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A major challenge in the field of correlated electrons is the computation of dynamical correlation functions.
For comparisons with experiment, one is interested in their real-frequency dependence. This is difficult to
compute because imaginary-frequency data from the Matsubara formalism require analytic continuation, a
numerically ill-posed problem. Here, we apply quantum field theory to the single-impurity Anderson model
using the Keldysh instead of the Matsubara formalism with direct access to the self-energy and dynamical
susceptibilities on the real-frequency axis. We present results from the functional renormalization group (fRG)
at the one-loop level and from solving the self-consistent parquet equations in the parquet approximation. In
contrast with previous Keldysh fRG works, we employ a parametrization of the four-point vertex which captures
its full dependence on three real-frequency arguments. We compare our results to benchmark data obtained
with the numerical renormalization group and to second-order perturbation theory. We find that capturing
the full frequency dependence of the four-point vertex significantly improves the fRG results compared with
previous implementations, and that solving the parquet equations yields the best agreement with the numerical
renormalization group benchmark data but is only feasible up to moderate interaction strengths. Our methodical
advances pave the way for treating more complicated models in the future.

DOI: 10.1103/PhysRevB.109.115128

I. INTRODUCTION

Strongly correlated electrons are of central interest in
condensed-matter physics and a prime application for quan-
tum field theory (QFT). Two current frontiers in this context
are (i) dealing with two-particle correlations on top of the
familiar one-particle correlations, and (ii) obtaining real-
frequency information relevant to experiments, as opposed
to imaginary-frequency information popular in theoretical
analyses. Indeed, much attention has recently been devoted
to the two-particle—or four-point (4p)—vertex of correlated
systems, e.g., regarding efficient representations [1–7] or
the divergences of two-particle irreducible vertices [8–22].
Moreover, new algorithms have emerged, such as diagram-
matic Monte Carlo for real-frequency 2p functions (one
frequency argument) working with analytic Matsubara sum-
mation [23–29] or real-time integration [30–33], as well
as numerical renormalization group (NRG) computations
of real-frequency 4p functions (three frequency arguments)
[34,35].

Here, we combine aspects (i) and (ii) and study real-
frequency two-particle correlations in a QFT framework
within the Keldysh formalism (KF) [36–38]. We employ
two related methods: functional renormalization group (fRG)
flows at one-loop level [39] and solutions of the self-consistent
parquet equations [40]. These approaches are promising
candidates for real-frequency diagrammatic extensions [41] of

*These authors contributed equally to this work.

dynamical mean-field theory [42], where the self-consistently
determined impurity model is solved with NRG [43]. In prac-
tice, this means using the NRG 4p vertex [34,35] as input for
fRG [44,45] or the parquet equations [46,47]. Fully exploiting
this nonperturbative input requires taking the full frequency
dependence of the 4p vertex into account. The present work is
a proof-of-principle study showing that it is indeed possible to
track the three-dimensional real-frequency dependence of the
4p vertex with fRG and parquet methods.

To demonstrate our capability of handling 4p vertices
in real frequencies, we choose the well-known [48] single-
impurity Anderson model (AM) [49] as a test case. Its 4p
vertex depends only on frequency and spin arguments, orbital
or momentum degrees of freedom are not involved. Moreover,
we can benchmark our results against numerically exact data
obtained with NRG [43].

On a historical note, we mention some early pioneer-
ing works on the AM where multipoint functions depending
on multiple real frequencies were computed using various
diagrammatic methods [50–53]. Anders and Grewe [50,51]
computed the finite-temperature impurity density of states and
spin-fluctuation spectra up to order O(1/N2) in a large-N ex-
pansion using a resummation that included skeleton diagrams
of the crossing variety up to infinite order. This approach
involved the analytic continuation of 2p and 3p functions
from imaginary to real frequencies. Kroha, Wölfle, and Costi
[52,53] studied the AM in the strong-coupling limit using
a slave-boson treatment of local fermions and a conserving
T -matrix approximation. They computed the auxiliary
(pseudofermion and slave boson) spectral functions in the
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Kondo regime. Their approach involved the analytic continua-
tion of T matrices (4p objects depending on three frequencies)
from imaginary to real frequencies. This was possible due to
two simplifications arising in their approach. First, the Bethe–
Salpeter equations for the T matrices were simplified via
ladder approximations that neglect interchannel feedback but
are sufficient to capture the leading and subleading infrared
singularities. Second, the auxiliary propagators involve pro-
jection factors that cause their contributions to vanish along
the branch cuts encountered during the analytic continuation
of the T matrices. As a result, only integrations along branch
cuts of the conduction-electron propagators contribute to the
auxiliary-particle self-energies. In particular, only one of the
fifteen Keldysh components of the T matrices were involved
in these computations.

In the present paper, we consider a more general setting.
We compute the full 4p (impurity-electron) vertex, which
requires a treatment of the complete Keldysh structure. Fur-
thermore, the diagrammatic methods considered here—the
fRG and the parquet equations—treat all three channels of
two-particle fluctuations (density, magnetic, pairing) in an
equitable manner, fully including interchannel feedback. The
latter causes severe technical complications: each channel
has its own frequency parametrization; hence, interchannel
feedback involves interpolations between different frequency
parametrizations, which in turn demand great care when
working with discrete frequency grids. One of our goals is
to develop numerical strategies for conquering these com-
plications in a general, robust manner, as a first step toward
studying more complicated models in future work.

Keldysh fRG flows with dynamic 2p and 4p functions
were pioneered by Jakobs and collaborators [54–56] and
subsequently used in Refs. [57–59]. In all of these works,
the dependence of the 4p vertex on three frequencies was
approximated by a sum of three functions, each depending
on only one (bosonic) frequency. Here, we present Keldysh
one-loop fRG flows with the full, three-dimensional frequency
dependence of the vertex, finding remarkable improvement
compared with previous implementations [54,55]. We also
solve the parquet equations in the parquet approximation
(PA) in this setting, yielding results closest to NRG in the
regime where the parquet self-consistency iteration converges.
This regime corresponds rather accurately to the condition
u < 1, where u = U/(π�) is the dimensionless coupling
constant that controls the (convergent bare) zero-temperature
perturbation series [60]. For completeness, we also discuss
second-order perturbation theory (PT2). Although the PT2
self-energy in the particle-hole symmetric AM (sAM) yields
strikingly good results (for known reasons, see Sec. II E), the
susceptibilities or the results in the asymmetric AM (aAM)
clearly show the benefits of the infinite diagrammatic resum-
mations provided by fRG and the PA.

A conceptual equivalence between truncated fRG flows
and solutions of the parquet equations has been established via
the multiloop fRG [61–63]. For the AM treated in imaginary
frequencies, this equivalence was analyzed numerically in
Ref. [64], and multiloop convergence was demonstrated up
to moderate interaction strengths. We refrain from presenting
a similar study in real frequencies here, leaving that for future
work.

The rest of the paper is organized as follows: In Sec. II,
we give a minimal introduction to the KF (Sec. II A) and
summarize the methodical background for fRG and the PA
(Secs. II B and II C). The AM is briefly introduced in Sec. II D,
followed by a concise description of our benchmark meth-
ods for this model (Sec. II E). In Sec. III, we present our
results, beginning with dynamical correlation functions com-
puted directly on the real-frequency axis (Sec. III A). We
then turn to various static properties in Sec. III B and check
the fulfillment of zero-temperature identities between them
(Sec. III C). The frequency-dependent two-particle vertex is
shown in Sec. III D. We conclude in Sec. IV and give a brief
outlook on possibilities for future work.

Nine Appendixes are devoted to technical matters.
Appendix A summarizes our parametrization of the 4p vertex
and its symmetry relations. Appendix B shows the frequency
dependence of all vertex components, as obtained in the PA.
The fully parametrized parquet and fRG flow equations are
stated in Appendix C, and Appendix D discusses a channel-
adapted evaluation of the Schwinger–Dyson equation for the
self-energy in the PA. Appendix E deals with a known equal-
time subtlety in the KF, relevant for computing, e.g., the
Hartree self-energy in the aAM. In Appendix F, we give a
concise definition of all diagrammatic contributions to PT2.
We provide more details on the actual fRG and PA implemen-
tation in Appendix G and comment on the numerical costs in
Appendix H. Finally, Appendix I scrutinizes the fRG static
magnetic susceptibility at u � 1 for different settings of the
frequency resolution.

II. BACKGROUND

A. Keldysh formalism

The Keldysh formalism [36–38] is a suitable framework
for studying systems out of equilibrium, as well as systems
in thermal equilibrium if aiming for a finite-temperature real-
frequency description. An extensive introduction can be found
in Ref. [65]; more compact introductions in the context of
fRG are also given in related Ph.D. theses [54,57,66,67]. Here,
we only give a short summary of the concepts needed in this
paper.

Consider a (potentially time-dependent) Hamiltonian H (t )
and a density matrix known at time t0, ρ0 = ρ(t0). The expec-
tation value of an operator Ô at time t reads

〈Ô(t )〉 = Tr
[
T̃ e−i

∫ t0
t dt ′H (t ′ )ÔT e−i

∫ t
t0

dt ′H (t ′ )
ρ0

]
. (1)

Here, T is the time-ordering operator, and T̃ denotes antitime
ordering. In the KF, one rewrites Eq. (1) as

=
Ô

t t0time

−

+

〈Ô(t)〉 = Tr TC e−i
t0
t dt′H+(t′) Ô e

−i t
t0

dt′H−(t′)
ρ0

(2)

The Hamiltonian, and all operators in it, acquire an addi-
tional contour index c = ∓, indicating whether they sit on the
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forward (−) or backward (+) branch of the Keldysh double-
time contour. The contour-ordering operator TC puts all
operators on the backward branch left of those on the forward
branch, and antitime orders (time orders) them on the back-
ward (forward) branch.

In the above equation, Ô, inserted at time t , can be placed
on either branch. However, if Ô is a product of multiple
operators, they also come with contour indices to ensure the
correct ordering. It follows that an n-point correlator generi-
cally has 2n Keldysh components. For example, the two-point
correlator in terms of the creation (ψ†) and the annihilation
operator (ψ) reads

Gc|c′
(t, t ′) = −i〈TCψc(t )ψ†c′

(t ′)〉. (3)

Resolving the contour indices c, c′ yields the matrix

Gc|c′ =
(

G−|− G−|+

G+|− G+|+

)
=

(
GT G<

G> GT̃

)
. (4)

Using the redundancy G< + G> − GT − GT̃ = 0, which
holds as long as t �= t ′ (see Appendix E for the case t = t ′),
the Keldysh structure of G can be simplified. The Keldysh
rotation invokes the Keldysh indices k = 1 and 2, where

ψ1 = 1√
2

(ψ− − ψ+), ψ2 = 1√
2

(ψ− + ψ+), (5)

and equivalently for ψ†. We can thus define a basis transfor-
mation matrix D via ψk = Dkcψc:

D = 1√
2

(
1 −1
1 1

)
, D−1 = 1√

2

(
1 1

−1 1

)
. (6)

Rotating G as Gk|k′ = DkcGc|c′
(D−1)c′k′

yields

Gk|k′ =
(

G1|1 G1|2

G2|1 G2|2

)
=

(
0 GA

GR GK

)
, (7)

where G1|1 = 0 follows from the redundancy mentioned
above. We find the retarded propagator

GR(t1, t2) = −i�(t1 − t2)〈{c(t1), c†(t2)}〉, (8)

where {·, ·} denotes the anticommutator, and its advanced
counterpart GA(t1, t2) = [GR(t2, t1)]∗, as well as the Keldysh
propagator GK (t1, t2) = −[GK (t2, t1)]∗ [54].

