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We study the interplay between Mott physics, driven by Coulomb repulsion U , and Hund physics, driven
by Hund’s coupling J , for a minimal model for Hund metals, the orbital-symmetric three-band Hubbard-Hund
model (3HHM) for a lattice filling of 1/3. Hund-correlated metals are characterized by spin-orbital separation
(SOS), a Hund’s-rule-induced two-stage Kondo-type screening process, in which spin screening occurs at much
lower energy scales than orbital screening. By contrast, in Mott-correlated metals, lying close to the phase
boundary of a metal-insulator transition, the SOS window becomes negligibly small and the Hubbard bands are
well separated. Using dynamical mean-field theory and the numerical renormalization group as real-frequency
impurity solver, we identify numerous fingerprints distinguishing Hundness from Mottness in the temperature
dependence of various physical quantities. These include ARPES-type spectra, the local self-energy, static
local orbital and spin susceptibilities, resistivity, thermopower, and lattice and impurity entropies. Our detailed
description of the behavior of these quantities within the context of a simple model Hamiltonian will be helpful
for distinguishing Hundness from Mottness in experimental and theoretical studies of real materials.
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I. INTRODUCTION

The properties of multiorbital metals with strong on-site
atomic-like interactions is governed by strong correlation ef-
fects. In this paper, we study the interplay of two distinct
manifestations of local interactions: “Mott physics”, driven
by the Coulomb repulsion U governing charge dynamics;
and “Hund physics”, driven by the Hund’s rule coupling J
affecting spin dynamics.

For many years, strong electronic correlations in met-
als have mainly been associated with Mottness, well-known
from ordinary Mott-Hubbard systems—in the proximity of a
Mott-insulating state, U is large (compared to J) and slows
down or even suppresses the electronic motion. This leads to
characteristic spectral signatures like well-separated Hubbard
sidebands and fairly flat bands at the Fermi level at low ener-
gies and temperatures, reflecting strongly renormalized heavy
Landau quasiparticles (QPs). At high energies, typically, the
quasiparticle band vanishes and a gap or pseudogap opens
between the Hubbard sidebands. A well-known example is
V2O3 [1–7].

Starting around 2008, it has been recognized that notice-
able correlation effects are manifest in many multiorbital
systems far from a Mott insulating state as they have occupan-
cies differing from half integer filling [7–53]. In these systems
the effect of U is considered to be too small to correlate the
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electrons, while Hund’s coupling J is only slightly smaller
in the solid than for a bare atom [54]. These so-called Hund
metals are multiorbital systems with rather broad bands and
thus sizable J compared to a strongly screened U . By now
the 3d iron-based superconductors [9–19] and the 4d-based
ruthenates [8,22–29] have been studied from this perspective.
Other examples where Hund-rule physics is important are iron
impurities on a platinum surface [55], weak itinerant ferro-
magnets [56], eg systems such as NiS2−xSex [57], the recently
discovered Ni-based superconductors [43,44], and even cold
atom systems [58]. For some early reviews, see Refs. [30–32].

Hund metals have many unusual characteristics, including
the following: (i) Atomic histograms showing the probability
weight for different electronic configurations are broad. A
range of configurations featuring different orbital occupancies
all receive significant weight (implying metallic behavior),
and high-spin multiplets are favored (thus allowing for a
quasi-localized spin) [9,20,59]. (ii) The orbitals appear to
decouple from each other [11,59–62] if one focuses on static
correlators [36]. (iii) Spin dynamics appears to slow down
at low energies (“spin freezing”) [8]. (iv) Various correlators
show fractional power-law behavior [8,21,39]. (v) Correla-
tions depend strongly on the value of J and relatively less
strongly on the value of U . (vii) The interplay of spin and
orbital degrees of freedom leads to “spin-orbital separation”
(SOS) [7,21,33–39]. Here, we focus particularly on the latter
phenomenon.

In an isolated atom, it is well known that J simply aligns
electronic spins in different orbitals according to Hund’s
first rule [63]. But if the atom is hybridized with a metallic
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environment, as in many multiorbital materials or impurity
models, the effect of J is much more intricate and subtle
(and was, with a few exceptions [64], largely overlooked or
underestimated until this decade). Here, SOS emerges in a
complex two-stage Kondo-type screening process, in which
spin screening occurs at much lower energies than orbital
screening [33,35]: Tspin < Torb (cf. Appendix A for precise
definitions of these scales). The low-energy regime below Tspin

is a Fermi liquid (FL) governed by Landau QPs with heavy
masses. By contrast, the intermediate energy window featur-
ing SOS, [Tspin, Torb], is governed by almost fully screened
orbital degrees of freedom weakly coupled to almost free spin
degrees of freedom, leading to incoherent behavior. Its non-
Fermi-liquid (NFL) properties are caused by an underlying
novel NFL fixed point, described in detail in Refs. [37,39]
for a 3-channel spin-orbital Kondo (3soK) model for Hund
metals, as suggested in Ref. [34].

As a function of increasing temperature, SOS leads to
a coherence-incoherence crossover with a coherence scale
that is strongly suppressed by Hund’s coupling [33]. The
coherence-incoherence crossover was predicted in material
simulations of iron oxypnictides already in 2008 [9,65]. It was
observed a few years later in measurements of the resistivity,
heat-capacity, thermal-expansion coefficients, susceptibility,
and optical conductivity of the 122-iron pnictides [66–68].
Further, only recently [7], realistic material simulations and
model Hamiltonian studies of the temperature dependence of
the local spectrum and of the charge, spin, and orbital suscep-
tibilities of the Hund metal Sr2RuO4 and the Mott material
V2O3 revealed that, for Hund metals, SOS also occurs in the
onset (and completion) of screening of the orbital and spin
degrees of freedom: as the temperature is lowered in Hund
metals, the static local orbital and spin susceptibilities show
deviations from Curie behavior at different scales, T onset

spin <

T onset
orb . By contrast, for Mott materials we have T onset

orb ≈ T onset
spin ,

since both these scales are equal to the scale TM at which the
Mott gap closes when the temperature is lowered.

During the last years, many insights on SOS have been
gained in the context of a minimal 3-orbital Hubbard-Hund
model (3HHM) for Hund metals. In Refs. [33,35,39] the fo-
cus has mainly been on zero-temperature results, while some
finite-temperature results were published in Ref. [7]. In the
present paper, we build on and extend the latter study by
providing a full analysis of the temperature dependence of
ARPES spectra, spectral function, self-energy, static local
spin and orbital susceptibilities, the QP weight, scattering rate,
resistivity, thermopower, and entropy. We choose four differ-
ent sets of system parameters, which mimic the physics of a
Hund system (H1), a Mott system (M1), an intermediate sys-
tem (I2) showing aspect of both Hund and Mott physics, and
a weakly correlated system (W0). With this we aim to clar-
ify previously-proposed criteria and also identify new ones
for distinguishing the two distinct routes of screening from
atomic degrees of freedom towards emerging quasiparticles,
guided by either Mott or Hund physics.

This paper is structured as follows. First we introduce the
3HHM in Sec. II. In Sec. III we shortly review the current
state of research on the 3HHM and motivate our choice of
model parameters. Sections IV, V, and VI present our re-
sults. Section IV concentrates on ARPES spectra, as well as

spectral functions and self-energies. In particular, we discuss
the different temperature dependencies of these quantities
for Hund and Mott systems. Based on our discussion of the
ARPES spectra, in Sec. V, we explain in detail the behavior
of the static local orbital and spin susceptibilities and the
quasiparticle weight in terms of the SOS screening process.
In Sec. VI we analyze signatures of Hund and Mott sys-
tems in various transport properties (scattering rate, coherence
scale, resistivity, effective chemical potential, thermopower).
Further, we study the lattice entropy and demonstrate that it
differs from the impurity entropy. Remarkably, we are able to
calculate the lattice entropy directly from our numerical data.
We summarize our insights in Sec. VII by providing tables,
which highlight the most important features for distinguishing
Mott and Hund physics. Appendix A additionally offers a
detailed analysis of the particle-hole asymmetry of the 3HHM
at T = 0 and of the frequency and temperature dependence
of the optical conductivity. Further, it contains elementary
definitions of several quantities discussed in Sec. VI.

II. MODEL AND METHOD

The minimal 3HHM model for Hund metals, first sug-
gested in Ref. [21], is described by the Hamiltonian

Ĥ =
∑

i

(−μN̂i + Ĥint[d̂
†
iν]) +

∑
〈i j〉ν

t d̂†
iν d̂ jν,

Ĥint[d̂
†
iν] = 1

2

(
U − 3

2
J

)
N̂i(N̂i − 1) − JŜ2

i + 3

4
JN̂i. (1)

The on-site interaction term incorporates Mott and Hund
physics through U and J , respectively. d̂†

iν creates an electron
on site i of flavor ν = (mσ ), composed of a spin (σ =↑,↓)
and orbital (m = 1, 2, 3) index. n̂iν = d̂†

iν d̂iν counts the elec-
trons of flavor ν on site i. N̂i = ∑

ν n̂iν is the total number
operator for site i and Ŝi its total spin, with components
Ŝα

i = ∑
mσσ ′ d̂†

imσ
1
2σα

σσ ′ d̂imσ ′ , where σα are Pauli matrices. We
take a uniform hopping amplitude, t = 1, serving as energy
unit in the 3HHM, and a Bethe lattice in the limit of large
lattice coordination. The total width of each of the degenerate
bands is W = 4. We choose the chemical potential μ such that
the total filling per lattice site is nd ≡ 〈Ni〉 = 2, i.e., the three
degenerate bands host two electrons. The effective bare gap
of this model is given by �b ≡ U − 2J . (For a motivation
of this definition, see Ref. [35]). We emphasize that Hund’s
coupling plays no role at filling nd = 1, unless the Hund’s
coupling itself becomes so large that it starts mixing orbitals
with different occupation. In the latter case, similar Hund’s
signatures may be observed even for a 2-orbital model with
possible relevance to certain materials [69].

We have solved the 3HHM of Eq. (1) using dynamical
mean-field theory (DMFT) [4] combined with a state-of-
the-art multiband impurity solver, the full-density-matrix
numerical renormalization group (fdmNRG) [70,71], while
fully exploiting the model’s U(1)ch × SU(2)spin × SU(3)orb

symmetry using the QSpace tensor library [72]. This approach
has yielded valuable insights into the complex interplay of
spin and orbital degrees of freedom before [7,33,35,39],
because it delivers high-quality results directly on the real-
frequency axes and for all physically relevant energies and
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FIG. 1. (a) The zero-temperature phase diagram of the 3HHM has three phases in the J-U plane: a metallic phase (squares), a coexistence
region (circles), and an insulating phase (triangles). These are separated by two-phase transition lines Uc1 (solid red curve) and Uc2 (dashed
black curve), respectively. The color intensity of the symbols in the metallic and coexistence regions indicates the value of Z ∈ [0, 1]: the lower
Z the more faded is the red color. The phase diagram is adapted from Ref. [35]. We will present temperature-dependent results for a Hund
system H1 far away from the Uc1 phase transition line deep in the metallic state (cross), a Mott system M1 near the transition (asterisk), an
intermediate system I2 having both Hund and Mott features (open diamond), and a weakly correlated system W0 with J = 0 far from Uc1 (open
square). (b) The local density of states A(ω) for M1 (black), H1 (yellow), I2 (red), and W0 (blue). The legend lists the corresponding values of
the bare gap, �b = U − 2J . Triangles, circles, and crosses mark the bare atomic excitation scales, ωh, ωe1, and ωe2 (listed in increasing order),
respectively, defined in Sec. III. The inset zooms into the peaks around the Fermi level ω = 0. (c) The spin and orbital Kondo scales, Tspin

(solid) and Torb (dashed), plotted as function of U for J = 0 (blue), J = 1 (brown), and J = 2 (red); these scales are defined as the maxima of
the imaginary parts of the dynamic orbital and spin susceptibilities, see Appendix A. The SOS window is marked by a vertical yellow (black)
bar for H1 (M1).

temperatures. Details of the DMFT + fdmNRG method are
described in Refs. [33,35,73]. Method-related parameters are
provided in the Supplemental Material of Ref. [33].

III. BACKGROUND AND SETUP

This paper is strongly based on the insights gained in Ref.
[35] for the 3HHM at T = 0. In the following, we give a short
overview of the most important facts established there. These
will be used later to analyze the temperature dependence of
various physical quantities in the 3HHM.

