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We investigate a Rabi-Kondo model describing an optically driven two-channel quantum dot device featuring
a non-Fermi-liquid Kondo effect. Optically induced Rabi oscillation between the valence and conduction levels
of the dot gives rise to a two-stage Kondo effect: Primary screening of the local spin is followed by secondary
nonequilibrium screening of the local orbital degree of freedom. Using bosonization arguments and the numerical
renormalization group, we compute the dot emission spectrum and residual entropy. Remarkably, both exhibit
two-stage Kondo screening with non-Fermi-liquid properties at both stages.
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I. INTRODUCTION

The Kondo effect, involving a local spin entangled with a
bath of delocalized electrons, has been studied extensively in
bulk systems and in transport through quantum dots. Some
years ago, a landmark experiment [1] showed that it can
also be probed optically: A weakly driven optical transition
between the valence and conduction levels of the dot was
used to abruptly switch the Kondo effect on or off, leaving
telltale power-law signatures [2] in the dot emission spectrum.
The case of strong spin-selective optical driving was subse-
quently studied theoretically within the context of a single-
channel Rabi-Kondo (1CRK) model [3], involving Rabi oscil-
lations between the dot valence and conduction levels. This
was predicted to lead to nonequilibrium quantum-correlated
state featuring two-stage Kondo screening: The local spin is
screened by a primary screening cloud via the single-channel
Kondo (1CK) effect, then the Rabi-driven levels by a larger,
secondary screening cloud. Despite its nonequilibrium nature,
this state has a simple Fermi-liquid (FL) description in terms
of scattering phase shifts, since only a single screening chan-
nel is involved.

This raises an intriguing question: What type of nonequi-
librium state will arise when the Rabi-driven dot couples
to two spinful channels, described by a two-channel Rabi-
Kondo (2CRK) model? Without Rabi driving, it reduces to
the standard two-channel Kondo (2CK) model, known to have
a non-Fermi liquid (NFL) ground state [4], describable by
Bethe Ansatz [5–7], conformal field theory (CFT) [8–10] or
bosonization [11–14]. However, NFL physics is known to be
very sensitive to perturbations such as channel asymmetry or
a magnetic field. Do the NFL properties survive under Rabi
driving? If so, what are their fingerprints? In this paper, we
answer these questions. We use a combination of bosoniza-
tion arguments and numerical renormalization group (NRG)
[15–17] calculations to compute the 2CRK emission spectrum
and impurity entropy. We find that NFL behavior survives,
and, remarkably, leaves clear fingerprints in the emission in
both the primary and secondary screening regimes.

The rest of this paper is organized as follows. In Sec. II,
we introduce our system, the 2CRK model. In Sec. III, we
provide a qualitative description of the screening processes in
the 2CRK model. In Secs. IV and V, we study the impurity
contribution to the entropy and the Kondo cloud, respectively.
In Sec. VI, the main points of our bosonization approach are
outlined. In Sec. VII, we analyze the emission spectrum. We
conclude in Sec. VIII. The Appendix offers the details of our
bosonization approach.

II. TWO-CHANNEL RABI-KONDO MODEL

In this section, we first introduce the system in the labo-
ratory frame and then derive the effective Hamiltonian in the
rotating frame to be treated by NRG and bosonization.

We consider a small quantum dot (d) with a conduction
(c) and a valence (v) level as the impurity, and two large
dots as the bath [Fig. 1(a)]. The small dot is modeled by the
Hamiltonian

Hd =
∑

x=c,v

[
Uxx

2
nx(nx − 1) + εxnx

]
+ Ucvncnv, (1)

where nx = ∑
σ d†

xσ dxσ denotes the particle number operator
for the x level (x = c, v), and dxσ annihilates spin-σ electron
at the x level of energy εx. Ucc, Uvv , and Ucv are the Coulomb
interaction strengths. The level separation εc − εv is of the
order of the semiconductor band gap ∼1 eV. We consider the
parameter regime in which the ground states of the small dot
have (nc, nv ) = (1, 2) in the absence of the Rabi driving to be
introduced next.

We introduce a laser applied to the small dot, which in-
duces Rabi oscillation between the c and v levels. A circularly
polarized laser would have coupled to one spin species due
to an optical selection rule [3,18]. In the following, we will
consider the case of linearly polarized light, which sym-
metrically couples to both spin states. The laser frequency
ωL is chosen to be close to the bare dot transition be-
tween (nc, nv ) = (1, 2) states and (nc, nv ) = (2, 1) states, i.e.,
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(a) (b)

FIG. 1. (a) Schematic depiction of the 2CRK model in the labo-
ratory frame. A small dot with two levels (conduction c and valence
v) has its c level coupled to two large dots via spin exchange J . The
analogous 1CRK model has only one large dot. Linearly polarized
laser induces Rabi oscillation of frequency � in which electrons
transition between the c and v levels, accompanied by the absorption
and emission of light. (b) The states of the small dot having nd =
nc + nv = 3 electrons. The states of (nc, nv ) = (2, 1) are connected
to the states of (nc, nv ) = (1, 2) via the Rabi oscillation. In the
rotating frame, the c-v coupling becomes time independent with
amplitude �.

ωL � Ucc + εc − Uvv − εv . (We set h̄ = kB = 1.) Hence the
(nc, nv ) = (2, 1) states are accessed via the Rabi oscillation
from the (nc, nv ) = (1, 2) states [see Fig. 1(b)]. The other
states of nd = nc + nv �= 3 can be accessed only via virtual
processes due to the energy cost of the Coulomb interaction.