For a time-independent problem, we have G(t1, t2) =
G(t1 − t2) and frequency conservation with

G(ν) =
∫

dteiνt G(t ), G(t ) =
∫

dν

2π
e−iνt G(ν). (9)

In the following, we consider thermal equilibrium at tempera-
ture T and chemical potential μ, set to zero. Then, the density
matrix is ρ0 = e−H/T /Z (with kB = 1 and Z = Tr e−H/T ),
and the Keldysh components of G fulfill the fluctuation-
dissipation theorem (FDT) [54,65]

GK (ν) = 2i tanh
(

ν
2T

)
ImGR(ν). (10)

B. Diagrammatic framework

The one-particle propagator can be expressed through the
bare propagator G0 and the self-energy � via the Dyson

equation. Using multi-indices 1, 1′, etc., we have

(11)

where the internal arguments 2, 2′ are summed over. This
equation is solved by G = (G−1

0 − �)−1. The self-energy has
a Keldysh structure similar to Eq. (7),

�k′
1|k1 =

(
�1|1 �1|2

�2|1 �2|2

)
=

(
�K �R

�A 0

)
, (12)

and �K (ν) = 2i tanh( ν
2T )Im�R(ν), cf. Eq. (10).

The two-particle (or four-point) correlation function G(4)

can be expressed through the four-point vertex 	,

(13)

where the internal arguments (3, 3′, 4, 4′) are again summed
over. From G(4), one obtains susceptibilities by contracting
pairs of external legs (see Appendix C for details).

The bare vertex, as the full vertex, is fully antisymmetric in
its indices. Thus, a purely local and instantaneous interaction
is of the type

(	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2)

= −Uδ(t ′
1 = t ′

2 = t1 = t2)δσ1,σ̄
′
2
(δσ ′

1,σ2δσ ′
2,σ1 − δσ ′

1,σ1δσ ′
2,σ2 ),

(14)

with U > 0 for a repulsive interaction. This corresponds to a
Hugenholtz diagram (single dot) [68]

(15)

As the bare vertex is part of either H+ or H− in Eq. (2), all
its contour indices must be equal [54],

(	0)1′2′|12 = −c1δc′
1=c′

2=c1=c2 (	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2). (16)

It acquires a minus sign when moved from the forward (c1 =
−) to the backward (c1 = +) branch of the Keldysh contour.
After Keldysh rotation, one obtains

(	0)k′
1k′

2|k1k2

σ ′
1σ

′
2|σ1σ2

=
{

1
2 (	0)σ ′

1σ
′
2|σ1σ2

,
∑

i ki odd

0, else,
(17)

where
∑

i ki is short for k′
1 + k′

2 + k1 + k2.
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C. Many-body approaches

So far, we defined the basic objects of interest, namely,
one- and two-particle correlation functions in the KF, encap-
sulated in the self-energy � and the 4p vertex 	,

(18)

One can derive a diagrammatic perturbation series for each of
them. However, to extend our description from weak to inter-
mediate coupling, we want to resum infinitely many diagrams.
We use two strategies achieving this: fRG [39,69] and the PA
[40]. We summarize both schemes in turn and then comment
on their relation.

In fRG, one introduces a scale parameter � into the bare
propagator G0, such that the theory is solvable at an initial
value � = �i, while the original problem is recovered at a
final value � = � f (i.e., G

� f

0 = G0). Here, we choose G�i
0

very small, so that ��i and 	�i can be obtained by perturba-
tion theory or by iterating the parquet equations (see below)
until convergence. The final results �� f = � and 	� f = 	

are obtained by solving a set of flow equations. In fact, the
fRG provides an infinite hierarchy of flow equations, which
is in principle exact but must be truncated in practice. The
flow equations for �̇ = ∂�� and 	̇ = ∂�	 in diagrammatic
notation are

(19a)

(19b)

The propagator with a dash is the single-scale propaga-
tor S = ∂�G|�=const; propagator pairs with a dash indicate
�̇S = SG + GS. We adopt the one-loop fRG scheme where
the truncation consists of 	(6) ≈ 0. As is commonly done, we
then employ the so-called Katanin substitution [70] where �̇S

is replaced by �̇ = ĠG + GĠ.

The parquet formalism consists of solving a self-consistent
set of equations on the one- and two-particle level. It involves
the Schwinger–Dyson equation (SDE)

(20a)

where the first term is the Hartree self-energy �H, as well as
the Bethe–Salpeter equations (BSEs)

(20b)

(20c)

(20d)

Here, γr is the two-particle reducible vertex in a given channel
r ∈ {a, p, t}, while Ir = 	 − γr is the corresponding two-
particle irreducible vertex. The parquet equation

	 = R + γa + γp + γt (20e)

gives the full vertex in terms of the two-particle reducible
vertices as well as the fully irreducible vertex R. The set
of equations (20) is exact. However, R in Eq. (20e) is not
determined by an integral equation itself and serves as an
input, for which an approximation must be used in practice.
The PA is the simplest such approximation:

R = 	0 + O[(	0)4] ≈ 	0. (21)

Thus, the set of equations (20) closes and can be solved by
standard means.

The truncated (one-loop) fRG flow and the PA are closely
related but differ in details. An equivalence between them
is established by the multiloop fRG [61–63] (see also
Refs. [64,71–76]): By incorporating additional terms into the
flow equations, which simulate part of the intractable six-
point vertex in the fRG hierarchy of flow equations, the scale
derivative of the self-energy and vertex is completed to a
total derivative of diagrams, which are precisely the diagrams
contained in the PA. Hence, if multiloop convergence can
be achieved, the regulator dependence of the truncated fRG
flow is eliminated, and one obtains results equivalent to the
PA. Here, we restrict ourselves to one-loop fRG flows. Our
numerical explorations with multiloop fRG for the AM in the
KF have so far shown that the additional terms are numerically
less well behaved, requiring a prohibitively high numerical
resolution. This task is therefore left for future work, where
compression techniques such as the new quantics tensor cross
interpolation scheme [7,33,77] could be used to keep the
needed numerical resources manageable.
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D. Single-impurity Anderson model

The formalism introduced above is completely general
and can be applied, e.g., to lattice or impurity models alike.
Comparing Keldysh to Matsubara approaches, the spatial or
momentum degrees of freedom of lattice models are treated
similarly in both cases. By contrast, the temporal or frequency
dynamics are naturally very different. In impurity models, the
frequency dynamics are isolated, saving the cost of including
momentum variables. Hence, we consider in this paper the
AM [49] in thermal equilibrium. Its physical behavior is well
understood [48], and NRG [43] can be used to obtain highly
accurate real-frequency benchmark data.

The model is defined by the Hamiltonian

H =
∑
εσ

εc†
εσ cεσ + (εd + h)n↑ + (εd − h)n↓ + Un↑n↓

+
∑
εσ

(Vεd†
σ cεσ + H.c.), (22)

with spinful bath electrons, created by c†
εσ , and a local level

(d†
σ ). The latter has an on-site energy εd and Coulomb repul-

sion U acting on nσ = d†
σ dσ . Although we consider h = 0, we

include the magnetic field in Eq. (22) for a simple definition of
the magnetic susceptibility. The bath electrons are integrated
out, yielding the frequency-dependent retarded hybridization
function −Im�R(ν) = ∑

ε π |Vε |2δ(ν − ε). We consider a flat
hybridization in the wide-band limit, �R

ν = −i�, so that the
bare impurity propagator reads

GR
0 (ν) = 1

ν − εd + i�
. (23)

We use the dimensionless parameter u = U/(π�) for the in-
teraction strength on the impurity in units of the hybridization
strength to the bath. We focus on two choices of the on-site
energy: one with particle-hole symmetry, εd = −U/2, and
one without, εd = 0. We refer to these as the symmetric AM
(sAM) and asymmetric AM (aAM), respectively.

For the sAM, �H = U/2 is conveniently absorbed into the
bare propagator,

GR
0 → GR

H = 1

ν − εd + i� − �H
= 1

ν + i�
. (24)

For perturbative calculations in the aAM (as in PT2 or to
initialize the parquet iterations), we also replace G0 by GH

(see Appendix E for details).
For the fRG treatment, we use the hybridization flow [54],

where � acts as the flow parameter and is decreased from a
very large value to the actual value of interest. This is con-
venient because every point of the flow describes a physical
system, at the given values of �, U , T . In other words, the
fRG flow provides a complete parameter sweep in �, while
the other parameters (U , T ) remain fixed. Then, the fRG
single-scale propagator is

SR(ν) = ∂�GR(ν)|�=const = −i[GR(ν)]2. (25)

In the limit � → ∞, the values of 	 and � are [54]

	|�=∞ = 	0, �R|�=∞ = �H = U 〈nσ 〉. (26)

Note that while all vertex diagrams of second order or higher
vanish as � → ∞, the first-order contribution of �R/A (the
Hartree term �H) is finite. As discussed in Appendix E, �H is
given by an integral over G<, which gives a finite value U 〈nσ 〉
even in the limit � → ∞. In practice, we start the flow at a
large but finite value of �, and use the self-consistent solution
of the parquet equations as the initial conditions for � and 	,
as they can be easily obtained for sufficiently large �.

E. Benchmark methods

As a real-frequency benchmark method, we use NRG in
a state-of-the-art implementation based on the QSpace ten-
sor library [78–80]. We employ a discretization parameter
of � = 2, average over nz = 6 shifts of the logarithmic dis-
cretization grid [81], and keep up to 5000 SU(2) multiplets
during the iterative diagonalization. Dynamical correlators are
obtained via the full density-matrix NRG [82,83], using adap-
tive broadening [84,85] and a symmetric improved estimator
for the self-energy [86]. We also extract zero-temperature
quasiparticle parameters from the NRG low-energy spec-
trum [87–93]. Dividing the quasiparticle interaction Ũ by the
square of the quasiparticle weight Z2 yields the 4p vertex at
vanishing frequencies 	↑↓(0). Thereby, we obtain 	↑↓(0) =
−Ũ/Z2 at T = 0 very efficiently and accurately. For a finite-
temperature estimate, we divide Ũ by the finite-temperature Z
deduced from the dynamic self-energy as opposed to the zero-
temperature Z following from the low-energy spectrum. We
also compute the dynamical 4p vertex in the Keldysh formal-
ism, exploiting the recent advances described in Refs. [34,35].

