. It remains to design more practical
algorithms to find them, since the computational costs of
the SVD approach grow exponentially with L.
In an unrelated very recent development [12], TT repre-

sentations were used for multivariate correlation functions
arising in diagrammatic Monte Carlo methods (albeit
without using the quantics encoding). It was found that
these TTs are not only highly compressible, but that the
compression can be achieved very efficiently using the
tensor cross interpolation (TCI) algorithm. This technique,
pioneered by Oseledets and coworkers [13–15] and
improved byDolgov and Savostyanov [16,17], is computa-
tionally exponentially cheaper than SVDs (albeit theoreti-
cally less optimal, though with controlled errors [16]).
The purpose of this Letter is to point out that quantics

TTs and TCI can be combined. This leads to a strategy that
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we call quantics tensor cross interpolation (QTCI). It has
several highly desirable properties: (i) Arbitrary resolution
via an exponentially large grid with 2R points for each
variable, obtained at a cost linear in R. (ii) Efficient
construction of the QTCI at cost linear in L ¼ nR.
(iii) Access to many ultrafast algorithms once the QTCI
has been obtained [1,5,18–20]; for instance, integrals,
convolutions, and Fourier transforms can be computed at
OðLÞ costs (i.e., exponentially cheaper than standard fast
Fourier transforms) [21]. (iv) More generally, TT repre-
sentations yield access to a whole range of matrix product
states or matrix product operators (MPS=MPO) algorithms
which were devised in the context of many-body physics [18]
and have spawned the mathematical field of TTs.
We illustrate the power of QTCI by using it to resolve

the momentum dependence of functions defined on the
Brillouin zone of the celebrated Haldane model [29]. We
construct QTCIs for its noninteracting Green’s function and
Berry curvature, and compute the Chern number of a band
with topological properties.
Quantics tensor trains.—For the quantics representation

of fðuÞ, each variable ui is rescaled to lie within the unit
interval I ¼ ½0; 1Þ, then discretized on a grid of 2R points
and expressed as a tuple of R bits [10,11],

ui ¼
XR
b¼1

σib
2b

↦ ðσi1…σiRÞ; σib ∈ f0; 1g: ð2Þ

Here, σib resolves the variable ui at the scale 2−b.
Arbitrarily high resolution can be achieved by choosing
R sufficiently large. Thus, u is represented by a tuple of
L ¼ nR bits. To facilitate scale separation, the bits are
relabled [10] as σl ¼ σib, using a single index
l ¼ iþ ðb − 1Þn∈ 1;…;L. This interleaves them such
that all bits σib describing the same scale 2−b have
contiguous σl labels. Then, f can be viewed and graphi-
cally depicted as tensor of degree L:

ð3Þ

Alternatively, all same-scale bits can be fused together as
σ̃b ¼

P
n
i¼1 2

i−1σib ∈ f0;…; 2n − 1g, yielding the fused
representation fσ̃ ¼ fðuÞ, σ̃ ¼ ðσ̃1;…; σ̃RÞ. It employs
only L̃ ¼ R indices, each of dimension d ¼ 2n [30].
Any tensor can be unfolded as a TT [11,13,15,31],

graphically depicted as a chain of l sites connected by
bonds representing sums over repeated indices:

ð4Þ

Each site l hosts a three-leg tensor Ml with elements
½Ml�σlαl−1αl . Its “local” and “virtual” bond indices, σl and
αl−1,αl, have dimensionsd ¼ 2 andDl−1,Dl, respectively,
with D0 ¼ DL ¼ 1 for the outermost (dummy) bonds.
If fσ is full rank, exact TT unfoldings have exponential