Since the optical transition is close to the material’s band
gap, that is, of order 1 eV, and much larger than all the other
energy scales (which are typically not more than a few tens
of meV), one could make the rotating wave approximation,
under which a transfer of electron from the v to the c level
involves the absorption of a photon and vice versa. We will
further assume that the laser can be described as a classical
field, and hence that spontaneous emission could be neglected.
Then the light-induced Hamiltonian term in the laboratory
frame is given by

H (lab)
L = �

∑
σ

(d†
cσ dvσ e−iωLt + H.c.), (2)

where � is the Rabi frequency.
In addition, the c level of the small dot is symmetrically

tunnel-coupled to two identical large dots (channels � =
1, 2). These are assumed large enough to have essentially
continuous excitation spectra, yet small enough that their
charging energies suppress interchannel charge transfer. That
is, nd + N1 and nd + N2 do not fluctuate, where N� means the
particle number at the large dot �. Under these conditions,
the whole system Hamiltonian in the laboratory frame can
be approximated via the Schrieffer-Wolff transformation [19]
and up to an overall constant, by

H (lab) =
∑

�

J �Sc · �s� + δLnv + Hbath

+�
∑

σ

(d†
cσ dvσ e−iωLt + H.c.), (3)

where the Hilbert space for the small dot is restricted
to the four-dimensional subspace of nd = 3 shown
in Fig. 1(b). Here �Sc = ∑

σσ ′ d†
cσ

1
2 �σσσ ′dcσ ′ and �s� =∑

σσ ′
∫ D
−D dε dε′ 1

2D c†
ε�σ

1
2 �σσσ ′cε′�σ ′ are c-level and �-channel

spin operators, respectively. Hbath = ∑
�σ

∫ D
−D dε ε c†

ε�σ cε�σ

describes the large dots with half-bandwidth D, and
cε�σ annihilates channel-� electron of energy ε and

spin σ . The coupling strength J is proportional to
1/(Ucc + 2Ucv + εc) − 1/(2Ucv + εc).

We will now go to the the rotating frame with respect
to the laser-mode Hamiltonian, via the transformation U =
eiωLnvt . The rotating-frame Hamiltonian H (rot) = U†H (lab)U +
i(dU†/dt )U will become time independent,

H (rot) =
∑

�

J �Sc · �s� + δLnv + Hbath

+�
∑

σ

(
d†

cσ dvσ + H.c.
)
, (4)

where δL = ωL − (Ucc + εc − Uvv − εv ) is the detuning of
the laser frequency from the bare dot transition. This is the
2CRK Hamiltonian to be studied in the rest of this paper.
For reference, we also include some results for the analogous
1CRK model (� = 1 only) and the standard 2CK and 1CK
models (without v level).

Since the coupling to the fermionic bath is assumed to
be the main relaxation mechanism and dominates over spon-
taneous emission, the system would relax to an electronic
equilibrium state in the rotating frame, which corresponds
to a time-dependent state in the laboratory frame. Thus we
can analyze the system in the rotating frame, employing
equilibrium concepts such as entropy.

Note that our setup, which is driven optically, is different
from previous setups driven by ac magnetic field [20,21] in
two key aspects. First, the laser can be focused within the
length scale of optical wavelength, so one can selectively drive
the small dot only. This selectivity has been demonstrated
in experiments [1]. Second, the rotating wave approximation
works very well for our system, since the energy scale of the
laser frequency is larger than the other energy scales in the
system by at least two orders of magnitude. The selectivity
and the rotating wave approximation are, however, unlikely
for the systems driven by ac magnetic field that are in the
microwave or rf regime.

III. QUALITATIVE CONSIDERATIONS

Without Rabi driving, � = 0, the “trion” and “Kondo”
sectors, with c and v level occupancies (nc, nv ) = (2, 1) and
(1,2), respectively, are decoupled, and the v level is inert. The
trion sector is a trivial FL, with the doubly occupied c level
forming a local spin singlet. The Kondo sector constitutes
a standard Kondo model, involving the spin of the singly
occupied c level. Below a characteristic Kondo temperature
TK, it will be screened by bath electrons. For the 2CRK model,
it is overscreened, leading to NFL behavior characteristic of
the 2CK model. For the 1CRK model, it is fully screened,
showing standard 1CK FL behavior.

For weak driving, 0 < � � TK, Rabi oscillations between
the c and v levels couple the Kondo and trion sectors. Then
primary screening of the c-level spin, occurring at energies
�TK, will be followed by secondary screening of c-v tran-
sitions at the renormalized Rabi coupling �∗ (as in Ref. [3]),
provided that the ground-state energies of the two (decoupled)
sectors differ by less than �∗. (A precise definition of �∗
will be given later.) We thus fine-tune δL such that for � = 0
the Kondo and trion ground states are degenerate, following a
strategy discussed in the Supplemental Fig. S2 of Ref. [3].
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FIG. 2. Impurity contribution to the entropy, Simp, for the
(a) 2CRK and (b) 1CRK models, for four �-values (solid lines).
Arrows indicate the corresponding values of ωmax/TK, the energy
scale associated with the peak in the emission spectrum shown in
Fig. 4. For comparison, dashed lines show Simp for the standard 2CK
and 1CK models, respectively, for the same value of J .

Finally, for strong driving, � � TK, the Rabi coupling
generates a strong splitting of bonding and antibonding states
built from the c and v levels. The local spin of the bonding
state will then undergo single-stage screening, as for the
standard 2CK or 1CK models.

These qualitative arguments will be substantiated quanti-
tatively below by NRG calculations and bosonization argu-
ments. For the former, we use J = 0.28D throughout, lead-
ing to T 2CRK

K � 3 × 10−4D and T 1CRK
K � 4 × 10−4D when

� = 0. The bath discretization grid is set by �2CRK = 4 and
�1CRK = 2.7, and no z averaging is used. We use the QSpace
tensor library [22] to exploit the SU(2) symmetries of spin and
channel where applicable.

IV. ENTROPY

Figures 2(a) and 2(b) show our NRG results for the im-
purity contribution to the entropy [16], Simp, which quanti-
fies the effective degrees of freedom of the dot at different
temperatures. At high temperatures, T 	 TK,�, the entropy
Simp = ln 4 simply counts all four configurations of the dot
[Fig. 2(b)] for both the 2CRK and 1CRK models. At lower
temperatures, the behavior of the entropy depends on the
relation of � and TK.