For completeness, we also compare our results to PT2.
Perturbation theory of the AM is known to work well when
expanding around the nonmagnetic Hartree–Fock solution
[60,94–97]. PT2 famously and fortuitously (cf. the iterated
perturbation theory in the DMFT context [42]) gives very
good results for the self-energy of the sAM, where εd =
−U/2 and �H cancel exactly. The reason is that �PT2 is
correct in the limits u→0 and u→∞. In the latter case,
the spectrum − 1

π
ImGR consists of two discrete peaks, and,

in the sAM, the resulting expression for �R = 1/GR
0 − 1/GR

is (U/2)2/(ν + i0+), coinciding with PT2. One may further
note that corrections to �PT2 start at order u4, as only even
powers contribute to the expansion of � for the sAM, and
that the expansion converges very quickly (see Figs. 3.6 and
3.7 in Ref. [95]). Additionally, the high-frequency asymptote
limν→∞ ν(�R − �H) is fully captured by PT2, as the general
expression U 2〈nσ 〉(1 − 〈nσ 〉) reduces to (U/2)2 (with 〈nσ 〉 =
1/2 in the sAM), i.e., the second-order result.

For the aAM, �H must first be determined in a self-
consistent way. This is crucial because 〈nσ 〉 is not well
approximated by a few orders in u [recall the Friedel sum
rule at T = 0 [98], 〈nσ 〉 = 1

2 − 1
π

arctan{[εd + �(0)]/�}].
The self-consistent Hartree propagator fulfills the Friedel sum
rule at T = 0, but the resulting 〈nσ 〉 for given εd is of course
not exact. When using PT2, we compute quantities of interest,
such as �PT2, using the Hartree propagator (see Appendix F
for details). However, in contrast with the sAM, �PT2 is not
exact at u→∞ (cf. Ref. [99]), odd powers in u contribute to
�, and the high-frequency asymptote of �PT2, involving 〈nσ 〉,
is not reproduced exactly.
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Finally, we also compare our fRG and PA results to
“K1SF calculations” mimicking the previous state of the art
in Keldysh fRG. References [54,55,58] used a scheme where
the full vertex is decomposed into the three channels [cf.
Eq. (20e)] and, for each two-particle reducible vertex γr , only
the dependence on the bosonic transfer frequency is retained
[see Eq. (76) in Ref. [55]]:

	 ≈ 	0 +
∑

r=a,p,t

γr (ωr ). (27)

Note that, within Matsubara fRG, Ref. [100] compared
this simplification (called “Appr. 1” therein) to the full
parametrization. When inserting the vertex parametrized ac-
cording to Eq. (27) into the self-energy flow (19a), no further
approximations are needed. However, when inserting the
vertex on the right of the vertex flow equation (19b), the
interchannel contributions are approximated by their static
values [in thermal equilibrium with μ = 0, see Eq. (83) in
Ref. [55]]:

	|RHS(γr ) ≈ 	0 + γr (ωr ) +
∑
r′ �=r

γr′ (ωr′ )|ωr′ =0. (28)

With this approximation the only frequency dependence of the
integrands lies in the propagator pair. By contrast, an exact
decomposition of each γr has the form [2]

γr (ωr, νr, ν
′
r ) = K1r (ωr ) + K2r (ωr, νr )

+ K2′r (ωr, ν
′
r ) + K3r (ωr, νr, ν

′
r ). (29)

(The frequency arguments ωr , νr , ν ′
r are defined in

Appendix A, Fig. 12.) Thus, the above approximation
can be understood by retaining only the K1r contributions
while ensuring a static feedback (SF) between the differ-
ent channels—hence the abbreviation K1SF. Within K1SF,
there are different ways of treating the feedback from the
self-energy. Previous works found better results at T = 0
by inserting only the static rather than full dynamic � into
the propagator [56]. We confirm this finding at T = 0 but
observed that the static � feedback has problems at T �= 0,
failing, e.g., the requirement Im� < 0. Instead, we obtained
much better results (particularly fulfilling Im� < 0) by using
the full dynamic � feedback together with the Katanin substi-
tution [70].

F. Note on the numerical implementation

Compared with the more common Matsubara formalism
(MF), the KF entails notable differences in the numerical
implementation that we summarize here (see Appendix G
for details). Most importantly, while finite-temperature Mat-
subara computations employ a discrete set of (imaginary)
frequencies, Keldysh functions depend on continuous (real)
frequencies. Furthermore, the Keldysh index structure in-
creases the number of components of the correlators (to be
computed and stored) by a factor of 4 and 16 for 2p and
4p objects, respectively. Hence, working in the KF requires
considerably higher effort in terms of implementational com-
plexity and numerical resources.

To minimize systematic numerical errors, a faithful
representation of the vertex functions is essential. The de-

composition (29) of the reducible vertices [2] is beneficial
for capturing the high-frequency asymptotics. Indeed, the
lower-dimensional asymptotic functions, K1 and K2(′) , allow
for a good resolution at comparably low numerical cost. A
good resolution of the continuous Keldysh functions further
necessitates a suitable choice of sampling points. We use a fre-
quency grid with high resolution at small frequencies, where
the vertices show sharp features, and fewer points at higher
frequencies. In fRG with the hybridization flow, the frequency
grids also have to be rescaled to account for changes scaling
with �; for fully adaptive grids (which were not required in
this work, cf. Appendix G) see also Refs. [73,74,76].

Continuous-frequency computations also require efficient
integration routines. We use an adaptive quadrature routine
to capture the essential features of sharply peaked functions
(cf. Appendix G). The additional numerical costs due to the
Keldysh index structure can be mitigated by vectorization,
i.e., by exploiting the matrix structure of the summation
over Keldysh components. Storing all Keldysh components
contiguously in memory allows for efficient access to matrix-
valued vertex data, which can be combined to matrix-valued
integrands via linear algebra operations. (Note that vectoriza-
tion over Keldysh components requires a quadrature routine
that accepts matrix-valued integrands.) Symmetries are used
to reduce the data points that are computed directly, and most
resulting symmetry relations are compatible with vectoriza-
tion over Keldysh indices (see Appendix A).

Lastly, the fRG and the parquet solver generally have the
advantage that computations can be parallelized efficiently
over all combinations of external arguments. We use OMP and
MPI libraries to parallelize execution across multiple CPUs
and compute nodes.

III. RESULTS

In the results, we focus on retarded correlation functions
like GR, �R, and χR. For brevity, we denote the real and
imaginary parts of, say, GR by G′ and G′′, respectively, i.e.,
GR = G′ + iG′′. Since the fRG flow varies � at fixed U and T ,
we consider a temperature of T/U = 0.01. Most plots show
results both for the sAM (εd = −U/2) and aAM (εd = 0).
Recall that u = U/(π�).

A. Dynamical correlation functions

As a first quantity that is directly measurable in ex-
periment, we show in Fig. 1 the spectral function Ã(ν)≡
π�A(ν) = −�G′′(ν). The absorbed factor of π� ensures
Ã(0) = 1 for the sAM and T →0. We consider three values
of u ∈ {0.75, 1, 1.5}, referred to as “small,” “intermediate,”
and “large” in the following (although truly large interactions
in the AM rather are u � 2 [60]). There are no PA results
for large u, as we could not converge the real-frequency self-
consistent parquet solver there.

At small u, the curves produced by all methods are almost
indistinguishable. Small but noticeable deviations occur for
the aAM at intermediate u, and pronounced deviations are
found at large u. At u = 1.5 in the sAM, only the methods ex-
act in the u→∞ limit (cf. Sec. II E), NRG and PT2, produce
notable Hubbard bands centered at ν = ±U/2, while fRG also
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FIG. 1. Spectral functions Ã(ν ) ≡ π�A(ν ) for three interaction
values u in the symmetric AM (sAM, left) and the asymmetric AM
(aAM, right). Deviations between the methods appear with increas-
ing u. Here and in all subsequent figures, we consider a temperature
of fixed T/U = 0.01. At u = 1.5 in the sAM, the onset of Hubbard
bands centered at ν = ±U/2 is only captured by NRG and (for
reasons explained in Sec. II E) PT2. At this interaction strength,
fRG underestimates the quasiparticle peak, and we were unable to
converge the PA results.

underestimates the height of the quasiparticle peak. Neverthe-
less, one may come to the conclusion that all methods agree to
a reasonable degree of accuracy. Note, although, that at small
u, where � is small, GR = 1/([GR

0 ]−1 − �R) and thus also
A(ν) are dominated by the bare propagator. As all nontrivial
features of

A(ν) = 1

π

� − �′′(ν)

[ν − εd − �′(ν)]2 + [� − �′′(ν)]2

come from �, we can gain more insight by looking at �

directly.
In Fig. 2, we plot the negative imaginary part of the

retarded self-energy −�′′(ν) in units of the hybridization
strength �. This quantity is strictly non-negative [86], which
is a useful and nontrivial consistency check for all our meth-
ods. Here, deviations between the methods are visible at each
value of u. At small u, the results mostly agree, albeit better for
the sAM than for the aAM. At small and intermediate u in the
aAM, the PA matches NRG most closely and also captures the
peak position correctly, in contrast with fRG, K1SF, and PT2.
Strikingly, though, for intermediate u in the sAM (which is
the more strongly correlated setting with lower quasiparticle
weight Z , see Fig. 7), the PA shows considerable deviations
from NRG: �′′ has a “deformation” in that its maxima are
misplaced outward. We performed a separate PA calculation
in the MF to confirm that the corresponding MF result per-

FIG. 2. Imaginary part of the retarded self-energy, organized as
in Fig. 1. The limitations of PT2 in the aAM are clearly exposed. The
PA results are closest to NRG at u = 0.75 for both sAM and aAM,
and at u = 1 for the aAM (this corresponds to the regime of not too
strong correlation, Z � 0.8, see Fig. 7). Artifacts appear at u = 1 in
the sAM (where Z ≈ 0.65, see Fig. 7). Throughout, the fRG results
with full frequency dependence match NRG better than those in the
K1SF simplification.

fectly matches the “trivial” analytic continuation from KF
to MF, − 1

π

∫
dν ′ �′′(ν ′ )

iν−ν ′ , see Fig. 3. Hence, we conclude that
the Keldysh self-energy did not acquire artifacts during the
real-frequency self-consistent parquet iteration. Instead, the
deformations are a deficiency of the PA solution at u = 1,

FIG. 3. Imaginary part of the Matsubara self-energy in NRG and
the PA. The PA results stem from an independent solver imple-
mented in the MF and from the “trivial” analytic continuation of �′′

obtained in the KF. The qualitative difference between NRG and PA
observed in the real-frequency results of Fig. 2 at u = 1 can hardly
be guessed from these imaginary-frequency results.
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FIG. 4. Hartree self-energy �H = U 〈nσ 〉 in the aAM. PT2 cor-
responds to self-consistent solutions of the Hartree term. Only fRG
and PA agree well with NRG.

which are obvious in our Keldysh results, but could not have
been guessed from the more benign Matsubara self-energy
(Fig. 3).