bond growth towards the chain center, Dl ¼ 2minfl;L−lg,
implying exponential memory costs, Oð2L=2Þ. However,
tensors fσ with lower information content admit accurate
TT unfoldings with lower virtual bond dimensions. Such
unfoldings are obtained via iterative factorization and
truncation of bonds with low information content.
Usually, this is done using a sequence of SVDs, discarding
all singular values smaller than a specified truncation
threshold ϵ. The largest Dl value so obtained, Dmax, is
the rank of the ϵ-truncated TT. SVD truncation is provably
optimal [15], yielding the smallest possible Dmax for
specified ϵ. If Dmax ≪ 2L=2, fσ is strongly compressible,
implying that it has internal structure. Building on the
pioneering studies of Oseledets [13,31] and Khoromskij
[11], Refs. [2–5] argued that for quantics tensors fσ ¼ fðuÞ,
strong compressibility reflects scale separation: structures
in fðuÞ occurring on different scales are only “weakly
entangled,” in that the virtual bonds connecting the
corresponding sites in the TT do not require large
dimensions.
This perspective is informed by the study of one-

dimensional quantum lattice models using matrix product
states (MPSs)—many-body wave functions of the form (4)
[18]. In that context, σl labels physical degrees of freedom
at site l, and the entanglement of sites l and lþ 1 is
characterized by an entanglement entropy bounded by 2Dl.
By analogy, if a quantics TT is strongly compressible,
requiring only small Dmax, the sites representing different
scales are not strongly entangled—indeed, Dmax quantifies
the degree of scale separation inherent in fðuÞ.
The SVD unfolding strategy requires knowledge of the

full tensor fσ : it uses 2L function calls, implying exponen-
tially long runtimes, even if fσ is strongly compressible.
Thus, this strategy is optimally accurate but exponentially
inefficient: it uncovers structure in fσ , but does not exploit
it already while constructing the unfolded TT.
Tensor cross interpolation.—The TCI algorithm

[12,13,15,17] solves this problem. It serves as a black
box that samples fσ at some clever choices of σ and
iteratively constructs the TT from the sampled values. TCI
is slightly less accurate than SVD unfoldings, requiring a
slightly larger Dmax for a specified error tolerance ϵ. But it
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is exponentially more efficient, needing at most OðD2
maxLÞ

function evaluations and a run-time of at most OðD3
maxLÞ.

We refer to [12] for details about TCI in general and its
actual implementation. Here, we just sketch the main idea.
TCI achieves the factorization needed for unfolding by
employing matrix cross interpolation (MCI) rather than
SVD. Given a matrix A, the MCI formula approximates it
as A ≈ CP−1R ¼ Ã, graphically depicted as follows:

Here, the column, row and pivot matrices C, R, and P, are
all constructed from elements of A: C contains D columns
(red), R contains D rows (blue), and P their intersections,
the pivots (purple). The resulting Ã exactly reproduces all
elements of A contained inC andR; the remaining elements
are in effect interpolated from the “crosses” formed by
these (hence “cross interpolation”). The accuracy of the
interpolation depends on the number and choice of pivots;
it can be improved systematically by adding more pivots. If
D ¼ rankðAÞ, one can obtain an exact representation of the
full matrix, A ¼ Ã [15].
Tensors can be unfolded by iteratively using MCI while

treatingmultiple indices (e.g., σ2…σL) as a single composite
index, e.g., fσ1σ2…σL ≈ ½C1�σ11β1 ½P−1

1 �β1α1 ½R1�σ2…σL
α1 . Iterative

application ofMCI to each new tensor on the right ultimately
yields a fully unfolded TT, fσ ≈ fQTCIσ :

[A TT of the form (4) is obtained by definingMl¼ClP−1
l ,

] This naive algorithm is inefficient, but
illustrates how the interpolation properties of MCI
carry over to TCI. In practice, it is more efficient to
use a sweeping algorithm, successively sampling more
function values fσ and adding pivots to each tensor until
the relative error ε, which decreases during sweeping,
drops below a specified tolerance ϵ [21]. We define ε as
maxσ ∈ SjfQTCIσ − fσ j=maxσ ∈ Sjfσj, where S is the set of all σ
index values sampled while constructing fQTCIσ .
Integration.—The integral over a function f in QTT

form is easily accessible in OðD2
maxLÞ steps [12,15]. It can

be approximated by a Riemann sum since the quantics grid
is exponentially fine, and all σl sums can be performed
independently due to the TT’s factorized form:

Z
In
dnufðuÞ ≈ 1

2L

X
σ

fσ ≈
1

2L

Y
l

X
σl

½Ml�σl : ð5Þ

1D example.—We first demonstrate QTCI for comput-
ing the integral I½f� ¼ R lnð20Þ

