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We develop a formalism for constructing particle-number-conserving Gaussian fermionic projected entangled
pair states [U(1)-GfPEPSs] and show that these states can describe ground states of band insulators and gapless
fermions with band touching points. When using them as variational Ansätze for two Dirac fermion systems
(the π -flux model on the square lattice and the [0, π ]-flux model on the kagome lattice), we find that the U(1)-
GfPEPSs, even with a relatively small bond dimension, can accurately approximate the Dirac Fermi sea ground
states. By applying Gutzwiller projectors on top of these U(1)-GfPEPSs, we obtain a PEPS representation of
U(1)-Dirac spin liquid states for spin-1/2 systems. With state-of-the-art tensor network numerics, the critical
exponent in the spin-spin correlation function of the Gutzwiller-projected π -flux state is estimated to be η ≈ 1.7.
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I. INTRODUCTION

The idea of the Gutzwiller wave function plays a crucial
role in the study of strongly correlated systems. Its original
formulation considers a Slater determinant wave function for
electrons and supplements that with a Gutzwiller operator
accounting for electron correlations [1,2]. Since its inven-
tion, the scope of the Gutzwiller wave function has been
considerably broadened. For instance, Anderson proposed a
Gutzwiller-projected BCS state for high-Tc cuprates [3]. In
the modern context, the Gutzwiller wave function has evolved
into the framework of a systematic approach called “parton
construction,” which includes three main steps: (i) The con-
stituent particles (fermions, bosons, or spins) of an interacting
system are split into fermionic or bosonic “partons” with
enlarged Hilbert spaces. (ii) The fermionic or bosonic partons
are placed into certain noninteracting (quadratic) mean-field
Hamiltonians with fermionic or bosonic Gaussian ground
states. (iii) The Gutzwiller projection, taking the form of a
local projector, is applied to Gaussian ground states of partons
to remove unphysical states introduced by the parton construc-
tion. For paradigmatic examples like the Haldane-Shastry
model [4,5] and Kitaev’s honeycomb model [6], Gutzwiller
wave functions are exact ground states and provide invaluable
insight into exotic states emerging from strong correlations.

From a numerical perspective, the variational Monte Carlo
method using Gutzwiller-projected fermionic wave functions
has been one of the key methods for strongly correlated
systems [7–9]. Recently, several methods have been devel-
oped for converting fermionic Gaussian states into matrix
product states (MPSs) [10–16]. In the MPS representation,
the Gutzwiller projection can be implemented easily. This
provides not just a new approach for evaluating physical
quantities in Gutzwiller wave functions but also physically
motivated MPSs for initializing density matrix renormaliza-

tion group (DMRG) calculations [17–20]. Such a strategy has
already seen success in accelerating DMRG calculations and,
for topologically ordered phases, targeting degenerate ground
states in different topological sectors [21–24].

For two-dimensional (2D) systems, too, it is highly de-
sirable to develop a method converting Gutzwiller-projected
wave functions into projected entangled pair states (PEPSs)
[25]. Similar to the benefits of the DMRG, Gutzwiller wave
functions can serve as good initial inputs in PEPS-based
variational methods [26–30]. For concrete Hamiltonians, the
comparison of Gutzwiller wave functions with brute-force
PEPS numerical results would also become possible. Further-
more, for 2D systems, the PEPS representation of Gutzwiller
wave functions has two advantages over its MPS counterpart:
(i) Infinite-size PEPS algorithms [31–35] work directly in
the thermodynamic limit, whereas the MPS approach using
a cylindrical boundary condition suffers from finite-size ef-
fects. (ii) For topological systems, the local tensor of PEPS
usually exhibits a symmetry [36–39], which can be used to
characterize topological properties.

