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Fulfillment of sum rules and Ward identities in the multiloop functional renormalization group
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We investigate several fundamental characteristics of the multiloop functional renormalization group (mfRG)
flow by hands of its application to a prototypical many-electron system: the Anderson impurity model (AIM).
We first analyze the convergence of the algorithm in the different parameter regions of the AIM. As no additional
approximation is made, the multiloop series for the local self-energy and response functions converge perfectly
to the corresponding results of the parquet approximation (PA) in the weak- to intermediate-coupling regime.
Small oscillations of the mfRG solution as a function of the loop order gradually increase with the interaction,
hindering a full convergence to the PA in the strong-coupling regime, where perturbative resummation schemes
are no longer reliable. By exploiting the converged results, we inspect the fulfillment of (i) sum rules associated
to the Pauli principle and (ii) Ward identities related to conservation laws. For the Pauli principle, we observe a
systematic improvement by increasing the loop order and including the multiloop corrections to the self-energy.
This is consistent with the preservation of crossing symmetries and two-particle self-consistency in the PA.
For the Ward identities, we numerically confirm a visible improvement by means of the Katanin substitution.
At weak coupling, violations of the Ward identity are further reduced by increasing the loop order in mfRG.
In this regime, we also determine the precise scaling of the deviations of the Ward identity as a function of the
electronic interaction. For larger interaction values, the overall behavior becomes more complex, and the benefits
of the higher-loop terms are mostly present in the contributions at large frequencies.
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I. INTRODUCTION

The many-electron problem poses a formidable challenge
to modern solid-state physics, involving a large number of
degrees of freedom at different energy scales. In general,
although the exact solution cannot be computed, some of
its fundamental properties are known a priori. Specifically,
the exact solution is guaranteed to obey the Pauli principle,
which manifests itself in sum rules and the crossing symmetry
of four-point correlators. At the same time, it also fulfills
Ward identities (WIs) related to thermodynamic and quantum-
mechanical principles. This knowledge usually provides an
important “compass” for constructing suitable approximation
schemes. For a given approximation, however, the preser-
vation of all fundamental features of the exact solution
cannot be guaranteed [1]. For instance, approximate schemes
constructed from the Luttinger-Ward functional, so-called
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conserving approximations, maintain WIs—an important as-
pect when comparing with spectroscopic experiments—but
violate the crossing symmetries. On the other hand, it is
known that approximate approaches specifically designed to
guarantee the crossing symmetries, such as the parquet ap-
proximation (PA) [1–6], violate the WIs to a certain degree
[7–9]. Hence, investigating how this trade-off actually man-
ifests itself in advanced quantum many-body methods will
provide significant theoretical insight.

In this paper, we analyze these issues within the functional
renormalization group (fRG) for interacting Fermi systems
[10–14], which can be used as a framework for introducing
powerful new approximation schemes. Specifically, we con-
sider the recent multiloop extension (mfRG) of fermionic fRG
in the vertex expansion [9,15,16] and apply it to the Anderson
impurity model (AIM), a paradigmatic model of many-body
physics. Reasons for focusing on this particular model are
given below.

Computation schemes based on the fermionic fRG can be
designed to treat the characteristic scale-dependent behavior
of correlated electrons in a flexible and unbiased way. The
most commonly used implementations employ the one-loop
(1�) truncation of the exact hierarchy of flow equations. There,
one neglects three-particle and higher vertices, which can be
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justified, e.g., from a perturbative perspective. Several studies
have discussed the nonconserving nature of 1� fRG-based
schemes, and possible routes for mitigating the violation of
the associated WIs have been proposed [10,17–20]. An im-
portant example is the widely used Katanin substitution [17].
In its most common form, it incorporates some contributions
from the three-particle vertex as two-loop contributions to the
flow of the two-particle vertex via (one-particle) self-energy
corrections. The Katanin substitution was designed to better
fulfill WIs—we here present first numerical results to quan-
titatively assess this aspect. Conversely, WIs have also been
used to propose new truncation schemes [21–23].

The multiloop extension of the fRG approach, mfRG, in-
cludes all contributions of the three-particle vertex to the
flow of the two-particle vertex and self-energy that can be
computed with numerical costs proportional to the 1� flow.
In doing so, it sums up all parquet diagrams, formally recon-
structing the PA if loop convergence is achieved [9,15,16].
This ensures self-consistency at the one- and two-particle
level, in that the PA is a solution of the self-consistent par-
quet equations [1]. It also ensures the validity of one-particle
conservation laws, but not of two-particle ones [9].

Whether or not mfRG yields quantitative improvements
over the 1� truncation depends on the context. For a
zero-dimensional model with a logarithmically divergent per-
turbation theory, it was recently shown [24] that the leading
logarithms can be obtained in the 1� truncation, in which case
the higher-loop contributions incorporated via mfRG thus
are subleading. Similarly, 1� fRG treatments of the interact-
ing resonant level model [25–28] as well as inhomogeneous
Tomonaga-Luttinger liquids [29–35] should yield a proper
summation of the leading logs governing the infrared behavior
of these systems. By contrast, a quantitatively precise de-
scription of the weakly interacting two-dimensional Hubbard
model could only be achieved with a full multiloop compu-
tation [36–38]. It is thus of interest to analyze the multiloop
series for a model whose perturbation series lacks a leading-
log classification, but which is less complex than the Hubbard
model.

This criterion is satisfied by the AIM. We study it here at
finite temperature in the imaginary-frequency Matsubara for-
malism. A Matsubara treatment of the AIM suits our purpose
for two further reasons. First, a numerically exact solution is
available as a benchmark via quantum Monte Carlo (QMC)
methods [39]. Second, recent algorithmic and methodological
advances [5,6] make it possible to track the full frequency
dependence of the two-particle vertex functions of the AIM
[40–42], including their nontrivial asymptotic structure [6].
The numerical (m)fRG equations can be then solved to great
accuracy and without any further approximations. This sets
our study apart from recent mfRG applications [36,37] to
more complex systems (where additional approximations for
the momentum dependence [43,44] of the problem were nec-
essary) and builds upon previous frequency-dependent fRG
studies of the AIM [45–50], paving the way for a system-
atic inspection of sum rules and WIs in mfRG and parquet
approaches.

From a more general perspective, we note that flows of the
truncated fermionic fRG or mfRG can a priori be expected
to be reliable for weak to intermediate interaction strengths

only. However, nonperturbative [51] parameter regimes of,
e.g., the Hubbard model can be accessed [52,53] via fRG
by proceeding as follows: First evoke dynamical mean-field
theory (DMFT) [54] to solve a self-consistent AIM (by non-
fRG means, e.g., QMC or the numerical renormalization
group [55]); then use fRG to systematically include nonlocal
correlations missed by DMFT [42]. This procedure defines
the so-called DMF2RG scheme [56,57]. So far, it has been
implemented in the 1� truncation, but multiloop extensions
are conceivable, too. Our careful investigation of the mfRG
solution of the AIM may also provide valuable methodologi-
cal information for future multiloop DMF2RG developments.
For example, analogous vertex frequency parametrizations are
needed for a mfRG treatment of the AIM and for the mfRG
part of DMF2RG computations. Furthermore, the study of the
mfRG convergence properties as well as of crossing symme-
tries and WIs for different coupling strengths will represent
an important guidance for DMF2RG calculations relying on
multiloop resummations.

The structure of our paper reflects the main scientific
questions raised above. After introducing the required formal-
ism in Sec. II, we present a detailed analysis of the mfRG
solution of the AIM in Sec. III. We illustrate how the con-
vergence to the corresponding results of the PA is perfectly
achieved in the weak- to intermediate-coupling regime and
also discuss the appearance of increasing multiloop oscil-
lations in the strong-coupling regime. Having defined the
parameter region of convergence for mfRG applied to the
AIM, we analyze in Sec. IV the fulfillment of the sum rules
associated to the Pauli principle as well as of the WIs related to
conservation laws. We discuss the systematic effects observed
as a function of loop order, and separately consider the low-
and high-frequency parts of the WIs. Throughout, we also
include results obtained via the Katanin substitution, allow-
ing its merits to be compared to those of 1� or higher-loop
schemes. We summarize our conclusions and perspectives for
future developments in Sec. V, and discuss additional tech-
nical aspects relevant to a more specialized readership in the
Appendices.

II. FORMALISM

In this section, we concisely introduce the methods and
concepts underlying the calculations presented in the follow-
ing sections. For brevity, we reduce the formal derivations to
a minimum, referring to prior works for more explicit discus-
sions. In Sec. IV, we extend the formalism where needed for
the analysis of the Pauli principle and WIs.

A. Anderson impurity model

Throughout this paper, we consider the AIM [58] close to
the wide-band limit [59]. The Hamiltonian is given by

Ĥ =
∑

σ

εd d̂†
σ d̂σ +

∑
k,σ

εkĉ†
k,σ ĉk,σ

+ Un̂↑n̂↓ +
∑
k,σ

(Vk d̂†
σ ĉk,σ + H.c.), (1)
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where d̂†
σ (d̂σ ) is the creation (annihilation) operator of elec-

trons localized on the impurity site, and ĉ†
k,σ , ĉk,σ

are the
corresponding operators for the bath electrons. The energy
on the impurity site is denoted by εd and the dispersion re-
lation in the bath by εk. The first term in the second line
represents the local interaction, where U is the interaction
strength and n̂σ = d̂†

σ d̂σ with σ ∈ {↑,↓}. The second term
accounts for the hopping onto/off the impurity site, where
we consider a k-independent hybridization strength Vk = V .
We set V = 2, thereby measuring energy in units of V/2.
We use a box-shaped DOS for the bath electrons, ρ(ε) =
1/(2D)�(D − |ε|), with half-bandwidth D = 10. Further, we
consider half filling, where εd = −U/2 is exactly canceled by
the Hartree self-energy. Thus, the (bare) propagator is purely
imaginary:

G0,ν = 1

iν − �ν

, �ν = −i
V 2

D
arctan

D

ν
. (2)

For |ν|�D, we find �ν ≈−isgn(ν)�0 with the characteris-
tic hybridization strength �0 =πV 2/(2D)=π/5�0.63. For
prior studies using this specific AIM, see Ref. [60] and espe-
cially Ref. [51], where the physical regimes relevant for this
paper are also discussed. For a more general introduction of
the physics of the AIM, we refer to Refs. [59,61]. The values
U = 1, 1.5, 2, 3, and 4 studied below correspond to U/�0 �
1.59, 2.39, 3.18, 4.77, and 6.37, respectively. Throughout we
fix the inverse temperature to β = 10.

B. Numerical approaches

fRG flows and PA—We briefly discuss here the structure
of the flow equations, both on the one- and multiloop level,
as well as the PA, for the one-particle self-energy �, the two-
particle vertex F , and the susceptibilities χ of the AIM.

The fRG flow describes the evolution of �, F , χ upon
tuning the scale or flow parameter  from an initial value
i to a final value  f . The flow parameter  is introduced
in the quadratic part of the action, i.e., the bare (one-particle)
propagator [Eq. (2)]. We consider two cutoff functions: the
frequency flow (or � flow for short),

G
0,ν = ν2

ν2 + 2
G0,ν with i = ∞,  f = 0, (3)

and the interaction flow (or U flow) [62],

G
0,ν = G0,ν with i = 0,  f = 1. (4)

With Gi
0 =0, the initial values of � and F are �i =0, where

the Hartree term is absorbed in G0, and Fi =F0, the bare
vertex of magnitude U (in our convention F σσ ′

0 =−Uδσ̄σ ′ ,
where ↑̄ =↓ and vice versa). The fRG flow of � is determined
by the two-particle vertex F contracted with the single-scale
propagator S =−G(∂G−1

0 )G, which is related to the differen-
tiated propagator Ġ≡∂G by Ġ=S + G�̇G. For simplicity,
we omit the superscript  here and henceforth. The flow
equation for F further involves the three-particle vertex �(6).
If �(6) was known at all scales, the flow of � and F would
be exact. This would imply, in particular, that every specific
 dependence or cutoff choice, as in Eqs. (3) or (4), yields
the same result at the end of the flow. In practice, however,
�(6) can hardly be treated numerically and its effect on the

FIG. 1. Diagrammatic representation of the one-loop flow of
(a) the self-energy and (b) the vertex in the a channel. The slashed
line denotes S, the slashed pair of lines �̇a,S .

flow of � and F can only be accounted for approximately.
As a consequence, the results of such truncated fRG flows will
generically depend on the choice of the cutoff.