0 dx fðxÞ of the function

fðxÞ ¼ cosðx=BÞ cosðx=4 ffiffiffi
5

p
BÞe−x2 þ 2e−x with B ¼

2−30 ≈ 10−9. This function, shown in Fig. 1(a), involves
structure on widely different scales: rapid, incommensurate
oscillations and a slowly decaying envelope. A standard
representation thereof on an equidistant mesh would
require much more than Oð1=BÞ sampling points, as
would the computation of the integral I½f� ¼ ð19=10Þþ
Oðe−1=ð4B2ÞÞ. By contrast, for a quantics representation, it
suffices to choose R somewhat larger than 30 (ensuring
2−R ≪ B); and since the information content of fðxÞ is not
very high, fσ is strongly compressible. We unfolded it
using QTCI with ϵ ¼ 10−8 and R ¼ 50 (quite a bit larger
than 30, just to demonstrate the capabilities of TCI).
Figure 1(b) shows the resulting profile ofDl vs l, revealing
the scale separation inherent in fðxÞ: the initial growth of
the bond dimension,Dl ∼ el, quickly stops at a fairly small
maximum, Dmax ¼ 15, confirming strong compressibility;
thereafter,Dl decreases steadily with l, becomingOð1Þ for
l larger than 30, since fðxÞ has very little structure at scales
below 2−30. Remarkably, although fσ has 250 ≈ 1015

elements, the TCI algorithm finds the relevant structure
using only 8706 samples, i.e., roughly 1 sample per 59000
oscillations. Nevertheless, it yields an accurate representa-
tion of fðxÞ: the in-sample error, the out-of-sample error
(defined as maximum error over 2000 random samples) [32],
and the error for the integral I½f�, computed via Eq. (5), all
decrease exponentially with Dmax [Fig. 1(c)]. The runtimes
for computing I½f� using QTCI or adaptive Gauss-Kronrod
quadrature are 44 ms vs 6 h on an Intel Xeon W-2245
processor, illustrating the efficiency of QTCI vs conventional
approaches.
Haldane model.—As an example with relevance in

physics, we apply QTCI to the Green’s function and
Berry curvature of the well-known Haldane model [29].

FIG. 1. QTCI representation of a rapidly oscillating function,
for L ¼ R ¼ 50 with tolerance ϵ ¼ 10−8. (a) Plot of fðxÞ (see
text). Left: the interval x∈ ½0; 2−23�; red dashed: the actual
function, blue: its QTCI representation. Right: the envelope
structure up to x ¼ logð20Þ ≈ 3; the rapid oscillations are not
resolvable on this scale. (b) Virtual bond dimensions Dl of the
QTT, for R ¼ 30, 40, 50. Gray lines indicate how DR¼50

l would
grow without any truncation. (c) Relative error estimates as a
function of Dmax ¼ maxðDlÞ, for R ¼ 50.

PHYSICAL REVIEW LETTERS 132, 056501 (2024)

056501-3



It is one of the simplest models with topological properties,
yet produces nontrivial structure with multiple peaks and
sign changes in reciprocal space. Its Bloch Hamiltonian is

HðkÞ ¼
X3
i¼1

h
σ1 cosðk · aiÞ þ σ2 sinðk · aiÞ

i

þ σ3
�
m − 2t2

X3
i¼1

sinðk · biÞ
�
; ð6Þ

where σμ are Pauli matrices, k ¼ ðkx; kyÞ, while a1;2;3
connect nearest neighbors and b1;2;3 next-nearest neighbors
of a honeycomb lattice. Compared to Haldane’s more
general version of the model, we fix his parameters
ϕ ¼ ðπ=2Þ, t1 ¼ 1 and set t2 ¼ 0.1. The parameterm tunes
the model through two phase transitions: jmj < mc ¼
t23

ffiffiffi
3

p
yields a Chern insulator with Chern number

C ¼ −1, and jmj > mc a trivial phase with C ¼ 0 [29].
At m ¼ �mc, a single Dirac point appears at k ¼
ð∓ 4

3
π; 0Þ and symmetry-related k; there, the Chern num-

ber is C ¼ − 1
2
[34].