For strong driving � � TK, only two bonding states with
different spins are accessible for T < �. Hence Simp(T � �)
shows a plateau at ln(2), followed by a single crossover to
T = 0 value of 1

2 ln(2) = ln(
√

2) or ln(1) = 0 for the 2CRK
or 1CRK models, respectively. These values are the same
as in the standard 2CK or 1CK models [6–8] (shown as
dashed lines), respectively. They reflect overscreening of a
local spin by two spinful channels (resulting in a decoupled
local Majorana mode [11–14]), or its complete screening by
a single spinful channel [23] (resulting in a spin singlet),
respectively.

In contrast, for weak driving 0 < � � TK, two-stage
screening occurs. For intermediate temperatures,

FIG. 3. Spin-spin correlators between the impurity and bath
spin operators, revealing the structure of the screening clouds
for the (a) 2CRK and (b) 1CRK models. We display χvm =
−4〈PTSvzSmz〉/〈PT〉 (solid) and χcm = −4〈PKSczSmz〉/〈PK〉 (dashed),
where Svz, Scz, and Smz are z-component spin operators for the v

level, c level, and the Wilson chain site m � 0, respectively. Site
m = 0 is directly coupled to the c level. PT = ∑

σ nvσ (1 − nvσ̄ )nc↑nc↓
and PK = ∑

σ nv↑nv↓ncσ (1 − ncσ̄ ) are projectors onto the trion and
Kondo sectors, involving a singly occupied v or c level, respectively.
Both χvm and χcm are obtained by averaging two lines, interpo-
lating odd and even m’s, respectively. We choose the abscissa as
�−m/2D/TK, where �−m/2D is the energy scale (and also the inverse
length scale [15,24]) associated with the chain site m. For strong driv-
ing (red), χcm and χvm have coinciding peaks, reflecting single-stage
screening of the bonding-level spin. In contrast, for intermediate
(yellow) and weak (blue) driving, we observe two-stage screening:
the peaks of χcm, reflecting the screening of the c-level spin, occur
at higher energies than those of χvm, reflecting the screening of the
c-v transitions. The area under each peak is �1. Arrows indicate the
corresponding values of ωmax/TK.

Simp(�∗ � T � TK ) shows a primary-screening plateau
at ln(2 + √

2) or ln(2 + 1) for the 2CRK or 1CRK models:
the NFL- or FL-screened local spin contributes

√
2 or 1 to

the local degeneracy count, with another 2 from the two
trion (v) states. At the lowest temperatures, T � �∗, the
c-v transitions lead to a secondary-screening limiting value
of Simp = ln

√
2 or 0 for the 2CRK and 1CRK models,

respectively, as for the standard 2CK and 1CK models.
Finally, for � = 0 (i.e., ωmax = 0), the primary-screening
plateau in Simp persists down to T = 0.

V. KONDO CLOUDS

To further study the nature of the screening clouds involved
in primary and secondary screening, we have computed spin-
spin correlation functions between the impurity and bath spin
operators, see Fig. 3. As described in the caption thereof, for
weak driving we find a nested, two-stage cloud, screening the
c-level spin at energies �TK, and c-v transitions at energies
�ωmax. In contrast, for strong driving we find just a single
screening cloud.

VI. BOSONIZATION

We proceed to a more detailed analysis of the weak driving
case, 0 < � � TK, using bosonization (since the methods
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of Ref. [3] do not easily generalize to the 2CRK model).
Here we outline the main points, relegating further details to
the Appendix. With uniaxial anisotropy, the bosonized form
[11–14] of the 2CRK Hamiltonian Hbath + Hd is

H =
∑
�=1,2

{
u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2 + Jz

π
√

2
PKSz∂xφ�(0)

+ Jxy

2πa
PK(S+ei

√
2φ�(0) + H.c.)

}
+ 2�τx, (5)

where S± = Sx ± iSy, while τ+ = ∑
σ d†

cσ dvσ , τ− = τ
†
+, and

τz = nc − nv are Pauli matrices in the orbital c-v (Kondo-
trion) pseudospin space, and PK = (1 + τz )/2 is a projector
onto the Kondo sector. In addition, u and a = D/u are the
Fermi velocity and lattice spacing (inverse momentum cutoff),
and φ�(x) is the chiral (unfolded) bosonic spin field (the
charge sector decouples). It obeys the commutation relation
[φ�(x), φ�(x′)] = iπ sgn(x − x′), where ∂xφ�(0)/(π

√
2) is the

density of the z component of the channel-� electron spin
density at the dot site.

A. 1CRK

Let us start from the single-channel case, where � =
1 [φ2(x) does not exist]. The unitary transformation Uα =
e−iαSzPKφ1(0) with α = Jz/(π

√
2u) eliminates the Jz term at the

cost of modifying the Jxy term by a shift to the coefficient of
φ1(0) in the exponent.