We also observe from Fig. 2 that the PT2 results become
much worse as soon as one leaves the special case of particle-
hole symmetry (see Sec. II E). The results from fRG with
full frequency dependence are better than those from K1SF,
showing that the frequency dependence of � is only generated
correctly if the dependence of the 4p vertex on its three fre-
quencies is kept [39]. In fact, for large u in the aAM, the K1SF
result becomes negative (with values on the order of 10−5)
at around ν/� � ±2, thus failing the previously mentioned
consistency check.

The inadequacies of a constant vertex manifest themselves
even in the constant Hartree part of the self-energy, �H =
U 〈nσ 〉, shown in Fig. 4. The fRG and PA calculations produce
the NRG value almost exactly, but the K1SF curve starts to
deviate early. We attribute this to the fact that diagrammatic
contributions beyond the K1 level are neglected, introducing
an error of O(U 3) into the flow of �, including �H, see
Eq. (E5). The PT2 curve shows the converged values obtained
from self-consistent evaluations of the Hartree diagram (see
Appendix E), which enters the Hartree propagator used in all
PT2 computations. The self-consistency is likely the reason
why PT2 performs better than K1SF (which does not obey
such a self-consistency) for small and intermediate u.

Apart from Ã and �, other dynamical quantities of interest
are susceptibilities. In the diagrammatic methods, these are
derived directly from the 4p vertex (see Appendix C). We
consider the imaginary part of the retarded magnetic and den-
sity dynamical susceptibilities χ̃m/d(ω)≡π�χm/d(ω), paying
special attention to the peak position and height. The peak
position of χ̃m shown in Fig. 5 is proportional to the Kondo
temperature and decreases with increasing u in the sAM. All
methods apart from K1SF produce good results at small u with
only minor deviations from NRG. The deviations are smallest
in PA from small to intermediate u, until the PA results are no
longer available at large u. fRG produces reasonable curves
but, at large u, under- or overestimates the peak in the sAM
and aAM, respectively. K1SF does not produce sensible re-
sults for any u considered, while PT2 performs well for the
aAM but yields worse results than fRG in the sAM.

The density susceptibility shown in Fig. 6 is centered at
larger frequencies and has smaller magnitude than its mag-
netic counterpart. Indeed, while χ̃m and χ̃d are equal at u = 0,
increasing interaction values discriminate between spin fluc-

tuations (enhanced) and charge fluctuations (reduced). Here,
fRG and the PA both produce acceptable results. However, the
PA data at intermediate u and in the sAM show a deformation
around ω/� � 5, reminiscent of the deformation in �′′ (cf.
Fig. 2). The K1SF curve for χ̃d (as for χ̃m) is not sensible,
this time lying far above (rather than below) the NRG curve.
PT2 for χd, differently from χm, is unreliable, yielding a
qualitatively wrong double-peak structure.

In summary, we find that the PA results generically repro-
duce the NRG benchmark best, but are available only up to
intermediate u. Our new fRG computations with the full fre-
quency dependence of the vertex drastically improve upon the
K1SF results in almost every case, but become quantitatively
off with increasing u.

B. Static properties

We now turn to static quantities, obtained from � and 	

by setting all frequency arguments to zero. Although these
can also be obtained using the imaginary-frequency MF (see
Ref. [100] for an early MF fRG treatment of the AM), they
serve as important consistency checks for our Keldysh compu-
tations. The zero-frequency fermion objects can be used for an
effective low-energy description, and, by rescaling, converted
to quasiparticle parameters as in Hewson’s renormalized per-
turbation theory [101]. For the AM in the wide-band limit
at T = 0, the static fermionic quantities can also be deduced
from the static susceptibilities. We hence consider the static
magnetic and charge susceptibilities as well, before analyzing
the zero-temperature identities in the next section.

By virtue of the � flow, see Sec. II D, a single fRG com-
putation suffices to obtain the entire dependence of, e.g., Z (u)
(at fixed T/U ). By contrast, the PA requires separate compu-
tations for every value of u, resulting in a significantly bigger
numerical effort. The top row of Fig. 7 shows the quasiparticle
weight

Z = (
1 − ∂ν�

′∣∣
ν=0

)−1
, (30)

as extracted from the slope at ν = 0 of the real part of the
retarded self-energy, �′. In all cases, the PA reproduces the
NRG benchmark best, but is again only available up to u � 1.
The fRG curve follows NRG for small u but starts to deviate
already at intermediate u. K1SF performs very well in the
sAM, but deviates from NRG in the aAM earlier than fRG.
Since PT2 reproduces the NRG full self-energy very well for
the sAM (cf. Fig. 2), the same applies to Z . In the aAM, PT2
also produces reasonable results for Z , in contrast with �′′(ν)
in Fig. 2.

The second row of Fig. 7 displays the scattering rate
−�′′(0) on a logarithmic scale. In the sAM, all methods
agree reasonably well up to intermediate u. Beyond that, fRG
significantly overestimates −�′′(0) (cf. Fig. 2). In the aAM,
the fRG results are slightly better. The PA yields the best
agreement with NRG, except for u � 1 in the aAM where
numerical artifacts appear. K1SF shows large deviations early
on, matching the observations in Fig. 2. PT2 reproduces NRG
almost exactly, even though this is not the case for �′′(ν)
(Fig. 2) in the aAM.

The last row of Fig. 7 shows the effective interaction.
The PA accurately reproduces the NRG results. In strik-
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FIG. 5. Imaginary part of the dynamical magnetic susceptibility,
χ̃m(ω)≡π�χm(ω). At small to intermediate u, all methods (except
K1SF) produce good results, while PA matches NRG best. Toward
large u, fRG does not capture the peak correctly. PT2 performs well
for the aAM but not the sAM; K1SF is off in all cases.

ing contrast, fRG overestimates the effective interaction very
strongly. (This can also be seen in Fig. 11 below, third
row, columns four to six, where the frequency-dependent
vertex is plotted.) PT2 and K1SF yield only very weak
renormalizations of the bare vertex (none at all in PT2 in
the sAM).

Figure 8 shows the static magnetic and density susceptibil-
ities,

χm = 1
4∂h〈ñ↑ − ñ↓〉|h=0, χd = 1

4∂εd 〈ñ↑ + ñ↓〉, (31)

where ñσ = nσ − 〈nσ 〉. Again, the PA results, where available,
reproduce the NRG benchmark best. The fRG results are
reasonable up to intermediate u for χ̃ ′

m/d(0) = π�χm/d. A
comparison with the results obtained by an independent MF
computation (dashed lines in Fig. 8) reveals that the KF data
at the largest u values is not fully converged in the size of
the frequency grid (see Appendix I for details). As for the
dynamical susceptibilities, K1SF does not produce sensible
results at all. PT2 gives fairly good results, in particular for
χ̃ ′

m in the aAM (see also Fig. 5), but χ̃ ′
d in the sAM quickly

deviates from NRG rather strongly (as it did in Fig. 6).
In summary, for all the static properties shown in Figs. 7

and 8, the PA results agree very well with NRG for all u for
which the parquet solver converged, i.e., up to u � 1. By con-
trast, fRG results begin to deviate from NRG somewhat earlier
than PA, sometimes even much earlier. This difference is most
striking for the effective interaction in the bottom panels of
Figs. 7, where the performance of fRG is surprisingly (even
shockingly) poor.

This comparatively poor performance of fRG may be due
in part to the well-known fact that one-loop fRG results de-

FIG. 6. Imaginary part of the dynamical density susceptibility,
χ̃d(ω)≡π�χd(ω). Both fRG and the PA produce good results. The
artifact in the PA solution at u = 1 in the sAM observed in Fig. 2 is
also seen here, while it was not apparent in Fig. 5. Neither PT2 nor
K1SF produce sensible results for χ̃d.

pend on the choice of the fRG regulator. Figure 9 illustrates
this in the present context by comparing our KF results with
independent calculations in the MF. For the latter, we used

FIG. 7. Static fermionic properties as a function of u: quasipar-
ticle weight Z , scattering rate −�′′(0) on a logarithmic scale, and
effective interaction (k = 12|22) in units of the bare interaction.
Overall, the PA (available for u � 1) matches NRG best, except for
�′′(0) at u � 1 in the aAM. All other methods agree reasonably
well (except for Z and �′′(0) in the aAM in K1SF). Strikingly, fRG
strongly overestimates the effective interaction.
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FIG. 8. Static susceptibilities as a function of u. fRG yields
sensible results until χ̃ ′

m has a maximum at u ≈ 1.3. PA data are
available only for u � 1, but show excellent agreement with NRG
there. Results from K1SF and PT2 (for χ̃d) are rather bad.

three different regulators, called � flow (same as for our KF
computations), U flow, and ω flow. [See Eqs. (3) and (4) in
Ref. [64] for definitions of the U and ω flow. The ω and U
flows require many more separate computations than the �

flow, since the former two hold T/� fixed (the ω flow also
T/U ), while the latter holds T/U fixed.] From Fig. 9, we note
three salient points. First, the MF and KF results for the �

flow match. This is expected for numerically converged calcu-
lations and serves as a useful consistency check. Second, the
U flow deviates from the NRG benchmark very early. Third,
the best MF result is obtained from the ω flow (similarly as
observed in Ref. [64]). Regrettably, though, this advantage of
the MF ω flow is not relevant for the KF: there, the ω flow
would violate causality [54] and hence cannot be used. This,
and the poor performance of the U flow, is the reason why we
chose the � flow for all our KF computations.

FIG. 9. Effective interaction (k=12|22) of the sAM in units of
the bare interaction, including fRG results in the MF obtained with
three different regulators. The MF result in the � flow perfectly
matches its KF counterpart. The U flow performs considerably
worse, as it quickly deviates from NRG. By far the best result is
obtained using the ω flow, which can however not be used in the KF
(see the main text for details). In the MF, we approximate vanishing
frequencies by averaging over the lowest Matsubara frequencies,
γr (0) ≈ 1

4

∑
ν,ν′=±πT γr (0, ν, ν ′).

C. Zero-temperature identities

As an internal consistency check for each method, we
consider four Fermi-liquid identities. These hold T = 0 and,
more generally, at T � TK, where TK is the Kondo tem-
perature. We deduce TK as TK = 1/[4χ ′

m(0)]|T =0 [see, e.g.,
Eq. (20) in Ref. [102]] from zero-temperature NRG calcula-
tions. The resulting values for u∈{0.75, 1, 1.5} are TK/U ∈
{0.31, 0.18, 0.07} for the sAM and TK/U ∈{0.58, 0.45, 0.32}
for the aAM. Note that the Kondo regime of the sAM corre-
sponds to u � 2 [101].