Green’s function in reciprocal space.—To illustrate
QTCI for the Haldane model, we study the momentum
dependence of the Green’s function, Gðk; iω0Þ ¼ Tr½ðiω0−
HðkÞ þ μÞ−1�, with ω0 ¼ π=β the lowest fermionic
Matsubara frequency and Tr traces over the 2 × 2 space ofH.
Figure 2(a) shows an intensity plot of the QTCI

representation of G in reciprocal space; Fig. 2(b) shows
that the relative error with respect to the exact value is
below 10−5 throughout, hence the momentum dependence
is captured accurately. There are small Fermi surfaces
around k ¼ ð− 4

3
π; 0Þ and symmetry-related k. To con-

struct QTTs, we define fσ ¼ Gðk; iπ=βÞ, where σ encodes
k and β is fixed. Figure 2(c) shows the relative in-sample
error as a function ofDmax for TTs constructed with R ¼ 10
for β ¼ 16, 64, 512, using either SVD or TCI. For both, the
error decreases exponentially as Dmax increases. Moreover,
TCI is nearly optimal, achieving the same error as SVD for
a Dmax that is only a few percent larger.
Figure 2(d) shows how SVD and TCI runtimes depend

on the number of bits, R, for a fixed Dmax at large
β ¼ 512, where the features in G are sharp. The times,
including function evaluations, were measured on a
single CPU core of AMD EPYC 7702P. The SVD
runtimes become prohibitively large for R > 10 due to
exponential scaling; by contrast, the TCI runtimes depend
only mildly on R.
Figure 2(e) shows how TCI profiles of Dl vs l depend

on R, for β ¼ 512 and a specified error tolerance ϵ ¼ 10−5.
The bond dimension initially grows as Dl ∼ 2l, reaches a
maximum near l ≈ 20, then decreases back to 1. The
curves for R ¼ 20 and 30 almost coincide, indicating that a
good resolution of the sharp features at β ¼ 512 requires
R > 20—well beyond the reach of SVD unfoldings.

The low computational cost of TCI allows us to
investigate the β dependence of Dmax, easily reaching
β ¼ 214 ¼ 16384. Figure 2(f) suggestsDmax ∝ βα with α ≈
1=2 for large β. Remarkably, this growth is slower than that,
Dmax ∝ β, conjectured for a scheme based on SVD and
patching [5]. A detailed analysis for general models and
higher spatial dimensions is an interesting topic for future
research.
Chern number.—Finally, we consider the Chern

number, C, for the Haldane model at μ ¼ 0 and β ¼ ∞.
To avoid cumbersome gauge-fixing procedures, we use the
gauge-invariant method described in Ref. [35]. First, we
discretize the Brillouin zone (BZ) into 2R × 2R plaquettes.
Then, the Chern number can be obtained from a sum
over plaquettes, C ≈ ð1=2πiÞPk∈BZ FðkÞ, where FðkÞ ≈
−i argðhψk1

jψk2
ihψk2

jψk3
ihψk3

jψk4
ihψk4

jψk1
iÞ is the

Berry flux through the plaquette with corners k1…k4,
and jψki are valence band wave functions.
Close to the transition, for small δm ¼ m −mc, the band

gap is 2δm. This induces peaks of width ∼δm in the Berry
flux FðkÞ, shown in Figs. 3(a) and 3(b) for δm ¼ 10−5.
There, we used a fused quantics representation with
R ¼ 20, ensuring a mesh spacing 2−R well smaller than
δm. Whereas a calculation of C via direct summation or
SVD unfolding would require 22R ≈ 1012 function evalu-
ations, QTCI is much more efficient: for a relative tolerance
of ϵ ¼ 10−10, it needed only 4 × 105 samples (and 20 s