At energies 	 TK 	 �, we may ignore the Rabi term,
and follow the usual perturbative renormalization group (RG)
flow of the 1CK problem. Jxy flows since it has a nontrivial
scaling dimension, set by the corresponding bosonic expo-
nent (after the above-mentioned transformation). In addition,
second-order spin-flip (Jxy) processes revive the non-spin-flip
Jz term, which may then be transformed away as above. Jz

thus flows to a fixed-point value, Jz = 2πu, corresponding
to the Kondo fixed-point π/2 phase shift, while Jxy grows
until it becomes of the order of the reduced cutoff, which
could serve to define the primary c-spin Kondo scale TK.
The Uα-type transformations applied throughout the RG flow
modify the Rabi term. Thus, below TK we obtain the following
intermediate-scale effective Hamiltonian:

H int
1CRK = u

4π

∫ ∞

−∞
dx[∂xφ1(x)]2 + J ren

xy

πa
PKSx

+�τ+[P↑e−iφ1(0)/
√

2 + P↓eiφ1(0)/
√

2] + H.c., (6)

where P↑,↓ = 1/2 ± Sz is a projector into the subspace Sz =
±1/2 and J ren

xy ∼ TK 	 �. The latter large coupling fixes the
dot spin to Sx = 1/2, which corresponds, in the original basis,
to an entangled state of the impurity and bath spins, i.e., the
primary Kondo singlet. Thus P↑,↓ are replaced by their expec-
tation values 〈P↑,↓〉 = 1/2. The resulting model describes the
hybridization between the pseudospin (c-v or Kondo-trion)
degree of freedom and the channel, which is equivalent (up
to a transformation similar to Uα but involving τz instead of
Sz) to an anisotropic Kondo model for the pseudospin space.
The Rabi coupling � is relevant, with scaling dimension
η1 = 1/4, determined by the corresponding bosonic exponent
in Eq. (6), or, within CFT, from its role as boundary condition

changing operator, turning on and off 1CK screening [25].
Hence, � flows to strong coupling, creating a new scale, the
renormalized Rabi frequency (secondary Kondo temperature),
�∗ ∼ TK(�/TK )1/(1−η1 ) = TK(�/TK )4/3 � �, where one ex-
pects a peak in the dot emission spectrum to occur, instead of
the more usual peak at � for strong driving � 	 TK. Below
this scale, the pseudospin is screened by the creation of a
secondary “Kondo singlet.”

B. 2CRK

Let us now perform a similar analysis of the 2CRK model.
Defining the fields φ±(x) = [φ1(x) ± φ2(x)]/

√
2, only the for-

mer couples to Jz, and could be eliminated by a transformation
similar to Uα defined with

√
2φ+(0) instead of φ1(0). For

� � TK, one may proceed with the primary 2CK RG flow,
which drives Jz to πu, corresponding to a π/4 phase shift, and
Jxy to J ren

xy ∝ TK 	 �. At the same time, the Rabi coupling
gets modified. On the scale of TK, we thus arrive at

H int
2CRK =

∑
p=±

u

4π

∫ ∞

−∞
dx[∂xφp(x)]2 + J ren

xy

πa
PKSx cos φ−(0)

+�τ+[P↑e−iφ+(0)/2 + P↓eiφ+(0)/2] + H.c. (7)

The first line describes the 2CK fixed point, at which the φ−
remains coupled: Sx assumes a definite value Sx = ±1/2 and,
correspondingly, φ−(0) is locked to a minimum or maximum
of the cosine function. Refermionizing the local spin-φ−
system, the Jxy term couples a local Majorana fermion (∝Sx)
to the lead, leaving another local Majorana (∝Sy) unscreened
[11,12].

We now turn to the second line. Since J ren
xy ∼ TK 	 �, we

may again set P↑,↓ → 1/2. The remaining term is a product
of τ± with bosonic exponents. The exponents contribute 1/8
to the scaling dimension of �, while τ± turns on or off the
J ren

xy term, which is equivalent to turning on or off a local
backscattering impurity in a Luttinger liquid, with scaling di-
mension 1/16 [26,27]. Thus, the overall scaling dimension of
� is η2 = 3/16. This matches the corresponding CFT analysis
of its role as a boundary-condition changing operator [25].
Thus, � is relevant, flowing to strong coupling and generating
a new scale �∗ ∼ TK(�/TK )1/(1−η2 ) = TK(�/TK )16/13 � �,
below which secondary screening of the c-v (Kondo-trion)
fluctuations is achieved. Importantly, since the Rabi term
is spin symmetric, it does not interfere with the primary
NFL 2CK screening, and leaves the decoupled Majorana
(Sy) unscreened: While the Rabi term contains Sz ∝ SxSy, the
corresponding processes are suppressed by the dominant J ren

xy
term, and all higher order (in �) processes which leave the
system within the low-energy manifold of J ren

xy term do not
couple to Sy.

VII. EMISSION SPECTRUM

Having established the general picture of the two-stage
NFL screening, we can now analyze its effect on the main
experimental observable, the dot emission spectrum. The
emission spectrum of linear polarization at detuning ω from
the driving laser frequency is proportional to the spectral
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FIG. 4. (a) Log-log plot of the emission spectrum S(ω), and
(b) its finite-frequency peak position ωmax and zero-frequency spec-
tral weight S0 as functions of Rabi driving �/TK, for the 2CRK
(solid) and 1CRK (dashed) models at T = 0. Guide-to-the-eye grey
lines depict the power laws predicted by bosonization arguments (see
text).

function [3],

S(ω) =
∑

j j′
ρ j |〈 j′|∑σ d†

vσ dcσ | j〉|2δ(ω + Ej′ − Ej ), (8)

where | j〉 and Ej are energy eigenstates and eigenvalues of
the Rabi-Kondo Hamiltonian, and ρ j = e−Ej/T /Z . This is the
spectral function of the Rabi term with itself. At temperature
T = 0, the emission spectrum has weight only for ω � 0.
Without Rabi driving, S(ω → 0−) shows a power-law diver-
gence. For weak driving, the divergence is cut off, giving
way to a power-law decrease. Accordingly, a wide peak at
|ω| = ωmax and a delta-function peak S0δ(ω) of weight S0 at
ω = 0 emerge. We identify ωmax with the renormalized Rabi
frequency �∗.