The most widely used fRG implementations neglect �(6),
yielding approximate 1� flow equations for � and F . The
contributions of �(6) that amount to self-energy derivatives
can be added to the vertex flow by substituting S → Ġ. This
“Katanin substitution” [17], labeled by 1�K in the following,
was argued to yield a better fulfillment of WIs. A further
refinement, which effectively incorporates the three-particle
vertex to third order in the renormalized interaction, is ob-
tained by the two-loop (2�) vertex corrections [17,63,64].

Subsequently, the mfRG extension [9,15,16] was intro-
duced to incorporate all those contributions of �(6) to the flow
of � and F ensuring that their right-hand sides are total scale
derivatives—which is not the case for the 1� flow—thus guar-
anteeing by construction that the final results are independent
of the choice of cutoff. In fact, the corresponding higher-loop
terms of the mfRG represent the minimal additions to the
conventional 1� flow required to obtain cutoff-independent
results. They also provide the maximal amount of diagram-
matic contributions that can be added in a numerically feasible
manner. Indeed, due to the iterative structure based on succes-
sive 1� computations, these higher-loop contributions can be
computed very efficiently [36]. Besides the two-dimensional
Hubbard model [37], recent applications also include spin
models [65,66] within the pseudofermion representation.

The mfRG was shown to formally reproduce the di-
agrammatic resummation of the PA. We use the vertex
decomposition

F = R2PI +
∑

r

γr, (5)

where γr are the two-particle reducible vertices in channel r ∈
{a, p, t} and R2PI the fully two-particle irreducible (2PI) vertex
(notation as in Ref. [9], cf. [67]). The PA then corresponds
to the approximation R2PI = F0. An analogous approximation
is performed in truncated fRG flows: Neglecting �(6), the
vertex flow equation is of the form Ḟ =∑

r γ̇r . Thus, only the
reducible parts are renormalized, while the fully irreducible
part does not flow and remains at its initial value R2PI =F0.

In the following, we recall the flow equations for the self-
energy, two-particle vertex, and susceptibilities, as well as the
parquet equations. We will use the compact symbolic notation
introduced in Ref. [9]; the explicit dependence on spin and
frequencies will be given where needed.

One-loop flow—The “standard” fRG self-energy flow
[10] is

�̇std = −F · S, (6)
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FIG. 2. Diagrammatic representation of the multiloop flow of the
susceptibility in the a channel. The doubly slashed lines denote �̇a.

as illustrated in Fig. 1(a). Figure 1(b) shows an exemplary
depiction of the 1� flow of the vertices, given by

γ̇ (1)
r = F ◦ �̇r,S ◦ F, (7)

and Ḟ =∑
r γ̇r . �̇r,S corresponds to the differentiated two-

particle propagator in channel r, with S used instead of Ġ.
The flow equation for the susceptibilities χr can be derived

from the corresponding reducible vertex in the limit of large
fermionic frequencies, i.e., the so-called K1 contribution [6],

χ̇ (1)
r = −λr ◦ �̇r,S ◦ λr, (8)

where λr are the renormalized three-point vertices (for further
details and the 1� flow equation of the latter, see Ref. [10]).

The 1�K flow with Katanin substitution is obtained by
replacing S → Ġ, i.e., �̇r,S →�̇r , in Eqs. (7) and (8). Since
it includes self-energy (and not vertex) corrections from �(6),
we will display the 1�K results between those for �=1 and
�=2.

Multiloop flow—The multiloop flow further includes the
contributions from �(6), which are generated by vertex cor-
rections. These can be ordered by loops, leading to the
expansion γ̇r =∑

��1 γ̇ (�)
r [15,16]. Here, γ̇ (1) already in-

cludes the Katanin substitution to account for the self-energy
corrections as above. The higher-loop terms, � > 1, are
determined by

γ̇ (�)
r = γ̇

(�−1)
r̄ ◦ �r ◦ F + F ◦ �r ◦ γ̇

(�−1)
r̄ (� � 2) (9a)

+ F ◦ �r ◦ γ̇
(�−2)

r̄ ◦ �r ◦ F (� � 3), (9b)

where γr̄ = ∑
r′ =r γr′ . Equation (9a) with � = 2 corresponds

to the 2� flow, while the so-called center part γ̇
(�)

r,C = F ◦ �r ◦
γ̇

(�−2)
r̄ ◦ �r ◦ F of Eq. (9b) contributes only for ��3.

In order to fully generate all parquet diagrams, the self-
energy flow also acquires a multiloop correction [15],

�̇ = �̇std + (1 + F ◦ �t ) ◦ γ̇t̄,C · G, (10)

where γ̇t̄,C =∑
��3 γ̇

(�)
t̄,C (see above). While not relevant for our

AIM study, we note that additional approximations, such as
the low-order expansion in form factors for the momentum-
dependence of the vertex functions, useful for reducing the
numerical effort in treating lattice problems, require extra
adaptations of the flow equations for the mfRG solution to
converge to the PA [37,68].

The multiloop flow equation for the susceptibilities reads

χ̇r = −λr ◦ (�̇r + �r ◦ İr ◦ �r ) ◦ λr, (11)

with the scale derivative of the two-particle irreducible vertex
İr =∑

��1 γ̇
(�)

r̄ , see Fig. 2 for an exemplary diagrammatic rep-
resentation. For more details and the equations for λr , we refer
to Refs. [9,36].

PA—In parquet approaches [1], a set of self-consistent
equations for the self-energy and vertex is solved by it-
eration. First, � is related to F by the Schwinger-Dyson

equation (SDE)

� = −F0 · G − 1
2 (F0 ◦ �a ◦ F ) · G. (12)

Second, in the decomposition (5), the two-particle reducible
vertices γr are related to two-particle irreducible vertices Ir by
the Bethe-Salpeter equations (BSEs)

γr = Ir ◦ �r ◦ F, Ir = F − γr = R2PI + γr̄ . (13)

In the PA, R2PI =F0. Finally, the susceptibilities χr can be
directly deduced from F (and � via the propagators) by

χr = −λr,0 ◦ (�r + �r ◦ F ◦ �r ) ◦ λr,0. (14)

Here, λr,0 are the bare three-point vertices encoding the rela-
tion of the composite bosonic degrees of freedom of χr to the
original fermionic ones.

In the parquet context, Eqs. (12)–(14) do not involve a scale
parameter . However, as they hold for any underlying bare
propagator, they can also be applied when the bare propagator
is G

0 . These relations can then be used to derive the multi-
loop flow equations [9], and thus Eqs. (12)–(14) are fulfilled
exactly in mfRG [16,36]. In other truncated schemes, they
can be exploited as additional postprocessing (PP) relations
for computing (i) the self-energy from the SDE (12), (ii) the
reducible vertices from the BSEs (13), and (iii) the suscep-
tibilities using Eq. (14), instead of using the corresponding
results of the flow. We recall that, for a generic truncated
fRG scheme (including the standard 1� truncation), the PP
values of �, γr , and χr differ from their counterparts obtained
directly from the flow. In fact, the equivalence between the
flowing and PP results for �, γr , and χr (upon convergence)
represents, besides the independence from the choice of the
cutoff function, a hallmark of the mfRG [36]. For this reason,
we will also compute the PP results for � and χr , and analyze
their evolution with loop order.

QMC—Next to the fRG and PA described above, we use
a state-of-the-art quantum Monte Carlo [39] (QMC) solver to
obtain numerically exact benchmark results of the AIM. We
employ continuous-time QMC in the hybridization expansion
(CT-HYB) [39] provided by the open-access W2DYNAMICS

[69] package. Further details on the calculations are provided
in Appendix B 3.

III. mfRG SOLUTION OF THE AIM

We now apply the mfRG, briefly summarized in Sec. II,
to the half-filled AIM at the inverse temperature β = 10 and
discuss the results. For details on the implementation, we refer
to Refs. [6,36]. We just note here that, for the reducible ver-
tices, we adopt the parametrization γr =K1r +K2r +K2′r +K3r

proposed in Ref. [6]. The K1r and K2(′)r functions with one
and two frequency arguments, respectively, describe the high-
frequency asymptotics, while the remaining full dependence
at low frequencies is contained in K3r . This reduces the nu-
merical cost, allowing for the calculation of the vertices on
a larger Matsubara frequency range (see Appendix B 1 for
computational details). The (flowing) susceptibilities are con-
veniently extracted through χr = −K1r/U 2.

We start the presentation of our numerical results by show-
casing the central quantities of our study of the AIM, i.e., the
self-energy �, the magnetic susceptibility χm (= −χ↑↓

a ), and
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FIG. 3. Self-energy Im�(ν ) (left), magnetic susceptibility χm(ω) (center), and reducible vertex γm = K1m + K2m + K2′m + K3m (right) as
obtained by different approaches, for U = 1. We consider β = 10 and half filling throughout. The fRG results shown here are computed with
the � flow [Eq. (3)]. The shaded areas in the first two panels and the frame in the right one mark the frequencies used to study the loop
convergence in Secs. III A and III B.

the reducible vertex γm of the impurity site in the magnetic
channel, computed in the weak-coupling regime (U = 1) by
means of all the approaches mentioned in Sec. II. Figure 3 dis-
plays our results for �, χm, and γm as a function of fermionic
(bosonic) Matsubara frequencies. The corresponding numeri-
cal data would also allow one to estimate important physical
quantities (e.g., the quasiparticle mass renormalization and
life time) relevant for the description of the Fermi-liquid state
of the impurity problem [70,71] as well as to quantify the
temporal fluctuations of the local magnetic moment on the
impurity site [72–74].

Consistent with the small U value of these illustrative
calculations, all approaches yield qualitatively the same be-
havior and deviations to numerically exact QMC data are
hardly visible. In particular, we note that the converged mfRG
solution (orange squares), perfectly matches the PA (dashed
black line) for all quantities, Im�, χm, and γm (not shown).
The results at the highlighted Matsubara frequencies are then
used in the following Sec. III A for a quantitative study of
the mfRG convergence as a function of loop order �. There,
we also showcase two hallmark qualities of the converged
mfRG solution: (i) It is cutoff-independent, reflecting the fact
that it reproduces the PA solution, which, as a self-consistent
diagrammatic resummation, by construction is defined with-
out reference to any cutoff. (ii) For quantities that can be
computed either via their own RG flow equations or via
PP relations, the results agree. (If the susceptibility flow
is computed separately, and not via that of the K1r part
of the vertex, this requires to further use multiloop flow
equations for the susceptibilities and the three-point vertices
[9,36]). In Sec. III B, we extend this analysis to larger values
of U .

A. Multiloop convergence to PA

In Fig. 4, we analyze in detail the loop convergence of the
mfRG flow for U =1. The four panels display both the flowing
and PP results for Im�(ν =πT ) and χm(ω=0) as well as the
flowing results for K2m(ω = 0, ν =πT ) and K3m(ω = 0, ν =
ν ′ =πT ), as a function of loop order � obtained with the two
cutoffs, i.e., the � flow (red circles) and the U flow (blue

triangles). For comparison, the PA (black-dashed line) and
QMC (green-solid line) solutions are also reported. One read-
ily notices that the mfRG solution for both cutoffs converges
to the PA for all considered quantities. Throughout the paper,
the label “∞” refers to the infinite loop-order mfRG solution
(see Appendix B 2 for its numerical definition). The high qual-
ity of the mfRG convergence can be appreciated by looking at
the corresponding insets, showing the data restricted to higher
loop orders. While the gray area in the main panels marks 1%
deviation with respect to the PA, the blue area in the insets
corresponds to 0.1%.

It is worth stressing that for some quantities and specific
values of �, the mfRG and PA solution may be accidentally
close, e.g., the 3� �-flow result for χm(ω = 0) or the 3� U -
flow result for K3m(ω = 0, ν = ν ′ = πT ). Of course, this
does not mean that the mfRG procedure has already converged
at 3�: Full convergence implies the equivalence of mfRG and
PA for all quantities and both cutoffs up to differences smaller
than a given ε, e.g., here 0.1%. For the U = 1 calculations,
this is clearly achieved for � � 8. Looking at the insets, the
� flow appears to converge systematically faster than the U
flow. We note that all U -flow results shown in the paper are
obtained via a frequency extrapolation (see Appendix B 1),
which is required to achieve the highly precise convergence to
PA demonstrated in the inset.