FIG. 2. Green’s functionGðkÞ of the Haldane model, computed
with error tolerance ϵ ¼ 10−5 throughout. (a),(b) QTCI of the jGj
and its relative error, jGQTCI − Gj=jGj, for β ¼ 512, R ¼ 10.
(c),(d) Comparison of QTT unfoldings via SVD and TCI,
showing (c) the relative error vs the maximum bond dimension
for R ¼ 10 and β ¼ 16, 64, 512; and (d) runtimes vs R for
β ¼ 512. (e),(f) QTCI bond dimensions for R ¼ 10, 20, 30,
showing (e) Dl vs l for β ¼ 512; and (f) Dmax vs β.
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runtime on a single core of an Apple M1 processor). It
yielded a QTTwith maximum bond dimension Dmax ¼ 50,
and a Chern number within 10−6 of the expected value
C ¼ −1 (see Figs. 3(c) and 3(d)). When plotted as a
function of δm, C shows a sharp step from −1 to 0 at δm ¼
0 if computed using R ¼ 20 (Fig. 3(e)), beautifully
demonstrating that the k mesh is fine enough. For smaller
R the mesh becomes too coarse, incorrectly yielding a
plateau at −1=2 instead of a sharp step.
For benchmarking purposes, we deliberately chose a

model that is analytically solvable. However, our prior
knowledge of the peak positions of the Berry curvature was
not made available to TCI. This demonstrates its reliability
in finding sharp structures, provided enough quantics bits
are provided to resolve them. Random sampling misses
these sharp structures, which is why in Fig. 3(c) the out-of-
sample error, obtained from 2000 random samples, lies
well below the in-sample error.
Outlook.—We have shown that the combination of the

quantics representation [1–11] with TCI [12,13,15,17] is a
powerful tool for uncovering low-rank structures in expo-
nentially large, yet very common objects: functions of few
variables resolved with high resolution. Numerical work
with such objects always involves truncations—the radi-
cally new perspective opened up by QTCI is that they can
be performed at polynomial costs by discarding weak

entanglement between different scales. Once a low-rank
QTT has been found, it may be further used within one of
the many existing MPO/MPS algorithms [1,5,18–20].
We anticipate that the class of problems for which QTCI

can be instrumental is actually very large, reaching well
beyond the scope of physics. Intuitively speaking, the only
requirement is that the functions should entail some degree
of scale separation and not be too irregular (since random
structures are not compressible). Thus, a large new research
arena, potentially connecting numerous different branches
of science, awaits exploration. Fruitful challenges: establish
criteria for which types of multivariate functions admit low-
rank QTT representations; develop improved algorithms
for constructing low-rank approximations to tensors;
and above all, explore the use of QTCI for any of the
innumerable problems in science requiring high-resolution
numerics. The initial diagnosis is easy: simply use SVDs or
QTCI [28] to check whether the functions of interest are
compressible or not.

We thank Takashi Koretsune, Ivan Oseledets, and
Björn Sbierski for inspiring discussions, and Jeongmin
Shim for important help at the beginning of this work.
We carried out part of the calculations using computer code
based on ITensors.jl [36] written in JULIA [37]. H. S. was
supported by JSPS KAKENHI Grants No. 21H01041, and
No. 21H01003, and JST PRESTOGrant No. JPMJPR2012,
Japan. X.W. acknowledges funding from the Plan France
2030 ANR-22-PETQ-0007 “EPIQ”; and J. v. D. from the
Deutsche Forschungsgemeinschaft under Germany’s
Excellence Strategy EXC-2111 (Project No. 390814868),
and theMunich QuantumValley, supported by the Bavarian
state government with funds from the Hightech Agenda
Bayern Plus.

*Corresponding author: ritter.marc@physik.uni-muenchen
.de

[1] J. J. García-Ripoll, Quantum-inspired algorithms for multi-
variate analysis: From interpolation to partial differential
equations, Quantum 5, 431 (2021).

[2] E. Ye and N. F. G. Loureiro, Quantum-inspired method for
solving the Vlasov-Poisson equations, Phys. Rev. E 106,
035208 (2022).

[3] N. Gourianov, M. Lubasch, S. Dolgov, Q. Y. van den Berg,
H. Babaee, P. Givi, M. Kiffner, and D. Jaksch, A quantum
inspired approach to exploit turbulence structures, Nat.
Comput. Sci. 2, 30 (2022).

[4] N. Gourianov, Exploiting the structure of turbulence
with tensor networks, Ph.D. thesis, University of Oxford,
2022.