Phase diagram. In Ref. [35] we explored the 3HHM at 1/3
filling in a broad region of parameters at T = 0 and estab-
lished the J-U phase diagram, replotted in Fig. 1(a). It consists
of three different phases: a metallic phase (squares), a coex-
istence region (circles), and an insulating phase (triangles),
separated by two phase transition lines Uc1 (solid red curve)
and Uc2 (dashed black curve), respectively. Thus, for fixed J ,
a Mott insulator transition (MIT) occurs with increasing U ,
discussed extensively in Ref. [35]. The red color intensity of
the symbols reflects the strength of the quasiparticle weight,
obtained from the self-energy of the self-consistent lattice
Green’s function via

Z = 1

1 − ∂ωRe �(ω)
∣∣
ω=0

= m

m∗ , (2)

with m the free electron mass and m∗ the renormalized
QP mass. Importantly, for sizable J � 1 (cf. Ref. [35] for
details), strong correlation effects, i.e., considerable mass

enhancements Z−1 occur not only close to the MIT lines but
also far from it (cf. e.g., faded red color for H1).

In Ref. [35] we aimed to identify the origin of strong corre-
lations far from and close to the MIT in Fig. 1(a). To this end,
we proposed several characteristic signatures distinguishing
Hund-correlated from Mott-correlated systems at T = 0. We
briefly recapitulate the findings from Ref. [35] in the following
three paragraphs.

Hund system. The 3HHM shows behavior typical of Hund
metals at moderate and small U values, i.e., far from a MIT
phase boundary. As a prototypical example, we choose the
Hund system H1 [marked by a cross in Fig. 1(a)] with J = 1
and a small bare gap �b = 1. This choice relies on the fact
that H1 qualitatively reproduces various physical properties
of the Hund metal Sr2RuO4 [7]. At T = 0, Hund systems are
characterized by the following signatures.

The lowest bare atomic excitation scale Eatomic = ωe1 =
−ωh = 1

2U − J is typically small due to the small value of
U and the sizable value of J (e.g., EH1

atomic = 0.5 for H1). The
bare atomic scales, ωh, ωe1, and ωe2 = 1

2U + 2J define the
characteristic energy scales, i.e., the peak positions, of the
Hubbard bands in the local density of states,

A(ω) = − 1

π
Im [Gimp(ω)], (3)

cf. yellow crosses in Fig. 1(b). Thus, for H1, the Hubbard
bands form a broad incoherent background.

In Hund systems, strong correlations are induced by “Hund
physics”: The spin Kondo scale is strongly reduced due to
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SOS, with Tspin = 0.12 for H1 [cf. brown curves in Fig. 1(c)].
Accordingly, the QP mass, Z−1 = 3.45 ∝ Tspin

−1 [35], is
strongly enhanced. By contrast, Torb = 1.20 is even larger than
Eatomic = 0.5 for H1 . This leads to a very broad SOS fre-
quency window [Tspin, Torb] = 1.08 comparable in magnitude
to �b = 1 in Hund systems [cf. yellow vertical bar in Fig. 1(c)
for H1]. The incoherent regime is strongly particle-hole
asymmetric in frequency space [33,35] and shows fractional
power-law behavior [39,73–75]. At zero temperature, the two-
step SOS Kondo screening process is reflected in A(ω) in
form of a two-tier QP peak on top of the broad incoherent
background. It consists of a thin spin Kondo peak related to
spin screening and a broader orbital Kondo peak related to
orbital screening [cf. yellow curve in Fig. 1(b)] [35].

Mott system. A Mott system is by definition close to the
MIT phase boundary. U is large compared to J . We choose
the Mott system M1 [marked by an asterisk in Fig. 1(a)] with
J = 1 and a large bare gap �b ≡ U − 2J = 4.5 as a proto-
typical example. M1 qualitatively reproduces various physical
properties of the well-studied Mott system V2O3 [7]. The low-
est bare atomic excitation scales ±EM1

atomic = ±2.25 are large
due to the large value of U , and the Hubbard bands therefore
well separated [cf. black curve in Fig. 1(b)]. By contrast, with
increasing U , both Torb and Tspin are linearly reduced, while
their ratio remains constant [cf. brown curves in Fig. 1(c)].
As a consequence the SOS window is strongly downscaled
[Tspin = 0.04, Torb = 0.39], becoming almost negligibly small
compared to �b = 4.5 [cf. black vertical bar in Fig. 1(c)
for M1]. Since both Kondo scales are small, the QP peak
is narrow altogether and well separated from the Hubbard
side bands [cf. black curve in Fig. 1(b)]. In sum, Hund
physics is only observable at very low energy scales. Typ-
ical Mott physics, induced via the DMFT self-consistency,
dominates.

Absence of Hund’s coupling. For J = 0, SOS is absent:
spin and orbital degrees of freedom are screened at the same
scale, Tspin = Torb [cf. blue curves in Fig. 1(c)]. Far from the
MIT phase boundary, e.g., for W0 with J = 0 and �b = 3.5
[marked by an open square in Fig. 1(a)], Tspin = Torb = 0.7405
are rather large and thus Z−1 = 1.5134 not much enhanced:
the system is only weakly correlated. The QP peak has no
substructure [cf. blue curve in Fig. 1(b)].

Temperature dependence. The size and the properties of
the SOS window in frequency space has direct implications
for temperature dependent properties of the 3HHM. This was
first demonstrated in Ref. [7]. In particular, it was shown that,
in local spectra, the QP peak persists up to very high tempera-
tures in Hund systems, exhibiting large charge fluctuations,
whereas a pseudogap develops with increasing temperature
in all Mott systems at a characteristic energy scale TM, sup-
pressing charge fluctuations. This can be explained by the fact
that far from the MIT boundary the Hubbard bands overlap,
whereas close to the boundary they are well separated. Fur-
thermore, onset scales for orbital and spin screening, T onset

orb
and T onset

spin , were introduced as the scales where decreasing
temperature first causes deviations of the respective static
local orbital and spin susceptibilities, χorb and χspin, from the
Curie behavior, χ ∝ 1/T , characterizing free local moments.
In Hund metals, it was found that T onset

orb � T onset
spin with T onset

orb
as high as Eatomic. In contrast, in Mott systems, spin and orbital

screening set in, simultaneously, below a much lower scale,
T onset

spin ≈ T onset
orb ≈ TM  Eatomic, together with the formation

of the QP peak. A weakly correlated system with J = 0 like-
wise does not exhibit any separation of the onset scales of
orbital and spin screening.

In addition, completion scales for orbital and spin screen-
ing, T cmp

orb and T cmp
spin , were defined as the temperature scale

below which Pauli behavior sets in with decreasing temper-
ature. It was suggested that these scales are also separated in
the presence of finite J in both Hund and Mott systems, while
they are equal for J = 0 [7].

Strategy. In the following, we analyze and compare four
different systems, H1, M1, W0, and I2, as presented in
Fig. 1(a), to further clarify the Hund and Mott routes to-
wards strong correlations. The Hund system, H1, and the Mott
system, M1, are defined as in Ref. [7]. In addition, we also
study the weakly correlated system W0 and an intermediate
system, I2, with J = 2 and �b = 3.5 [marked by an open
diamond in Fig. 1(a)], which has both Hund and Mott features
and thus demonstrates the crossover between Hund and Mott
systems. For all these systems we summarize the physics in
ARPES spectra at T = 0 and study their temperature depen-
dencies. While some of this data is already presented as the
Supplementary Information of Ref. [7], we here analyze it in
much more detail and directly connect it to the temperature
dependence of various other physical quantities. In particular,
we revisit the static local susceptibilities and the idea of com-
pletion and onset scales of spin and orbital screening. Further
insights are obtained by studying the quasiparticle weight, the
resistivity, the thermopower, and the lattice entropy. We will
show that the latter differs from the impurity entropy, studied
before in Ref. [33]. In Appendix A, we also offer a detailed
discussion, for I2, of the implications of particle-hole asym-
metry for various frequency-dependent quantities at T = 0.
All in all, these studies lead to a deepened understanding of
the nature of Hund metals.

IV. ARPES, SPECTRAL FUNCTION, AND SELF-ENERGY

In this section we focus on ARPES spectra. We calculate
the structure factor A(εk, ω) for a Bethe lattice as

A(εk, ω) = − 1

π
Im [ω + μ − εk − �(ω)]−1. (4)

Experimentally, the structure factor can be measured by angle-
resolved photoemission spectroscopy (ARPES). For brevity,
our A(εk, ω) spectra will be called ARPES spectra, too, al-
though they are of course computed, not measured. The four
Figs. 2, 4, 5, and 6 show our results for A(εk, ω), together
with the corresponding spectral function A(ω) and self-energy
�(ω) for the four systems H1, M1, I2, and W0, respectively.
A(εk, ω) is plotted for different temperatures in panels (a),(c),
and (e)–(h). A(ω) is plotted for several temperatures in panel
(i), analogously, Re �(ω) in panel (j), and Im �(ω) in panel
(k). In the following, we are particularly interested in how
SOS is reflected in ARPES data at T = 0, and how it develops
with increasing temperature in Hund systems compared to
Mott systems. How can the emerging differences be explained
and interpreted physically?
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FIG. 2. A Hund system (H1) with parameters �b = 1 and J = 1. [(a),(c),(e)–(h)] The structure factor A(εk, ω). [(b),(d)] The dispersion
relation E (εk ), (i) the spectral function A(ω), [(j),(k)] the real and imaginary parts of the self-energy, Re �(ω) and Im �(ω), respectively,
all plotted for various temperatures. [(a),(c),(e)–(h)] The colored curves highlight the dispersion relation E (εk ) and the white curves show
the alternative definition of the dispersion relation E∗(ω). Panels (a) and (b) are low-energy zooms of panels (c) and (d). The FL regime,
ω−

FL < ω < ω+
FL, lies between the dash-dotted red lines, running horizontally in (a) and (b) and vertically in (i)–(k). The thick dashed red line in

panel (a) denotes FL behavior of the low-energy dispersion relation. Its slope Z = m/m∗ reflects the strength of local correlations. The yellow
solid horizontal lines in (b) and vertical lines in (i)–(k) denote, for ω < 0, the energy scale ω−

cr of the maximum in Re �T =0(ω < 0), and for
ω > 0, the energy scale ω+

cr of the kink in Re �T =0(ω > 0).

A. Hund system H1

Let us first analyze Fig. 2 for H1. Here, we start with the
T = 0 results [Figs. 2(a) and 2(c)]. We reveal three regimes
with different behavior of the ARPES spectrum, A(εk, ω), due
to SOS.

Fermi-liquid regime at T = 0. Figure 2(a) is a zoom into
the FL regime, which at T = 0 sets in for |ω| < Tspin =
0.1221. The white curve shows the ω dispersion of the QP

band, defined as the maxima E∗(ω) of A(εk, ω) for given
ω, and the blue curve the εk dispersion, defined as the max-
ima E (εk ) of A(εk, ω) for given εk . Both definitions lead to
the same low-energy linear FL dispersion relation (cf. thick
dashed red line) of slope Z = 0.29 [with a Fermi surface
crossing point E∗(ω = 0) = μeff]. The mass enhancement
of the Landau QPs in the Hund system H1 is thus fairly
large, Z−1 = m∗/m = 3.45. We define ω−

FL and ω+
FL as the
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negative and positive crossover scales between which FL be-
havior holds [as diagnosed from a detailed analysis of the
ω dependence of A(ω) and �(ω), see Appendix A for a
detailed discussion]. Interestingly, we find that the extent of
the FL regime is different for negative or positive frequen-
cies, ω−

FL �= ω+
FL (cf. thin dash-dotted red horizontal lines):

the white (blue) QP band dispersion deviates earlier from the
thick dashed red FL line on the positive frequency side, i.e.,
at a lower scale ω+

FL ≈ − 1
3ω−

FL = 0.027. The asymmetry of
the FL regime directly reflects the particle-hole asymmetry
of the model away from half-filling. The asymmetry of the
FL regime is discussed in more detail in Appendix A. With
ω+

FL − ω−
FL = 0.109, the FL regime is rather large in H1 (com-

pared to the lowest bare atomic excitation scale EH1
atomic = 0.5).

We remark that a similar asymmetric FL regime was found
earlier in a one-band hole-doped Mott insulator [76], i.e.,
for a particle-hole asymmetric model with only one type of
degrees of freedom (spins). There, it was also shown that a
well-defined QP peak of “resilient” QP excitations exists at
temperatures above the FL scale, and that it dominates an
intermediate incoherent transport regime.

Crossover regime at T = 0. Above ω+
FL and below ω−

FL the
QP band starts to deviate from FL behavior and crosses over
into the NFL regime. In this regime, the dispersion relation
becomes highly particle-hole asymmetric, as clearly visible
in Fig. 2(c). For ω > 0, E (and E∗) turn upwards with in-
creasing εk into a steeper approximately linear function. This
crossover is reflected in a weak kink around a crossover scale
ω+

cr = 0.085 (solid yellow line at ω > 0). For ω < 0, E devel-
ops into a step-shaped curve for decreasing εk approximately
at the crossover scale ω−

cr = −0.256 (solid yellow line at
ω < 0). By contrast, E∗ essentially keeps following the red FL
line almost down to ω−

cr, before a jump signals the transition to
a new type of transport regime, the HQP regime, where HQP
stands for “Hund quasiparticle”, explained further below.