In this work, we develop a systematic approach to con-
vert Gutzwiller-projected Fermi sea states into PEPSs. It is
based on a specification of the Gaussian fermionic PEPS
(GfPEPS) formalism [40] to a particle-number-conserving
setting [referred to as U(1)-GfPEPS hereafter]. We show
that the U(1)-GfPEPS can describe band insulators whose
filled valence bands and empty conduction bands are sepa-
rated by a gap, as well as semimetals with band touching
points (e.g., Dirac points) between valence and conduction
bands. The case of an open Fermi surface is beyond the
scope of U(1)-GfPEPS. Furthermore, we develop a variational
algorithm that starts with a particle-number-conserving free
fermionic Hamiltonian and approximates its ground state with
U(1)-GfPEPS. This complements previous works focusing on
analytical constructions [41–46] and a related numerical work
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FIG. 1. (a) Schematic of a U(1)-GfPEPS projector |Tr〉 together
with the maximally entangled virtual bonds between neighboring
sites. (b) The resulting fermionic PEPS on a square lattice by tiling
the local tensors together.

which does not impose particle-number conservation [47]. For
two Dirac fermion systems (the π -flux model on the square
lattice and the [0, π ]-flux model on the kagome lattice),
the benchmark calculations with U(1)-GfPEPS accurately re-
produce the filled band dispersions with a relatively small
bond dimension. The application of additional Gutzwiller pro-
jectors to these U(1)-GfPEPSs provides PEPS Ansätze for
U(1)-Dirac spin liquids. From these we calculate their spin-
spin correlation functions with state-of-the-art tensor network
algorithms and obtain a critical exponent η ≈ 1.7 for the
Gutzwiller-projected π -flux state.

The rest of this paper is organized as follows. In Sec. II
we describe our methods, including the construction of U(1)-
GfPEPS and its correlation matrix formalism, the variational
optimization algorithm for U(1)-GfPEPS, the implementation
of Gutzwiller projection, and the contraction method for com-
puting physical quantities. In Sec. III, we apply these methods
to two benchmark examples, i.e., the π -flux model on the
square lattice and the [0, π ]-flux model on the kagome lattice.
The U(1)-Dirac spin liquid states obtained after Gutzwiller
projection are also studied. Section IV provides a summary
and gives some outlook. Appendix A includes technical
details on particle-number-conserving fermionic Gaussian
states. Appendix B describes some benchmark results for a
two-point function for the π -flux state on the square lattice.

II. METHODS

A. U(1)-symmetric Gaussian fermionic projected entangled
paired state

We use the square lattice to illustrate the construction
of U(1)-GfPEPS; the extension to other lattices is straight-
forward. Each site of the lattice hosts P physical fermionic
modes, with creation operators c†

r,μ (μ = 1, . . . , P), as well
as 4M virtual fermionic modes, with creation operators c†

r,ν,α
(ν = l, r, d, u and α = 1, . . . , M), where l, r, d , and u denote
left, right, down, and up, respectively.

To define a U(1)-GfPEPS (see Fig. 1), virtual fermions
between every two neighboring sites form M maximally en-
tangled bonds,

|I〉 =
∏

r

M∏
α=1

(c†
r,r,α + c†

r+x,l,α )(c†
r,u,α + c†

r+y,d,α
)|0〉v, (1)

where, for an L × L lattice with periodic or antiperiodic
boundary conditions, virtual fermions have a fixed particle
number Nv = 2ML2. |0〉v is the vacuum of virtual fermions.
A fermionic PEPS is defined by |�〉 = 〈I|T 〉 [40,44], where
|T 〉 is the PEPS projector,

|T 〉 =
∏

r

Tr|0〉p,v. (2)

Here |0〉p,v is the shared vacuum of physical and virtual
fermions, and Tr creates a local state of physical and virtual
fermions at site r. To illustrate the construction, we shall focus
on the translationally invariant case and consider the same Tr
for all sites [48]. The PEPS is hence fully characterized by the
local state Tr|0〉p,v. Generally, Tr is parametrized as

T =
∑

{mμ},{nν,α}
T {mμ}

{nν,α}

×
⎡
⎣ P∏

μ=1

(c†
μ)mμ

⎤
⎦

⎡
⎣ ∏

ν=l,r,d,u

M∏
α=1

(c†
ν,α )nν,α

⎤
⎦, (3)

where, here and in the following, the site index r is dropped
when we refer to a local site. mμ (nν,α) is understood as the
collection of occupation numbers of physical (virtual) modes.
The conserved fermion parity of |�〉, known as the “fermion
superselection rule,” is imposed by requiring that T {mμ}