First, for a constant hybridization function in the wide-
band limit, we have the following two “Yamada–Yosida
(YY) identities” generalized to arbitrary εd [see Eq. (6.1) in
Ref. [95] and Eq. (7) in Ref. [97], Eqs. (24)–(25) in Ref. [101],
or Eqs. (4.30)–(4.33) in Ref. [103]]:

Z−1 = [χm(0) + χd(0)]/ρ(0), (32a)

−ρ(0)	↑↓(0) = [χm(0) − χd(0)]/ρ(0). (32b)

Here, ρ(0)≡A(0)|T =0 is the spectral function evaluated at
ν = 0 and T = 0,

ρ(0) = 1

π

�

[εd + �′(0)]2 + �2

= 1

π�

{
1 for εd = −U/2

1
1+[�′(0)/�]2 for εd = 0.

(33)

Next, 	↑↓(0) is the full Matsubara 4p vertex evaluated at van-
ishing frequencies (in the zero-temperature limit). The minus
sign in Eq. (32b) stems from our convention of identifying,
e.g., the bare Matsubara vertex 	0,↑↓ with −U . The analytic
continuation of �p functions between Matsubara and retarded
Keldysh components involves a factor 2�/2−1 [see Eq. (69) in
Ref. [34]]. Hence,

	↑↓(0) = 2	k
↑↓(0),

k ∈ {(12|22), (21|22), (22|12), (22|21)}. (34)

Another identity derived by YY [see Eqs. (13)–(15) and
(18) in Ref. [97], Eqs. (31) and (34) in Ref. [101], or Eq. (4.37)
in Ref. [103]] implies

−�′′(ν) = 1
2πρ(0)3[	↑↓(0)]2(ν2 + π2T 2) (35)

for |ν|, T � TK. We check this relation by fitting �′′ ∝
(ν2 + π2T 2). Finally, the Korringa–Shiba (KS) identity [see
Eq. (1.4) in Ref. [104]] reads

lim
ω→0

χ ′′
m(ω)/ω = 2π [χ ′

m(0)]2. (36)

To check the fulfillment of these identities, we analyze
the relative difference 2(LHS − RHS)/(LHS + RHS) [LHS
(RHS) = left- (right-) hand side] of Eqs. (32a), (32b), (35),
(36), referred to as YY1, YY2, YY3, KS, respectively. These
zero-temperature identities of the AM only hold if T � TK.
As we keep T/U = 0.01 constant, the temperatures increase
with u, and T � TK is no longer fulfilled for u � 1 in the
sAM. Accordingly, there, the identities are violated even in
NRG.

As can be seen in Fig. 10, the PA fulfills most identities
very well (below 8% throughout), but is again available only
up to u � 1. The fRG results obey YY1 up to u � 1, but show
clear deviations in all other identities, setting in already for

115128-10



REAL-FREQUENCY QUANTUM FIELD THEORY APPLIED … PHYSICAL REVIEW B 109, 115128 (2024)

FIG. 10. Relative difference between the left- and right-hand
sides of the four zero-temperature identities as a function of u.
All calculations have finite T/U = 0.01; thus, even NRG violates
the identities if T � TK is no longer fulfilled. Apart from NRG,
the PA shows the smallest violations of these identities (below 8%
throughout), but is only available for u � 1. The fRG data fulfill YY1
relatively well, but show clear deviations otherwise, setting in already
for very small values of u. For YY2, e.g., the deviations become
significant already at u � 0.25. PT2 obeys the identities (except
KS) in the sAM but not the aAM. K1SF shows major deviations
throughout.

very small values of u. Except for the KS relation in the fourth
row, PT2 mostly fulfills the identities for the sAM but less so
for the aAM, while K1SF shows major deviations, even for
small u.

D. Frequency dependence of the 4p vertex

Finally, we show fRG and PA results for the frequency
dependence of the 4p vertex in the sAM and compare them
to corresponding results from NRG. We restrict ourselves
to a fully retarded Keldysh component [34] and show both
the same-spin (↑↑) and the opposite-spin (↑↓) components.
We plot the vertex in the two-dimensional frequency plane
(ωt = 0, νt = ν, ν ′

t = ν ′) in the natural parametrization of the
t channel for zero transfer frequency. Physically, this corre-
sponds to the effective interaction of two electrons on the
impurity with equal or opposite spins, respectively, and en-
ergies ν, ν ′ without energy transfer [69]. The NRG 4p results
are computed with the scheme introduced in Refs. [34,35],
utilizing the symmetric improved estimator of Ref. [105].

In Fig. 11, we compare results from fRG, the PA, and NRG
for two values of the interaction u ∈ {0.5, 1}. We observe good

qualitative agreement throughout, as all methods capture all
nontrivial features. At u = 1, however, we observe a qualita-
tive discrepancy in the data: Re	↑↓ is strictly positive in fRG
and slightly negative in NRG (bottom part, top row, first panel
from the right in Fig. 11). The PA result reaches even larger
negative values and retains them for a large range of ν values.
This strong negative signal appears to be an artifact of the PA;
it would likely be canceled by additional contributions missed
in the PA.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have shown that real-frequency QFT cal-
culations with full frequency resolution of the 4p vertex are
feasible. We chose the AM for a proof-of-principle study and
employed one-loop fRG flows and solutions of the parquet
equations in the PA, benchmarked against NRG. We com-
pared dynamical correlation functions as well as characteristic
static quantities and performed a detailed numerical check of
zero-temperature identities. We found that keeping the full
frequency dependence of the 4p vertex in fRG strongly im-
proves the accuracy compared with previous implementations
using functions with at most one-dimensional frequency de-
pendencies. Note that the present study is performed at finite
temperature, T/U = 0.01, in contrast with previous work on
spectral functions at T = 0 [55].

The numerical challenges imposed by the fully
parametrized real-frequency 4p vertex were overcome
via a suitably adapted frequency grid, vectorization over the
Keldysh matrix structure, and a parallelized evaluation of the
fRG or parquet equations (see Appendix G). We employed
frequency grids with up to 1253 data points, and our most
expensive calculation consumed about 25 000 CPU hours for
a single data point in the PA.

The PA results could be converged only for u = U/(π�) in
the range u � 1, but there gave the best agreement with NRG
(except at the boundary of the accessible u range). The PA also
gave very good results for the effective interaction. However,
by looking at 	k

↑↓ in a frequency range around the origin, it
appears that the mechanism by which the PA achieves low
values of |	k

↑↓(0)| (compared with, say, fRG) is different from
that of NRG, as the PA data have a spuriously large regime of
strongly negative values in Re	k

↑↓.
The fRG calculations in the present context were compara-

tively economical, since a single run with the “� flow” yields
an entire parameter sweep in �. The flow could be followed
to large values of u, well beyond 1, i.e., far beyond the regime
where we could converge the PA. However, for u � 0.5 these
one-loop fRG results are significantly less accurate than the
PA (as compared with NRG). Strikingly, fRG strongly over-
estimates the effective interaction 	k

↑↓(0) by factors of three
to four for u in the range 1 to 1.5. We compared the Keldysh to
Matsubara fRG data obtained using three different regulators,
and we found that, for u > 0.5, the latter strongly depend on
the choice of regulator: For the � flow, the Matsubara results
agree with the Keldysh results, while performing better than
the U flow but worse than the ω flow. Regrettably, the ω flow
is not available in the KF, where it violates causality. It would
hence be worthwhile to find Keldysh fRG regulators akin to
the ω flow but compatible with the KF requirements regarding
causality and FDTs [54].
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FIG. 11. Fully retarded (k = 12|22) Keldysh component of the full vertex, [	k
σσ ′ (ωt = 0, νt = ν, ν ′

t = ν ′) − 	k
0,σσ ′ ]/	k

0↑↓, for u = 0.5 (top
panel) and u = 1 (bottom), computed using fRG, PA, and NRG (following Refs. [34,35]). We observe very good agreement for u = 0.5, which,
qualitatively, mostly persists for higher interaction. However, Re	↑↓ at u = 1 and low frequencies differs significantly between the methods:
it is strictly positive in fRG, slightly negative in NRG, but much more strongly negative up to fairly large values of ν in the PA. Generally, the
PA shows more complicated features than NRG for larger u, despite being numerically converged, indicating the breakdown of the PA.

The regulator dependence in fRG can be eliminated in the
multiloop fRG framework, yielding results equivalent to the
PA upon convergence in the number of loops [61–63]. This
has been demonstrated numerically in imaginary frequencies
for the AM [64] (and in Refs. [71,72] for the Hubbard model).
Yet, using a multiloop extension of our Keldysh fRG code, we
found the computation of multiloop contributions consider-
ably harder for Keldysh vertices than for Matsubara vertices.
The reason seems to be that, for real-frequency Keldysh ver-
tices, the higher-loop contributions for increasing u show a
considerably more complicated frequency structure than the
original fRG vertex itself (similarly to how the PA vertex has
more structure than its fRG counterpart in the bottom panel
of Fig. 11). A more detailed analysis along these lines is,
however, left for future work.

Our work paves the way for many follow-up studies.
For instance, one can exploit the power of the KF to study
nonequilibrium phenomena, and the AM with a finite bias
voltage is tractable with only minor increase in the numerical
costs [55,106]. Furthermore, we here considered moderate
interaction strengths u � 1.5 because it is known that fRG
and the PA are unable to access the nonperturbative regime
of the AM [20,64] or, e.g., the Hubbard model [72,107]. An
important future direction is, therefore, to use these methods

in a more indirect manner, as real-frequency diagrammatic
extensions [41] of dynamical mean-field theory [42]. The first,
established building block for this is the nonperturbative input,
namely, 2p and 4p vertices, from NRG [34,35]. The present
work presents another building block: real-frequency QFT
with full frequency resolution of the 4p vertex. An important
next step will be to use our diagrammatic framework to study
the consistency of the NRG results for the 2p and 4p vertices,
e.g., by checking whether they fulfill the SDE. The final build-
ing block will then be to include momentum degrees of free-
dom in real-frequency QFT approaches built on top of NRG.

Keeping track of the momentum dependence will lead to
a major increase in numerical complexity. This can be ad-
dressed using economical implementations and compression
algorithms such as truncated-unity approaches [108–111] or
the new quantics tensor cross interpolation scheme [7,33,77].
The latter can be used to obtain highly compressed tensor
network representations of multidimensional functions, po-
tentially leading to exponential reductions in computational
costs. First investigations have shown that the objects encoun-
tered in diagrammatic many-body approaches may indeed
have strongly compressible quantics representations [7].