HQP regime at T = 0. For ω below the above-mentioned
jump, i.e., well smaller than crossover scale −ω−

cr, the ω

dispersion E∗(ω) (white line) approaches the steep linear
behavior of the εk dispersion E (εk ) (blue line). Thus, the
dispersion in the HQP regime is again linear, similar to the
FL regime, but it is steeper than in the latter, for both neg-
ative and positive ω. This signals the survival of resilient
but lighter QPs in the HQP regime, described in more detail
below. Interestingly, the slope of E (E∗) is slightly larger for
negative (ω < −ω−

cr) than for positive (ω > ω+
cr) frequencies,

indicating different effective masses for electrons and holes.
SOS Kondo screening process. We can now establish a

connection between the three different frequency regimes
identified above in the ARPES spectrum, and the inter-
twined two-stage Kondo screening process of SOS (cf. Fig. 3)
analyzed in Refs. [7,33,35]. Proceeding from high to low
frequencies (energies), orbital screening sets in first. This
involves the formation of an orbital singlet, by binding one
bath electron to the impurity to screen the orbital hole. Due
to Hund’s coupling, the extra bath electron couples ferromag-
netically to the impurity, leading to the emergence of a large
effective 3/2 impurity spin. This transport regime has NFL
properties, but is characterized by an ARPES spectrum with
a surprisingly linear band dispersion, having a much steeper

FIG. 3. Refined schematic depiction of the two-stage Kondo
screening process of SOS at filling nd = 2 (based on Fig. 13 of Ref.
[35]). With decreasing energy orbital screening sets in first, roughly
at the orbital Kondo scale Torb. This involves the formation of an
orbital singlet by building a large effective Hund’s-coupling-induced
3/2 spin including a bath spin degree of freedom. |ω±

cr| approximately
marks the completion of orbital screening. Below |ω±

cr| the 3/2 spin
is gradually screened by the three effective channels of the 3HHM.
Well below the spin Kondo scale Tspin, full screening of both orbital
and spin degrees of freedom is reached at the FL scale |ω±

FL|, below
which FL behavior occurs in frequency-dependent quantities. Our
schematic sketch ignores the effects of particle-hole asymmetry on
the crossover scales, |ω−

cr| �= |ω+
cr| and |ω−

FL| �= |ω+
FL|.

slope, i.e., a much smaller mass enhancement, than in the
FL regime. It might thus be described in terms of specific
resilient QPs, which are formed by gradually screened orbital
degrees of freedom coupled to quasi-free large spins. We dub
these resilient QPs “Hund quasiparticles” (HQPs). The steep
slope of this HQP band (especially at negative frequencies) is
reminiscent of the (inverted) waterfall structure discovered in
ARPES spectra and realistic density functional theory (DFT)
plus quantum Monte Carlo (QMC) studies of Sr2RuO4 [77].
We thus corroborate the suggestion of Ref. [77] that the
waterfall structure is a signature of resilient QPs in Hund
metals. But we also remark that a waterfall structure was also
found in ARPES plots for the hole-doped one-band Hubbard
model in Ref. [76]. The “completion” of the orbital screening
process is reflected in a (strong) change in the band dispersion
around ω−

cr (step-shape) and ω+
cr (kink), respectively. Notably,

subtle changes (kinks) at about 30 meV were reported in
ARPES data of Sr2RuO4 [22,77,78], presumably caused by
local electronic correlations [78], and therefore could be asso-
ciated with the crossover from the NFL to the FL regime. For
frequencies below ω+

cr and above ω−
cr spin screening sets in:

the large 3/2 spin is now screened by the three channels of the
3HHM to additionally form a spin singlet in the ground state.
Figuratively speaking the HQPs get additionally dressed by
the spin degrees of freedom. After completion, FL behavior
characterizes the low-frequency regime. Here, the QP band
can be described in terms of Landau QPs with a heavy mass
Z−1 = m∗/m, reflected by the small slope Z of the band
dispersion in ARPES data. These Landau QPs are more stable
on the negative frequency side.
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As has been discussed in Sec. III and Refs. [33,35], the
two-step screening process of SOS is also reflected in A(ω)
and �(ω). In A(ω) a narrow SU(2) spin Kondo peak sits on
top of a broad SU(3) orbital Kondo peak [cf. blue curve in
Fig. 2(i)], resulting in a shoulder for ω < ω−

cr and a subtle kink
for ω > ω+

cr (cf. vertical solid yellow lines). Correspondingly,
−Im �(ω) [cf. blue curve in Fig. 2(k)] develops a shoulder
below ω−

cr and a regime above ω+
cr in which the slope of

−Im �(ω) becomes smaller than for ω < ω+
cr. The scattering

rate in the HQP regime is thus less energy dependent than in
the FL regime. The shoulder-like structure in −Im �(ω < 0)
directly translates to a sharp maximum in Re �(ω < 0) [cf.
blue curve in Fig. 2(j)]. We use the position of this maximum
to define ω−

cr (vertical solid yellow line at ω < 0). The kink in
Re �(ω > 0) approximately marks ω+

cr (vertical solid yellow
line at ω > 0), which turns out to lie at 1

3ω−
cr. While these

scales are in principle heuristic choices, their physical rele-
vance can be motivated by the fact that they directly reflect
the energy scales of marked changes in the band dispersion
E (εk ): the latter is the solution to the equation ω + μ − εk −
Re �(ω) = 0, as used in Ref. [6], and thus directly connected
to Re �(ω). In Appendix A, we complement this discussion
by a detailed investigation of the frequency dependence of
A(ω), �(ω), and the dynamical spin and orbital susceptibili-
ties, χspin(ω) and χorb(ω), at T = 0 for the system I2 and their
interpretation in terms of the SOS screening process.

We remark that the SOS features described above, in par-
ticular the shoulder below ω−

cr in both A(ω) and −Im �(ω),
have also been predicted to occur for Sr2MoO4 in very recent
DFT + DMRG studies [40].

Temperature dependence. In order to verify the idea of
robust HQPs governing the incoherent transport regime, we
study the evolution of the QP band and its dispersion E with
temperature in Figs. 2(c) and 2(e)–2(h), and Figs. 2(b) and
2(d), respectively. We find that, with increasing temperature,
first the SOS features in the dispersion, like the step at ω < 0
and the kink at ω > 0, dissolve gradually and very slowly,
while the steep slope of the linear behavior characteristic of
the HQP regime remains unchanged [cf. Fig. 2(d)]. At T �
0.2 the Landau-FL QP band has fully disappeared and only a
slight kink at the Fermi level separates the linear parts of the
resilient HQP band at ω > 0 and ω < 0 [cf. green curves in
Figs. 2(b), 2(d) and 2(f)]. The slope of the HQP band remains
quite stable over a very broad range of frequencies (espe-
cially for ω < 0) up to the highest temperature plotted [cf.
Fig. 2(d)]. Thus the incoherent transport regime for T � 0.2 is
governed by a very robust, almost temperature independent
HQP band.

This evolution of the QP band with increasing temperature
is also reflected in A(ω), Re �(ω), and Im �(ω) [cf. Figs. 2(i)–
2(k)]. In the FL temperature regime a sharp SU(2) Kondo peak
in A(ω), a pronounced maximum in Re �(ω), and a shoulder
and dip in Im �(ω) are clearly visible (cf. blue curves). With
increasing temperature there is a gradual crossover to NFL
behavior. The height of the SU(2) Kondo resonance in A(ω)
decreases and the two-tier structure of the QP peak disperses
by redistributing spectral weight from the SU(2) Kondo peak
to the SU(3) Kondo resonance shoulder. However, the width
of the broad SU(3) Kondo resonance is essentially unaffected
by this redistribution. In fact, the robustness of the HQP band

is reflected in the stable form of the QP peak flank of A(ω),
especially at negative frequencies [cf. Fig. 2(i)]. Interestingly,
this flank is stabilized by the lower Hubbard band, which
lies around ωh = −0.5, i.e., the SU(3) Kondo resonance
and atomic excitations merge in H1, resulting in a robust
ARPES spectrum with mixed valence character at very high
temperatures [7].

Next we consider the self-energy. Reflecting the temper-
ature dependence of A(ω), also the maximum in Re �(ω)
and the dip and the shoulder in Im �(ω) get first gradually
smeared out with increasing temperature for T � 0.2. No-
tably, the minimum of −Im �(ω, T ) is shifted to positive
frequencies within this process. This hints towards long-lived
electron-like excitations governing the incoherent transport of
this crossover regime. The minimum in −Im �(ω, T ) dis-
appears at higher temperatures and −Im �(ω, T ) becomes
a monotonically increasing function of frequency close to
the Fermi level. This might again be caused by mixed va-
lence physics, which becomes important at an energy scale
of around 0.5.

Interestingly, very similar behavior of the minimum of
−Im �(ω, T ) is observed for the hole-doped one-band Hub-
bard model of Ref. [76]. There, a well-defined QP peak
persists with increasing temperature above the coherence
scale until it merges with the lower Hubbard band at high
temperatures.

Note that the temperature dependence of Re �(ω) directly
determines the temperature dependence of the dispersion re-
lation E (εk ) in A(εk, ω) [cf. Fig. 2(d)]. Again, the evolution
of the QP band with temperature strongly hints towards the
existence of different types of QPs. At very low T in the FL
regime, the band is described by a low-frequency FL-like QP
band with a rather flat dispersion. Correspondingly, A(ω) ex-
hibits a sharp SU(2) Kondo resonance. Then, with increasing
temperature, a crossover takes place: The low-frequency FL-
like QP band dissolves gradually until, at higher temperatures,
we find a new QP regime, the HQP regime. There, a much
steeper (slightly particle-hole asymmetric) HQP band exists
and the two-tier QP peak in A(ω) is reduced to a single broad
resilient SU(3) Kondo resonance.

B. Mott system M1

We now turn to the Mott system M1. Figure 4 displays
its spectral properties using the same layout as Fig. 2 for
H1. At T = 0 we again find a particle-hole asymmetric FL
frequency regime and SOS features [cf. Figs. 4(a) and 4(c)].
However, these occur at much lower frequencies than in H1
(for instance, M1 has ω−

cr = −0.15), as expected from the
insights given in Sec. III. The slope of the FL dispersion
Z = 0.10 is clearly smaller for M1 than for H1, indicating
much heavier electron masses. With increasing temperature,
the SOS features vanish very quickly (already below T =
0.08 for M1) [cf. Figs. 4(b) and 4(d)]. The emergent HQP
band [cf. Fig. 4(f)] is very unstable with increasing temper-
ature and already starts to disappear at around T = 0.15 [cf.
Figs. 4(d) and 4(g)]. Above T � 0.2 a pseudogap has fully
replaced the QP peak [cf. Figs. 4(h)]. Similarly, the whole
QP peak in A(ω) becomes strongly suppressed, eventually
turning into a pseudogap at high temperatures [red curve in
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FIG. 4. Same quantities as in Fig. 2 for a Mott system (M1) with parameters �b = 4.5 and J = 1.

Fig. 4(i)]. The emergence of a pseudogap is accompanied by
a change of sign, from positive to negative, in the slope of the
dispersion relation E (εk ) [cf. red curve in Fig. 4(d)]. Con-
sequently, Re �(ω) and Im �(ω) are strongly temperature
dependent, as well. While for T � 0.08 the minimum of
−Im �(ω, T ) is shifted to positive frequencies, it is gradu-
ally shifted back towards negative frequencies with increasing
temperature and finally turns over to a maximum in the pres-
ence of a pseudogap [cf. Fig. 4(k)].

C. Intermediate system I2

Figure 5 shows spectral data for the intermediate system
I2. At T = 0, the ARPES spectrum for I2 [cf. Figs. 5(a) and
5(c)] shows SOS features similar to those of H1, but occurring
at smaller scales. Since J = 2 and the bare gap �b = 3.5 are

both large, Tspin is pushed down [35] even compared to M1:
Tspin = 0.021 and thus Z = 0.055 (cf. thick dashed red line)
but also |ω±

FL| and |ω±
cr| take approximately half the values

of the respective scales of M1, while Torb = 0.42 for I2 is
slightly larger than Torb = 0.3878 for M1. In sum, the zero-
temperature band dispersion of I2 is similar in its shape to H1
and M1.

However, qualitative differences emerge in the temperature
evolution of the QP band and its dispersion E compared
to H1 and M1, respectively—again due to the specific rela-
tion [Tspin, Torb]/�b for I2. With increasing temperature, first
the band’s step-shaped structure gradually dissolves, while
its steep linear behavior in the HQP frequency regime re-
mains unchanged [cf. bright blue curve for T = 0.02 in
Figs. 5(b), 5(d), and 5(e)]. In contrast to M1, this HQP
band is stable up to rather high temperatures, T = 0.25, for
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FIG. 5. Same quantities as in Fig. 2 for an intermediate system (I2) with parameters �b = 3.5 and J = 2.