{nν,α} van-
ishes if

∑
μ mμ + ∑

ν,α nν,α is odd (or even).
To describe the ground state of fermionic systems with a

fixed particle number, the Z2 parity conservation of the local
tensor T should be promoted to the U(1) particle-number
conservation by imposing that T {mμ}

{nν,α} is nonvanishing if and
only if

∑
μ mμ + ∑

ν,α nν,α = Q, where Q is the total number
of physical and virtual fermions at a single site. We hence-
forth restrict ourselves to free fermionic systems (i.e., ones
described by quadratic fermionic Hamiltonians) and require
the PEPS projector in Eq. (2) to be a fermionic Gaussian state
[40]. Thus, for PEPS describing free fermionic ground states
with a fixed particle number, the PEPS projector reduces to a
local Slater determinant created by

T =
Q∏

q=1

d†
q , (4)

where the orbitals d†
q are linear combinations of physical

modes c†
r,μ and virtual modes c†

r,ν,α at the same site. The
explicit form of d†

q will be specified in Sec. II B. For the
U(1)-GfPEPS defined as |�〉 = 〈I|T 〉, the number of physi-
cal fermions that remain after contracting the virtual modes
is Np = QL2 − Nv = (Q − 2M )L2. For a system of spin-1/2
fermions, the half-filling condition Np = L2 is achieved by
choosing Q = 2M + 1.

B. Correlation matrix formulation

As for fermionic Gaussian states, the virtual bond state |I〉
and PEPS projector |T 〉 are characterized by their correlation
matrices [49,50]. This provides an efficient computational
tool for U(1)-GfPEPS. Below we provide key results that
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are relevant for U(1)-GfPEPS and leave further details to
Appendix A.

Because of translational invariance, we switch to momen-
tum space with c†

r,μ = 1
L

∑
k c†

k,μe−ik·r for physical modes
(μ is replaced by ν, α for virtual modes). k = (kx, ky) is
a point in the first Brillouin zone (FBZ), and its allowed
values depend on boundary conditions. For instance, antiperi-
odic and periodic boundary conditions along the x direction
allow kx = 2π

L (nx + 1/2) and kx = 2π
L nx, respectively, with

nx = 0, 1, . . . , L − 1.
For the virtual bond state |I〉, we write its density operator

as ρin = |I〉 〈I| [input of U(1)-GfPEPS] and define its correla-
tion matrix as

[Cin(k)](ν,α),(ν ′,α′ ) = 2trv(ρinc†
k,ν,αck,ν ′,α′ ) − δν,ν ′δα,α′ , (5)

where the trace trv is with respect to virtual modes. Such a
correlation matrix is called a complex correlation matrix in
Appendix A. To calculate this correlation matrix, one may
express |I〉 in momentum space as

|I〉 =
∏

k

M∏
α=1

(c†
k,r,α + c†

k,l,αe−ikx )(c†
k,u,α

+ c†
k,d,α

e−iky )|0〉v.

(6)

The explicit form of the 4M × 4M correlation matrix Cin(k) is
then obtained as

Cin(k) =
(

0 eikx1M

e−ikx1M 0

)
⊕

(
0 eiky1M

e−iky1M 0

)
, (7)

where 1M is an M × M identity matrix.
As the PEPS projector |T 〉 assumes a translationally invari-

ant on-site form [see Eq. (2)], its correlation matrix is block
diagonal in both real and momentum space, and all blocks are
the same. Thus, it is sufficient to parametrize this block by
considering a single site r (or momentum k):

CT =
(

A B
B† D

)
. (8)

The submatrices encode two-point correlators between two
physical modes (P × P matrix A), two virtual modes (4M ×
4M matrix D), and one physical mode and one virtual mode
(P × 4M matrix B):