All raw data required to reproduce the plots as well as the
full data analysis and the plotting scripts are available online
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[112]. A separate publication of the fully documented source
code used to generate the raw data is in preparation.
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APPENDIX A: THE TWO-PARTICLE VERTEX

In compact notation, we denote the vertex by 	1′2′|12 where
each leg carries a multi-index i = (ki, σi, νi ) with Keldysh
index ki, spin σi, and fermionic frequency νi. Generic sym-
metries of the full Keldysh vertex are derived in Ref. [56]
and other symmetries (such as spin or particle-hole symmetry)
are given in Ref. [113]. In the following, we recap these
symmetries and detail the parametrization in our implementa-
tion. First, we work with Keldysh indices rather than contour
indices. In this basis, the 11 · · · 1 (22 · · · 2) component of a
multipoint correlator (vertex) vanishes [56]. This simplifies,
e.g., the Dyson equation, GR = [(GR

0 )−1 − �R]−1 and implies
	22|22 = 0. Furthermore, crossing symmetry gives

	1′2′|12 = −	2′1′ |12 = −	1′2′|21 = 	2′1′|21, (A1)

and complex conjugation

	1′2′|12 = (−1)1+∑
i ki	∗

12|1′2′ . (A2)

Thermal equilibrium entails (generalized) fluctuation-
dissipation relations between different Keldysh components.
However, we choose to vectorize the code over Keldysh
components and thus do not use these relations (see
Appendix G for details on the vectorization). For a
comprehensive list of multipoint fluctuation-dissipation
relations, we refer to Refs. [56,114,115]. They are very well
fulfilled (percent level) by our numerical results.

In the absence of a magnetic field, spin conservation and
the invariance under a global spin flip reduce the number of
independent spin components. The remaining components are
related by the SU(2) relation [113]

	σσ |σσ = 	σσ̄ |σ σ̄ + 	σσ̄ |σ̄ σ , (A3)

where ↑̄ =↓ and vice versa. Hence, the spin dependence of
the vertex can be parametrized by

	σ ′
1σ

′
2|σ1σ2 = 	↑↓δσ ′

1,σ1δσ ′
2,σ2 + 	↑↓δσ ′

1,σ2δσ ′
2,σ1 . (A4)

The components on the right-hand side are related by crossing
symmetry. It thus suffices to compute a single one of them. At
particle-hole symmetry, we further have

	1′2′|12(ν ′
1, ν

′
2|ν1, ν2) = 	12|1′2′ (−ν1,−ν2| − ν ′

1,−ν ′
2)

(A2)= (−1)1+∑
i ki	1′2′|12(−ν ′

1,−ν ′
2| − ν1,−ν2)∗, (A5)

with the multi-indices i = (ki, σi ), reducing the number of
independent frequency components even more.

By frequency conservation, ν ′
1 + ν ′

2 = ν1 + ν2, the vertex
depends on only three independent frequencies. These are
chosen differently for each two-particle reducible vertex γr

(see Fig. 12), with the bosonic transfer frequency ωr and
the fermionic frequencies νr and ν ′

r . The vertices γr have
nontrivial asymptotics in the limits ν (′)

r →∞. One can de-
compose the reducible vertex γr in asymptotic classes, see
Eq. (29) [2]. Since the bare interaction is frequency indepen-
dent, the asymptotic classes Kir can be identified with certain
diagrams that are reducible in channel r [2,73]. Connecting
two external legs to the same bare interaction vertex reduces
the dependence by one external frequency argument. K1r (ωr )
consists of all diagrams where the two external legs carrying
frequency νr connect to the same bare vertex and the external
legs carrying ν ′

r connect to another one. Hence, K1r only
depends on ωr . K2r (ωr, νr ) consists of all diagrams where
the ν ′

r legs connect to the same bare vertex while each of the
other two legs connect to different bare vertices. K2′r (ωr, ν

′
r )

is analogous to K2r with the roles of νr and ν ′
r interchanged.

For K3r (ωr, νr, ν
′
r ) all external legs connect to different bare

vertices. The bare vertices simplify not only the dependence
of K1, K2, and K2′ on frequencies but also on Keldysh indices.
If a bare vertex connects to two external legs, flipping their
Keldysh indices, 1̄ = 2 (2̄ = 1), leaves the function invariant,
see Eq. (17). This gives, e.g.,

Kk1′ k2′ |k1k2

1p = Kk̄1′ k̄2′ |k1k2

1p = Kk1′ k2′ |k̄1 k̄2

1p

= Kk̄1′ k̄2′ |k̄1 k̄2

1p , (A6a)

Kk1′ k2′ |k1k2

2p,σ1′ σ2′ |σ1σ2
= Kk1′ k2′ |k̄1 k̄2

2p,σ1′ σ2′ |σ1σ2
. (A6b)

Note that the diagrammatic channels a and t flip under
crossing symmetry, i.e., γa,1′2′|12 = −γt,1′2′|21, while channel
p is crossing symmetric itself. The symmetry relations in
Eqs. (A1)–(A5) are formulated for full vertices. They can
be adapted to the asymptotic classes Kir by inserting the
decomposition on both sides of each relation and taking the
appropriate limits ν (′)

r →∞. For instance, K↑↓,2′ p is related to
K↑↓,2p by

Kk1′ k2′ |k1k2

↑↓,2′ p (ωp, ν
′
p)

(A2)= (−1)1+∑
i ki Kk1k2|k1′ k2′

↑↓,2p (ωp, ν
′
p). (A7)

For a formulation of the parquet and fRG equations in terms
of asymptotic classes, we refer to Ref. [2] and to Eqs. (75) in
Ref. [75].

As we vectorize over Keldysh indices, we explicitly keep
track of all Keldysh components. The symmetry relations
are then used to reduce the spin and frequency components
[Eqs. (A1), (A2), and (A5) for 	↑↓]. To implement these
symmetries for the K3r class, it is convenient to express the
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FIG. 12. We show the frequency conventions for the two-particle reducible vertices γr with r = a, p, t . Symmetric parametrizations with
± ω

2 ensure that vertex structures are centered around the frequency axis. The irreducible vertex R is shown in bosonic frequencies for
completeness.

relations in terms of the three bosonic frequencies [100],
giving

	
k1′ k2′ |k1k2

↑↓;ωa,ωp,ωt

(A2)= [
	

k1k2|k1′ k2′
↑↓; ωa,ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A1)= 	
k2′ k1′ |k2k1

↑↓; −ωa,ωp,−ωt

(A5)= [
	

k1′ k2′ |k1k2

↑↓; −ωa,−ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A8)

such that the sign of the bosonic frequencies define sectors
that are related by symmetry.

APPENDIX B: FREQUENCY DEPENDENCE
OF VERTEX COMPONENTS

Figures 13 and 14 show plots for the frequency dependence
of the asymptotic classes K2 and K3 for each of the three
two-particle channels r ∈{a, p, t}, computed in the PA for
u = 0.5 and u = 1, respectively. We use the natural frequency
parametrization for each channel r and set the bosonic transfer
frequency ωr = 0 in the plots for K3. The figures instructively
show what types of nontrivial structures emerge during such
calculations. In particular, one can clearly see that the fre-
quency resolution needs to be very high throughout to resolve
all sharp features (many occurring on scales much smaller
than �). Moreover, the weak-coupling results may serve as
benchmarks for future computations of Keldysh vertices using
other methods, such as NRG or QMC.

APPENDIX C: FULLY PARAMETRIZED EQUATIONS

We can write the parquet equations (20) and one-loop fRG
flow equations (19) entirely in terms of two functions, bubbles
and loops. A bubble Br in channel r = a, p, t combines two
vertices via a propagator pair

�34|3′4′
a,ωaνa

= G3|3′
νa−ωa/2G4|4′

νa+ωa/2, (C1a)

�34|3′4′
p,ωpνp

= G3|3′
ωp/2+νp

G4|4′
ωp/2−νp

, (C1b)

�
43|3′4′
t,ωt νt

= G3|3′
νt −ωt /2G4|4′

νt +ωt /2, (C1c)

where we use the natural frequency parametrization for
each channel (see Fig. 15) and superscripts indicate Keldysh
indices (34|3′4′) = (k3k4|k3′k4′ ). In the following, we give ex-
plicit formulas for the ↑↓-spin component of bubble diagrams
that combine vertices V and W :

Ba[V,W ]1′2′|12
↑↓,ωaνaν ′

a
=

∫
ν̃

V 1′4′|32
↑↓,ωaνa ν̃

�
34|3′4′
a,ωa ν̃

W 3′2′|14
↑↓,ωa ν̃ν ′

a
, (C2a)

Bp[V,W ]1′2′|12
↑↓,ωpνpν ′

p
=

∫
ν̃

V 1′2′|34
↑↓,ωpνpν̃

�
34|3′4′
p,ωpν̃

W 3′4′|12
↑↓,ωpν̃ν ′

p
, (C2b)

with
∫
ν̃

= ∫ ∞
−∞ dν̃/2π i (the internal spin sum and crossing

symmetry in Bp cancel the prefactor of 1/2), and

Bt [V,W ]1′2′|12
↑↓,ωt νt ν

′
t

= −
∫

ν̃

�
43|3′4′
t,ωt ν̃

[
V 4′2′|32

↑↓,ωt ,νt ,ν̃
W 1′3′|14

↑↑,ωt ν̃ν ′
t
+ V 4′2′|32

↑↑,ωt νt ν̃
W 1′3′ |14

↑↓,ωt ν̃ν ′
t

]
,

(C2c)

where the ↑↑-spin component is obtained via Eq. (A4).
For the loop, we parametrize the vertex in the t-channel

convention with ωt = 0 and write

L[	, G]1′|1
ν = −

∫
ν̃

G2|2′
νt

[	↑↓ + 	↑↑]1′2′ |12
0νt ν

. (C3)

Using the loop L and bubbles Br , the parquet equations (20)
read

γr = Br[Ir, 	], (C4a)

� = L[	0, G] + 1
2 L[Ba[	0, 	], G]. (C4b)

In the SDE, the internal spin sum can be performed, can-
celing the factor of 1/2 in Eq. (C4b) by crossing symmetry to
give

�
1′|1
SDEν

= −
∫

νt

G2|2′
νt

[
	0,↑↓ + Ba[	0, 	]1′2′|12

↑↓,0νt ν

]
. (C5)

The one-loop fRG flow equations [cf. Eq. (19)] are

�̇ = L(	, S), γ̇r = Ḃr (	,	), (C6)

where the dot on Ḃr denotes a differentiated propagator pair,
∂��r = ĠG + GĠ, including the Katanin substitution S →
Ġ = S + G�̇G [70].