I2 (similar to H1). Nevertheless, above T = 0.25, we addi-
tionally find a crossover to a pseudogap similar to M1 [cf.
red curves in Figs. 5(b), 5(d), 5(h), and 5(i)]. I2 is thus
characterized by both a Hund feature (HQP band) at inter-
mediate temperatures and a Mott feature (pseudogap) at very
high temperatures. This evolution of the QP band with tem-
perature is again reflected in A(ω), Re �(ω), and Im �(ω)
[cf. Figs. 5(i)–5(k)].

D. Weakly correlated system W0

For J = 0 the SOS features are fully absent in A(εk, ω),
A(ω), Re �(ω), and Im �(ω) (cf. Fig. 6). The FL behavior
holds for a rather large temperature regime (almost up to T ≈
0.25) and is characterized by a very stable large dispersion

with Z = 0.6672 and thus a rather small mass enhancement.
Resilient HQPs do not exist.

E. Summary of spectral properties

To summarize, both H1 and M1 (and also I2) show SOS
features in the dispersion extracted from A(εk, ω) at T = 0:
(i) a rather flat low-frequency Landau QP band of slope
Z; (ii) a NFL crossover behavior (in form of a step-shaped
band at ω < 0 and a kink at ω > 0); and (iii) a HQP band,
which is extended in frequency space. The latter consists of
positive and negative frequency parts, both of which exhibit
linear dispersion relations with large slopes, with the negative-
frequency slope slightly larger than the positive-frequency
slope. However, these SOS features occur at very different
energy scales for the three systems [35]: while in H1 they are
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FIG. 6. A weakly coupled system W0 with parameters �b = 3.5 and J = 0. [(a),(c)–(f)] The structure factor A(εk, ω). (b) The dispersion
relation E (εk ), (g) the spectral function A(ω), [(h),(i)] the real and imaginary parts of the self-energy, Re �(ω) and Im �(ω), respectively,
all plotted for various temperatures. (h) Note that the difference in Re �(ω = 0) between T = 0 and T > 0 arises from a 4% deviation of
nd (T = 0) from nd = 2. FL and crossover scales are not shown. Note that the latter do not exist for J = 0.

extended over a broad frequency range up to atomic energy
scales, they are compressed and lie at smaller frequency scales
in M1. Consequently, in H1, these features govern transport
for all temperatures. In particular, very robust HQPs exist up
to the highest (� t ) temperatures. By contrast, in M1, SOS
physics only survives at very low temperatures, whereas the
behavior of A(εk, ω) at higher temperatures is dominated by
typical Mott physics, i.e., the DMFT self-consistency opens
a (pseudo)gap and quickly destroys the HQPs. For I2, the
SOS features are also found at rather low scales (due to the
large �b) at T = 0, but the SOS regime is more extended than
for M1 (due to the large J). Temperature-dependent ARPES
spectra thus show both Hund and Mott features. If J = 0, SOS
features are absent and W0 is governed by FL behavior in a
broad temperature range.

V. STATIC LOCAL ORBITAL AND SPIN
SUSCEPTIBILITIES, AND QUASIPARTICLE WEIGHT

Based on the above detailed analysis of the ARPES spectra,
we now revisit the static local susceptibilities for the orbital

and spin degrees of freedom, to refine the findings which we
had reported in Ref. [7]. There we introduced four temperature
scales, characterizing the onset and the completion of screen-
ing of the spin and the orbital degrees of freedom. The concept
of onset and completion scales for screening was inspired by
Wilson’s classic analysis of the impurity contribution to the
spin susceptibility of the spin-1/2 one-channel Kondo model,
reviewed in Appendix B. We correspondingly derived these
scales from the behavior of the static local spin and orbital
susceptibilities, and also of the local spectral function. Our
main result was that Hund and Mott systems show contrasting
behavior at intermediate to high energies. In Hund systems,
we found a clear separation in the energy scales at which the
screening for orbital and spin fluctuations sets in, respectively:
T onset

orb � T onset
spin , with T onset

orb very large (�Eatomic). By contrast,
in Mott systems the strong Coulomb repulsion localizes the
charge at high temperature. With decreasing temperature the
onset of charge localization triggers the simultaneous onset
of the screening of the spin and orbital degrees of freedom,
accompanied by the formation of the coherence resonance
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FIG. 7. The static local orbital (dashed) and spin (solid) susceptibilities, [(a),(b),(e),(f)] T χorb,spin and [(c),(d),(g),(h)] χ
orb,spin
0 , all plotted

as functions of temperature on a linear (left) and a logarithmic (right) scale, for M1 (black), H1 (yellow), I2 (red), and W0 (blue). In addition,
the quasiparticle weight (dotted) Z (T ) is shown in (a), (b), (e), and (f). The squares mark the onset of orbital screening T onset

orb below which
T χ orb

0 deviates from a constant value, i.e., from Curie-like behavior. Note that Z (T ) diverges for T > T onset
orb . The triangles mark the maxima of

χ orb
0 and also signal the onset of spin screening T onset

spin below which T χ
spin
0 deviates from Curie-like behavior. The crosses denote the FL scale

TFL below which FL behavior is found. In M1, we observe that T onset
spin ≈ T onset

orb = TM. In H1, we find T onset
orb � T onset

spin , as discussed in Ref. [7].
The data for the static susceptibilities shown in panels (a)–(d) are adapted from Ref. [7]. A Curie-Weiss analysis of the data of panel (c) is
presented in Appendix B.

at TM ≡ T onset
spin = T onset

orb  Eatomic. At low temperatures, we
suspected SOS in the completion of screening, T cmp

orb � T cmp
spin ,

both for Hund and Mott systems, but considered this to be
more pronounced for Hund systems.

In this section we now reanalyze the static local suscep-
tibilities of H1 and M1 of Ref. [7]. While we only slightly
refine the onset scales of screening quantitatively to provide
a clearer connection to corresponding ARPES data and the
quasiparticle weight, we suggest a revised perspective on the
completion scales. In sum, we establish a consistent physical
picture of screening from the atomic degrees of freedom at
high energies to the quasiparticles at low energies. We corrob-
orate our findings by studying the static local susceptibilities
of I2 and W0.

The dynamical real-frequency spin and orbital susceptibil-
ities are defined as

χ spin(ω) = 1

3

∑
α

〈Ŝα‖Ŝα〉ω, (5a)

χorb(ω) = 1

8

∑
a

〈T̂ a‖T̂ a〉ω, (5b)

respectively [71,79], where T̂ a = ∑
mm′σ d̂†

mσ
1
2τ a

mm′ d̂m′σ are
the impurity orbital operators with the SU(3) Gell-Mann ma-
trices τ a normalized as Tr[τ aτ b] = 2δab. Below the subscript
0 will be used to denote the static limit, χ0 = χ (ω = 0), i.e.,
the static local susceptibilities.
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FIG. 8. (a) Schematic sketch of different temperature regimes
in a Hund metal. For T > TFL, H1 is a NFL up to temperatures in
the order of bare energy scales, where also mixed-valence physics
becomes important. The NFL regime, which we dub Hund metal
regime, reflects the complex SOS screening process of Fig. 3. First
orbitals get screened with decreasing temperature for T cmp

orb < T <

T onset
orb . In this regime transport is governed by HQPs, which are

characterized by gradually screened orbitals coupled to quasi-free
spins. Only when the orbital screening process is completed spins
get screened below T onset

spin ≈ T cmp
orb , i.e., in this regime, the HQPs get

gradually dressed to form heavier Landau QPs. For T < TFL = T cmp
spin ,

H1 is a FL and both orbital and spin degrees of freedom are fully
screened. (b) Schematic sketch of different temperature regimes in
a multiorbital Mott-correlated metal. In a Mott system, a pseudo-
gap governs the physics in an extended temperature regime, T >

T onset
spin ≈ T onset

orb = TM. For temperatures below TM, both orbital and
spin degrees of freedom get screened simultaneously with the onset
of a Kondo resonance, which is driven by the DMFT self-consistency
condition. The NFL regime for TFL < T < TM is followed by a low-
temperature FL regime, T < TFL < T cmp

spin ≈ T cmp
orb , where both orbital

and spin degrees of freedom are fully screened.

We plot T χ
orb,spin
0 in Figs. 7(a), 7(b), 7(e), and 7(f) and

χ
orb,spin
0 in Figs. 7(c), 7(d), 7(g), and 7(h) as functions of T ,

for H1 (yellow), M1 (black), I2 (red), and W0 (blue). As
a function of decreasing temperatures, these susceptibilities
traverse four regimes: first Curie-like behavior, where T χ0 is
independent of temperature; onset of screening, where T χ0

begins to decrease; completion of screening, where χ0 begins
to saturate; and Pauli behavior, where χ0 is constant. We will
discuss these regimes in detail below.

We also plot the quasiparticle weight Z (T ) as dotted lines
in Figs. 7(a), 7(b), 7(e), and 7(f) [and additionally in Figs. 9(a)
and 9(b)]. In principle, the interpretation of Z (T ) as quasipar-
ticle weight holds only in the FL regime. Nevertheless, for
temperatures in the NFL regime, it is still computationally
well-defined and we use it to interpret the physics on a heuris-
tic level.

A. Hund system H1

We begin with a discussion of the results for H1 in
Figs. 7(a)–7(d). T χorb

0 decreases with decreasing tempera-
ture for all temperatures plotted [cf. dashed yellow curves

in Figs. 7(a) and 7(b)], i.e., the onset for orbital screening,
T onset

orb > 1, is on the order of bare excitation scales. The onset
of spin screening, T onset

spin ≈ 0.25, is signaled by the deviation

from Curie-like (constant) behavior of T χ
spin
0 with decreasing

temperature, marked by the yellow triangle [cf. solid yel-
low curves in Figs. 7(a) and 7(b)]. Thus, for H1, we find
T onset

orb � T onset
spin , as shown in Ref. [7]. Note, however, that

here we have chosen T onset
spin ≈ 0.25 slightly smaller than in

Ref. [7] (where we had chosen T onset
spin ≈ 0.4). This choice

is motivated by the ARPES data in Fig. 2. There the on-
set of spin screening is reflected in the formation of a flat
low-frequency band in addition to the steep HQP band, re-
sulting in a pronounced step-like feature in the dispersion at
T = 0. In Fig. 2(d) the onset of the step formation is visible
for T � 0.2. Furthermore, we motivate our choice in terms
of the behavior of χorb

0 . With T onset
spin ≈ 0.25, the onset scale

of spin screening is equal to the temperature scale for the
completion of orbital screening: χorb

0 shows Pauli (constant)
behavior for T < T onset

spin ≈ T cmp
orb [cf. dashed yellow curve in

Figs. 7(c) and 7(d)]. When the temperature is further low-
ered, χ

spin
0 too reaches Pauli behavior at TFL = T cmp

spin (yellow
cross). Then spin screening is completed and the system
is a FL.

Figure 8(a) summarizes these observations in a schematic
sketch. In a Hund system, the SOS screening process of
Fig. 3 is directly reflected in the temperature dependence
of the static local susceptibilities. For T onset

spin < T < T onset
orb ,

HQPs, i.e., gradually screened (quasi-itinerant) orbitals cou-
pled to quasi-free spins, dominate the physics and lead to
a robust HQP band in ARPES spectra and a Curie-like
spin susceptibility. At very high temperatures mixed-valence
physics additionally comes into play [7], because the lower
(and a part of the upper) Hubbard band merge at ωh = −0.5
(and ωe1 = +0.5) into the QP peak in H1 [cf. Fig. 2(i)].
Due to the special SOS screening process, the spin screen-
ing only sets in once orbital screening has been completed
T cmp

orb , thus T onset
spin ≈ T cmp

orb . As the temperature is lowered into
the regime TFL < T < T onset

spin also the spins get gradually
screened, eventually resulting in the full screening of both
spin and orbital degrees of freedom and thus in a FL below
TFL. The spin screening is signaled by the formation of a
step-like feature in ARPES spectra and by a Pauli-like orbital
susceptibility.

This screening route is also reflected in Z (T ) [cf. dotted
yellow curve in Figs. 7(a) and 7(b)]. For T onset

spin < T < T onset
orb ,

the existence of resilient HQPs leads to a plateau-like feature
in Z (T ). As the temperature decreases into the regime TFL <

T < T onset
spin , Z (T ) decreases and approaches a second plateau

in the FL regime T < TFL. The reduction of Z (T ) shows that
the HQPs are additionally “dressed” through spin screening,
resulting in heavier Landau QPs.