Figure 4(a) shows a log-log plot of the emission spectrum,
revealing its various power laws. For weak driving, there are
two distinct regimes: (i) The intermediate-detuning regime,
ωmax � |ω| � TK, is dominated by the Kondo exchange cou-
pling and reflects primary screening. Here the correlations of
the Rabi term with itself are governed by its scaling dimension
η, giving S(ω) ∝ |ω|2η−1 with η = η1 = 1/4 and η = η2 =
3/16 for the 1CRK or 2CRK models, respectively. Thus,
this part of the spectrum reveals the scaling of 1CK versus
2CK boundary condition changing operators [25]. (ii) The
small-detuning regime, |ω| � ωmax, is dominated by the Rabi
coupling and reflects secondary c-v screening. In this regime,
S(ω) corresponds to the correlation function of the exchange
interaction

∑
�
�S · �s� with itself in the standard Kondo models,

which yields S(ω) ∝ |ω|3 and ∝ |ω|2 for the 1CRK and 2CRK
models, respectively. The power is reduced in the 2CRK
case, as the unscreened Majorana Sy appearing in the Rabi
term in Eq. (7) (through Sz ∝ SxSy) reduces the corresponding

scaling dimension by 1/2. Thus, the |ω|2 behavior is a clear
fingerprint of the NFL nature of the nonequilibrium secondary
screening nature in the 2CRK system.

Figure 4(b) shows that ωmax and S0 increase as power
laws in �. For weak driving, our previous analysis shows
that, in accordance with the numerical data, ωmax ∼ �∗ ∝
�1/(1−η) ∼ �16/13 or �4/3, and moreover (as we will mo-
mentarily explain), S0 ∼ �2η/(1−η) ∼ �6/13 or �2/3 for the
2CRK or 1CRK models, respectively. Indeed, S0 takes up the
spectral weight missing at small detuning due to �∗ cutting off
the intermediate detuning S(ω) ∝ |ω|2η−1 behavior. Hence,
S0 ∝ ∫ �∗

0 dω |ω|2η−1 ∼ �2η/(1−η). Alternatively, by Eq. (8),
S0 is the square of the expectation value of τx (before transfor-
mations) in the ground state. But τx is the Rabi term divided
by � and the Rabi term should scale as �∗, leading to S0 ∼
(�∗/�)2 ∼ �2η/(1−η), as before. Thus, the Kondo boundary
condition changing operators governs both ωmax and S0. For
strong driving, ωmax ∼ � corresponds to the transition energy
between the bonding and antibonding states of c and v levels.

VIII. CONCLUSIONS

We have identified a two-stage NFL screening process
in a Rabi driven quantum dot. The NFL nature survives in
nonequilibrium as the Rabi driving respects both spin and
channel symmetries. We have developed a new bosonization
approach that explains the power-law exponents obtained
numerically. The distinct power laws in the emission spectra
should motivate optical spectroscopy studies on the multi-
channel quantum dot devices. The case of non-negligible
spontaneous emission, which goes beyond the description
of the time-independent Hamiltonian in the rotating frame,
would be an interesting question for future study. We envision
our findings to also be relevant for higher-dimensional driven
strongly correlated materials.
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APPENDIX: BOSONIZATION DETAILS

In this Appendix, we develop in detail the theory of the
multichannel Kondo effect by first reviewing the bosonization
description of the ordinary single- and two-channel Kondo
(1CK, 2CK), then going on to their Rabi-Kondo versions,
without and with spin rotation symmetry (the latter being the
case considered in the main text).

We note that the Yuval-Anderson (YA) Coulomb
gas approach [28–33] is known to give equivalent re-
sults to the bosonization approach for all universal (i.e.,
cutoff-independent) quantities, such as critical dimensions.
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Meanwhile, the Coulomb gas approach provides more ac-
curate microscopic expressions for the phase shifts that are
cutoff dependent. We have verified that the same is true for
the systems discussed in this paper. However, in this paper, we
employ the bosonization approach, since it is more succinct
than the Coulomb gas approach.

1. Ordinary Kondo

First, we review the ordinary (equilibrium) 1CK and 2CK
effects from the bosonization perspective.

a. Single-channel ordinary Kondo

Let us start from the ordinary single-channel Kondo effect.
Using a bosonic description of the channel, the charge sector
decouples, while the spin sector can be written in terms of
a single right-moving chiral boson over the entire 1D line
(instead of a single nonchiral boson on the 1D half-line),
leading to the following Hamiltonian [11,34]:

H1CK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + Jz

π
√

2
Sz∂xφ(0)

+ Jxy

2πa
(S+ei

√
2φ(0) + H.c.), (A1)

where S± = Sx ± iSy, Sx,y,z are the impurity spin-1/2 opera-
tors, u and a are the Fermi velocity and lattice spacing (inverse
momentum cutoff), the bosonic field obeys the commutation
relation [φ(x), φ(x′)] = iπsgn(x − x′), and ∂xφ(0)/(π

√
2) is

the conduction electron spin density at the dot site. Applying
the transformation H1CK → H ′

1CK = UαH1CKU †
α where Uα =

e−iαSzφ(0) with α = Jz/(π
√

2u), the Jz term is eliminated, at
the cost of modifying the exponent in the Jxy term:

H ′
1CK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2

+ Jxy

2πa
(S+ei

√
2[1−Jz/(2πv)]φ(0) + H.c.). (A2)

We now proceed with perturbative RG, using Cardy’s operator
product expansion (OPE) version [35]. Jxy flows because it
has a nontrivial scaling dimension (due to the corresponding
nontrivial bosonic exponent), whereas the OPE of the two Jxy

terms reintroduces the Jz term. This can be transformed again
into the bosonic exponent. Defining the dimensionless ex-
change couplings Jxy,z = Jxy,z/(2πu) and denoting the energy
cutoff by D = v/a, we thus obtain Anderson’s well-known
RG equations:

−D
dJxy

dD
= [1 − (1 − Jz )2]Jxy, (A3)

−D
dJz

dD
= (1 − Jz )J 2

xy. (A4)