Susceptibilities are obtained from G(4), Eq. (13), by con-
tracting pairs of external legs and subtracting the disconnected
parts [116,117]. For the spin-↑↓ and spin-↑↑ components, we
get

χ
12|1′2′
a,σσ ′,ωa

=
∫

ν

�12|1′2′
a,ωaν

+
∫

ν

∫
ν ′

�14|1′4′
a,ωaν

	
34|3′4′
σσ ′,ωaνν ′�

32|3′2′
a,ωaν ′ ,

(C7a)

χ
12|1′2′
p,σσ ′,ωp

=
∫

ν

�12|1′2′
p,ωpν

(1 − δσ,σ ′ )

+
∫

ν

∫
ν ′

�12|3′4′
p,ωpν

	
34|3′4′
σσ ′,ωpνν ′�

34|1′2′
p,ωpν ′ , (C7b)

χ
12|1′2′
t,σσ ′,ωt

= −
∫

ν

�
12|1′2′
t,ωt ν

δσ,σ ′

+
∫

ν

∫
ν ′

�
12|3′4′
t,ωt ν

	
34|3′4′
σσ ′,ωt νν ′�

34|1′2′
t,ωt ν ′ . (C7c)
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FIG. 13. Real (left) and imaginary (right) parts of K2 (top) and K3 (bottom) vertex components in the PA for u = 0.5. The three rows of
each subfigure show results for the three two-particle channels r ∈ {a, p, t}. The columns show all independent Keldysh components. Natural
frequency parametrizations were used and for K3 the bosonic transfer frequency ωr was set to zero. Consequently, some components of ReK3

vanish.

From these functions, we obtain physical susceptibilities
as χd/m = χt,↑↑ ± χt,↑↓, or after exploiting spin and crossing
symmetry, Eqs. (A1) and (A3),

χ
12|1′2′
d = 2χ

12|1′2′
t,↑↓ − χ

21|1′2′
a,↑↓ , (C8a)

χ12|1′2′
m = −χ

21|1′2′
a,↑↓ . (C8b)

These functions have the Keldysh structure of 4p functions.
To identify the retarded susceptibilities χR(ω) in terms of 2p
functions [analogous to the propagator, Eq. (7)], we use the
bare three-leg Hedin vertex λ

(k1k2 )k3
0 [118] where the Keldysh

indices k1, k2 belong to χ12|1′2′
and k3 to χR. In terms of

contour indices, it reads λ
(c1c2 )c3
0 = −c1δc1=c2=c3 ; in Keldysh

indices, the nonzero components are

λ
(kk)2
0 = 1√

2
= λ

(kk̄)1
0 . (C9)

Hence, two (un-)equal fermionic Keldysh indices translate to
a “2” (“1”) for the bosonic line. We thus identify

χR
r = χ2|1

r = 2χ11|12
r , r = a, p, t . (C10)

In the parquet formalism, it was shown that the suscep-
tibilities χr (r ∈{a, p, t}) are related to asymptotic functions
via [2]

(K1a)1′2′ |12 = −(	0)1′4′|32(χa)34|3′4′ (	0)3′2′|14, (C11a)(
K1p

)
1′2′ |12 = −(	0)1′2′|34

(
χp

)
34|3′4′ (	0)3′4′|12, (C11b)

(K1t )1′2′ |12 = −(	0)4′2′ |42(χt )34|3′4′ (	0)1′3′|13. (C11c)

For the retarded spin-↑↓-component, we have

KR
1r↑↓ = −U 2χR

r↑↓. (C12)

Although one-loop fRG does not fulfill the BSEs (20b)–(20d),
Eq. (C12) can still be used as an estimate for susceptibili-
ties. In the present context, these are often called “flowing”
susceptibilities, while Eq. (C7) defines the “postprocessed”
susceptibilities. The PA, fRG, and K1SF results for χm and
χd shown in the main text were computed using Eqs. (C11).

APPENDIX D: CHANNEL-ADAPTED
SCHWINGER–DYSON EQUATION

In the parquet formalism, the frequency dependence of the
self-energy �(ν) enters via the second term in the SDE (20a).
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FIG. 14. Same vertex components as in Fig. 13, computed in the PA for u = 1.

FIG. 15. Diagrammatic representation of the bubble functions in
Eq. (C2).

In the following, we discuss three options for the numerical
evaluation of this diagram.

First, using the parquet decomposition [Eq. (20e)], the
second term of the SDE can be written in terms of bubbles
Br and loop L as (see Fig. 16) [72,107]

�SDE1 = L(Ba(	0, 	0), G) +
∑

r

L(Br (	0, γr ), G). (D1)

Here and below, a loop, L, acting on a t bubble, Bt , contracts
the two right legs, as opposed to the two top legs for all other
vertex types (cf. Fig. 16).

FIG. 16. Rewriting of the SDE, where crossing symmetry was
used for the γt part. The red line indicates which propagator enters
the loop L in Eq. (D1).
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FIG. 17. Imaginary part of the retarded self-energy at ν = 0,
computed with the parquet solver and different versions of the SDE,
shown as a function of NK3 (u = 0.1/π , T/U = 0.01). The dashed
line is the NRG result. For low NK3 , SDE2 and SDE3 give the wrong
sign. With increasing resolution, all results approach the correct
value.

Second, the SDE in Eq. (20a), without further manipula-
tion, reads

�SDE2 = L(Br (	0, 	), G), r ∈ {a, p, t}, (D2)

where the channel r can be freely chosen. Third, using
Br (	0, γr ) = K1r + K2′r [2], the SDE equivalently reads

�SDE3 = L(K1r + K2′r, G). (D3)

Even though the above versions of the SDE are analytically
equivalent, they vary in numerical accuracy and cost. Eval-
uating �SDE3 is cheaper than the others since it skips the
computation of bubbles Br . However, we found that Eq. (D1)
is most accurate, since the γr are inserted into bubbles Br of
the same channel r. Using the natural frequency parametriza-
tion for the reducible vertices γr (ωr, νr, ν

′
r ), �SDE1 also has

the benefit that one only needs to interpolate along the νr

direction.
To illustrate this point, we consider a third-order contribu-

tion to the self-energy:

L(Bt (	0, K1t ), G) = L(Ba(	0, K1t ), G), (D4)

(D5)

Inserting K1t into Ba as done on the right results in diagrams
that belong to the asymptotic class K2′a. However, on the left,
K1t is inserted into Bt , resulting in diagrams belonging to K1t .
The latter can be treated with higher resolution and thus lead
to better results for �, see Fig. 17. Note that the question how
to best parametrize the SDE also arises in the context of the
truncated-unity formalism for momentum-dependent models,
where this choice was found to affect the quality of the results
even more strongly due to the additional approximation from
the truncation of the form-factor expansion [72,107].

APPENDIX E: EQUAL-TIME CORRELATORS
AND HARTREE SELF-ENERGY

Parts of the following discussion can be found in previous
works, see Refs. [54,59,66]. We reiterate some of the points
made there and extend on them to the context of this work.

The definitions of G+|+ and G−|−, Eqs. (3) and (4), are
ambiguous at t1 = t2 because �(t1 − t2 = 0) is not uniquely
defined. If two operators ψ,ψ† are placed at the same point
on the Keldysh contour, it is a priori not clear how to order
them. The ambiguity is resolved by demanding that ψ† be
put left of ψ (“normal ordering”), which implies G−|−(t, t ) =
G<(t, t ) = G+|+(t, t ). Then, G< + G> − GT − GT̃ = 0 does
actually not hold, and care is due with Keldysh-rotated quan-
tities. Since the point t1 = t2 is of zero measure in time
integrals, which occur when computing diagrams in frequency
space, this subtlety is irrelevant for most practical purposes.
However, there is one important exception of equal-time na-
ture, namely, diagrams with loops that begin and end at the
same bare vertex. With an instantaneous bare interaction, both
incoming and outgoing legs have the same time argument,
so that these diagrams involve the frequency-integrated (i.e.,
equal-time) propagator.

The equal-time propagator determines the Hartree self-
energy of the AM (e.g., in PT2 calculations),

(E1)

Recall that, for the sAM (εd = −U/2), the Hartree term is
constant, �H = U/2, and can be absorbed into the bare prop-
agator GR

0 → GR
H, see Eq. (24). Subsequently, GR

H is used
for all computations involving bare propagators. In analogy,
in the aAM, the bare propagator is replaced by the Hartree
propagator, too. However, here, �H is not constant and must
be computed self-consistently (using, e.g., a simple bracketing
algorithm), as it enters both sides of Eq. (E1). Now, a naive
computation of the retarded component of this diagram after
the Keldysh rotation (and in the frequency domain) would
yield

(E2)

This is, however, incorrect since G1|1(t |t ) �= 0 after Keldysh
rotation. The correct result can be found by staying in the
contour basis, using that, at equal times, only �

−|−
H (t, t ) =

−�
+|+
H (t, t ) is nonzero. Keldysh rotation yields �R

H(t, t ) =
�

−|−
H (t, t ), for which one has

(E3)

To compute Eq. (E3) in thermal equilibrium, one can relate
G< to GR using the inverse Keldysh rotation and the FDT
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[Eq. (10)]:

G<(ν) = 1
2 [−GR(ν) + GA(ν) + GK (ν)]

= −2inF (ν)ImGR(ν), (E4)

with the Fermi function nF (ν) = 1/(1 + eν/T ). This discus-
sion of �H also applies to the PA via the first term of the SDE
(20a) (the second vanishes for |ν| → ∞).

In fRG, �H is generally renormalized throughout the flow,
according to Eq. (19a) for �̇. In the limit |ν| → ∞, relevant
for extracting the Hartree contribution, only those diagrams
survive for which the in- and outgoing lines are attached to
the same bare vertex:

(E5)

In practice, the Hartree contribution �̇H is not computed sepa-
rately but is part of the full self-energy flow. There, equal-time
propagators are single-scale propagators, occurring in the fol-
lowing contributions:

(E6)

However, in the context of this work, it turns out that these
specific equal-time loops can be computed from just the
Keldysh-component of the single-scale propagator, as in the
naive calculation Eq. (E2). The reason is that, in the hy-
bridization flow, the retarded component of the single-scale
propagator asymptotically scales as ≈1/ν2 for ν → ±∞, see
Eq. (25). Using the FDT in the forms of Eqs. (E4) and (10),
we can write

SK (ν) = 2i[1 − 2nF (ν)]ImSR(ν)

= 2iImSR(ν) + 2S<(ν). (E7)

When computing
∫

dνSK (ν), one can apply Cauchy’s theorem
to the first term, using its asymptotic behavior (see above).
Closing the integration contour by an infinite semicircle in
the upper half plane, avoiding the pole in the lower half
plane, gives zero. Hence, in the hybridization flow, we have∫

dνSK (ν) = 2
∫

dνS<(ν), and the subtlety discussed previ-
ously is irrelevant. Note that this argument may not apply to
other regulators, where S has a different expression.

APPENDIX F: DIAGRAMMATIC DEFINITION
OF SECOND-ORDER PERTURBATION THEORY

Following the previous discussion, the Hartree term in PT2
is determined self-consistently. The resulting Hartree propa-

gator GH then fulfills the Dyson equation

(F1)

In these and the following diagrams, the Hartree propagator
GH is represented by a black line, whereas the light gray line
denotes the bare propagator G0. The dynamical part of the
self-energy is computed from the first nontrivial term of the
SDE, using GH,

(F2)

The vertex in PT2 is given by the three diagrams

(F3)

again evaluated with GH in the internal lines. Susceptibilities
are then computed from this vertex via the standard formula;
for χa, e.g., (again using GH throughout)

(F4)

To obtain exactly the second-order contribution to the suscep-
tibility, one insertion of the dynamical part of the self-energy
into each line of the bubble term is required, which gives rise
to the second and third diagrams shown.