[5] H. Shinaoka, M. Wallerberger, Y. Murakami, K. Nogaki, R.
Sakurai, P. Werner, and A. Kauch, Multiscale space-time
ansatz for correlation functions of quantum systems based
on quantics tensor trains, Phys. Rev. X 13, 021015.

[6] S. Wiesner, Simulations of many-body quantum systems by
a quantum computer, arXiv:quant-ph/9603028.

FIG. 3. Evaluation of the Chern number in the Haldane model
using QTCI for the Berry flux FðkÞ, with error tolerance ϵ ¼
10−10 throughout. (a) QTCI of FðkÞ on the integration domain
(circles mark peak positions); (b) cuts through FðkÞ along the
colored lines shown in (a); and (c) errors for FðkÞ and C as
functions of Dmax, all computed for δm ¼ −10−5, R ¼ 20.
(d) Bond dimension Dl for QTTs of length R ¼ 10, 12, 14,
20. (e) Chern number C as a function of δm, for four choices of R.

PHYSICAL REVIEW LETTERS 132, 056501 (2024)

056501-5

https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.1103/PhysRevE.106.035208
https://doi.org/10.1103/PhysRevE.106.035208
https://doi.org/10.1038/s43588-021-00181-1
https://doi.org/10.1038/s43588-021-00181-1
https://doi.org/10.1103/PhysRevX.13.021015
https://arXiv.org/abs/quant-ph/9603028


[7] C. Zalka, Simulating quantum systems on a quantum
computer, Proc. R. Soc. A 454, 313 (1998).

[8] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[9] J. I. Latorre, Image compression and entanglement, arXiv:
quant-ph/0510031.

[10] I. V. Oseledets, Approximation of matrices with logarithmic
number of parameters, Dokl. Math. 80, 653 (2009).

[11] B. N. Khoromskij, Oðd log nÞ-quantics approximation of
n − d tensors in high-dimensional numerical modeling,
Constr. Approx. 34, 257 (2011).

[12] Y. Núñez Fernández, M. Jeannin, P. T. Dumitrescu, T. Kloss,
J. Kaye, O. Parcollet, and X. Waintal, Learning Feynman
diagrams with tensor trains, Phys. Rev. X 12, 041018
(2022).

[13] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci.
Comput. 33, 2295 (2011).

[14] D. Savostyanov and I. Oseledets, Fast adaptive interpolation
of multi-dimensional arrays in tensor train format, in The
2011 International Workshop on Multidimensional (nD)
Systems (IEEE, Poitiers, France, 2011), pp. 1–8, https://doi
.org/10.1109/nDS.2011.6076873.

[15] I. Oseledets and E. Tyrtyshnikov, TT-cross approximation
for multidimensional arrays, Linear Algebra Appl. 432, 70
(2010).

[16] D. V. Savostyanov, Quasioptimality of maximum-volume
cross interpolation of tensors, Linear Algebra Appl. 458,
217 (2014).

[17] S. Dolgov and D. Savostyanov, Parallel cross interpolation
for high-precision calculation of high-dimensional integrals,
Comput. Phys. Commun. 246, 106869 (2020).

[18] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[19] M. Lubasch, P. Moinier, and D. Jaksch, Multigrid renorm-
alization, J. Comput. Phys. 372, 587 (2018).

[20] P. García-Molina, L. Tagliacozzo, and J. J. García-Ripoll,
Global optimization of MPS in quantum-inspired numerical
analysis, arXiv:2303.09430.

[21] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.056501, Sec. S-1
for a brief explanation of the QTT Fourier transform and
Sec. S-2 for an overview of the sweeping algorithm. The
Supplemental Material contains Refs. [5,22–28].

[22] S. Dolgov, B. Khoromskij, and D. Savostyanov, Superfast
Fourier transform using QTT approximation, J. Fourier
Anal. Appl. 18, 915 (2012).

[23] M. Holzäpfel, T. Baumgratz, M. Cramer, and M. B. Plenio,
Scalable reconstruction of unitary processes and Hamilto-
nians, Phys. Rev. A 91, 042129 (2015).