Aμ,μ′ = 2trp,v(ρTc†
r,μcr,μ′ ) − δμ,μ′ ,

D(ν,α),(ν ′,α′ ) = 2trp,v(ρTc†
r,ν,αcr,ν ′,α′ ) − δν,ν ′δα,α′ ,

Bμ,(ν ′,α′ ) = 2trp,v(ρTc†
r,μcr,ν ′,α′ ), (9)

where ρT is the Gaussian density operator for |T 〉 and trp,v is
with respect to both physical and virtual modes. It is transpar-
ent that Eq. (9) has the same form in momentum space (i.e., r
is replaced by k). Further important information utilizing the
results in Appendix A is as follows: As |T 〉 is a pure state, CT

is Hermitian and can be diagonalized as

U †CTU =
(
1Q 0
0 −1P+4M−Q

)
, (10)

where the identity block 1Q corresponds to occupied single-
particle orbitals d†

q [see Eq. (4)]. Their explicit form is given

by

d†
q =

P∑
μ=1

U †
q,μc†

μ +
∑

ν=l,r,d,u

M∑
α=1

U †
q,(ν,α)c

†
ν,α, (11)

with q = 1, . . . , Q.
For the U(1)-GfPEPS |�〉 = 〈I|T 〉, its Gaussian density

operator ρout is obtained from ρout ∝ trv(ρTρin ) as the output.
The correlation matrix of ρout is block diagonal in momentum
space and can be defined as

[Cout (k)]μ,μ′ = 2trp(ρoutc
†
k,μck,μ′ ) − δμ,μ′ . (12)

It is related to Cin(k) and CT via

Cout (k) = A − B[D + Cin(k)]−1B†, (13)

as shown in Appendix A. This expression is the main formal
result of this paper. Note that this equation can also be de-
rived by using a Majorana fermion formulation with proper
symmetry constraints, as shown in Ref. [41].

Before moving on to numerical optimization, we comment
on which systems the U(1)-GfPEPS Ansatz is suitable for.
Equation (6) shows that each k point in the FBZ accom-
modates 2M virtual modes. These virtual modes should be
contracted with virtual modes in the U(1)-GfPEPS projector
|T 〉, where the latter has Q physical and virtual modes at each
k point. Thus, after contracting the virtual modes, the U(1)-
GfPEPS has Q − 2M physical modes for each k point. This
means that, for U(1)-GfPEPSs, the number of occupied phys-
ical modes must be the same at each k point. While gapped
band insulators and gapless semimetals (e.g., those with Dirac
points) fulfill this requirement, the possibility of describing a
Fermi surface is ruled out. Although gapless fermions with a
Fermi surface are known to violate the entanglement area law
[51,52] and cannot be described by PEPS with a fixed bond
dimension in the thermodynamic limit, our explicit construc-
tion nevertheless puts a stronger constraint on U(1)-GfPEPS:
If translational symmetry is preserved, U(1)-GfPEPS cannot
have a Fermi surface even on finite-size systems.

C. Optimization

Consider a quadratic Hamiltonian of fermions

H =
∑

k

P∑
μ,μ′=1

c†
k,μ[H(k)]μ,μ′ck,μ′ , (14)

where H(k) is the single-particle Hamiltonian matrix. We use
the U(1)-GfPEPS as a variational Ansatz to approximate its
ground state. We note that the U(1)-GfPEPS has Q − 2M oc-
cupied physical modes at each k point, so it will approximate
the Fermi sea ground state of Eq. (14) with Q − 2M occupied
bands, implying a filling factor (Q − 2M )/P. The variational
energy of the U(1)-GfPEPS with correlation matrix Cout [see
Eq. (12)] is given by

E = 1

2

∑
k

Tr{[Cout (k) + 1P]H(k)T }, (15)

where Tr is the usual matrix trace. The variational space is
the correlation matrix CT for the U(1)-GfPEPS projector (8),
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which relates to Cout (k) via Eq. (13) [Cin(k) is fixed; see
Eq. (7)].

For the energy minimization, we observe that the unitary
matrix U in Eq. (10) can be parameterized as U = (W,W⊥),
with W corresponding to the occupied modes and W⊥, the or-
thogonal complement of W , corresponding to the unoccupied
ones. By that, we can express CT in terms of W ,

CT = WW † − W⊥W †
⊥ = 2WW † − 1P+4M . (16)

Combining Eqs. (8), (13), and (15), our task boils down to nu-
merically optimizing W to minimize the ground-state energy
in Eq. (15) under the isometry constraint W †W = 1Q.