We checked that, in the sAM at sufficiently low tempera-
tures, our numerical PT2 solution matches the analytic T = 0
results of Ref. [95] [Eqs. (3.14) and (3.6)–(3.8) therein]

Z = 1 − (
3 − 1

4π2)u2, (F5a)

−�′′(ν)/� = 1
2 u2(ν2 + π2T 2)/�2, |ν|, T � �, (F5b)

χ̃m/d = 1
2

[
1 ± u + (

3 − 1
4π2

)
u2

]
. (F5c)

APPENDIX G: IMPLEMENTATION DETAILS

Below, we describe our choices for the implementation
of the parquet and fRG solver, the sampling of continuous
functions, and the performance-critical quadrature routine. In
the process, we also discuss the numerical accuracy of our
results.

The evaluation of bubble diagrams, Eq. (C2), is a major
bottleneck in our methods. However, computations for dif-
ferent external arguments can be distributed efficiently over
multiple threads and compute nodes. It also proved ben-
eficial to vectorize the sum over internal Keldysh indices
by reordering and combining Keldysh indices ki to Keldysh
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FIG. 18. Nonlinear frequency grid {ω j}N
j=1 obtained via a trans-

formation fA(�), Eq. (G2), from an auxiliary linear grid {� j}N
j=1

of size N .

multi-indices (km, kn)

	k1′ ,k2′ ,k1,k2 �→
⎧⎨
⎩

	(k1′ ,k2 ),(k2′ ,k1 ) for a channel
	(k1′ ,k2′ ),(k1,k2 ) for p channel
	(k2′ ,k2 ),(k1′ ,k1 ) for t channel,

(G1)

turning the Keldysh sum into an ordinary matrix product
(which is optimized in common linear algebra libraries).
This preprocessing step enables us to efficiently fetch matrix-
valued integrands and to perform sums over Keldysh indices
and spins in an optimized manner. It requires all Keldysh
components to be present in the data, and, therefore, all of
them are included in our computations. Consequently, FDTs
could not be exploited to gain performance benefits as they
merely relate different Keldysh components.

For the integrals over internal frequencies in Eqs. (C2)
and (C3), we implemented an adaptive quadrature algorithm
which picks sampling points based on a local error estimate
and tolerance (εrel = 10−5). With various vertex components,
the evaluation of a vertex at a certain frequency is rather
expensive. Therefore, we choose a quadrature algorithm that
reuses the previous function evaluations when it refines the
quadrature value on a subinterval (4-point Gauss–Lobatto rule
with 7-point Kronrod extension) [119]. Due to fine structures
in the integrands, we found a higher-order quadrature rule to
be beneficial for the convergence of the routine. To help the
algorithm find the structure in the integrand, we subdivide the
integration interval at the expected positions of structure in
the vertices or the propagators. Quadrature of the integrand’s
tails at high frequency is performed numerically by means
of a suitable substitution of the integration variable [120].
For matrix-valued integrands, we use the sup norm ‖ · ‖∞ to
compute the error estimate for the quadrature.

Since Keldysh functions depend on continuous frequen-
cies, a reliable and efficient representation is vital. We choose
a nonuniform set of sampling points and obtain function val-
ues by (multi-)linear interpolation. The overall behavior of
our functions is known: The self-energy and the asymptotic
functions Kir can have sharp structures at smaller frequencies
while, at large frequencies, they decay to a constant value with
an approximate ω−k with k ∈ N. To capture this behavior, we
map an equidistant grid of an auxiliary variable � ∈ [−1, 1]

FIG. 19. Illustration of the resolution of vertex data for a slice
through ReK11|12

3a and ImK11|12
3a . The left panels show the data on

the equidistant auxiliary grid, the right panels show the data on
real frequencies. Many sampling points are placed around the center
where structures are peaked, while the tails are treated with very few
points. Here, we also see an artifact due to our choice of the grid
function (G2): since the grid function has a discontinuity at second
order, we see a saddle point in the bottom left panel even though the
function is linear there. The good resolution of the central peak in the
real part comes at the cost of a saddle point in the imaginary part.

to a nonuniform one via the function

ω = fA(�) = A�|�|√
1 − �2

, (G2)

with constant A > 0, see Figs. 18 and 19. The resulting sam-
pling points are dense around ω = 0. At large frequencies, the
function fA(�) captures a 1/ω2 decay effectively for |�| � 1.
Furthermore, the structures in the AM scale approximately
with the hybridization �. Therefore, we choose the frequency-
grid parameter A as multiples of � and ωmax = 100A. With a
fixed maximal frequency ωmax, the variable A determines the
interval [−�max,�max] used to construct the frequency grid
via Eq. (G2). Our choices for A are given in Table I.

It is also possible to adapt the frequency-grid parameter
A automatically. Interpolating the vertex linearly, we can ap-
proximate the error by the maximal curvature in the space
of the linearly sampled auxiliary variable �. Hence, we can
use the curvature as an error function to optimize the param-
eter A in Eq. (G2). The direction-dependent curvature of a
multivariate function f is encoded in the Hessian, Hi j =
∂i∂ j f (x). We can efficiently compute a scalar measure for the
curvature via the Frobenius norm of the Hessian, giving

‖H‖2
F =

∑
i, j

|Hi, j |2 = TrH2 =
∑

i

|λi|2, (G3)

where λi are the eigenvalues of H . An approximation of the
partial derivatives can be obtained with the finite differences
method. However, for the studied parameter regime of the
AM, we found (using Brent’s method [121] as the minimizer)
that optimizing the grid parameters A did not make a big dif-
ference compared with a simple rescaling according to Table I.

TABLE I. Frequency-grid parameter A for Eq. (G2).

� K1 K2,ω K2,ν K3,ω K3,ν

A/� 10 5 15 20 10 10
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FIG. 20. Convergence with respect to frequency resolution for
the static susceptibilities as in Fig. 8 from parquet solvers in the KF
and the MF for u = 0.75 (a setting where K2 and K3 are relevant). The
numbers of frequency points for K1 and K2 are chosen proportional to
NK3 . In the MF, we used NK3 = 33, 49, 73, 129, 257, 513, 701, 801,
in the KF NK3 = 33, 51, 75, 125. The KF and MF results agree very
well; the shaded region marks 0.1% deviation.

To verify convergence in the number of sampling points, we
compared the static susceptibilities between implementations
in the KF and the MF and found agreement up to 1‰, see
Fig. 20.

To solve the fRG equations (19) we employ a Runge–
Kutta solver with adaptive step size control (Cash–Carp).
The step size is chosen according to an error estimate and
tolerance (here: relative error εrel = 10−6). Furthermore, we
reparametrize the flow parameter �(t ) = fA=5(t ) to provide
a good first guess for the step sizes, using the same function
fA(t ) as for frequencies ω, Eq. (G2), with A = 5. It provides
large steps for high � and small steps for small � for equidis-
tant t . As initial condition of ��i and 	�i at large �i, we use
the converged parquet solution. As discussed in Sec. III, the
PA gives good results in the perturbative regime.

To solve the self-consistent parquet equations fPA in
Eqs. (20), which constitute a fixed-point equation for the
state � = (�,	), i.e., � = fPA(�), we perform fixed-point
iterations until the result meets a tolerance criterion, here
‖� − fPA(�)‖∞ < 10−6‖�‖∞. For intermediate to higher
u � 1, it proves beneficial to stabilize the algorithm with a
partial update scheme, i.e.,

� ← (1 − m)� + m fPA(� ), (G4)

with mixing factor 0 < m � 1 (here typically m = 0.5). For
faster convergence in the vicinity of the fixed point, we use
Anderson acceleration [122,123].

APPENDIX H: NUMERICAL COSTS

The numerically most complex objects in all calculations
are the K3 components of the two-particle reducible vertices,
as they depend on three continuous frequency arguments
independently. The numerical cost of a parquet or fRG com-
putation is therefore O(N3

K3
), where NK3 is the number of grid

points per frequency used for K3. This applies to memory (as
all this data has to be stored) and to computation time (as
BSEs or fRG flow equations are evaluated for all external

TABLE II. Number of frequency points for different diagram-
matic classes and methods. We use the same number of points for �

as for K1. In most PA computations, NK3 = 51, except for the largest
values of u, which required NK3 = 101 for converging the parquet
solver.

NK1 NK2 NK3

fRG 401 201 101
PA 401 201 51–101
PT2 801 0 0
K1SF 401 0 0

arguments). We give in Table II the number of frequency
points used for each diagrammatic class. The self-energy was
resolved on a grid with the same number of points as the K1

class.
The numerical cost is further determined by the accu-

racy (or the convergence criteria) chosen for the iterative
parquet solver or the Runge–Kutta solver in fRG flow (see
Appendix G). Finally, the accuracy of the integrator also af-
fects the numerical cost strongly (see again Appendix G). Our
most costly computations were 150 iterations of the parquet
solver with NK3 = 101 (required for convergence in the region
u � 1). On the KCS cluster at the Leibniz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften (LRZ), equipped
with chips of the type Intel� Xeon� Gold 6130 CPU @ 2.10
GHz capable of hyperthreading, one such computation took
about two days on 32 nodes, running 32 threads each.

APPENDIX I: CONVERGENCE OF χ̃m(0)

Figure 21 shows the static magnetic susceptibility of the
sAM obtained with fRG, zooming into the regime u � 1
(where deviations between MF and KF results become notice-
able) and scrutinizing convergence with respect to frequency
resolution. Compared with Fig. 8, there is an additional KF
(MF) line with higher (lower) resolution, as determined by
the number of frequency points used to resolve the K3 class,
NK3 (cf. Fig. 20). The MF result appears converged in NK3 ,
whereas the KF result is slightly improved by increasing NK3 .
The improvement is minor, however, and does not justify the
additional numerical cost: The computation for NK3 = 125
consumed roughly 30 000 CPU h, while the computation for
NK3 = 101 took only half that time. Nevertheless, one should
keep in mind that these computations yield a full parameter
sweep in u and are thus more economical than individual PA

FIG. 21. Static magnetic susceptibility of the sAM obtained with
fRG. Compared with Fig. 8, there is an additional KF (MF) line with
higher (lower) resolution. The MF result appears converged in NK3 ;
the KF result is slightly improved by increasing NK3 from 101 to 125.
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computations. Further analysis, including line plots through
all vertex components and asymptotic classes, is provided in
the dataset attached to this paper. This analysis shows that the

resolution of fine structures in some Keldysh components of
the K3 class could still be improved using even higher values
of NK3 .
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