B. Mott system M1

The Mott system M1 behaves very differently. As shown in
Ref. [7], TM ≡ T onset

orb ≈ T onset
spin [cf. black triangle and square

in Figs. 7(a) and 7(b)]. For T > TM ≈ 0.15, both T χorb
0 and

T χ
spin
0 exhibit a Curie plateau and the spectral function is

characterized by a pseudogap. Both spin and orbital degrees
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FIG. 9. [(a),(b)] The quasiparticle weight Z/Z (0) (replotted from Fig. 7 for reference), [(c),(d)] the scattering rate at the Fermi level
Im �(ω = 0), [(e),(f)] the coherence scale �∗/T , and [(g),(h)] the resistivity ρ, all plotted as functions of temperature on a linear (left) and
a logarithmic (right) scale for M1 (black), H1 (yellow), I2 (red), and W0 (blue). Symbols are defined as in Fig. 7. [(d),(h)] The dashed grey
guide-to-the-eye lines indicate FL behavior. [(e),(f)] The horizontal dashed grey lines mark �∗/T ∗ = 1. [(g),(h)] The horizontal solid grey line
marks the MRI limit defined via kFlmin ≈ 2π .

of freedom get screened simultaneously with the onset of a
Kondo resonance [cf. Figs. 4(g) and 4(i)], which is driven
by the DMFT self-consistency condition, in contrast to the
Kondo screening in H1. Interestingly, T onset

spin now corresponds
to the position of a maximum in χorb

0 [cf. black triangle
and black dashed curve in Figs. 7(c) and 7(d)]: the orbital
dynamics is strongly influenced by the spin screening and
true Pauli behavior is only reached for T < TFL in M1, thus
TFL = T cmp

spin ≈ T cmp
orb for Mott systems.

The behavior described above is summarized in Fig. 8(b).
In M1, Mott physics dominates and with increasing tem-
perature essentially destroys SOS physics by opening a
pseudogap already at low temperatures. Again, Z (T ) re-
flects these findings [cf. dotted black curve in Figs. 7(a)
and 7(b)]. Similar to H1, Z (T ) is small and constant for
T < TFL. But instead of a second HQP plateau as in H1,
Z (T ) has a maximum directly below TM and diverges for
T > TM.

C. Intermediate system I2

To corroborate our picture above, we similarly study I2
and W0 in Figs. 7(e)–7(h). I2 is rather close to the Mott
boundary [cf. diamond in Fig. 1(a)]. Thus, we observe Mott
signatures at high temperatures: for T > TM ≡ T onset

orb ≈ 0.25,
T χorb

0 shows Curie behavior [cf. red square in Figs. 7(e)
and 7(f)] and a pseudogap exists [cf. Figs. 5(g) and 5(i)].
However, due to the large J = 2, we find Hund signatures,
as well, at intermediate and low temperatures: orbital and
spin screening are slightly separated, T onset

orb > T onset
spin , and

Z (T ) features a plateau for T onset
spin < T < T onset

orb (between red
triangle and square). T onset

spin marks a maximum in χorb
0 [cf.

Figs. 7(g) and 7(h)], which is however less pronounced than
for M1. Full screening with Pauli behavior of both χorb

0

and χ
spin
0 is reached at T < TFL. Due to the large Hund’s

coupling, TFL (and accordingly Z (T = 0) [35]) is lowest in
I2 compared to H1, M1, and W0. In sum, I2 exhibits an
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intermediate system, showing a mixture of Hund and Mott
features.

D. Weakly correlated system W0

Finally, we consider the weakly correlated system W0, a
system without Hund’s coupling, J = 0 (cf. also Fig. 6). In
Figs. 7(e)–7(h), χorb

0 and χ
spin
0 behave similarly for W0, up to

a constant prefactor: χ
spin
0 /χorb

0 = 1.5. The FL regime extends
up to very high temperatures [Z (T ) is essentially constant in
an extended regime in Figs. 7(e) and 7(f)]. Both Hund and
Mott features are absent in W0.

VI. TRANSPORT PROPERTIES AND ENTROPY

In this section we add further perspective to the differences
and similarities of the four systems H1, M1, I2, and W0 by
discussing the temperature dependence of various transport
properties and the entropy. For completeness, Appendix D
collects some elementary definitions and relations involving
the quantities discussed below.

A. Scattering rate at the Fermi level

Figure 9 shows the temperature dependence of the quasi-
particle weight, the scattering rate, the coherence scale, and
the resistivity. We now discuss them in turn.

The scattering rate −Im �(ω = 0) is plotted as a func-
tion of temperature in Figs. 9(c) and 9(d). For T < TFL,
−Im �(ω = 0) follows FL behavior [cf. dashed grey guide-
to-the-eye line in Fig. 9(d)]. In H1, for T > TFL, the scattering
rate is small and shows a crossover to a rather flat behavior
in the HQP regime. By contrast, in M1, the scattering rate in-
creases strongly [cf. Fig. 9(e)], saturating at high temperatures
due to the presence of a pseudogap. I2 shows a mixture of both
the Hund and the Mott behavior. −Im �(ω = 0) first flattens
somewhat for TFL < T < T onset

spin , but then increases strongly
for T > T onset

spin , saturating as well at very high temperatures.
Notably, −Im �(ω = 0) is larger for I2 than for M1 for T <

0.1; this is caused by the larger J = 2 in I2. The scattering
rate in W0 is small and FL-like. It keeps growing slowly with
increasing temperature.

B. Coherence scale

In Figs. 9(e) and 9(f) we plot �∗/T , with the inverse QP
lifetime, defined as

�∗(T ) = −Z (T )Im �(ω = 0, T ). (6)

In a FL, i.e., for T � TFL, one expects �∗(T ) ∝ T 2. The
coherence scale T ∗ is defined as �∗/T ∗ ≡ 1 (cf. intercepts
with horizontal dashed grey line). Above T ∗ coherent Landau
QPs become short-lived and the FL picture breaks down.

H1 is characterized by a very broad maximum of �∗/T in
the NFL regime around T onset

spin . This behavior is reminiscent
of DFT + DMFT results for Sr2RuO4, where �∗/T keeps in-
creasing in a FL-to-NFL crossover regime above T ∗ ≈ 100 K
and finally reaches a plateau above 350 K [22]. By contrast,
M1 shows only a narrow plateau in �∗/T around T onset

spin before
it diverges [due to the divergence of Z (T )]. Again, I2 features
a mixture of both the Hund and the Mott behavior. �∗/T first

exhibits a maximum at T onset
spin , but then diverges above T onset

orb .
In W0, �∗/T is very small and grows linearly with increasing
temperature, implying �∗ ∝ T 2.

C. Resistivity

The resistivity ρ(T ) is shown in Figs. 9(g) and 9(h). In the
FL regime, we find T 2 behavior (though this is hard to resolve
very accurately). Equivalently to the findings for a hole-doped
Mott insulator [76], we observe for H1 and I2 that in the
regime TFL < T < T onset

spin , ρ(T ) first increases approximately
linearly with a negative intercept, then it shows a slope-
decreasing knee-like feature, above which a linear increase
with positive intercept sets in. The inset of Fig. 9(g) highlights
this for I2 using grey dashed lines, which approximate the
behavior of the red curve. For H1 (yellow curve), ρ(T ) keeps
increasing linearly up to the highest temperature plotted, and
thus behaves qualitatively in the same way as the hole-doped
Mott insulator of Ref. [76]. This is an intriguing similarity,
considering that both systems are assumed to be governed
by resilient QPs in their NFL regime. Moreover, our findings
for H1 are reminiscent of the DFT + DMFT simulations [9]
and measurements [66] of the resistivity in iron pnictides. In
contrast to H1, for I2 a second (slope-increasing) knee occurs
at T onset

spin , beyond which ρ(T ) grows rapidly with increasing
temperature until it saturates above T onset

orb in the presence of a
stable pseudogap. For M1 (black curve), we do not observe a
slope-decreasing knee, but instead a slope-increasing knee at
T ≈ 0.08, above which ρ(T ) increases rapidly with growing
temperature [cf. Fig. 9(h)]. W0 is again characterized by a
large FL regime, reaching up to very high temperatures. For
all but the largest temperatures, ρ(T ) is much smaller for
the system with J = 0 than for those with finite J . (At very
high T , the resistivity ρ(T ) of W0 increases past that of
H1; the reason is that the scattering rate −Im�(ω = 0, T )
of W0 likewise increases past that of H1 [cf. Figs. 9(c) and
9(d)], reflecting the fact that the former has a larger bare gap,
�W0

b = 3.5 vs. �H1
b = 1). We remark that for all systems ρ(T )

crosses the Mott-Ioffe-Regel (MIR) limit, ρMIR [cf. horizontal
solid grey line in Figs. 9(g) and 9(h) and Appendix D 1 for
a definition of ρMIR] continues to grow above this limit. As
expected, M1 crosses the MIR limit at a smaller temperature
scale than H1. Notably, I2 crosses the MIR limit at an even
lower scale although Coulomb interactions are larger in M1
than in I2. This strong correlation effect is due to Hundness,
i.e., large J .

To conclude this subsection, we remark that an analysis of
the temperature dependence of the optical conductivity σ (ω)
for I2 is presented in Appendix C.

D. Effective chemical potential of quasiparticles

We now turn to Fig. 10. We first study the evolution of the
effective chemical potential for QPs, μeff = μ − Re �(ω =
0), in Figs. 10(a) and 10(b). For T < TFL, μeff is constant,
i.e., Luttinger pinning holds (cf. Sec. 3.10.2 of Ref. [73] for
details). Interestingly, for the finite-J systems μeff increases
towards 0 with increasing temperature, TFL < T < T onset

spin , i.e.,
towards an effective half-filling of the system. In H1, this
trend is retained above T onset

spin until μeff approaches a plateau
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FIG. 10. [(a),(b)] The effective chemical potential μeff, [(c),(d)] the thermopower α, and [(e),(f)] the lattice entropy Slatt (solid) and the
impurity contribution to the entropy Simp (dashed), all plotted as functions of temperature on a linear (left) and logarithmic (right) scale for M1
(black), H1 (yellow), I2 (red), and W0 (blue). Symbols are defined as in Fig. 7. In (f), the grey dash-dotted curves indicate FL behavior for
Simp and Slatt, respectively. We remark that wiggles in Slatt are an artefact due to few data points used in its computation.

in the mixed-valence regime. This behavior fits to the SOS
screening picture (cf. Figs. 3 and 8) where, above TFL, spins
are gradually unscreened to form an effective 3/2 spin (which
implies effective half filling), while the orbitals are still in
an orbital singlet for T < T onset

spin . For T > T onset
spin , the orbitals

start to get unscreened while large quasi-free spins persist.
In M1, μeff drastically reduces for T > TM, reflecting the
formation of a pseudogap. In I2, μeff first increases markedly
almost up to 0 and then decreases for T > T onset

orb , similarly to
M1. By contrast, for J = 0, W0 directly decreases above TFL.
The substantial continuous increase of μeff(T ) with increas-
ing temperature towards half-filling, i.e., an inflating Fermi
volume, is clearly connected to the existence of a finite J
in the 3HHM, while the decrease of μeff(T ) with increasing
temperature is a Mott feature.

E. Thermopower

In Figs. 10(c) and 10(d) we show the thermopower (See-
beck coefficient) α(T ) [as defined in Eq. (D5)] and compare
the 3HHM results to the thermopower of Sr2RuO4 reported in
Ref. [42]. In the FL regime, the thermopower of the 3HHM
at nd = 2 shows an electron-like decrease, i.e., α(T ) < 0.
This is qualitatively consistent (modulo a particle-hole trans-
formation) with the hole-like increase, α(T ) > 0, observed
for Sr2RuO4, which in a 3HHM-type description would cor-
respond to nd = 4. However, our data is not accurate and

dense enough to unveil FL behavior, α(T ) ∝ T . Similar to the
(broad) maximum in α(T ) of Sr2RuO4 around 300 − 500 K,
we observe a minimum in the crossover regime TFL < T <

T onset
spin . In H1, we further find a saturation (broad maximum)

well above T onset
spin . In I2 and M1, a maximum occurs above

T onset
orb , as well. Overall, the behavior of α(T ) is similar for all

systems with finite J . However, the minimum is much more
extended and lies at higher energies in H1 compared to M1
[cf. Fig. 10(c)]. In contrast, W0 with J = 0 does not exhibit
any minimum (or maximum) in α(T ). Here, the thermopower
decreases in a FL-like fashion in an extended temperature
range.