Thus, Jz flows to the strong-coupling fixed point value Jz = 1
(π/2 phase shift). At that point, the impurity spin becomes
decoupled from the bath—the exchange term becomes sim-
ply ∝ JxySx (where at strong coupling Jxy ∝ TK, the Kondo
temperature), and seemingly polarized the impurity spin in
the x direction. Recalling that the Sx operator has under-
gone a succession of transformations dressing it with the
bosonic field, we recognize that, in terms of the original

fields, this actually signifies (an anisotropic version of) the
Kondo singlet. Indeed, the fact that the spin flip terms in the
original Hamiltonian, S±e±i

√
2φ(0), have been renormalized to

S± means that the renormalized versions of the original S± op-
erators are S±e∓i

√
2φ(0). The correlation function of these two

operators decays in time as 1/t2 (due to the bosonic factor),
in accordance with FL theory (in which one posits that at the
fixed point the impurity spin “merges” with the Fermi sea, so
its correlator behaves like the correlation function of the lead
fermion density). Another way to get this result is to notice
that, generically (that is, in a higher order RG than what we
considered), Sz could get dressed by the lead spin density at
the impurity site, ∝ ∂xφ(0), hence its correlation would decay
as 1/t2. Using similar arguments, the connected correlation
function of the exchange terms in the original Hamiltonian
turns into a connected correlator of two lead spin operators
with two lead spin operators, decaying as 1/t4, translating
into an ω3 behavior of the corresponding spectral function
at low frequencies. Finally, since the impurity Hamiltonian
reduces to ∝ JxySx at the fixed point, if a magnetic field in the
z direction is introduced, the impurity susceptibility becomes
∝ J −1

xy ∝ T −1
K . This will also give a finite expectation value

to the lead spin correlators, making the leading contribution
(at long time) to the exchange-exchange correlation function
decay as 1/t2, or ω in the frequency domain. Finally, the
impurity entropy is ln 2 at T 	 TK, and goes to zero at T �
TK, due to the Kondo screening.

b. Two-channel ordinary Kondo

Now the starting Hamiltonian is

H2CK =
∑
�=1,2

{
u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2

+ Jz

π
√

2
Sz∂xφ�(0) + Jxy

2πa
S+ei

√
2φ�(0) + H.c.

}
, (A5)

where � = 1, 2 labels the two conduction electron channels,
∂xφ�(0)/(π

√
2) gives their respective spin densities at the

dot site, and we assume channel symmetry. Here it is useful
to define the symmetric and antisymmetric combinations,
φ±(x) = [φL(x) ± φR(x)]/

√
2, which keep the commutation

relations the same. We now apply the transformation Uα+ =
e−iαSzφ+(0) with α = Jz/(πu) to eliminate the Jz term and get

H2CK =
∑
p=±

u

4π

∫ ∞

−∞
dx[∂xφp(x)]2

+ Jxy

πa
S+ cos[φ−(0)](ei[1−Jz/(πv)]φ+(0) + H.c.). (A6)

The RG equations are similar to the 1CK case, but with
(1 − Jz ) → (1 − 2Jz ). Hence, Jz flows to a value of 1/2
(π/4 phase shift), at which point the impurity remains coupled
only to φ−. Jxy continues to flow to strong coupling, where
it becomes ∝ TK (this strong coupling bosonic description
corresponds to the intermediate coupling NFL fixed point in
the traditional description in terms of the original fermions).
If one refermionizes the local spin and the bosonic subsystem
φ−, the Jxy term becomes a coupling of a local Majorana
operator (Sx) to a Majorana field density in the lead at the
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adjacent site, namely, cos[φ−(0)], while Sy becomes a local
decoupled Majorana. This is the famous Emery-Kivelson
point. Therefore, the low-temperature impurity entropy is
ln

√
2. Since Sz ∝ iSxSy, its correlator with itself is a convolu-

tion of the correlators of a localized Majorana fermion (∝Sy)
and a propagating one (∝Sx), and decays in time as 1/t , as that
of one free fermion times one localized fermion, leading to a
logarithmic divergence of the susceptibility with the largest
cutoff energy (magnetic field, temperature, or frequency). For
a similar reason, the original non-spin-flip exchange term,
∝Sz∂xφ+(0), has correlations decaying as 1/t3, implying a
low-frequency power-law behavior of ω2, in the absence of
a magnetic field (a magnetic field suppresses the NFL 2CK
physics and restores the FL 1CK ω behavior). If we look at
correlators of S+ (with its conjugate), we can use the fact that
the series of transformations map it to S+e−iφ+(0), leading to a
1/t behavior, similar to Sz.

One can recover the behavior of the susceptibility using
purely bosonic language [36–39]. At the strong Jxy fixed point,
Sx picks a value ±1/2 and then φ−(0) is pinned to either a
minimum or a maximum of the cosine function, respectively.
With that, one can calculate the susceptibility, that is, the
retarded correlator of Sz with itself. Indeed, Sz anticommutes
with Sx, hence with the spin-flip exchange term. Since the
spin-flip exchange term modifies by unity the spin of one
of the leads, the operator V = eiπN− , where N− = N1 − N2

is the difference between the refermionized populations of
the two leads (corresponding to Sz of the original electrons,
since the bosonic fields are all related to the original electronic
spin degrees of freedom), also anticommutes with the spin-flip
exchange term. Hence, the correlator of Sz could be replaced
by a correlator of V . Conservation of the overall refermionized
population, N+ = N1 − N2 allows one to write replace V →
ei2πN1 = eiφ1(0). Remembering that at the fixed point the two
leads are effectively well coupled, N1 behaves as the popula-
tion of one half of an infinite lead. With this, the correlation
function of V with itself decays in time as 1/t , again leading to
a logarithmic divergence of the susceptibility with the largest
cutoff energy (magnetic field, temperature, or frequency).