We obtain the optimal W by gradient-based optimization
schemes developed in Refs. [53–57]. First, we compute the
numerical gradient g∗ = ∂E

∂W , which can be evaluated by finite
difference or autodifferentiation. The gradients with respect
to the unoccupied modes are always zero as they do not
participate in the energetics.

Second, we project g onto the tangent space of U =
(W,W⊥), which yields

G = (g − W g†W,−W g†W⊥). (17)

Note that the equation defining tangent vectors 
 of U can
be obtained by differentiating UU † = 1, which gives 
U † +
U
† = 0 (i.e., 
U † is skew symmetric), and we can verify
that G indeed satisfies such a constraint.

Next, we minimize the energy along the geodesic defined
by G, i.e., E (α), with W (α) = e−αQGW , where

QG = GU † = gW † − W g†. (18)

The isometry W is then updated according to the optimal
value of α via the Wolfe line search [58]. This procedure is
repeated until the norm of the gradient is sufficiently small. To
accelerate the convergence of such gradient descent minimiza-
tion, one can modify the line search direction by combining
the current gradient with the previous ones; commonly used
methods include the nonlinear conjugate gradient [53,55],
the limited-memory Broyden-Fletcher-Goldfarb-Shanno [57],
and the direct inversion in the iterative subspace [59]. To
reduce the numerical noise, one can antisymmetrize QG man-
ually at the end, after adding up the gradients. All methods
improve the convergence rate compared to gradient descent.
In this work, we adopt the nonlinear conjugate gradient al-
gorithm, and to reduce the numerical noise, we manually
antisymmetrize QG at the end, after adding up the gradients.

Once the optimal CT and Cout have been obtained, it is also
possible to compare the exact band dispersions obtained by
diagonalizing H(k) with the variational ones obtained from
U(1)-GfPEPS. One can diagonalize Cout (k) to obtain

V (k)†Cout (k)V (k) =
(
1Q−2M 0

0 −1P−Q+2M

)
. (19)

Then, the occupied physical orbitals are given by f †
k,q =∑P

μ=1 V (k)†
q,μc†

k,μ, with q = 1, . . . , Q − 2M. The single-
particle Hamiltonian H(k) is then projected into this one-
particle-occupied subspace by defining

[H(k)]q,q′ = [V (k)†H(k)V (k)]q,q′ , (20)

FIG. 2. Schematics of (a) converting the MPS form of Tr to a
PEPS local tensor and (b) contracting Tr with entangled bond states
(in oval shapes) to obtain a PEPS represented by a single local tensor.

with q, q′ = 1, . . . , Q − 2M. Its eigenvalues give the varia-
tional dispersions for the filled bands.

D. Gutzwiller projection and tensor network contraction

The Gutzwiller projection is implemented by a product of
local operators. For simplicity, we illustrate its implemen-
tation for spin-1/2 fermions at each site (P = 2). The full
Gutzwiller projection is defined by PG = ∏

r(nr,↑ − nr,↓)2,
with nr,μ = c†

r,μcr,μ (μ =↑,↓). PG deletes empty and doubly
occupied states and keeps two singly occupied states |μ〉 =
c†
μ|0〉 that are identified as spin-1/2 degrees of freedom.

Once the U(1)-GfPEPS projector
∏

r Tr|0〉p,v is obtained,
the Gutzwiller projection results in a (fermionic) PEPS with
projector

∏
r(nr,↑ − nr,↓)2Tr|0〉p,v, and the virtual bond state

|I〉 is unchanged. Utilizing this idea, it becomes possi-
ble to convert a Gutzwiller-projected Fermi sea state into
PEPS, where the unprojected Fermi sea is approximated
by optimizing U(1)-GfPEPS with respect to some quadratic
Hamiltonians of fermions.