In sum, we conclude that H1 reflects the findings of Ref.
[42]. Using t ≈ 5000 K (a value that is estimated from a com-
parison of the model bandwidth with the realistic bandwidth
of Sr2RuO4 [7]), the minimum of α(T ) of H1 is indeed in
the same temperature range (300 − 500 K) as the maximum
observed for Sr2RuO4. Our results support the suggestion
made in Ref. [42] that this unusual feature in α(T ) can be
associated with quenched orbitals and fluctuating spins as
present in the two-stage SOS screening process. To be more
precise, the minimum of α(T ) in the 3HHM corresponds to
the crossover regime, where the spins get gradually screened
to form coherent Landau QPs. Thus, this minimum in α(T ) is
observed together with the formation of the step-like ARPES
feature [cf. Fig. 2(d)].
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F. Entropy

We conclude our study of Hund and Mott features in the
3HHM by calculating the lattice entropy for H1, M1, I2, and
W0. For I2, we additionally calculate the impurity contribu-
tion to the entropy [cf. Figs. 10(e) and 10(f)]. We start our
discussion with I2. For the computation of the lattice entropy
Slatt(T ), we use Eq. (D8). The impurity contribution to the en-
tropy Simp(T ) is obtained with Eq. (D7). Remarkably, we find
that Slatt(T ) is larger than Simp(T ) in the whole temperature
range 0 < T < 1, while both entropies behave qualitatively
in the same way. The difference between Slatt(T ) and Simp(T )
already arises in the FL regime, where the entropy is given as

S(T ) = γ T (7a)

γ = 2Ncπ
2

3Z . (7b)

When computing the lattice or impurity entropies, Slatt or
Simp, the parameter Z should be equated to the mass renor-
malizations, Zlatt or Zimp, derived from the lattice or impurity
Green’s functions, respectively. The former is given by Zlatt =
[1 − ∂ωRe �(ω)|ω=0]−1. The latter, found by a first-order
expansion of Gimp(ω) = [ω − εd − �(ω) − �(ω)]−1, where
�(ω) is the self-consistent hybridization function, is given by
Zimp = [Z−1

latt − ∂ωRe �(ω)|ω=0]−1 (cf. Sec. 3.9 in Ref. [73] for
details). Obviously, DMFT generically yields Zlatt < Zimp in
the FL regime (when using a Bethe lattice). This implies that
Slatt > Simp, as found numerically above. Although this insight
can be simply derived, we are not aware of any previous
results that explicitly demonstrated this quantitative difference
of the impurity and the lattice entropy. Its implication is that
Simp can not be regarded as a quantitatively reliable proxy
for Slatt.

Nevertheless both entropies for I2 reveal the two-stage
SOS screening process. For T > T onset

orb , I2 is characterized by
a pseudogap and both the spin and orbital degrees of free-
dom are unscreened, resulting in Slatt > ln(9). [Slatt slightly
exceeds ln(9) because of remaining active charge fluctua-
tions in the pseudogap regime]. Simp crosses ln(9) at slightly
higher temperatures. For T < T onset

orb , Slatt(T ) and Simp(T ) de-
crease continuously with decreasing temperature, reflecting
the screening of orbital degrees of freedom, while spin degrees
of freedom are still quasi-free. We observe that Slatt(T ) crosses
ln(3) below T onset

spin , while Simp(T ) crosses ln(3) at about T onset
spin .

The value ln(3) is associated with a spin triplet and an orbital
singlet. For T < TFL we find FL behavior for both Slatt and
Simp, indicated by the dash-dotted grey fits, respectively [cf.
Fig. 2(f)].

Overall, we clearly observe that the two-stage SOS screen-
ing process is a continuous process: the entropy continuously
decreases with decreasing temperature, i.e., no stable NFL
fixed point is reached in the system (this was already pointed
out in the Supplemental Material of Ref. [33]). Instead, we are
faced with an intriguingly complex crossover behavior.

The two-stage SOS screening process is also manifest in
Slatt for H1 and M1. While the qualitative behavior is similar,
quantitative details differ. In the FL regime, Slatt is smaller for
H1 than for M1, since Slatt ∝ T/Zlatt (and H1, having smaller
U , has less mass enhancement, i.e., larger Zlatt). Above TFL,
Slatt increases strongly for H1, leading to a very large entropy

[> ln(9)] above T onset
spin . We interpret this as a consequence of

large charge fluctuations due to small Coulomb interactions.
By contrast, Slatt for M1 approaches ln(9) above TM and only
slightly exceeds ln(9) for very high temperatures.

Very recently, a detailed study of the temperature depen-
dence of the entropy and specific heat of a three-band Hubbard
model has been performed [80]. This study is much more
comprehensive than ours. Their results are not directly compa-
rable to ours, although, since their interaction term contained
only density-density terms but no spin-flip terms.

VII. CONCLUSIONS

A. Fingerprints of Hund versus Mott physics

In this paper we have used DMFT + NRG to investi-
gate the normal state properties of the degenerate three-band
Hubbard-Hund model (3HHM) with focus on 1/3 filling, a
minimal model with relevance for Hund metals. Our paper
has been based on the following key question: What are the
decisive fingerprints of a Hund metal as opposed to a Mott-
correlated metal? We conclude by giving a summary-style
overview of the fingerprints found in the present paper.

At T = 0, finite J induces an intertwined two-stage SOS
Kondo-type screening process in the 3HHM at nd = 2, in
which orbital and spin degrees of freedom are explicitly
coupled: below Torb, the orbital degrees of freedom form
an orbital singlet through the formation of a large effective
Hund’s-coupling-induced impurity spin of 3/2—including a
bath spin degree of freedom; and below Tspin, the spin-3/2 is
fully screened by the three bath channels of the 3HHM. In
the frequency domain this screening process results in three
characteristic regimes: a FL regime, a NFL crossover regime,
and a NFL HQP regime. At zero temperature, clear signatures
of SOS include: (i) a low-frequency FL regime with a narrow
“needle”-formed SU(2) Kondo peak in the local density of
states, a low-frequency Landau QP band with a small slope
given by Z in ARPES spectra, FL scaling of the self-energy,
a Drude peak in the optical conductivity (cf. Appendix C);
(ii) a NFL crossover regime signaling the deviation from FL
behavior characterized by a step-like feature in the dispersion
at ω < 0 and a kink at ω > 0 [accordingly, Re �(ω < 0)
exhibits a pronounced maximum]; and (iii) an intermediate-
frequency NFL “Hund quasiparticle” (HQP) regime with a
SU(3) Kondo resonance in the local density of states, also
identifiable as excess spectral weight in the optical conduc-
tivity (cf. Appendix C) and as a resilient slightly particle-hole
asymmetric steep “HQP band” in ARPES spectra (waterfall
structure), which is extended over a large frequency range,
where the scattering rate is only weakly energy dependent
[e.g., there is a shoulder in Im �(ω < 0)]. We remark that the
particle-hole asymmetry of the 3HHM leads to two distinct FL
scales in the frequency domain and to very different features
in the SOS window at negative and positive frequencies (e.g.,
in ARPES spectra). These SOS features (cf. Fig. 11 for an
overview) are generic and are found for both the metallic H1
and the metallic M1, since SOS physics is essentially impurity
physics [33]. However, there is an important difference.

A Hund metal, such as H1, lies far from any MIT phase
boundary. Strong correlations are primarily induced by the
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FIG. 11. Overview of important SOS features in the 3HHM for nd = 2 at T = 0. Features are described as functions of decreasing
frequency.

two stage SOS Kondo-type screening, which leads to the
localization of spins rather than charges. The incoherent SOS
window is extended over a broad range of energies, reaching
up to bare excitation scales. In the 3HHM, at high frequen-
cies, the SU(3) Kondo resonance (shoulder) merges with the
Hubbard bands. At very low temperatures, the local density of
states exhibits a two-tier quasiparticle peak on top of a broad
incoherent background.

By contrast, Mott-correlated metals with ∼1/3 filling such
as V2O3 [7], represented in our study by M1, are close to the
MIT phase boundary. Thus, at zero temperature, both Torb and
Tspin are strongly reduced compared to bare excitation scales
and the SOS window is very small, i.e., a narrow QP peak
exists between well-separated pronounced Hubbard bands.

In Hund metals, the SOS screening process also governs
the temperature dependence of Hund metals, up to highest
temperatures. Most importantly, we argue that the nature of
the incoherent transport regime is governed by resilient HQPs,
while the FL regime is described in terms of Landau QPs. In
Ref. [7], we have identified two different temperature scales
for the onset of orbital and spin screening in Hund met-
als, T onset

orb and T onset
spin , respectively. For T onset

spin < T < T onset
orb ,

HQPs dominate the high-temperature physics and lead to a
Curie-like static spin susceptibility (while the static orbital
susceptibility is a decreasing function of temperature) and
a resilient QP peak (without substructure) in the local den-
sity of states. In the 3HHM, we find a robust HQP band
in ARPES spectra, an additional HQP plateau in Z (T ), a
rather flat (electron-like) scattering rate, a linear resistivity
exceeding the MIR limit, and an inflated Fermi volume (μeff

increases with increasing temperature). At very high temper-
atures, mixed-valence physics additionally comes into play.
Due to the special SOS screening process, the spins can only
get screened as soon as the orbitals are fully screened at T cmp

orb ,
thus T onset

spin ≈ T cmp
orb . For TFL < T < T onset

spin also the spins are
gradually screened, eventually resulting in the full screening
of both degrees of freedom and thus in a FL below TFL =
T cmp

spin . The spin screening is signalled by the formation of a
step-like feature in ARPES spectra, while the completion of
orbital screening is characterized by a Pauli-like orbital sus-

ceptibility. In this regime, the thermopower has a minimum.
A corresponding feature in the thermopower is observed in
experiments for ruthenates [42].

By contrast, in Mott-correlated metals, with increas-
ing temperature, SOS features (and HQPs) only survive at
very low temperatures, whereas the behavior at higher tem-
peratures is fully governed by classical Mott physics (as
known from the one-band Hubbard model): the DMFT self-
consistency condition opens up a pseudogap in the local
spectrum by localizing the charges. Conversely, with de-
creasing temperature, spin, and orbital degrees of freedom
get screened simultaneously at the temperature scale, TM =
T onset

orb ≈ T onset
spin , with the onset of a Kondo resonance, driven

by DMFT. Only below TFL = T cmp
spin ≈ T cmp

orb both the spin and
the orbital degrees of freedom get fully screened.

All important temperature-dependent signatures for H1
and M1 are summarized in Fig. 12.

In sum, we shed light on two qualitatively different screen-
ing routes from the atomic degrees of freedom to the emerging
heavy QPs in strongly correlated systems, driven by Hund-
ness or Mottness, and corroborated that Hundness, i.e., SOS
Kondo-type screening, dominates the anomalous physics of
Hund metals in terms of resilient HQPs.

B. Physics beyond the minimal three-band
Hund-Hubbard model

In the present paper we purposefully focused on the
3HHM, the simplest possible Hamiltonian capturing the
essence of Hund and Mott physics. We thereby neglected
several complications occurring in real materials. Let us now
briefly comment on these. First, to fully exploit the power
of the NRG, we used a Coulomb interaction matrix with
U(1)ch × SU(2)spin × SU(3)orb symmetry, avoiding more re-
alistic parametrizations of the Coulomb interaction such as
the Kanamori parametrization. Second, we neglected the spin-
orbit coupling, which reduces the symmetry to U(1)ch ×
SU(2)tot or even weaker symmetries, where “tot” stands for
total angular momentum. The spin-orbit coupling terms have
been shown to be irrelevant in the renormalization group sense
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FIG. 12. Overview of important Hund and Mott features in the temperature dependence of various physical quantities. Hund-related
features are marked yellow, Mott-related features are marked grey. Common features are on white background. Note that the temperature
scale is only schematic. Features are described as functions of decreasing temperature.

[81], i.e., they do not affect the system’s low-energy behavior
unless the coupling strength is larger than Torb. Third, we ne-
glected crystal field splittings. Fourth, we took a very simple
bipartite Bethe lattice, thereby ignoring effects arising from
realistic electronic dispersions and Fermi surfaces. Spin-orbit
coupling, crystal fields, and realistic band structures all bring
about important physical effects not present in our model.
These include orbital differentiation and even orbital-selective
Mott transitions (see, for example, Refs. [60,82–85]), where
one orbital becomes much more correlated than others or even
completely localized. Incorporating such realistic aspects is
the focus of intensive current investigations in multiple ma-
terials and models (see, for example, Refs. [86–88]). Such
studies will benefit from the deeper understanding, achieved
in our paper, of the finite-temperature Hund metal state and

how it is modified as the Mott transition is approached. In this
sense, our paper sets the stage for future studies incorporating
additional material-specific physical effects.

Finally, an important aspect that was not studied in our
paper is the appearance of symmetry-broken phases in Hund
metals at low temperatures, e.g., magnetic [89,90], insulating
[91], and superconducting [41,74,92,93] phases. Generaliza-
tions and extensions of the DMFT + NRG approach used here
could be developed to achieve a deeper understanding of these
phases, and how they emerge from the Hund metal state.

In the long run, such studies would also have to include
the effects of nonlocal correlations and nonlocal interactions,
neglected here, e.g., by using nonlocal extensions of DMFT
[94–104]. Nonlocal correlations are generally expected to be
weaker in Hund metals than Mott systems [105]. We also
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expect nonlocal interactions to be less important as the screen-
ing of the nonlocal interactions is more efficient in metallic
systems. Nevertheless, clarifying how nonlocal correlations
and nonlocal interactions affect the physics of Hund metals
is a very interesting question, which is only beginning to be
studied [106].