2. Spin-asymmetric Rabi-Kondo

We now add to the Kondo effect a laser, which tries to
Rabi flip the electron constituting the impurity spin into a level
decoupled from the leads. We will introduce a corresponding
two-level degree of freedom, with Pauli matrices τx,y,z, whose
two states τz = ±1 correspond to the electron in the coupled
conduction (c) level (Kondo) and in the valence (v) level
(trion), respectively. The Rabi flopping (τx) is induced by
a laser with amplitude �. If the laser has a proper circular
polarization, it only couples to a spin-up electron, Sz = 1/2.

a. Single-channel spin-asymmetric Rabi-Kondo

Let us start from the single-channel spin-asymmetric Rabi-
Kondo (1CARK) case, analyzed in our previous work [3].
Based on all the above considerations, the Hamiltonian is

H1CARK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + Jz

π
√

2
PKSz∂xφ(0)

+ Jxy

2πa
PK(S+ei

√
2φ(0) + H.c.) + 2�τxP↑. (A7)

Here PK = 1
2 (1 + τz ) acts as a local projector onto the c level

(i.e., the Kondo sector) and P↑ = 1
2 + Sz as a local projector

onto the spin-up subspace. We will concentrate on the case
where the Kondo temperature is much larger than the Rabi fre-
quency, TK 	 �. Then, at energy scales larger than TK, we can
ignore the Rabi term. The transformations and RG flow are
as above, with the only difference that every transformation
Uα = e−iαSzφ(0) should be replaced by Uα = e−iα(1+τz )Szφ(0)/2.
The series of transformations on the way to the Kondo fixed
point at Jz = 1 then modifies the Rabi term, giving

H int
1CARK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + J ren

xy

πa
PKSx

+ �P↑(τ+e−iφ(0)/
√

2 + H.c.),

(A8)

where J ren
xy ∝ TK (	�), as mentioned above. Thus, the cor-

responding Kondo term is much larger than the Rabi term
and effectively eliminates the Sz part of P↑ = 1

2 + Sz (the
eliminated part breaks the symmetry under Sz → −Sz on
the scale �∗ introduced below, as a local magnetic field
would do, but this has a negligible effect in the current 1CK
physics, since �∗ � TK). With this, the Rabi term looks
exactly like the spin-flip exchange term in the pure Kondo
problem, Eq. (A2), demonstrating that the Rabi term leads to
a secondary Kondo screening process. The scaling dimension,
say η1, of the 1CRK term is dictated by the bosonic expo-
nent, giving η1 = 1/4, reflecting the Anderson orthogonality
catastrophe with a phase shift change of π/2 in each spin
channel caused by a Rabi flop. It can also be thought of
as a boundary condition changing operator (from Kondo to
non-Kondo), and CFT analysis [25] gives the same result for
its scaling dimension. As a result, for frequencies in the range
�∗ � |ω| � TK (where the new low-energy scale �∗ will be
defined shortly), the emission spectrum (imaginary part of
the retarded correlator of the Rabi term with itself) scales as
|ω|2η1−1 = |ω|−1/2. Moreover, the RG equation for � is [35]

−D
d (�/D)

dD
= (1 − η1)

�

D
, (A9)

with solution �(D)/D = �/TK(D/TK )η1−1, where we have
taken into account that the RG flow of � starts at the
scale of TK. Therefore, �(D) flows to strong coupling. The
scale at which �(D)/D becomes of order unity defines
the renormalized Rabi frequency (secondary Kondo temper-
ature), �∗/TK ∼ (�/TK )1/(1−η1 ) = (�/TK )4/3. Thus, the im-
purity entropy starts with the value ln 3 at T 	 TK (the four
possible values of Sz and τz, except the excluded possibility
of τz = −1 and Sz = −1/2), then decreases to ln 2 for �∗ �
T � TK (due to the Kondo screening of the τz = 1 sector), and
then goes to zero for T � �∗, due to the secondary Kondo
screening.

Below �∗, secondary Kondo screening (of the τ degree of
freedom) sets in. The emission spectrum, which corresponds
to a correlator of the Rabi term with itself, becomes the
spectral function of the correlator of the secondary Kondo
exchange term with itself. Our previous analysis for the
single-channel case shows that this leads to an |ω|3 behavior,
or, in the presence of detuning (which adds to the Hamiltonian
a term proportional to τz, that is, a magnetic field in the
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secondary Kondo language), to an |ω| scaling. Also, at zero
frequency a delta function appears in the emission spectrum.
Its amplitude can be calculated in two ways. One is to note
that the spectral weight missing by the emergence of � and the
corresponding change of the spectral function from ∝|ω|2η1−1

to a positive power should go into the delta function, giving it
a weight scaling as

∫ �∗

0 dω |ω|2η1−1 ∼ �∗2η1 ∼ �2η1/(1−η1 ) =
�2/3. The other argument is that the coefficient of the delta
function is |〈G|τx|G〉|2, the square of the matrix element of
τx (before the transformations) between the ground state and
itself, and this matrix element is the ground-state expectation
value of the Rabi term divided by �. The expectation value
of the Rabi term scales as �∗, giving again an (�∗/�)2 =
�2η1/(1−η1 ) = �2/3 scaling of the weight of the delta function.

b. Two-channel spin-asymmetric Rabi-Kondo

We will now consider the analogous two-channel spin-
asymmetric Rabi-Kondo (2CARK) setup. Now the starting
Hamiltonian is

H2CARK =
∑
�=1,2

{
u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2 + Jz

π
√

2
PKSz∂xφ�(0)

+ Jxy

2πa
PK

(
S+ei

√
2φ�(0) + H.c.