Another important property of the converged mfRG solu-
tion is the equivalence of the flowing and PP results, shown
both for Im�(ν = πT ) and χm(ω = 0) in the upper panels of
Fig. 4. Except for the 1� and 1�K results for the self-energy,
the PP data (dotted lines with “×” or “+” symbols) are always
found to be closer to the PA than the flowing data (for the
susceptibility, this trend was previously reported in Ref. [37]).
For both cutoffs, flowing and PP results agree with the PA
for � � 8, highlighting the perfect convergence of the mfRG
scheme in this parameter regime. The loop convergence can
also be seen from calculations with a single cutoff, as there
are no more changes larger than a small ε in all quantities
when going from � to � + 1, and flowing and PP results agree
with one another. Finally, let us note that adopting the PP
procedure has also important implications for the fulfillment
of sum rules, which are studied in Sec. IV A.
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FIG. 4. �-flow (red) and U -flow (blue) mfRG results as a function of loop order � in comparison with the PA (black, dashed) and the
numerically exact QMC data (green), for U = 1. Upper panels: Im�(ν = πT ) and χm(ω = 0), showing perfect agreement between post-
processed (PP) and flowing results of both cutoffs and the PA result. Lower panels: Asymptotic vertex functions K2m and K3m for the lowest
Matsubara frequencies. Insets show a zoom for � � 4. The gray areas mark 1% deviation from the PA result, the blue ones in the insets 0.1%.
The label “∞” represents the fully converged mfRG result. In this and similar figures below, the data points plotted between those at � = 1
and � = 2 represent the 1�K results (Katanin substitution).

B. Towards strong coupling

We now analyze how the convergence of the mfRG flow is
affected by increasing the interaction U . In Figs. 5–7, we fo-
cus on the results for the physical quantities Im�(ν =πT ) and

χm(ω=0), but we also checked for convergence of K2m(ω =
0, ν = πT ) and K3m(ω = 0, ν = ν ′ = πT ).

For values of U slightly larger than U = 1, the convergence
behavior is qualitatively the same (see Fig. 17 in Appendix A
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FIG. 5. Im�(ν = πT ) and χm(ω = 0) as in Fig. 4 but for U = 2. Insets show a zoom for � � 6. The gray area indicates 1% deviation from
the PA. For �=11, 12 we were unable to converge the U -flow calculations.
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χm(ω = 0) (right), as a function of loop order � and different values of the interaction U . Main panels show U � 2, insets U � 2.

for U = 1.5), albeit with increasing interaction, as expected,
more loop orders are required to reach convergence.

For U = 2, the dependence on loop order is shown in
Fig. 5. While the mfRG solution quickly approaches the PA
for low �, the path towards full convergence for higher �
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FIG. 7. Im�(πT ) (top), Im�(πT ) − Im�(3πT ) (center), and
χm(ω = 0) (bottom) as a function of U , obtained from � flows at
low loop order, the PA, and QMC.

becomes visibly slower as the curves describing the loop
dependence of the mfRG calculations keep oscillating around
the PA solution. The �-flow results are generally found to
be more accurate than the U -flow data (note that for the U
flow at � = 11, 12, no solution could be obtained; see also
Appendix B 2). Yet, even with the � flow, we did not reach
perfect convergence up to � = 40. Different from the situa-
tion at U =1 and U =1.5, the results obtained by PP do not
show a clear improvement. Instead, they seem to follow a
slightly different oscillation pattern, somewhat shifted from
the flowing data (see insets of Fig. 5). Further insight on
the oscillations characterizing the mfRG convergence with
increasing interaction can be gained from Fig. 6. Here, we
show the relative difference between the mfRG results and
the corresponding PA solutions for different values of U . By
comparing the (flowing) results of the � flow for different in-
teraction strengths U =1, 1.5, and 2, one notices the presence
of “nodes” in the multiloop oscillations, i.e., of loop orders at
which mfRG and PA yield numerically very similar results for
the quantity under consideration. The location of these nodes,
however, depends on the observable. [While, e.g., � = 7 for
χm(ω = 0) is close to the PA for all values of U , for Im�(ν =
πT ) this is not the case.] For larger interactions, the oscilla-
tions become stronger. Already for U =2, the amplitude of
the self-energy oscillations hardly decreases with increasing
loop order, making a full convergence numerically challeng-
ing as discussed above. (The U flow shows similar behavior,
see Fig. 18 in Appendix A). This effect gets even more
pronounced for U = 3 displayed in the insets, together with
U = 2 for comparison. There, higher loop orders, especially
for χm(ω = 0), yield a progressively enhanced deviation from
the PA for increasing loop order. Therefore, we conclude that,
within our current implementation and the given settings of
the AIM, the mfRG loop resummation ceases to converge for
U = 3. Such a lack of loop convergence serves as a built-in
red-flag indicator that a parameter regime lies outside the
zone of safe applicability of the approach. This outcome,
however, is not entirely unexpected since, for the specific AIM
considered, the interaction strength U =3 already corresponds
to the strong-coupling regime, where nonperturbative [51,75–
77] divergences of two-particle irreducible vertices [78–85],
which are—per construction—beyond the PA, were detected
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by means of QMC calculations [51,60]. More speculatively,
one might then suppose a relation between the breakdown of
the mfRG convergence and the entrance into the nonpertur-
bative parameter regime, where the PA itself yields results
significantly different from the exact solution [51]. In this
respect, the oscillations of increasing size could be seen as
a precursor of the breakdown of perturbative resummation
schemes.

We finally compare the results of low loop orders to the
PA and the exact solution, as a function of U . For very
low values of U , the deviations of mfRG and PA schemes
from QMC can be qualitatively understood from general
perturbation-theory considerations. Already for U > 1, how-
ever, the interpretation becomes more complicated, and the
accuracy of the different schemes depends on the observable
considered. Among the �-flow results up to U = 4 in Fig. 7,
the plain 1� flow performs worst for all quantities. Comparing
1�K and the PA to the exact QMC for large U � 2, we find
the best results for Im�(ν = πT ) with 1�K , similar devia-
tions for Im �(ν = πT ) − Im �(ν = 3πT ) with 1�K and the
PA, and the best results for χm(ω = 0) with the PA. For the
physical interpretation of the strong-coupling regime, we refer
to Ref. [51] and the corresponding supplemental material.
There it was shown that both the PA and fRG schemes yield a
qualitatively correct description of the magnetic channel; in
particular, the proper behavior of χm(ω = 0) as a function
of T is found, reflecting the formation of a local magnetic
moment and its screening. However, both methods fail in
describing the associated suppressed fluctuations in the charge
sector, which are heavily affected by the emergence of the
local magnetic moment. Hence, at strong coupling, the trun-
cated fRG, mfRG, or PA resummations of diagrams describe
the formation of a local moment without the intrinsic physical
implications onto the charge channel. This can be regarded
[51,86] as an insufficient transfer of information between the
magnetic and the charge sector, formally corresponding to the
impossibility of generating the irreducible vertex divergences
in these approximate methods.

On a more general perspective, we note that the loop con-
vergence of the mfRG procedure is mostly controlled by the
ratio between the local interaction U and other relevant energy
scales of the system under consideration (e.g., in the case of
the AIM: π� or the temperature T ) rather than by the ratio
between the temperature and the Kondo temperature [51]. In
future dedicated studies, it may be interesting to verify to
what extent the grade of the loop convergence itself might be
regarded as an additional independent marker of central phys-
ical aspects of the underlying exact solution of the problem.

IV. PAULI PRINCIPLE AND WARD IDENTITY

Both the Pauli principle and the WIs are fundamental fea-
tures of the many-electron physics. They are deeply rooted in
quantum mechanics and pose important constraints on many-
body correlation functions. An exact solution must evidently
obey all such constraints. In approximate treatments, however,
their fulfillment is not guaranteed a priori. As mentioned in
the Introduction, it is commonly reckoned [1] that approxi-
mate many-body approaches either obey sum rules imposed
by the Pauli principle or satisfy WIs. Hence, fulfilling both

the Pauli principle and the WIs would represent a specific
hallmark of the exact solution. On a more formal level, a
pertinent example of such a trade-off in the context of parquet-
based approximations can be obtained by exploiting explicit
relations between the self-energy and four-point vertices [7–9]
in the parquet formalism.

In the following, we utilize our converged numerical results
for the AIM to analyze, on a quantitative level, to what extent
the Pauli principle and WIs are fulfilled for the important
class of approximate many-body approaches ranging from the
conventional fRG to the mfRG and PA.

A. Pauli principle

Sum rule of χσσ : Formal aspects—The Pauli exclusion
principle states that two electrons cannot occupy the same
quantum state. On the operator level, this corresponds to the
fact that a fermionic occupation-number operator can only
have eigenvalues zero and one. On the diagrammatic level,
such a constraint affects the many-body correlation functions
in several ways, e.g., through sum rules they must obey.

In this context, a relevant correlation function for the
physics of the AIM is the equal-spin density-density
susceptibility,

χσσ (τ ) = 〈Tτ n̂σ (τ )n̂σ 〉 − n2
σ . (15)

Here, nσ = 〈n̂σ 〉, and Tτ denotes (imaginary) time ordering
(for brevity, we omit here the particle-hole channel label).
This susceptibility is directly affected by the Pauli principle
through the operator identity n̂2

σ = n̂σ . Indeed, an evaluation
at τ = 0 yields

χσσ (τ = 0) = 〈
n̂2

σ

〉 − n2
σ = nσ (1 − nσ ), (16)

a value, which is fully determined by the single-particle ex-
pectation value nσ . Furthermore, as the equal-time correlator
χσσ (τ = 0) is identical to the sum over all its Fourier compo-
nents χσσ

ω , the following sum rule [87] must hold:

1

β

∑
ω

χσσ
ω = χσσ (τ = 0) = nσ (1 − nσ ). (17)

At SU(2) spin symmetry and half filling, the result is 1/4.
For the purposes of the subsequent discussions, it is use-

ful to elaborate on the quantum-field-theoretical relations
which underlie Eq. (17). To this end, we recall that the
Pauli principle can be translated from an operator identity
({d̂σ , d̂σ ′ } = 0, {d̂σ , d̂†

σ ′ } = δσσ ′) to the crossing symmetry of
four-point correlators. For illustration, let us briefly use a
compact notation where all arguments of an electronic oper-
ator are summarized in a single index. Then, for G(4)

1,2;1′,2′ ∝
〈Tτ d1d2d†

1′d
†
2′ 〉, the crossing symmetry implies G(4)

1,2;1′,2′ =
−G(4)

2,1;1′,2′ = −G(4)
1,2;2′,1′ .

Furthermore, the susceptibility can be represented through
(full) propagators G and the (full) two-particle vertex F by

χσσ
ω = − 1

β

∑
ν

Gσ
ν+ωGσ

ν

− 1

β2

∑
νν ′

Gσ
ν+ωGσ

ν Gσ
ν ′+ωGσ

ν ′F σσ
ν,ν ′+ω;ν ′;ν+ω, (18)
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FIG. 8. Identities between many-body correlation functions.
Dark and light colors on electron propagators distinguish the two
spins. Frequency labels are given for clarity. (a) The susceptibility
χσσ consists of a bubble term and corrections in terms of the full
vertex F , see Eq. (18). (b) SDE (26) for the self-energy �, consisting
of the static Hartree part and additions containing F . (c) The WI
of Eq. (30) relating � to It , the vertex irreducible in the transverse
(vertical) particle-hole channel. Dashed dark and light colors indicate
a sum over spin. Triangles represent objects defined in Eqs. (29)
and (30).

as illustrated in Fig. 8(a). The first term of Eq. (18) summed
over all frequencies ω, i.e., taken at τ = 0, gives

χσσ
GG(τ = 0) = −Gσ (τ = 0−)Gσ (τ = 0+). (19)

Upon inserting Gσ (τ ) = −〈Tτ d̂ (τ )d̂†〉, one finds

χσσ
GG(τ = 0) = 〈d†

σ dσ 〉〈dσ d†
σ 〉 = nσ (1 − nσ ), (20)

which yields already the entire sum rule [Eq. (17)]. Conse-
quently, the vertex contributions must vanish when summed
over all frequencies ω. This is indeed guaranteed by the cross-
ing symmetry, as we show below.

Consider the summed vertex contribution of Eq. (18),

1

β

∑
ω

χσσ
vtx;ω = − 1

β3

∑
ωνν ′

Gσ
ν+ωGσ

ν Gσ
ν ′+ωGσ

ν ′F σσ
ν,ν ′+ω;ν ′;ν+ω.