C. Experimental signatures of two-stage screening

Although our minimal 3HHM neglects numerous ef-
fects relevant for realistic materials, as discussed above,
the physics, which it does capture, in particular two-stage
screening and SOS, is expected to be robust. Indeed, in-
dications of two-stage screening of electrons have been
found in several experimental studies. For example, they
were identified in various members of the iron pnictides and
chalcogendies by means of infrared spectroscopy [68,107];
resistivity, heat-capacity, thermal-expansion, susceptibility
measurements [66,67]; quasiparticle scattering interference
[14]; proximity effect [50]; and ARPES [108,109]. A second
prototypical system of a Hund metal is Sr2RuO4, where op-
tical conductivity [77], thermopower [42], and ARPES [78]
provide multiple signatures of Hund metal behavior. We hope
that the present paper of a minimal three-band model, con-
taining the minimal ingredients to yield Hund and/or Mott
physics, will assist future experimental studies in attributing
observed features to either Hund rule effects (Hundness) or
charge-blocking effects (Mottness).
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APPENDIX A: ASYMMETRY OF
FREQUENCY-DEPENDENT QUANTITIES AT

ZERO TEMPERATURE

In this Appendix, we investigate in more detail the particle-
hole asymmetry of the 3HHM at zero temperature discussed
in the main text. In particular, we look at the frequency-
dependence of the self-energy, the local spectral function, the
dynamical spin and orbital susceptibilities, the optical conduc-
tivity, and the kinetic energy.

A first detailed temperature-dependent study of the impli-
cations of particle-hole asymmetry in Hubbard-type models
was given in Ref. [76] for a one-band hole-doped Mott in-
sulator, i.e., for a model with only one type of degrees of
freedom (spins). It was shown that a well-defined QP peak
of “resilient” QP excitations exists above the FL scale TFL and
that it dominates an intermediate incoherent transport regime
up to TMIR. Above this temperature the resistivity exceeds

the MIR limit (cf. Appendix D 1 for a definition) and the
resilient QPs eventually disappear, or more specifically, the
QP peak merges with the lower Hubbard band. Interestingly,
the resilient QPs are longer-lived for electron-like than for
hole-like excitations, due to the particle-hole asymmetry in
the model. This asymmetry further leads to different scales,
ω−

FL and ω+
FL, below which FL behavior is found at negative

and positive frequencies at T = 0.
In Fig. 13 we revisit the self-energy �(ω), the spec-

tral function A(ω), and the orbital and spin susceptibilities,
χorb(ω) and χspin(ω) [Eqs. (5)], at T = 0. We consider system
I2 (�b = U − 2J = 3.5, J = 2), which features a broad SOS
window, well separated from the Hubbard side bands. We
start with a detailed investigation of the FL regime (cf. left
panels of Fig. 13) and then concentrate on the SOS window
(cf. right panels of Fig. 13). Due to the universal behavior of
the model with respect to �b (respectively U ) (cf. Fig. 10 of
Ref. [35]) the following findings are generic in the metallic
regime of the 3HHM, but can occur on very different energy
scales (depending on the value of �b).

Asymmetry in the FL regime. The left panels of Fig. 13
zoom into the frequency regime below Tspin (marked by open
squares in the right panels). Similar to the results of Ref. [76]
we observe in Figs. 13(a), 13(c), and 13(e) that FL behavior
holds up to different frequency scales, ω−

FL and ω+
FL, at ω < 0

and ω > 0 (cf. vertical red dash-dotted lines), respectively.
These FL scales have been identified in A(εk, ω) in the main
text. The FL behavior is indicated by the red dashed curves
in Figs. 13(a), 13(c), and 13(e): a parabola for −Im �(ω) in
panel (a), a linear fit for Re �(ω) in panel (c), and a parabola
for A(ω) in panel (e). Clearly, the black DMFT + NRG results
deviate earlier from the red FL curves on the positive fre-
quency side, i.e., at a lower scale ω+

FL ≈ 1
3ω−

FL. Furthermore,
we find that the position of the maximum of A(ω) approxi-
mately coincides with ω+

FL.
In Figs. 13(g) and 13(i) we show the imaginary and the

real parts of the dynamical orbital and spin susceptibilities,
χorb(ω) and χspin(ω) [cf. Eq. (5)], respectively. The imaginary
part of the dynamical susceptibility is defined as χ ′′(ω) ≡
− 1

π
Im χ (ω), the real part as χ ′(ω) ≡ Re χ (ω). In contrast to

�(ω) and A(ω) these quantities are particle-hole symmetric.
The imaginary parts of both the orbital and spin susceptibil-
ities follow the red dashed linear FL fit only for |ω| � ω+

FL.
Accordingly, the real part of the spin susceptibility χ ′

spin(ω)
also exhibits parabolic FL scaling in this regime, while the
real part of the orbital susceptibility χ ′

orb(ω) is essentially
constant.

In this paper we define the orbital and spin Kondo scales,
Torb and Tspin (cf. open squares and filled circles in Fig. 13),
below which Kondo screening of the local orbital or spin
degrees of freedom sets in, as the peak positions of χ ′′

orb(ω)
and χ ′′

spin(ω), respectively. As usual for crossover scales, other
definitions are possible, which would differ from ours by
constant prefactors.

APPENDIX B: ON THE DEFINITION OF
CROSSOVER SCALES

Unlike a phase transition occurring at a well-defined crit-
ical temperature, spin screening is a crossover phenomenon,
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FIG. 13. [(a),(b)] The imaginary part Im �(ω) and [(c),(d)] the real part Re �(ω) of the self-energy; [(e),(f)] the local spectral function
A(ω); [(g),(h)] the imaginary part χ ′′(ω) and [(i),(j)] the real part χ ′(ω) of the spin (solid) and orbital (dashed) susceptibilities are plotted versus
frequency for I2 (�b = 3.5, J = 2) at T = 0. Left panels are zooms into the FL regime, whereas their insets show the quantities on a large
frequency range. The SOS window is presented in the right panels. Dashed red fits reveal FL behavior for Im �(ω), Re �(ω), and A(ω) in the
asymmetric range, ω−

FL < ω < ω+
FL, with ω+

FL ≈ 1
3 ω−

FL (indicated by vertical dash-dotted red lines) and for the orbital and spin susceptibilities
in the symmetric range, |ω| < ω+

FL. The vertical solid yellow line at ω < 0 denotes the energy scale ω−
cr of the maximum in Re �(ω) at ω < 0.

In (b), ω+
cr = − 1

3 ω−
cr marks the kink in Re �(ω) at ω > 0. Filled dots and open squares mark the orbital and spin Kondo scales, respectively.

The grey area in (a) indicates a systematic error in Im �(ω) (cf. Sec. 3.2 of Ref. [73] for details).

which cannot be described in terms of just a single number.
This was understood very early in the classic work of K.
Wilson [110]. To set the stage for the discussion of the Hund-
Mott problem discussed in the main text, we here summarize
some of Wilson’s results for the temperature dependence of
the impurity contribution to the spin susceptibility χimp(T ).
(For a detailed discussion, see Section IX of Ref. [110] or
Section 4.6 in Hewson’s book [111]).

Wilson studied the single-impurity Kondo model, involv-
ing a single spin- 1

2 impurity coupled to a conduction band
with a featureless (flat) density of state. He considered the
weak-coupling limit, where the impurity-bath exchange cou-
pling JK is much smaller than the bandwidth W . He showed
that in this limit the temperature dependence of physical quan-
tities can be described in terms of a crossover scale, the Kondo
temperature TK, and a universal scaling function F (T/TK ).
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For example χimp(T ) has the form [112–114]

χimp(T ) = F (T/TK )

T
. (B1)

The meaning of Eq. (B1) is that as long as the temperature is
much smaller than the bandwidth, T  W , the dependence of
χimp(T ) on the model parameters JK and W enters only via the
scale TK. Still, this does not mean that spin screening “occurs
at TK”, as is sometimes asserted in the literature. Both the scale

TK and the scaling function F are needed to characterize the
full crossover from an unstable high-temperature fixed point
to a stable low-temperature fixed point.

Wilson computed the scaling function F numerically using
his newly-developed numerical renormalization group ap-
proach. Fitting his numerical results, he found that χimp(T )
is well described by the following three functional forms,
applicable for high, intermediate, and low temperatures, re-
spectively (cf. Eq. (4.53) of Ref. [111]):

χimp(T ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4T

[
1 − 1

ln(T/Tk ) + ln[ln(T/Tk )]
2[ln(T/Tk )]2 + O

(
1

[ln(T/Tk )]3

)]
, (T > T2), (B2a)

0.68
4

1
T +√

2Tk
, (T1 < T < T2), (B2b)

0.4132
4Tk

[
1 − O

(
T
Tk

)2]
, (T < T1). (B2c)

Several comments are in order. First, Wilson defined TK via a
high-temperature condition, namely that the expansion (B2a)
of T χimp(T ) should not contain a [ln(T/TK )]−2 term. Notice,
however, that the definition of TK in terms of bare parameters
is not unique, as it depends on the cutoff procedure, as dis-
cussed by Wilson himself or in Hewson’s book [111]. Indeed,
a change in the definition of TK can always be compensated
by a change in the scaling function F .

Second, T2 and T1 are the scales where deviations from
the high- or low-temperature forms, (B2a) or (B2c), first be-
come noticeable when T is decreased below T2 or increased
above T1, respectively. Their values depend on the definition
of TK; for that of Wilson, they are given by T2 = 16TK and
T1 = 0.5TK (see Eq. (IX.99) in Ref. [110] and Hewson [111]).
In the parlance of the main text of this paper, they may be
viewed as the onset and completion of spin screening scales,
T onset

spin and T cmp
spin , respectively.

Third, we discuss the three functional forms given above.
The high-temperature fixed point describes an essentially
free local moment. Correspondingly, the high-temperature
susceptibility, Eq. (B2a), shows Curie behavior χimp ∼ 1/T
with logarithmic corrections due to a marginally relevant
operator. The crossover regime of intermediate temperatures
shows Curie-Weiss behavior, Eq. (B2b). The overall pref-
actor, 0.68/4, is about 30% smaller than the prefactor 1/4
of the pure Curie law (B2a), reflecting the renormalization
of the impurity magnetization due to the onset of screening
with lowering temperature. The low-temperature fixed point
describes FL excitations scattering off a fully screened impu-
rity. Correspondingly, the low-temperature susceptibility, Eq.
(B2c), approaches a constant for T/TK → 0, with a (T/TK )2

correction caused by a leading irrelevant operator. The zero-
temperature value of 4TKχimp(0) = 0.4132, known as the
Wilson number, is a characteristic property of the crossover
function, linking properties of the high- and low-temperature
fixed points.

Fourth, we note that an exact expression for the scal-
ing function F was later obtained using the Bethe ansatz,
[115–117]. In particular, Andrei and Lowenstein obtained an
analytical expression for the Wilson number [115]. The defini-
tions of TK used in the Bethe ansatz papers differ from that of

Wilson, but the universal behavior of the susceptibility agrees
with Wilson’s solution. The universality results from two
facts: first, the impurity model is studied at very weak cou-
pling (JK  W ), and second, there is only one (marginally)
relevant operator perturbing the unstable fixed point [111].

Fifth, we note for completeness that Wilson’s version of
our Eq. (B2b), namely his (IX.99), contains a factor 2 instead
of

√
2 in the denominator. That is a typo, first noticed by

Mel’nikov [118], see p. 503 of Ref. [117], and also Ref. [111],
below Eq. (4.60).

To conclude our summary of Wilson’s results on χimp(T ),
we emphasize again that spin screening is a gradual crossover
phenomenon, even in the simple context of the Kondo impu-
rity model. To describe the crossover quantitatively, it does
not suffice to specify just a single number for the crossover
scale, even when only a single scale is dynamically generated.
Instead, one also has to specify which observable and which
scaling function was used, and the precise criteria used to
define the crossover scale.

Now let us discuss the relevance of the above arguments
for the present paper. DMFT maps the Hund-Hubbard lattice
model that we consider in the main text to a quantum impurity
model with a self-consistent bath. The bath is described by a
hybridization function, which, in contrast to the pure Kondo
model studied by Wilson, has a nontrivial structure. Moreover,
this structure depends on temperature. Nevertheless Wilson’s
NRG approach for solving impurity models has been general-
ized to accommodate these complications, and indeed is now
a widely-used impurity solver for DMFT.