)} + 2�P↑τx. (A10)

At energies larger than TK, we can use similar steps to the
above and arrive at

H int
2CARK =

∑
p=±

u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2 + J ren

xy

πa
PKSx cos[φ−(0)]

+�P↑(τ+e−iφ+(0)/2 + H.c.). (A11)

For the 2CRK model, the scaling dimension, say η2, of the
Rabi term, seen as a boundary condition changing operator, is
given by η2 = 3/16 [25]. One could arrive at this value using
also our abelian bosonization language: The φ+ exponent
contributes 1/8 to the scaling dimension of the Rabi term.
Beyond that, the τ± operators turn on or off the transformed
Kondo exchange term involving cos[φ−(0)]. Now, turning on
and off such a cosine appears in the problem of the Fermi
edge singularity, that is, turning on and off backscattering by
impurity in a Luttinger liquid. This problem was analyzed in
Refs. [26,27]. They showed that, at long times, the cosine
can be replaced by a quadratic term (since it is relevant),
which allows one to find its contribution to the long time
behavior of the correlation function of τx. This contribution
scales as t−1/8, corresponding to a scaling dimension of
1/16. Adding this to the 1/8 contributed by the exponen-
tial of φ+, we recover the CFT result η2 = 3/16. Thus, for
�∗ � |ω| � TK the emission spectrum behaves as |ω|2η2−1 =
|ω|−5/8. The RG equation for � is the same as above, with
η2 taking the place of η1, reflecting the different scaling
dimension of the Rabi term. Then we get a low-enegry scale
�∗ ∝ �1/(1−η2 ) = �16/13, and the weight of the delta peak at
zero frequency scales as (�∗)2η2 ∝ �2η2/(1−η2 ) = �6/13. The
impurity entropy will be ln 3 for T 	 TK, ln(1 + √

2) (2CK
partial screening + exciton state) for �∗ � T � TK and zero
for T � TK.

As for the behavior of the emission spectrum at |ω| �
�∗, one could argue that the Rabi term, with its explicit
Sz dependence, breaks the symmetry for flipping Sz and has
similar effects to a local magnetic field on the physical spin.
Thus, below �∗ the 2CK physics should be suppressed, and
one should recover the 1CK behavior of |ω|3 or |ω| in the
absence or presence of detuning, respectively.

3. Spin-symmetric Rabi-Kondo

Finally, we arrive at the spin-symmetric version of the
Rabi-Kondo problem, where the applied laser features the two
circular polarizations with the same amplitude (i.e., a linear
polarization) and thus couples equally to both spin states.

a. Single-channel spin-symmetric Rabi-Kondo

We start from the single-channel spin-symmetric Rabi-
Kondo (1CSRK) problem. Now the Hamiltonian is

H1CSRK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + Jz

π
√

2
PKSz∂xφ(0)

+ Jxy

2πa
PK(S+ei

√
2φ(0) + H.c.) + 2�τx. (A12)

Here on the scale of TK we obtain

H int
1CSRK = u

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + J ren

xy

πa
PKSx

+�τ+[P↑e−iφ(0)/
√

2 + P↓eiφ(0)/
√

2] + H.c., (A13)

which is invariant under flipping of Sz, together with the lead
(integrated) spin density φ(x). However, this symmetry is not
essential in the 1CK case, and the analysis goes basically the
same as in the spin-asymmetric case (at least as long as one
considers the spin-symmetric emission spectrum).

Let us note that one could formally map the secondary
screening problem to an anisotropic spin-1 Kondo problem.
Indeed, since J ren

xy /(πa) ∼ TK is large, we can discard the
Sx = −1/2 state in the basis of Eq. (A13), and be left with
three states: the Kondo state (τz = 1 and Sx = −1/2) and the
two spin states of the exciton (τz = −1 and arbitrary spin).
Introducing corresponding spin-1 operators, the Hamiltonian
would look like the single-channel spin-1 Kondo problem,
after the non-spin-flip term has been eliminated by a trans-
formation like those above, that modifies the exponents of
the spin-flip term. However, this implies that the secondary
Jz/(πu) is of order 1, i.e., the spin-1 problem is strongly
spin anisotropic. Now, any spin exchange anisotropy would
cause the creation of impurity-spin terms proportional to the
square of the z component of the effective spin 1, which
amounts to detuning the exciton and primary-Kondo states.
For weak anisotropy, it is sufficient to add a corresponding
compensating term to restore the degeneracy and hence the
spin-1 Kondo physics. However, in our case, where the bare
secondary exchange anistropy is very large, the physics never
reaches the underscreened spin-1 Kondo regime. Thus, the
impurity entropy goes from ln 4 to ln 3 and then to zero as
T is lowered through TK and �∗.
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b. Two-channel spin-symmetric Rabi-Kondo

The last case is the two-channel symmetric Rabi-Kondo
(2CSRK) model, with Hamiltonian

H2CSRK =
∑
�=1,2

{
u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2 + Jz

π
√

2
PKSz∂xφ�(0)

+ Jxy

2πa
PK(S+ei

√
2φ�(0) + H.c.)

}
+ 2�τx, (A14)

which becomes on the scale of TK:

H int
2CSRK =

∑
p=±

u

4π

∫ ∞

−∞
dx[∂xφ�(x)]2 + J ren

xy

πa
PKSx cos[φ−(0)]

+�τ+[P↑e−iφ+(0)/2 + P↓e+iφ+(0)/2] + H.c. (A15)

Again the analysis parallels the spin-asymmetric case,
except that now flipping Sz together with φ+(x) remains a
symmetry, so the 2CK physics is not destroyed at low energies
and a decoupled Majorana zero mode remains. Indeed, while
the Rabi term contains Sz ∝ SxSy, the corresponding processes
are suppressed by the dominant J ren

xy term, and all higher order
processes (in terms of �) which leave the system within
the low-energy manifold of J ren

xy term do not couple to Sy.
It should show up in the correlation function of the Rabi
term with itself, which depends on Sz ∝ SxSy, and reduce one
power of ω from the power-law dependence of the emission
spectrum on ω for |ω| � TK, that is, make it go as |ω|2 instead
of |ω|3 (in the absence of detuning). Correspondingly, the
impurity entropy goes from ln 4 to ln(2 + √

2) to ln
√

2 as T
is decreased through TK and �∗.
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