(21)

For F σσ , the vertex with equal spins on all legs, the cross-
ing symmetry simply gives F σσ

ν ′
1,ν

′
2;ν1,ν2

= −F σσ
ν ′

1,ν
′
2;ν2,ν1

. After
inserting this into Eq. (21), we relabel the summation indices
according to ω̃ = ν ′ − ν, ν̃ = ν + ω:

1

β

∑
ω

χσσ
vtx;ω = 1

β3

∑
ωνν ′

Gσ
ν+ωGσ

ν Gσ
ν ′Gσ

ν ′+ωF σσ
ν,ν ′+ω;ν+ω,ν ′

= 1

β3

∑
ω̃ν̃ν

Gσ
ν̃ Gσ

ν Gσ
ω̃+νGσ

ω̃+ν̃F σσ
ν,ω̃+ν̃;ν̃,ω̃+ν . (22)

This reproduces the original expression for the summed vertex
correction 1

β

∑
ω χσσ

vtx;ω [Eq. (21)] with opposite sign, so that

1

β

∑
ω

χσσ
vtx;ω = − 1

β

∑
ω

χσσ
vtx;ω ⇒ 1

β

∑
ω

χσσ
vtx;ω = 0. (23)

Sum rule of χσσ : Numerical results—As mentioned in
Sec. II, there are two ways [10,36] of computing suscepti-
bilities in fRG: (i) one can use Eq. (18) to obtain χ from
� and F in a PP fashion, or (ii) one can deduce χ from its
own flow equation. In the former approach the sum rule of
χσσ is fulfilled per construction, as long as the vertex used in
the computation obeys the crossing symmetry, see Eqs. (20)
and (23), while, in the latter scheme, this property is not
guaranteed.

FIG. 9. (a) The multiloop corrections to the flow of χσσ do not
vanish when summed over ω, since Ia itself is not crossing symmet-
ric. (b) Totally irreducible “envelope” vertex diagrams inserted into
the standard self-energy flow contribute to the 1/ν asymptote of �.
Red colors indicate propagators that carry the large frequency ν.

Not surprisingly, strategies (i) and (ii) then yield
different results within 1� fRG (see Figs. 4 and 5),
suggesting that the susceptibility computed from a 1� flow
does not fulfill the sum rule. Indeed, one can easily convince
oneself that the multiloop vertex corrections to the flow of
χσσ do not vanish when summing over all frequencies, cf.
Fig. 9(a). On the other hand, we already noted that, for a
converged mfRG calculation, both schemes of computing sus-
ceptibilities become equivalent [9,36]. Therefore, the sum rule
of χσσ will be consistently fulfilled, no matter the strategy
employed.

On the basis of these considerations, we now turn to our
numerical mfRG data. In Fig. 10, we show the loop depen-
dence of 1

β

∑
ω χσσ

ω for the flowing susceptibility (obtained in
the � flow) for different values of U . With increasing loop
order, the fulfillment of the sum rule [Eq. (17)], indicated by
a dashed-black line, is approached. Altogether, we observe
a similar behavior as in Sec. III: While, at low interaction
values, the exact value is quickly reached, multiloop oscilla-
tions characterize the behavior at larger interaction (U =2).
Nevertheless, even for large U , the results at large � are much
closer to the fulfillment of the sum rule than the ones at
low loop order. As for the PP susceptibility (not shown), we
confirmed numerically that it fulfills the sum rule for all �,
consistent with the above explanations.

1 3 5 7 9 11 13 15
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0.26

0.27

0.28

0.29

1 β
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ω
χ

σ
σ

ω

U = 1.0
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FIG. 10. The frequency sum of χσσ
ω obtained for different values

of U and loop order � (in the � flow). The multiloop corrections
systematically improve the fulfillment of the sum rule [Eq. (17)].
Upon multiloop convergence, the sum rule is exactly fulfilled, as in
the PA (dashed-black line).
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FIG. 11. High-frequency asymptote of the self-energy, νl Im�(νl )/U 2, for a large but finite frequency νl ≈19.16 (νl Im�(νl )/U 2 → − 1
4 for

νl → ∞), for U =1. Left: Flowing result as a function of loop order, for an � flow with (red circles) and without (gold pentagons) multiloop
corrections to the self-energy flow, compared to the PA (black dashed). The gray area represents 1% deviation from PA. Right: Frequency
dependence around νl for different methods, with QMC, PA, and mfRG following the exact asymptote.

High-frequency asymptote of �: Formal aspects—Beside
its natural link to the density susceptibility, the Pauli prin-
ciple also affects the self-energy, albeit more indirectly.
From the moments of the single-particle spectral function,
known through expectation values of operators, one can deter-
mine the high-frequency expansion of the propagator G, and
thereby of the self-energy � [87]. One finds

�σ
ν = Unσ̄ + U 2nσ̄ (1 − nσ̄ )

iν
+ O

(
1

ν2

)
. (24)

Next to the constant Hartree shift Unσ̄ , the 1/ν coefficient
coincides with the right-hand side (r.h.s.) of the sum rule for
χσ̄ σ̄ [Eq. (17)]. Indeed, Eq. (24) can be equivalently rewritten
[88] as

�σ
ν = Unσ̄ + U 2

iν

1

β

∑
ω

χσ̄ σ̄
ω + O

(
1

ν2

)
. (25)

More insight about the quantum-field-theoretical relations
underlying the asymptotic behavior of � can be gained from
the SDE,

�σ
ν = Unσ̄ + U

β2

∑
ων ′

Gσ
ν+ωGσ̄

ν ′+ωGσ̄
ν ′F σ σ̄

ν ′+ω,ν;ν+ω,ν ′ , (26)

see Fig. 8(b). To this end, let us replace the vertex by its
bare contribution, F σ σ̄

0 = −U , and use the first propagator in
Eq. (26), Gσ

ν+ω, to factor out the dominant contribution for
large ν � ω, Gσ

ν+ω ∼ 1/(iν). The remainder is a GG bubble
summed over both frequencies ω and ν ′. Hence, we find that
the second-order contribution,

�σ
ν

2nd

∼ −U 2

iν
Gσ̄ (τ =0−)Gσ̄ (τ =0+)= U 2nσ̄ (1−nσ̄ )

iν
, (27)

already provides the correct asymptotic behavior (24). This
is similar to the sum rule of χσσ , where Eqs. (19)–(20) give
the entire result, while the summed vertex corrections vanish
[Eq. (23)]. Via Eq. (25), the same cancellation of vertex cor-
rections occurs for the self-energy asymptote, as we explicitly
show in Appendix C 1.

Within an fRG treatment, the standard flow equation for
the self-energy �̇std in terms of the vertex F is in principle

exact, as long as the exact vertex F is available. As this
is almost never the case, the flow �̇std must be considered
approximate. In mfRG, the multiloop corrections to the self-
energy flow [cf. Eq. (10)] effectively generate contributions
to �̇std, which would require—when using the term �̇std

only—vertex diagrams beyond the PA (and thus beyond 1�

fRG). Indeed, one can generally show that vertex diagrams
beyond the PA (and thus beyond 1� fRG), such as the envelope
diagram, do contribute to �̇std to order 1/ν in the large-
frequency limit [cf. Fig. 9(b)]. Therefore, the � asymptote
[Eq. (24)] is violated when using a 1� or multiloop vertex flow
while keeping the standard self-energy flow. This problem is
circumvented by including the multiloop corrections to the
self-energy flow [16], which guarantee a perfect equivalence
to the SDE and, thereby, that the correct asymptote will be
restored.

High-frequency asymptote of �: Numerical results—In
Fig. 11, we show (flowing) results for the asymptotic behavior
of � as obtained from �-flow calculations for U =1. The left
panel displays νIm�ν/U as a function of � for a fixed, large
value of νl ≈19.16. At this frequency, νIm�ν is expected to
be slightly lower (in absolute value) than the corresponding
asymptotic value of −1/4 for ν →∞. The correct asymptotic
description of the mfRG results (red circles) for large � is
demonstrated by their perfect match with the correspond-
ing PA results, as the latter yield the correct high-frequency
asymptotic by construction. As explained above, this would
have not been the case without multiloop corrections to the
self-energy flow. In fact, the gold pentagon line shows results,
which are obtained by �̇std without multiloop additions to the
self-energy flow (these start at �=3) and notably deviate from
the correct value.

The right panel shows the frequency dependence of νIm�ν

in a frequency window around νl (νl is represented by the
vertical blue line). For fRG results at lower loop order, the
high-frequency asymptote is incorrect, reflecting the fact that
the SDE relation is not fulfilled. For the same reason, all
approaches satisfying the SDE lie on top of each other, i.e., the
PA (black-dashed line), mfRG (orange-solid line), and QMC
(green line) [89] yield the correct high-frequency behavior
of �. While the improvement of the high-frequency results
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is not monotonous for the lowest loop orders, we observe
that rather accurate results are obtained already at the 3�

level, where the first multiloop corrections to the self-energy
flow appear. In this respect, it is also interesting to note that
the standard self-energy flow �̇std provides a large-frequency
asymptote in agreement with Eq. (25), but with χσσ ob-
tained by a one-loop flow and thus violating the sum rule
[Eq. (17)]. We derive this result in Appendix C 1 and show
explicitly which multiloop additions to �̇std contribute to the
asymptote.

B. Ward identities

Formal aspects—The WIs play an essential role in the
many-electron theory as they define how the information en-
coded in the continuity equations at a microscopical level is
reflected onto response functions and macroscopic quantities.
More specifically, a continuity equation is an operator relation
of the form ∂τ ρ̂ = −[ρ̂, Ĥ ]. If ρ̂ is a symmetry of the Hamil-
tonian, [ρ̂, Ĥ ] = 0, then ρ̂ is a conserved quantity, ∂τ ρ̂ = 0.
In this case, the continuity equation describes a conservation
law. However, even if this is not the case, continuity relations
can be used for deriving relevant WIs, in particular when
[ρ̂, Ĥ ]—albeit nonzero—yields a simple expression.

In practice, WIs can be derived for n-point correlation
functions of arbitrary n. If ρ̂ and [ρ̂, Ĥ ] involve n1 and n2 =
n1 + δn fermionic operators, respectively, then〈

Tτ ĉ1 · · · ĉ†
n−n1

∂τ ρ̂
〉 = −〈

Tτ ĉ1 · · · ĉ†
n−n1

[ρ̂, Ĥ ]
〉

(28)

relates an n to an (n + δn)-point function. Typically, one
mostly considers the WI connecting two- and four-point func-
tions (i.e., the WIs ensuring the physical consistency between
the one- and the two-particle description) and restricts oneself
to the (local or global) charge or spin operators, substituting
them for ρ̂. A recent derivation, applicable to lattice and
impurity systems, as well as references to prior studies can
be found in Refs. [90,91]. Here, we consider explicitly the
(local) charge, ρ̂ = ∑

σ n̂σ , as done in several preceding pa-
pers [17,92]. The resulting WI for the AIM, formulated in a
way that allows for an optional SU(2) spin symmetry breaking
(e.g., by a Zeeman field), reads

Σσ
ν+ω − Σσ

ν

WL

= − 1
β

∑

σ′ν′
Iσσ′
t;ν+ω,ν′;ν,ν′+ω(Gσ′

ν′+ω − Gσ′
ν′ )

WR

.
(29)

We introduce the short-hand WL(ν, ω) for the left and
WR(ν, ω) for the right side of the above equation, which
is illustrated diagrammatically in Fig. 8(c). There, we use
λσ

�;ω,ν =�σ
ν+ω−�σ

ν and λσ ′
G−1;ω,ν ′ = (Gσ ′

ν ′+ω )−1−(Gσ ′
ν ′ )−1, such

that Eq. (29) becomes

λσ
�;ω,ν = 1

β

∑
σ ′ν ′

Iσσ ′
t ;ν+ω,ν ′;ν,ν ′+ωGσ ′

ν ′+ωGσ ′
ν ′ λ

σ ′
G−1;ω,ν ′ . (30)

For our numerical results we exploit the SU(2) spin symmetry,
which—together with the crossing symmetry—entails

I↑↑
t ;ν ′

1,ν
′
2;ν1,ν2

= I↑↓
t ;ν ′

1,ν
′
2;ν1,ν2

− I↑↓
a;ν ′

1,ν
′
2;ν2,ν1

. (31)

Eventually, we briefly recall that one often refers to func-
tional WIs, such as δ�

δG = −It . These are a cornerstone of

�-derivable approaches [93], where δ�
δG = �, and δ2�

δG2 = −It .
Since the functional derivative cannot be evaluated numeri-
cally, it mostly serves as a formal tool. However, by choosing
a specific variation δG in the functional WI, one can derive
more practical relations (as necessary but not sufficient con-
ditions of the functional WIs). For instance, one can easily
deduce Eq. (29) in the limit ω → 0 by varying G with respect
to (w.r.t.) frequency (see Ref. [94] for a related treatment).
Moreover, one can derive the standard fRG self-energy �̇std

by varying G through the scale parameter [9].
Numerical results—Since the Pauli principle is preserved

in the PA as well as (loop-converged) mfRG, one expects—on
general grounds—these approximate schemes to violate the
WIs to a certain extent. Arguably, the size of such violation
should increase for increasing interaction strength, driven by
the leading terms of the exact solution (where all fundamental
relations are fulfilled), which are neglected in either approx-
imate approach. Furthermore, it is known [10,18] that the
1� truncation leads to violations of the WIs. Katanin [17]
proposed schemes to mitigate this deficiency. In particular,
the 1�K flow is widely used and often argued to better fulfill
WIs. However, no explicit numerical studies were presented
thus far. Here, we intend to fill this gap and investigate quan-
titatively the fulfillment of WIs in fRG using our numerical
results for the AIM. We focus on flowing (m)fRG results
obtained with the � flow, in order to avoid the frequency
extrapolation required for the U flow (see Appendix B 1).