Some of the terminology introduced by Wilson and re-
viewed above can also be used to understand some aspects
of the solution of the DMFT equations and to illuminate
the physics of the problem. For Hund metals, we have
shown in Ref. [33] that an impurity with a rigid (not
self-consistent) bath is a good guide to the full DMFT so-
lution. Moreover, we argued there that Hund metals can
be characterized by the criterion that the crossover scales
for spin and orbital screening differ strongly, Tspin  Torb,
implying SOS, to identify a Hund metal. In that work,
as here, we defined Tspin and Torb as the energy scales
at which the imaginary parts of the zero-temperature dy-
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namical spin and orbital susceptibilities are maximal. We
emphasize, although, that the occurrence or not of SOS does
not depend on the criteria used to define these crossover
scales. For example, the onset-of-screening scales discussed
in Sec. V A likewise yield T onset

spin  T onset
orb for the Hund

system H1.
In Ref. [7], we refined our discussion of crossover scales by

analyzing the temperature dependence of the spin and orbital
susceptibilities, χspin(T ) and χorb(T ). We introduced onset-
of-screening scales T onset

spin , T onset
orb below which deviations (say

by x1%) from pure Curie behavior set in, and completion-
of-screening scales T cmp

spin , T cmp
orb above which deviations (say

by x2%) from pure Pauli behavior set in. They correspond
to Wilson’s T2 and T1 scales, respectively. These operational
definitions have some degree of arbitrariness (through the
choices of x1 and x2; in fact, these were not even specified in
Ref. [7]). However, they have the advantage that they can also
be applied when the crossover function in the intermediate
temperature regime does not have a simple analytical form,
a situation generally encountered for self-consistent DMFT
impurity models. We argued in Ref. [7] that the onset tem-
peratures are useful to distinguish Mott systems from Hund
systems: in Hund systems we have T onset

spin  T onset
orb , but in

Mott systems T onset
spin � T onset

orb , since the onset of spin and or-
bital screening with decreasing temperature occurs around the
same temperature TM at which a quasiparticle peak begins
to emerge from the Mott pseudogap. Again, this distinction
between Hund and Mott systems does not depend on the
precise criteria used to define the onset scales.

In the main text of the present paper, we refined our
discussion of crossover scales somewhat more. We ex-
ploited the freedom in the choice of definition of the
onset and completion scales (i.e., of x2 and x1) to reduce
the number of parameters by defining T cmp

orb � T onset
spin for

Hund systems and T cmp
orb � T cmp

spin for Mott systems. These
choices, compatible with our data for H1 and M1, have
simple physical interpretations: For Hund systems, featur-
ing SOS, spin screening sets in once orbital screening is
complete. By contrast, for Mott systems, spin and orbital
screening go hand in hand: just as both onset-of-screening
scales coincide with the emergence of a quasiparticle peak
from the Mott pseudogap and therefore match, T onset

spin �
T onset

orb � TM, the completion-of-screening scales match, too,
T cmp

orb � T cmp
spin .

As a final remark, we note that one may attempt
[42,119,120] to characterize the spin susceptibility χ0(T ) of
Hund systems using the Curie-Weiss (CW) form χ CW

0 (T ) =
μ/(T + θ ), with θ serving as a crossover scale. The CW
form applies if a plot of 1/χ0(T ) vs T yields a straight
line. Figures 14(a) and 14(b) show such plots for the spin
susceptibilities of M1 and H1. The resulting curves show
clear deviations from linear behavior, in particular for large
T . Therefore, CW fits (dotted lines) characterize these sus-
ceptibilities only fairly crudely (see also Refs. [119,120]).
For completeness, Figs. 14(c) and 14(d) show analogous plots
of the orbital susceptibilities. These curves are strongly non-
linear in the low-temperature regime corresponding to the
completion of orbital screening, where the CW form is not
applicable at all.

FIG. 14. Testing the applicability of a Curie-Weiss (CW) form
for various susceptibilities by replotting the data from Fig. 7(c) as
1/χ0(T ) vs T . The top row shows the spin susceptibilities of M1
(left) and H1 (right) using solid lines, the bottom row the same for the
orbital susceptibilities, using dashed lines. Dotted lines show Curie-
Weiss fits to those data points (shown using crosses) for temperatures
higher than the temperature at which χ0(T ) is maximal.

APPENDIX C: TEMPERATURE DEPENDENCE OF
OPTICAL CONDUCTIVITY

We next study the optical conductivity σ (ω) [cf. Eq. (D1)]
again for system I2. σ (ω) is plotted on a linear and a loga-
rithmic frequency scale in Figs. 15(a) and 15(b), respectively.
For comparison, we also show data for W0 (�b = 3.5, J = 0)
computed at T = 0.15, which is still in the FL temperature
regime. At T = 0 we expect a FL Drude peak for I2. However,
the data (cf. blue curve) is not accurate enough to resolve
the FL behavior at very low frequencies, ω < ω+

FL [cf. dis-
cussion of blue and red curves in Fig. 3.1(b) in Sec. 3.2
of Ref. [73]]. In the low-frequency NFL crossover regime,
here approximately given by ω+

FL � ω � |ω−
cr|, we observe

a power-law flank in σ (ω) ∝ ω−α , with α ≈ 7/5 at T = 0.
Notably, for ω > |ω−

cr| a broad HQP shoulder develops around
Torb at T = 0.

With increasing temperature but below T � T onset
spin = 0.1,

spin degrees of freedom are gradually unscreened in the
system while the orbitals are still screened. This process is
reflected in σ (ω): with increasing temperature spectral weight
is shifted from low frequencies into the HQP shoulder, while
the high-frequency flank of σ (ω) remains unaffected. Note
that the HQP shoulder is absent for J = 0 [cf. black curve in
Figs. 15(a) and 15(b)]. At higher temperatures (T > T onset

spin )
the HQP shoulder gradually decreases in height, reflecting
the unscreening of the orbital degrees of freedom in I2. The
second shoulder at bare energy scales is a Hubbard-band
feature, which is also present for J = 0. We suspect that the
HQP shoulder at ω > |ω−

cr| is an optical fingerprint of the HQP
band [SU(3) Kondo resonance in A(ω)] and can indeed be in-
terpreted as Hund’s-coupling-induced excess spectral weight,
caused by resilient QPs, as suggested in Ref. [77]. Further,
we remark that our results (for T � T onset

spin ) are reminiscent of
recent optical conductivity measurements [68] for KFe2As2.
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FIG. 15. [(a),(b)] The optical conductivity σ (ω) and the kinetic energy K (�) are plotted for various temperatures on [(a),(c)] a linear and
[(b),(d)] a logarithmic frequency scale for I2 (�b = 3.5, J = 2). In addition, data for W0 (�b = 3.5, J = 0) at T = 0.15 is shown in black.
[(b),(d)] |ω±

FL|, below which FL behavior should set in, is marked by vertical dash-dotted red lines. The vertical solid yellow lines denote |ω±
cr|.

Filled dots and open squares mark the orbital and spin Kondo scales, respectively.

In Figs. 15(c) and 15(d) the kinetic energy K (�) [as de-
fined in Eq. (D3)] is plotted as a function of frequency � for
various temperatures. In Ref. [107] an unusual spectral weight
transfer from low to high energies was observed at low tem-
peratures in K (�) for iron pnictides. This observation would
correspond to line crossings of different K (�, T ) curves for
J = 2 in Figs. 15(c) and 15(d), which is yet not found in our
data. We remark that this might be due to the rather large
�b = 3.5.

APPENDIX D: ELEMENTARY DEFINITIONS
AND RELATIONS

1. Optical conductivity, kinetic energy, resistivity, and the
Mott-Ioffe-Regel (MIR) limit

Optical conductivity. The (real part of the) optical conduc-
tivity (per spinful band), computed in linear response, is given
by Ref. [76],

σ (ω) = 2πe2

h̄

∫
dω′ f (ω′) − f (ω + ω′)

ω

×
∫

dε �(ε)A(ε, ω′)A(ε, ω + ω′), (D1)

where f (ω) is the Fermi function, A(ε, ω) the structure factor
as defined in Eq. (4), and �(ε) the transport velocity kernel,

�(ε) =
∫

dd k

(2π )d

(
∂εk

∂kx

)2

δ(ε − εk ) (D2a)

= �(0)
[
1 −

( ε

D

)2] 3
2

. (D2b)

The latter is here expressed through the band velocity in x
direction, vx

k = ∂εk
h̄∂kx

, and Eq. (D2b) follows for the Bethe
lattice.

Kinetic energy. The kinetic energy K (�) is the integral of
the optical conductivity σ (ω) up to a cutoff value � [107]:

K (�)

K (∞)
=

∫ �

0 dω σ (ω)∫ ∞
0 dω σ (ω)

. (D3)

We normalize K (�) to K (∞).
Resistivity. The temperature-dependent optical resistivity is

given as the inverse of the optical conductivity evaluated at the
Fermi level, ω = 0,

ρ(T ) = 1

σ (ω = 0, T )
. (D4)

Mott-Ioffe-Regel (MIR) limit. In conventional metals ρ(T )
increases with temperature. This behavior can be explained
in a QP picture: the mean-free path l of a QP gradually de-
creases because thermally-induced scattering events become
more frequent. For phonon scattering at higher temperatures,
i.e., above a small temperature below which electron-electron
scattering is dominant, this leads to a linear growth of
ρ(T ) ∼ T . However, this QP picture breaks down approxi-
mately when l becomes shorter than the interatomic spacing,
leading to the Mott-Ioffe-Regel (MIR) limit, kFlmin ≈ 2π

[121–123] (another popular definition is kFlmin ≈ 1). As a
consequence, above a corresponding MIR temperature TMIR,
the resistivity saturates in conventional metals, approaching
a maximum value ρMIR. While for most good metals, l �
2π/kF holds up to their melting temperatures, there is a vast
number of metals for which the MIR resistivity saturation is
observed [124]. Interestingly, most strongly correlated met-
als, like cuprate high-temperature superconductors (HTSCs),
heavy fermions, Hund metals (including iron-based HTSCs),
and also several organic compounds exceed the MIR limit and
ρ(T ) does not saturate with increasing temperature. Due to
this unconventional but common feature, which is generically
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assumed to be induced by some kind of NFL behavior, all
these materials are collectively referred to as “bad metals” in
the literature [124,125].

In Fig. 15 σ (ω) is measured in units of σMIR = 2πe2�(0)
h̄D .

This is the MIR limit derived in Ref. [76] for a free parabolic

band in two dimensions, ε(k) = h̄2(k2
x +k2

y )
2m , using the criterion

kFLlmin = 2π . Accordingly, in Fig. 9 we plot ρ in units of
ρMIR = 1/σMIR.

2. Thermopower

The thermopower (Seebeck coefficient) is defined as
α(T ) = −�V/�T , where −�V is the electric field gener-
ated when a thermal gradient �T is established in a material
under conditions which are such that no electrical current
flows [42]. We calculate α(T ) with the Kubo formula of
Ref. [42],

α(T ) = −kB

e

∫
dω T (ω)βω

(− ∂ f
∂ω

)
∫

dω T (ω)
(− ∂ f

∂ω

) , (D5)

where β = 1/kBT , and the transport function T (ω) given here
for transport in x direction, reads

T (ω) = 2πe2
∫

dd k

(2π )d

(
vx

k

)2
Ak(ω)2

= 2πe2

h̄2

∫
dε �(ε)A(ε, ω)2. (D6)

3. Entropy

Within DMFT, where a lattice system is mapped self-
consistently onto an impurity system, we can both calculate
the impurity contribution to the entropy, as usually done
within NRG [126], and the lattice entropy. Importantly, these
entropies differ (quantitatively but not qualitatively), as is
discussed in detail in Sec. VI F.

Impurity contribution. The impurity contribution to the
entropy Simp is introduced in Eqs. (48) and (53) of Ref. [126]

as the difference,

Simp(T ) = Stot(T ) − S(0)
tot (T ), (D7)

between the entropy of the total Wilson chain Stot and the
entropy of a reference system S(0)

tot , which is the bare con-
duction Hamiltonian without impurity. In practice, it is thus
necessary to perform two independent NRG runs, one for the
full Hamiltonian and one for the same Hamiltonian without
impurity.

Lattice entropy. Starting from the thermodynamic relation
T (∂Slatt/∂T ) = ∂Elatt/∂T between the entropy and the total
internal energy of the lattice, the lattice entropy can be ex-
pressed as an integral involving the specific heat, C(T ) =
(∂Elatt/∂T ),

Slatt(T ) = Slatt(T0) +
∫ T

T0

dT ′ C(T ′)
T ′ , (D8)

following Eq. (238) of Ref. [4]. Slatt(T0) is a constant offset, in
principle unknown. In the case of a FL, however, Slatt(T0) can
be determined exactly [cf. Eq. (7)]. For Hubbard-type models
in the limit of large lattice coordination, the total internal
energy is given by Eq. (7) of Ref. [127], which we apply in
the form,

Elatt

Nc
=

∫
dω f (ω)(ω + μ)A(ω)

+ 2t2
∫

dω1

∫
dω2 f (ω1)

A(ω1)A(ω2)

ω1 − ω2
(D9a)

=
∫

dω f (ω)(ω + μ)A(ω)

− 2t2

π

∫
dω f (ω)Re G(ω)Im G(ω). (D9b)

Here f (ω) is the Fermi function, and the second equal-
ity follows via the Kramers-Kronig relation, Re G(ω) =
1
π

P
∫

dω′ Im G(ω′ )
ω′−ω

= P
∫

dω′ A(ω′ )
ω−ω′ .
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