[24] J. Chen, E. M. Stoudenmire, and S. R. White, Quantum
Fourier transform has small entanglement, PRX Quantum 4,
040318 (2023).

[25] A. Cortinovis, D. Kressner, and S. Massei, On maximum
volume submatrices and cross approximation for symmetric
semidefinite and diagonally dominant matrices, Linear
Algebra Appl. 593, 251 (2020).

[26] S. A. Goreinov and E. E. Tyrtyshnikov, Quasioptimality of
skeleton approximation of a matrix in the Chebyshev norm,
Dokl. Math. 83, 374 (2011).

[27] D. V. Savostyanov, Quasioptimality of maximum-volume
cross interpolation of tensors, Linear Algebra Appl. 458,
217 (2014).

[28] A ready-for-use QTCI toolbox will be published as open
source library in the near future.

[29] F. D. M. Haldane, Model for a quantum Hall effect without
Landau levels: Condensed-matter realization of the “parity
anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

[30] For example, for n ¼ 2, R ¼ 3, the point ðu1; u2Þ ¼ ð5
8
; 4
8
Þ

has the binary representation (101,100). In the interleaved
form, the bits are reordered such that fð5

8
; 4
8
Þ is represented

by fσ ¼ f110010; in fused form, by fσ̃ ¼ f301.
[31] I. V. Oseledets, Approximation of 2d × 2d matrices using

tensor decomposition, SIAM J. Matrix Anal. Appl. 31, 2130
(2010).

[32] The in-sample error is maxσ ∈ SjfQTCIσ − fσ j, where S is the
set of all σ evaluated during construction of the QTCI. For
the out-of-sample error, S is instead a set of 2000 pseudor-
andom σ generated by Xoshiro256++ [33]. Relative errors
are defined as maxσ ∈ SjfQTCIσ − fσ j=jfσ j.

[33] D. Blackman and S. Vigna, Scrambled linear pseudorandom
number generators, ACMTrans.Math. Softw. 47, 36:1(2021).

[34] H. Watanabe, Y. Hatsugai, and H. Aoki, Manipulation
of the Dirac cones and the anomaly in the graphene related
quantum Hall effect, J. Phys. Conf. Ser. 334, 012044 (2011).

[35] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in
discretized Brillouin zone: Efficient method of computing
(spin) Hall conductances, J. Phys. Soc. Jpn. 74, 1674
(2005).

[36] M. Fishman, S. White, and E. Stoudenmire, The ITensor
software library for tensor network calculations, SciPost
Phys. Codebases 4 (2022).

[37] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
JULIA: A fresh approach to numerical computing, SIAM
Rev. 59, 65 (2017).

PHYSICAL REVIEW LETTERS 132, 056501 (2024)

056501-6

https://doi.org/10.1098/rspa.1998.0162
https://arXiv.org/abs/quant-ph/0208112
https://arXiv.org/abs/quant-ph/0510031
https://arXiv.org/abs/quant-ph/0510031
https://doi.org/10.1134/S1064562409050056
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1103/PhysRevX.12.041018
https://doi.org/10.1103/PhysRevX.12.041018
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/j.laa.2014.06.006
https://doi.org/10.1016/j.laa.2014.06.006
https://doi.org/10.1016/j.cpc.2019.106869
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.jcp.2018.06.065
https://arXiv.org/abs/2303.09430
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.056501
https://doi.org/10.1007/s00041-012-9227-4
https://doi.org/10.1007/s00041-012-9227-4
https://doi.org/10.1103/PhysRevA.91.042129
https://doi.org/10.1103/PRXQuantum.4.040318
https://doi.org/10.1103/PRXQuantum.4.040318
https://doi.org/10.1016/j.laa.2020.02.010
https://doi.org/10.1016/j.laa.2020.02.010
https://doi.org/10.1134/S1064562411030355
https://doi.org/10.1016/j.laa.2014.06.006
https://doi.org/10.1016/j.laa.2014.06.006
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1137/090757861
https://doi.org/10.1137/090757861
https://doi.org/10.1145/3460772
https://doi.org/10.1088/1742-6596/334/1/012044
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.21468/scipostphyscodeb.4
https://doi.org/10.21468/scipostphyscodeb.4
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