We start with Fig. 12, where the top row shows WL(ν, ω)
(squares) and WR(ν, ω) (hexagons) for ω = 2πT as a func-
tion of ν for U = 1, as obtained from the flow. We find that
the 1� result exhibits the strongest deviation in the WI for
all ν; 1�K yields already a visible improvement at the lowest
Matsubara frequency. However, the 2� and mfRG/PA results
show an overall much more accurate description of the WI for
all frequencies. In particular, we note that while, at the lowest
Matsubara frequency, the deviation in 2� is smaller than in
mfRG/PA, the trend is reversed for larger frequencies.

To better quantify the deviations between both sides of
the WI, we focus on the quantity δW (ν, ω) = WL(ν, ω) −
WR(ν, ω) at ω = 2πnT (n ∈ N) for two different choices for
ν: In the first case, we fix ν to νs =−�n/2�2πT + πT , which
gives the fermionic frequency closest to the symmetry axis
ν = −ω/2, where the largest absolute deviations are found
(e.g., νs =−πT for ω=2πT in Fig. 12, see also Fig. 13
discussed below). In the second case, we sum |δW| for ν in a
finite frequency box. Specifically, we sum over 11 frequencies
to the left and 11 frequencies to the right of the symmetry
axis, adding also the contribution right at ν = −ω/2 if n
is odd. In this way, we incorporate the behavior at larger
frequencies, while avoiding numerical inaccuracies from the
finite-frequency box effect of the high-frequency parametriza-
tion in our implementation [6] (see Appendix B 1). When
comparing results for different transfer frequency ω = 2πnT ,
we divide by n to obtain more comparable results. The bottom
row of Fig. 12 shows δW for the n = 1 data reported at the
top. The plot confirms that, at weak coupling, already the first
multiloop corrections strongly improve the fulfillment of the
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FIG. 12. Top: Comparison of the left side WL (teal, squares) and the right side WR (brown, hexagons) of the WI (29) for �-flow mfRG
calculations, as a function of ν for ω = 2πT and U = 1 (β = 10 throughout). Bottom: Fulfillment of the WI estimated by δW = WL − WR

as a function of loop order, for ν = −πT (left) and for ν summed over a finite box (right, see text). Colored areas in the upper and lower left
panel mark equivalent data points.

WI. In particular, the minimal value for δW at ν = −πT (left
panel) is found at � = 2 and for |δW| summed over ν (right
panel) at � = 3. Hence, our U =1 calculations show that the
finite deviation from the exact fulfillment of the WI expected
to occur in the loop-converged mfRG/PA results is notably
smaller in comparison to 1� or 1�K , and that it quantitatively
represents a marginal effect in the weak-coupling regime. This
trend is also confirmed regarding relative deviations |δrW| =
|δW/WL|, as we explicitly show in Fig. 19 in Appendix A.
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FIG. 13. WL (dotted lines, empty squares) and WR (dashed lines,
filled symbols) of the loop-converged mfRG solution, as a function
of ν, at U =1 and for different values of ω=2πnT . The absolute
discrepancy is largest for ν around −ω/2.

Next, we extend the analysis to larger values of ω = 2πnT
and show in Fig. 13 loop-converged mfRG results for 1 �
n � 5. The plot demonstrates that the mfRG data provide
satisfactory agreement between WL (empty squares) and WR

(filled symbols) for all values of ω and ν, and that the largest
absolute deviation indeed occurs for ν around νs, i.e., the
frequency closest to the symmetry axis ν = ω/2 (see above).
Figure 14 presents δW as a function of � for n up to 40.
Again, the fulfillment of the WI is slightly improved when
going from 1� to 1�K and strongly improved starting from
2�, for all values of ω (confirmed also by Fig. 19 in Ap-
pendix A). However, the details in the change from � = 2
to ∞ depend on ω. In general, we observe that the WI is
better fulfilled for larger values of ω. In fact, a perfect match
is given for ω → ∞ and � → ∞, since the WI reproduces
the SDE for ω → ∞ (see Appendix C 2), which is exactly
fulfilled in mfRG and the PA. This can be clearly seen in
both insets of Fig. 14. The inset of the right panel uses a
logarithmic scale, where one can also spot the onset of os-
cillations in the multiloop convergence, in spite of their small
amplitude.

Finally, we analyze the effects of the interaction strength,
by progressively increasing its value up to U =4. In Fig. 15,
we examine δW for ω = 2πnT at n = 1 and n = 11, com-
paring results of (m)fRG flows at low loop order with the PA.
At large interaction, the pure 1� flow is evidently unreliable,
violating the WI with very large values of δW . The situa-
tion visibly improves in 1�K , 2�, and PA. In particular, for
U � 2, 1�K is farther off than 2� and PA. Interestingly, how-
ever, the 1�K deviations display a highly non-trivial behavior
with increasing U—they are nonmonotonous in the top left
panel and have a decreasing slope in the other panels—and
thereby yield comparatively small values of δW at larger
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at � = 2, using a linear (logarithmic) scale for the left (right) panel.

U . By contrast, for the PA results, |δW| starts rather small
but increases monotonously with increasing U . Overall, for
intermediate to large values of U , it seems that 1�K provides
the most accurate description of the WI at small frequencies
(n = 1), while mfRG and the PA lead to a smaller violation of
the WI for larger frequencies (here n = 11). Further details
on the individual deviations of WL and WR are given in
Appendix A.

As a last step, we compare the numerical deviations δW as
a function of U focusing on small interaction values U < 1.
Figure 16 shows δW , similarly as in Fig. 15, but on a log-log
scale. Using a f (x) = α x + d fit, we extract the exponents of
the deviations of the WI, δW ∼ U α , for the (m)fRG flow and
PA scheme. Our analysis shows perfect agreement with the
theoretical predictions of Ref. [17]: the 1� scheme displays
deviations that grow with the third power of U (α ≈ 3, solid
lines), and the 2� results are in agreement with a U 4 growth
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(α ≈ 4, dotted lines). The 1�K results at small U also manifest
O(U 3) deviations. This is in agreement with the analytic argu-
ments of Ref. [17] since, for the commonly used 1�K scheme,
only part of the 2� corrections are included by substituting
S → Ġ (as described in Sec. II). Hence, some terms violating
the WI at O(U 3) remain, as seen in our numerical data in
Fig. 16 (α ≈ 3, dashed-dotted lines). Note that the behavior
at larger interaction values, as discussed above, is beyond the
reach of the present analysis applicable at small values of U .

Further, concerning the loop-converged mfRG/PA results,
we find deviations of the WI, which behave as O(U 5) (dashed
lines). In general, one expects the PA/mfRG schemes to devi-
ate from the exact solution as O(U 4). However, at half filling,
the combination of the particle-hole symmetry and spin sym-
metry of our problem causes the contributions to the WI from
the forth-order “envelope” diagrams to exactly cancel, as we
show explicitly in Appendix C 3. For completeness, we also
note that the same behavior as in Fig. 16 is found for other
frequency choices as well (e.g., for n = 11 used in the lower
panel of Fig. 15).

V. CONCLUSION AND OUTLOOK

We investigated several essential features of the recently
introduced mfRG approach by performing a quantitative study
of the particle-hole symmetric AIM for different coupling
strengths. As the numerical implementation of the mfRG
applied to the AIM does not require additional algorithmic
approximations (such as the form factor expansion used for
the Hubbard model [36,37]), we were able to demonstrate
how the precise convergence of the mfRG series to the corre-
sponding PA results is readily obtained in the entire weak- to
intermediate-coupling regime. A thorough inspection further
confirmed the pivotal features of a converged mfRG solution,
i.e., its independence of the specific RG cutoff adopted as well
as the equivalence between flowing and postprocessed results.
Hence, in the parameter regimes where a fast loop conver-
gence of the mfRG is found, the application of this method
offers potential advantages w.r.t. to the full iterative solution

of the PA through the intrinsic flexibility of the underlying
fRG framework.

By increasing the value of the electronic interaction, we
studied the oscillatory behavior emerging in the loop de-
pendence of the mfRG series, which eventually hinders the
convergence to the PA solution in the strong-coupling regime.
Interestingly, the parameter region where a multiloop conver-
gence could not be achieved appears roughly to match the one
in which previous quantum Monte Carlo studies [51,60] have
shown an explicit breakdown of perturbative resummations to
occur at the two-particle level. In this respect, the strong os-
cillatory behavior of the nonconverging mfRG series could be
plausibly regarded as a further hallmark of the nonperturbative
[51,75,76,78] parameter regime, where significant physical
differences between the PA and the exact solution of the AIM
are found [51].

The numerical data obtained in the region of proper conver-
gence of the mfRG algorithm were then used for a quantitative
investigation of the fulfillment of fundamental features of
the many-electron problem, namely those linked to (i) the
Pauli principle and (ii) the WIs. For (i) the Pauli principle,
we observed a sizable violation of sum rules in the conven-
tional 1� fRG results, which gets systematically reduced by
increasing the loop order. This is consistent with the fact that
mfRG converges to the PA solution, and that the PA obeys the
Pauli principle by construction, realized through the crossing
symmetry and two-particle self-consistency. We also note that
the indirect effects of the Pauli principle on the high-frequency
asymptotic behavior of one-particle quantities are only recov-
ered by including the multiloop additions to the self-energy
flow, which start from the third loop onwards. For (ii) the WIs,
these are generally neither fulfilled in fRG nor in the PA. For
weak to intermediate coupling, our results demonstrated that
adding higher-loop terms systematically reduces the overall
violation of WIs. In particular, while a first improvement can
be already observed by including the one-loop Katanin (1�K )
substitution, higher loop orders and the PA yield quantita-
tively much smaller deviations. By increasing the interaction,
however, the situation becomes more complex. Going beyond
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the 1� fRG level, whose description of the WIs is largely
unreliable, we find that 1�K mitigates most efficiently the
WI violations at low frequencies, while higher-loop mfRG
and the PA yield better results for large frequencies. This is
consistent with our observation that the WI reproduces the
SDE for ω → ∞. Additionally, we confirmed the predictions
of Ref. [17] for the asymptotic weak-coupling behavior of the
WI deviations as a function of U for the 1� and 2� scheme.
Our numerical results for the mfRG/PA scheme revealed a
O(U 5) deviation, smaller than the expected O(U 4), which we
showed to be related to the particle-hole and spin symmetry
used in our computations.

The insights gained in our study, which might be ex-
tended in the future to other regimes (e.g., out of half
filling, and/or in the presence of a magnetic field) and more
complex systems, are important for several reasons. On the
one hand, they improve the understanding of the conver-
gence of the mfRG procedure, whose relevance extends to
more complex contexts than the basic AIM considered here.
Such insights may be particularly important if the mfRG is
used to include nonlocal correlations on top of the DMFT
solution of strongly correlated lattice problems, thus ex-
tending the DMF2RG algorithms beyond the conventional
(1�) fRG used so far [52,53]. In that context, the mfRG
might offer important advantages over corresponding parquet-
based implementations. In contrast to the latter, the mfRG
flow does not rely on the numerical manipulation of two-
particle irreducible vertex functions, which display multiple
divergences in the intermediate-to-strong coupling regime of
different many-electron models [51,60,78–85]. This should
allow the circumvention of several of the problems faced
by parquet-based DMFT extensions [42] constructed upon
such potentially diverging irreducible vertices, such as parquet
D�A [4,95] or QUADRILEX [96].

On the other hand, the possible relation of the loop con-
vergence properties in mfRG with the breakdown of the
perturbation expansion might have interesting theoretical and
algorithmic implications, calling for an extension of our study
to more complex physical situations than those considered
here. Together with our precise analysis of the fulfillment or
violation of sum rules and WIs, this might shed new light
on fundamental aspects of the many-electron theory and help

to further develop refined calculation strategies for the most
challenging parameter regimes.
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APPENDIX

In the Appendix, we provide additional results, details
on the numerical treatment as well as diagrammatic deriva-
tions, in order to specify our approach and further support
the messages of the main part. The additional results are in
Appendix A, mainly focused on the U flow and the fulfillment
of the WI. Details on our numerical approach, especially the
dependence of different quantities on the number of Matsub-
ara frequencies included in the computations, are discussed in
Appendix B. Finally, we give the diagrammatic derivations of
several relations used in Sec. IV in Appendix C.

APPENDIX A: ADDITIONAL RESULTS

In Fig. 17, we report the results for U = 1.5 (β = 10,
half filling), which were anticipated in Sec. III B. For this
parameter set, too, the mfRG scheme converges perfectly in
loop order. For � � 15, both regulators lead to identical results
for all quantities, and the PP (dotted lines with “×” or “+”
symbols) and flowing data coincide. As stated in the main
text, no qualitative difference in the convergence behavior is
observed, apart from the fact that, for U = 1.5, more loop
orders are necessary to reach it.
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In Fig. 18, the relative comparison between U -flow results
and the PA for U =1, 1.5, 2 is shown in the same fashion as in
Fig. 6 for the � flow. While there is no qualitative difference,
quantitatively the U flow shows larger relative differences
with respect to the PA. Note that we were unable to converge
the U -flow calculation for � = 11, 12; see also Appendix B 2.

Finally, we add further analyses on the fulfillment of the
WI, namely (i) on the relative deviations for the cases dis-
cussed in the main text, and (ii) more details on the deviations
as a function of U in the different approaches. Concern-
ing (i), Fig. 19 is a combined plot of Figs. 12 and 14 of
the main text, but instead of δW , we show |δrW (ν, ω)| =
|WL(ν, ω) − WR(ν, ω)/WL(ν, ω)|. In the top row, |δrW| is
shown for ω = 2πT , similarly as in the top row of Fig. 12.
Note that the y axis is cut at |δrW|=100% in order to
present the behavior of |δrW (ν, ω=2πT )| for the various
values of ν with sufficient resolution. The reason for the
peak of |δrW| at one specific Matsubara frequency is the
sign change (and hence the closeness to zero) of |WL|. The
bottom panels and the corresponding insets show the relative
deviation |δrW (ν, ω=n2πT )| for ν =νs (left) as well as for
an averaged sum over a finite frequency box (see main text
for both). Due to the averaging effect of the factor 1/Nν in
1

Nν

∑
ν |δrW (ν, ω=n 2πT )|, where Nν is the number of ele-

ments summed over, the factor 1/n used in Fig. 14 is omitted.
In general, Fig. 19 confirms the trend described in the main
text. One notices how the increase of the loop order � leads to
a reduction of the relative deviations for all frequencies ω and
ν. As pointed out in Sec. IV, the WI is exactly fulfilled for
the mfRG/PA solution at n → ∞, which is also confirmed
in Fig. 19 (see insets). An important difference to Fig. 14
is that for the 1�, 1�K and 2� scheme, δrW (ν = νs, ω) is
roughly constant, or even grows as n is increased. This reflects
the fact that these approaches do not respect the SDE, and
hence do not fulfill the WI exactly for n → ∞. Regarding
(ii), we use the numerically exact QMC solution (fulfilling
the WI) as a reference and compare WL and WR obtained
by fRG/PA for ν = νs (see main text) individually with the
QMC result. Figure 20 shows this analysis for different values
of U , in a similar fashion as Fig. 15. The comparison of the
left side, �WL =Wx

L(ν =νs, ω) − WQMC
L (ν =νs, ω), where

x represents the given approach, is shown as full symbols
with solid lines; the one of the right side, �WR =Wx

R(ν =
νs, ω) − WQMC

R (ν =νs, ω), as empty symbols with dashed
lines, where W QMC

L (ν, ω)=W QMC
R (ν, ω). Let us point out that

two distinct effects need to be distinguished in Fig. 20: On
the one hand, there are the deviations of the fRG/PA re-
sults from the numerically exact QMC results, on the other
hand, the fact that the fRG/PA results do not fulfill the WIs,
and are hence not conserving. As discussed in the main part
in Fig. 7, the deviations between PA/fRG calculations and
the QMC results grow with U , which can also be seen in
Fig. 20. The solution of a conserving approximation would
show this deviation, but would not show a difference between
the left and right side, i.e., the full and the dashed lines would
coincide. Hence, it is not the value on the y axis itself, but the
difference in the deviation of �WL and �WR, which turns
out to be instructive. As can be seen in Fig. 20, for most
cases, it is the right side of the WI that deviates more from the
QMC solution, the �-flow 1�K -results for n = 11 represent
the extreme case. While in the PA, the 1� and 2� results show a
steadily growing difference between the solid and the dashed
line, the situation is less monotonous for the 1�K approach.
From its data for n=1 (top), one clearly notices the change in
behavior as �WR changes sign, leading to the sign change of
δW1�K

L (ν =−πT, ω=2πT ) seen in Fig. 15.

APPENDIX B: DETAILS ON THE
NUMERICAL APPROACH

1. fRG and mfRG calculations

Our fRG, mfRG, and PA computations for the AIM are
based on the implementation used in Refs. [6,36]. As stated
in the main text, we employ the following parametrization of
the reducible vertex functions [6] γr = K1r +K2r +K2′r +K3r .
The high-frequency asymptotics are included in the K1r and
K2(′)r functions with one and two frequency arguments, re-
spectively. The remaining full frequency dependence, which
has a relevant contribution at low Matsubara frequencies, is
contained in K3r . These contributions increase with increasing
interaction values, and it is hence necessary to extend the
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FIG. 19. Top: Relative deviation of the WI (29) |δrW (ν, ω)|=|δW (ν, ω)/WL(ν, ω)| for �-flow mfRG calculations at ω=2πT , U =1,
similarly as the top row panels of Fig. 12, as a function of ν. The y axis is cut at 100% to provide enough resolution for |δrW (ν, ω = 2πT )|
at the various values of ν. Bottom: As Fig. 14 but showing |δrW| instead. In the right panel, the normalizing factor 1/n of the main text is
replaced by 1/Nν , where Nν is the number of frequencies summed over (see text). All quantities are given in percent (%).

frequency box, i.e., the number of frequencies where the full
frequency dependence of K3r is taken into account. In Table I,
we provide the number of positive fermionic frequencies of
K3r , Nf+ , for different approaches and values of U . The pa-
rameter Nf+ also dictates all other frequency ranges in the
same way as detailed in Ref. [6]. Outside the finite frequency
box, the K3r functions are set to zero, which is the core of the
high-frequency asymptotics approximation. While this affects
all quantities calculated with the different approaches, the

TABLE I. Number of positive fermionic Matsubara frequencies
used in the calculations of the full frequency dependence (K3r). For
the PA calculations, we used the same number as for the � flow.

U Flow Nf+

1.0 � 32
U 32, 40, 64, 82

1.5 � 36
U 32, 36, 40, 44

2.0 � 40
U 36, 40, 44

3.0 � 52
4.0 � 52

difference in the results observed by comparing computations
with different box sizes is negligible for the � flow and PA. By
contrast, for the U flow, an extrapolation in Nf+ is necessary,
as detailed in the following subsection.

a. Frequency extrapolation for the U-flow

In order to achieve agreement between the ∞-loop mfRG
solution using the U flow and the corresponding PA result
to the precision chosen in the main part of the paper (0.1%
in the insets), it is necessary to perform a frequency ex-
trapolation. To this end, several calculations for the same
parameter set are performed with different sizes of Nf+ (see
Table I). In Fig. 21, we showcase this for U =1 and β =10,
i.e., the case discussed in Sec. III A. The open blue sym-
bols represent the results for Im�(ν = πT ) as obtained by
different ∞-loop U -flow calculations, plotted as a function
of 1/Nf+ . For comparison, the results of corresponding PA
calculations with different box sizes are shown as open black
symbols, which hardly display any dependence on Nf+ at
this scale. Using a f (x) = A + B/x fit (blue line), we obtain
the extrapolated value (filled-blue triangle), which lies on-
top of the PA result for Nf+ = 32 (dashed-black line). For
comparison, we also plot the result of an ∞-loop �-flow
calculation (open red circle) using Nf+ = 32, which highlights
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FIG. 21. Im�(ν = πT ) as obtained by ∞-loop U -flow calcula-
tions using different sizes of Nf+ , see Table I (open-blue triangles).
The extrapolated value (filled blue triangle) is obtained using a
f (x) = A + B/x fit (blue line), which matches perfectly the PA
solution for Nf+ = 32 (black-dashed line). The results of PA com-
putations using different box sizes (Nf+ = 32, 36, 40, 44) are shown
as open-black diamonds. The blue-shaded area represents 0.1% devi-
ation from the PA solution for Nf+ = 32. For a comparison a ∞-loop
�-flow result using Nf+ = 32 (red-open circle) is also shown.

TABLE II. Maximum number of loops (�max) and iterations of
� (N�-iter) needed for the ∞-loop mfRG solution. In addition, for
all interaction values, we list the number of Runge-Kutta integration
steps in  during the fRG flows (Nstep), and for the PA, the number
of iterations need to reach convergence (NPA-iter). Where no ∞-loop
mfRG solution was obtained, we list N�-iter and Nstep of the calcu-
lations with � = 15. We reduced N�-iter for U =3 for the � (�=15)
calculation, see text.

U Flow �max N�-iter Nstep NPA-iter

1.0 � 15 3 54
U 23 4 9
PA 27

1.5 � 44 5 61
U 61 5 14
PA 43

2.0 � (�=15) 8 69
U (�=15) 9 23

PA 56
3.0 � (�=15) 3∗ 98

PA 129

that, for the � flow, no frequency extrapolation is neces-
sary to reach agreement with PA at this precision, as stated
above.

All U -flow results for all loop orders shown in the main text
and the Appendix are obtained in this way. For all quantities,
a f (x) = A + B/x fit proved to work best, except for the
high-frequency value of � discussed in Sec. IV A (no U -flow
results shown), where a A + B/x + C/x2 fit turned out to be
the best choice.

2. mfRG calculations

In this part of the Appendix, we provide further details on
our multiloop calculations. In particular, we specify how the
∞-loop mfRG solution is obtained and concisely discuss the
iteration of �.

a. ∞-loop mfRG solution

At each step of the fRG flow, the changes in all quantities
for all Matsubara frequencies when going from � to � + 1 are
measured. As soon as the relative (absolute) changes are lower
than a given ε, in our case 10−5 (10−7), the calculation of
higher loop orders is stopped. This speeds up the computation
especially at the beginning of the flow, where usually a low
loop order is sufficient; for more details on this, see Ref. [97].
While for obtaining the solution of loop order �, the multiloop
calculation is stopped at this specific �, it is continued until
the changes are smaller than ε to calculate the ∞-loop order
solution. In Table II, we provide the actual number of loops
needed (�max) to obtain the ∞-loop order solution for the
different flows and parameter sets.

b. Iteration of �

Part of the mfRG scheme is also the iteration of � at each
step of the flow [9,15,16]. The effect of these self-energy itera-
tions was analyzed in great detail in Ref. [37]. Throughout our
calculations, their impact proved to be small, e.g., comparing
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χm(ω = 0) with and without the iteration of � for the � flow
at U = 1 leads to a difference of O(10−4). In Table II, we
provide the necessary number of iterations for the ∞-loop
mfRG solution (N�-iter) to arrive at differences smaller than ε

(given above, see Appendix B 2 a) when comparing iteration
i with i + 1. For all other loop orders, the same condition
was used. As it turns out, the number of necessary iterations
proved to be very similar, except for the � = 11, 12 U -flow
calculations for U = 2. There, the number of required �

iterations increased considerably, preventing our numerical
calculation from converging in a reasonable amount of time.
Lowering the maximum number of � iterations did not allow
for obtaining a converged result, as the adaptive solver used
for our computations did no longer converge in this case.

For completeness, Table II also lists the number of Runge-
Kutta integration steps in  during the fRG flow for both
regulators (Nstep), as well as the number of PA iterations
(NPA-iter). Note that, since the calculations for U = 3 were
numerically very costly, as they required a large frequency
box for K3r , we restricted the number of iterations for the
�-flow computations shown in the main part to 3.

3. QMC calculations

As stated in the main part, we employed the W2DYNAMICS

[69] package (version 1.0.0) as a continuous-time QMC [39]
solver. We used the default sampling method for all calcu-
lations shown apart from the data for Fig. 11. There, we
performed Worm sampling [98,99] computations with sym-
metric improved estimators [100] instead, which reduces the
high-frequency noise. While we used about 2000 CPU hours
for the former computations, the Worm sampling calculations
were done using up to 25 000 CPU hours.

APPENDIX C: DIAGRAMMATIC DERIVATIONS

1. Relations between the self-energy asymptote and the
susceptibility sum rule

In this section, we will derive relations between the high-
frequency asymptote of � and the sum rule of χσσ . First,
we will show that the two are directly related through the
SDE in parquet-type approaches. Then, we move on to fRG
flows. We will show that the standard self-energy flow also
relates the � asymptote to the susceptibility sum rule, with
χσσ given by its one-loop flow. Since the latter does not fulfill
the sum rule, the former violates the exact asymptote. Both
the sum rule and the asymptote are fulfilled in multiloop fRG.
We will show which terms of the multiloop corrections to �̇

complete the relation, so that the � asymptote is determined
by χσσ obtained in a multiloop flow. The entire derivation will
proceed diagrammatically.

a. Connection through the SDE

In Fig. 22(a) we recall Eq. (18), which expresses χσσ

through a GG bubble and corrections in terms of the full
four-point vertex F . The vertex F is contracted by pairs of
propagators on both sides. Therefore, one can also express
χσσ through a (full) three-point vertex λ on either the left
or the right side, as illustrated in Fig. 22(b). The vertex λ is

FIG. 22. [(a),(b)] The susceptibility χσσ can be expressed
through the four-point vertex F or the three-point vertex λ. [(c),(d)]
In the limit ν → ∞, the vertex, carrying ν on the external legs
marked in red, collapses to a subset of diagrams up to corrections
O(1/ν ) (signified by “=̇”). These can also be expressed through
λ. [(e),(f)] In this limit, we can deduce the self-energy �ν up to
corrections O(1/ν2) (signified by “=̈”) from the SDE and express
the result through λ or χσσ .

particularly useful when considering F in the limit of large
fermionic frequencies.

Indeed, to find the self-energy asymptote, we will consider
a large fermionic frequency ν. In Figs. 22(c) and 22(d), we
show which diagrams of the vertex F , carrying ν on the ex-
ternal legs marked in red, remain nonzero in the limit ν →∞,
i.e., which diagrams are independent of ν. We use the symbol
“=̇” for that purpose, signifying equality up to O(1/ν). To
have nonzero contributions when ν →∞, the red (amputated)
external legs must directly meet at a bare interaction vertex.
This is clearly fulfilled for F =F0, but there can also be
arbitrary vertex corrections after the two red legs have met.
If ν is on the lower two legs [Fig. 22(c)], such corrections
are a subset of the vertex γt , reducible in transverse (vertical)
particle-hole lines. If it is on the left two legs [Fig. 22(d)], the
corrections belong to γa, reducible in antiparallel (horizontal)
lines. The bare vertex and and the corrections are summarized
by the three-point vertex λ. To see this, one may insert the
BSEs for γt/a, connecting the irreducible vertices It/a to the
full vertex F . Since It/a are irreducible in their respective
channels, they collapse to F0 in the limit ν →∞, and one
obtains λ similarly as in going from Fig. 22(a) to Fig. 22(b).

Now, by means of the SDE (26), the self-energy (minus its
static Hartree part) is determined by the vertex F connected
to three propagators, as we recall in Fig. 22(e). To find � to
first order in 1/ν, we need F to zeroth order. We choose to
transport ν through the propagator at the bottom. Then, we
can directly use the relation in Fig. 22(c) to replace F by λ up
to corrections O(1/ν2) (signified by the symbol “=̈”). Using
Fig. 22(a), we obtain χσσ through λ. The last step is similar
to Eq. (27): Take the red propagator as Gσ̄

ν+ω. For ν �ω, we
can replace Gσ̄

ν+ω by 1/(iν) up to corrections O(1/ν2). This
leaves χσσ

ω summed over all ω, and, with a prefactor U 2 from
the two interaction lines, we obtain Eq. (25) for �σ̄ .
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FIG. 23. (a) The standard self-energy flow �̇std ≡�̇1 in skeleton
form [9]. (b) In the PA, it yields asymptotic contributions of the same
structure as Fig. 22(f), where χ̇ σσ is approximated by its one-loop
flow. (c) One-loop (�=1) and multiloop terms (�>1) for χ̇ σσ [9]. To
derive the relation in (b), we insert the BSEs for γa, γp as part of It ;
[(d),(e)] concerns γa, [(f),(g)] concerns γp.

b. Standard self-energy flow

Next, we turn to fRG flows. The standard self-energy flow
is given by �̇σ

std = −F σσ ′ ·Sσ ′
, where “·” denotes the contrac-

tion of the top two vertex legs by the following propagator,
S is the single-scale propagator, and a sum over σ ′ is under-
stood. For formal derivations, it is helpful to analyze �̇σ

std by
means of its equivalent skeleton version [9], �̇σ

1 =−Iσσ ′
t ·Ġσ ′

,
illustrated in Fig. 23(a). As before, a line with a doubled
orthogonal slash denotes Ġ, and dashed dark and light colors
indicate a summation over spin.

As mentioned previously, �̇1 is exact only for an exact
vertex, which is not available in practice. Instead, we will
consider the much more relevant case of a vertex obtained in
the PA or, equivalently, a multiloop flow. In this case, �̇1 is
approximate. We will show that it generates a high-frequency
asymptote of similar type as the exact relation Fig. 22(f),
but with χσσ obtained by its (approximate) one-loop flow.
The connection from the general, -independent statement
Fig. 22(f) to an fRG flow is made by taking the scale derivative
∂ on the entire equation. In this way, ∂ is subsequently ap-
plied to the trivial Hartree part, to the red propagator alongside
χσσ , and finally to χσσ itself. Indeed, we will precisely find
such a structure, where the derivative ∂χσσ is approximated
by χ̇ σσ

1� , see Fig. 23(b). The one-loop flow χ̇ σσ
1� is given by the

first summand of Fig. 23(c). (The long double slash denotes
a differentiated two-particle propagator, �̇= ĠG+GĠ). The
multiloop corrections to χ̇ σσ , which are compactly encoded
in the second summand of Fig. 23(c) and will be considered
more closely in the next part, restore equivalence to the gen-
eral susceptibility–vertex relation shown in Fig. 22(a).

To derive Fig. 23(b), we start from It =F0+γa+γp in
the PA. The bare vertex F0 immediately gives the differenti-

ated Hartree part as the first summand of Fig. 23(b). From
Fig. 23(d) onward, we analyze the effect of γa/p using their
BSEs. The analysis is slightly more complicated than in
Fig. 22(e): There, we had just a single vertical interaction line;
now, we have two spin-dependent vertices, where same-spin
propagators can meet both vertically and horizontally.

In Figs. 23(d) and 23(e), we insert the BSE of γ σσ ′
a , with

a summation on the spin carried by Ġσ ′
. This gives three

terms: (i) γ σσ̄
a , where the antiparallel two-particle propagator

�a necessarily has two opposite spins; γ σσ
a , where �a has (ii)

both spins equal to σ and (iii) both spins equal to σ̄ . Cases (i)
and (ii) are contained in Fig. 23(d), with a spin sum encoded in
the dashed colors. Regarding ∼ν−1 contributions, Fig. 23(d)
contains all diagrams where the lower two legs of Ia and F di-
rectly meet at vertical interaction lines and the large frequency
is transported through the bottom propagator. Since both Ia

and F contain F0+γt , their ∼ν0 contributions are expressed
through λ according to Fig. 22(c). Proceeding with case (iii),
Fig. 23(e) contains all diagrams where the left (right) legs of Ia

(F ) directly meet at horizontal interaction lines and the large
frequency is transported through the top propagator. While F
contains both F0 and γa, Ia contains only F0. Hence, their ∼ν0

contributions are expressed through λ and a bare interaction
line, respectively, according to Fig. 22(d).

We continue with γp and insert in Fig. 23(f) the BSE of γ σσ̄
p

(Ġ is in light color), where the parallel two-particle propagator
�p is summed over both spins (and thus the typical prefactor
1/2 is kept). Since both Ip and F are crossing symmetric, con-
tributions stemming from vertical and horizontal interaction
lines enter equivalently. Indeed, in the first (second) summand
of Fig. 23(f), the red propagator passes by vertical (horizontal)
interaction lines. Since both Ip and F contain F0+γa+γt , we
replace their ∼ν0 contributions by λ using Figs. 22(c) and
22(d), and we end up with two equivalent terms. In Fig. 23(g),
we insert the BSE of γ σσ

p , where �p must also carry spins
σ (the prefactor 1/2 remains). Again, the red propagator can
pass by vertical and horizontal interaction lines, and we get
two equivalent terms expressed through λ.

Finally, we see that Fig. 23(e) gives the second summand
of Fig. 23(b) [by means of Fig. 22(b)], and the sum of
Figs. 23(d), 23(f), and 23(g) reproduces the first summand
of Fig. 23(c). This yields the last part of Fig. 23(b), thus
concluding the derivation.

c. Multiloop corrections to the self-energy flow

The multiloop corrections to the self-energy flow provide
equivalence to the SDE while working in the PA [9]. Thereby,
the multiloop self-energy flow is guaranteed to generate the
correct high-frequency asymptote. Its ∼ν−1 contribution must
be equal to the scale derivative of Fig. 22(f), shown in
Fig. 24(a). The multiloop self-energy flow can be written
[9] as �̇=�̇1 + �̇2, with �̇σ

1 =−Iσσ ′
t ·Ġσ ′

from before and
�̇σ

2 =−γ̇ σσ ′
t̄,C · Gσ ′

. Hence, Figs. 24(a) and 23(b) imply that
Fig. 24(b) must hold.

It is interesting to analyze how Fig. 24(b) comes about.
Through the spin sum and the composite nature of γ̇t̄,C, �̇2

has four contributions, stemming from γ̇ σσ
a,C, γ̇ σσ

p,C, γ̇ σ σ̄
a,C, and

γ̇ σ σ̄
p,C. We will show that the first term already gives the desired
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FIG. 24. (a) The multiloop self-energy flow is equivalent to the
SDE and thus generates a high-frequency asymptote in direct cor-
respondence to Fig. 22(f). (b) Using �̇=�̇1+�̇2 and the result of
Fig. 23(b), the asymptote of �̇2 must be related to the multiloop cor-
rections of χ̇ σσ . To show this, we split the contraction of γt̄,C into four
summands: (c) γ σσ

a,C · Gσ already yields the desired expression; (d)
γ σσ

p,C · Gσ vanishes up to corrections O(1/ν2); (e) (γ σσ̄
a,C + γ σσ̄

p,C ) · Gσ̄

cancel to that order, as can be seen after factoring out Gσ̄ ∼1/(iν )
for the first and Gσ̄ ∼1/(−iν ) for the second summand.

result in Fig. 24(b). Up to corrections O(1/ν2), the second
term vanishes while the last two terms cancel.

Inserting γ̇ σσ
a,C, the only way to get ∼ν−1 contributions is to

transport the large frequency through the loop propagator at
the top, marked red in Fig. 24(c) (note that both two-particle
propagators �a are summed over spin). Further, all red lines
must directly meet at (horizontal) interaction lines. Hence, the
four-point vertices F at the left and right can be replaced by
three-point vertices λ. The combination of λ, İa, λ comprises
the multiloop corrections to the flow of χσσ , see Fig. 23(c),
thus yielding Fig. 24(b).

For the remaining terms, one immediately sees in
Fig. 24(d) that γ̇ σσ

p,C has no ∼ν−1 contribution: The external
legs and the loop propagator would need to directly meet as
two out-going (in-going) lines at a bare interaction line of the
left (right) vertex. However, they all have the same spin, and
the bare interaction requires in- and out-going lines to have
opposite spin. Next, the opposite-spin contribution γ̇ σ σ̄

a,C +γ̇ σ σ̄
p,C

is shown in Fig. 24(e). By choosing fixed spin labels for
the two �p entering γ̇p,C, we eliminate the typical prefactor
(1/2)2. The upper loop propagator carrying the ν dependence
goes in opposite directions for the first compared to second
summand. Hence, after factoring out the dominant 1/(iν), we
get opposite signs for the ∼ν−1 contributions between the a
and p channel. The remaining part for both is summed over all
internal frequencies, including ω, as indicated by the closed
wiggly line. Their sum cancels, as can be checked explicitly

FIG. 25. (a) Illustration of the WI (C1), in a slightly different but
equivalent form to Fig. 8(c). Note that short lines denote amputated
legs, which are not part of the equation. (b) Derivation of the SDE
from the WI by taking the limit ω→∞, see text. Lines in red colors
carry the large frequency ω.

at low orders. Note that, for this to work, one needs the same
number of diagrams in γ σσ̄

a and γ σσ̄
p at each interaction order,

as is indeed the case [101].

2. Deriving the SDE from the WI

The WI (29) relates a difference of self-energies, �σ
ν+ω −

�σ
ν , to a vertex contracted by a combination of propagators.

For infinitely large ω, while ν remains finite, the first self-
energy simplifies to its static value, �σ

ν+ω → Unσ̄ , and we
thus obtain a relation for �σ

ν alone. This relation is precisely
the SDE (26), as we show now.

We start by restating Eq. (29) in the form

�σ
ν+ω − �σ

ν = − 1

β

∑
σ ′ν ′

Iσσ ′;ω
t ;ν,ν ′

(
Gσ ′

ν ′+ω − Gσ ′
ν ′

)
. (C1)

Here, we labeled It by only three frequencies, chosen in the
natural parametrization of the t channel, with the bosonic
frequency ω as a superscript and the two fermionic frequen-
cies ν and ν ′ as subscripts. We also introduce a diagrammatic
representation of the WI that is slightly different from
Fig. 8(c): In Fig. 25(a), we have the difference in self-energies
on the left and a difference of the vertices, each contracted
by a different propagator on the right. Indeed, each vertex is
contracted by only the propagator corresponding to the long
line. All the short, external legs are amputated; they do not
contribute to the diagram. In particular, the short wavy line
only serves to ensure energy conservation for each vertex; it
does not enter the equation itself. We recall that dark and light
colors distinguish the two spin species; dashed lines with dark
and light colors symbolize a sum over spin.

If we take the limit ω → ∞ in Eq. (C1) or Fig. 25(a), the
left-hand side (l.h.s.) simplifies to −�̃, where �̃σ

ν =�σ
ν −Unσ̄

is the self-energy without its static Hartree part. In this limit,
the r.h.s. simplifies as well. First, we express It , the vertex

023050-21



PATRICK CHALUPA-GANTNER et al. PHYSICAL REVIEW RESEARCH 4, 023050 (2022)

irreducible in the t channel, as a sum of the fully irreducible
vertex R2PI and the vertices reducible in the complementary
channels, γa and γp. Fully irreducible vertex diagrams beyond
the bare vertex F0 decay in all frequency arguments; there-
fore, limω→∞ R = F0. However, F0 makes no contribution to
Eq. (C1), as it is frequency independent and thus leads to
cancellation in the ν ′ sum. In contrast to R2PI, the reducible
vertices γr have specific contributions that are independent of
certain (fermionic) frequencies. By substituting γa+γp for It

in Eq. (C1), we get

�̃σ
ν = lim

ω→∞
1

β

∑
σ ′ν ′

Iσσ ′;ω
t ;ν+ω,ν ′+ω

(
Gσ ′

ν ′+ω − Gσ ′
ν ′

)

= lim
ω→∞

1

β

∑
σ ′ν ′

(
γ σσ ′;ν ′−ν

a;ν+ω,ν +γ σσ ′;ν+ν ′+ω
p;ν+ω,ν

)(
Gσ ′

ν ′+ω−Gσ ′
ν ′

)
.

(C2)

Here, we expressed γa and γp each in their natural frequency
parametrization. As fermionic frequencies, we chose the two
lower vertex legs in Fig. 25(a) for both γa and γp. The transfer
frequency is ν ′−ν w.r.t. to the a channel and ν+ν ′+ω w.r.t.
to the p channel.

Next, we use the fact that a reducible vertex always de-
cays with its bosonic transfer argument, limω→∞ γ σσ ′;ω

r;ν,ν ′ =0,
and that a propagator Gσ

ν decays as 1/ν. It follows that
limω→∞

∑
ν ′ γ

σσ ′;ν ′−ν
a;ν+ω,ν Gσ ′

ν ′+ω =0, since nonzero values of γa

require ν ′ ∼ν, i.e., finite ν ′, so that Gσ ′
ν ′+ω →0. Similarly,

limω→∞
∑

ν ′ γ
σσ ′;ν+ν ′+ω
p;ν+ω,ν Gσ ′

ν ′ = 0, since nonzero values of γp

require ν ′ ∼ −ω, increasing in magnitude with ω, so that
Gσ ′

ν ′ → 0. By contrast, the remaining two terms in Eq. (C2)
give finite contributions,

�̃σ
ν = lim

ω→∞

(
1

β

∑
σ ′ν̂

γ σσ ′;ν+ν̂
p;ν+ω,ν Gσ ′

ν̂ − 1

β

∑
σ ′ν ′

γ σσ ′;ν ′−ν
a;ν+ω,ν Gσ ′

ν ′

)
,

where we relabeled ν̂ =ν ′+ω in the p channel. This relation
is the first equality in Fig. 25(b). The symbol “=̇” here means
that both sides agree up to O(1/ω), i.e., they are equal in the
limit ω→∞.

For the rest of the analysis, we refrain from spelling out the
equations and proceed diagrammatically. In Fig. 25(b), lines
in red colors (dark and light for the two spins) carry the large
frequency ω. All of these are amputated external legs, for,
otherwise, the result would vanish in the limit ω→∞. This
means that only those diagrams of γp and γa contribute where
the red legs directly meet at the same bare vertex. Thereby, ω

is transferred without entering an actual propagator, and the
result is completely independent of ω. We can gather all those
diagrams by inserting the BSEs for the reducible vertices. This
is done in the second equality of Fig. 25(b). The first two and
last two summands per row differ by the choice of spin in
the propagator loop on top of γa/p. In the BSE for γ σσ̄

p , we
fixed the spin σ at the bottom propagator, thus eliminating the
prefactor 1/2.

By virtue of the BSEs, we have two out-going red legs
attached to Ip, and an in- and an out-going red leg attached
to the left of Ia. Since Ip and Ia are irreducible in parallel
and antiparallel lines, respectively, the only diagram for each
that allows the red legs to meet directly is the bare vertex F0.

FIG. 26. The WI as in Fig. 25(a) evaluated in second-order (bold)
perturbation theory. The l.h.s., �σ

ν+ω−�σ
ν , matches the γ σσ

a vertex
contributions on the r.h.s., top row. The bottom row on the r.h.s.,
coming from γ σσ̄

a and γ σσ̄
p cancels. Note that γ σσ

p has no second-
order contribution; see, e.g., Fig. 5 in Ref. [101] for a collection of
all second-order diagrams. We give some frequency labels for clarity.
On the r.h.s., red colors mark the loop propagator contracting the
vertex It in Fig. 25(a).

Furthermore, as F0 is only nonzero between different spins,
the result collapses to the three contributions (without any
spin summation) shown in Fig. 25(c). At this point, the red
lines meet at a bare vertex, and the ω dependence (and thus
the wiggly line) can be simply removed. We see that the first
two terms in Fig. 25(c) cancel. It remains to use the crossing
symmetry of F to transform the last summand of Fig. 25(c)
into the expression of Fig. 25(d). The latter is precisely the
SDE (the Hartree term is absorbed in �̃) in the form known
from Eq. (26) and Fig. 8(b).

It is no coincidence that the first two summands of Fig. 8(c)
canceled, and the nonzero contribution to �̃ is the one from
the equal-spin vertex γ σσ

a coming from Iσσ
t . In fact, the WI

(C1) also holds without spin sum,

�σ
ν+ω − �σ

ν = − 1

β

∑
ν ′

Iσσ ;ω
t ;ν,ν ′

(
Gσ

ν ′+ω − Gσ
ν ′
)
. (C3)

For convenience, we check this explicitly at second order in
U in Fig. 26. Equation (C3) can be found by deriving the WI
not only using the local charge operator, ρ̂1 = ∑

σ n̂σ , but also
the local spin operator ρ̂2 = ∑

σ τ z
σσ n̂σ , where τ z is the third

Pauli matrix. For the latter, the WI reads

�σ
ν+ω − �σ

ν = − 1

β

∑
σ ′ν ′

τ z
σ ′σ ′Iσσ ′;ω

t ;ν,ν ′
(
Gσ ′

ν ′+ω − Gσ ′
ν ′

)
. (C4)

Summing Eqs. (C1) and (C4), one obtains Eq. (C3).

3. Envelope diagrams in the WI

The vertex in the PA deviates from the exact vertex starting
at fourth order in the bare interaction U . Through the SDE, the
self-energy is exact up to order U 4, while errors start at order
U 5. A priori, one thus expects the PA to violate the WI to order
U 4, as induced by the missing U 4 vertex diagrams—the so-
called envelope diagrams. However, it could also happen that
this specific class of vertex diagrams does not contribute to
the WI, i.e., that the envelope diagrams cancel out in Eq. (29).
Indeed, numerically, we found the PA to violate the WI to
order U 5 instead of U 4. In this section, we show analytically
that in the special case of particle-hole and spin symmetry, the
envelope diagrams cancel in the WI.
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FIG. 27. R2PI at order U 4 (envelope diagrams) with (a) different
and (b) equal spins on the external legs. (c) Under particle-hole and
spin symmetry, R(4)

2PI does not contribute to the WI. This is because
pairs of diagrams cancel in the difference of Eq. (29), as apparent
after a suitable transformation ν ′ → ν ′′ in, say, the second term.
(d) Cancellation of diagrams (i) and (ii) from (a) inserted in the
first and second term of the WI. (e) Same for diagrams (iii) and (iv)
from (b).

Figures 27(a) and 27(b) show the envelope diagrams with
different and equal spins (distinguished by light and dark
colors) on the external legs, respectively. (For brevity, we col-
lapsed the interaction line to a dot). These diagrams can also
be found in Figs. 14 and 15 of Ref. [40]. Together, they form
the fully irreducible vertex R2PI at fourth order in U ; R(4)σ σ̄

2PI

has two and R(4)σσ
2PI four diagrams, as enumerated by Roman

numbers. Figure 27(c) states that neither R(4)σ σ̄
2PI nor R(4)σσ

2PI
contribute to the WI given particle-hole and spin symmetry.

Indeed, using Gσ
ν = −Gσ

−ν and G↑
ν = G↓

ν , one can always
find pairs of envelope diagrams that cancel in the subtraction
inherent to the WI. This cancellation becomes apparent after
suitably transforming the summation frequency in, say, the
second term of the WI (thus changing ν ′ to ν ′′). In Figs. 27(d)
and 27(e), we establish the cancellation by explicitly writing
frequency labels on all internal lines.

Figure 27(d) considers the case of R(4)σ σ̄
2PI with diagram

(i) and (ii) in the first and second term of the WI, respec-
tively. The same set of frequency labels occurs in both terms,
differing at most by minus signs. Both terms have a total
of three global minus signs in their frequency labels; using
Gσ

ν = −Gσ
−ν , these minus signs can be pulled out of the equa-

tion. One obtains a mathematically identical expression for
both terms and thus a vanishing difference. The case of R(4)σ σ̄

2PI
with diagram (ii) in the first and diagram (i) in the second term
proceeds analogously. Indeed, one can transform one case into
the other by flipping the arrows on the two horizontal and the
two diagonal lines (accordingly changing ν → −ν on their
frequency labels) and suitably changing the spin labels. The
cancellation works just as before. Further, the cancellation
also works for diagrams (i) and (ii) of R(4)σσ

2PI (again for both
orders). In this case, one must further invoke spin symmetry,
G↑

ν = G↓
ν .

Finally, Fig. 27(e) treats the case of R(4)σσ
2PI with diagram

(iii) and (iv) in the first and second term of the WI, respec-
tively. The argumentation is the same as before. Thanks to
the transformation ν ′ →ν ′′ in the second term, one has a
mathematically identical expression for both terms and thus
a vanishing difference. Again, interchanging the role of dia-
grams (iii) and (iv) in the two terms of the WI merely amounts
to flipping the arrows; here, this affects the two vertical and the
two diagonal lines, all of which have spin σ̄ . As apparent from
Fig. 27(e), no minus signs are involved, and matching pairs of
frequency labels also have the same spins. The cancellation
of diagrams (iii) and (iv) thus works also in the absence of
particle-hole or spin symmetry.
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