The remaining task is to derive the explicit tensor form of
the U(1)-GfPEPS projector. If we write the occupied orbitals
in Eq. (11) in the more compact form d†

q = ∑P+4M
ζ=1 U ∗

q,ζ c†
ζ ,

with ζ enumerating all physical and virtual modes, the U(1)-
GfPEPS local projector in Eq. (4) can be expressed in a Slater
determinant form,

T =
∑

ζ1<···<ζQ

det(U †
(1,...,Q),(ζ1,...,ζQ ) )c

†
ζ1

· · · c†
ζQ

, (21)

where local tensor coefficients [see Eq. (3)] can be read out
from the determinants. Gutzwiller projection simply removes
some configurations in Eq. (21). Other local operators can be
applied in a similar way.

Alternatively, one can also construct the U(1)-GfPEPS
projector via the MPO-MPS approach [11]. This is most
convenient when working with tensor network libraries
supporting U(1) or non-Abelian symmetries. For the local
projector T |0〉p,v = ∏Q

q=1 d†
q |0〉p,v, the vacuum |0〉p,v is

treated as an MPS with bond dimension D = 1. Each occupied
orbital d†

q is then represented as an matrix product operator
(MPO) with bond dimension D = 2 (see Refs. [11,22]). After
applying all Q MPOs for occupied orbitals, T |0〉p,v is repre-
sented as an MPS with bond dimension D = 2Q. The local
tensor in Eq. (3) is obtained by contracting all virtual indices
of this MPS [see Fig. 2(a)]. The advantage of the MPO-MPS
approach is that the tensor entries of T |0〉p,v as well as the
corresponding symmetry structure, including the quantum
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FIG. 3. Schematics of (a) the π -flux model on the square lattice
and (b) the [0, π ]-flux model on the kagome lattice. The solid (red
dashed) lines are the bonds with hopping t = 1 (t = −1). (c) The first
Brillouin zone (in green) of the effective square lattices for (a) and
(b) with � = (0, 0), X = (π, 0), and M = (π, π ). The black dots
denote two Dirac nodes at (π,±π/2) for the π -flux model, and the
black stars denote Dirac nodes at (π/2, −3π/2) and (π/2, π/2) for
the [0, π ]-flux model along the k1 and k2 directions, respectively.

numbers of the symmetric tensors and the corresponding
Clebsch-Gordan coefficients, can be automatically generated.

After the Gutzwiller projection, it is practical to contract
the virtual bonds in Eq. (1) into the PEPS local tensors [see
Fig. 2(b)]. As the optimization of U(1)-GfPEPS is very effi-
cient and the system size that can be reached is quite large, we
can tile up the resulting Gutzwiller-projected U(1)-GfPEPS
tensor to approximate the state on an infinite lattice. Such
an infinite PEPS involves a single tensor at each site and is
ready to compute physical quantities with fermionic tensor
network contraction algorithms [60]. For this work, we adopt
the corner transfer matrix renormalization group (CTMRG)
method [31,33] to perform tensor network contractions. To
achieve higher accuracy and reduce the computational cost
in CTMRG calculations, we impose both the U(1) particle
number and the SU(2) spin symmetry provided by the QSpace
library [61,62].

III. RESULTS

A. Dirac fermion models on square and kagome lattices

As benchmark examples, we use U(1)-GfPEPS to approx-
imate the Fermi sea ground states of two spinless fermion
models with a Dirac spectrum: the π -flux model on the square
lattice [63] and the [0, π ]-flux model on the kagome lattice
[64,65]. Both models have nearest-neighbor hoppings with the
Hamiltonian

H =
∑
〈r,r′〉

tr,r′c†
rcr′ , (22)

where the square-lattice model has π flux within each plaque-
tte and the kagome model has zero flux through each triangle
and π flux through each hexagon. The hoppings realizing
these flux choices are depicted in Figs. 3(a) and 3(b).

The π -flux square-lattice ([0, π ]-flux kagome) model has
a two-site (six-site) unit cell. We group all sites in the same
unit cell together and treat them as a single site in an ef-
fective square lattice. This allows us to use a translationally
invariant U(1)-GfPEPS ansatz with P = 2 (P = 6) for the π -
flux square-lattice ([0, π ]-flux kagome) model. At half filling,
both models have two Dirac nodes in the FBZ, as shown in
Fig. 3(c). For the numerical optimization, the effective square

1 2 3 4
10-4

10-2

100

16
48
80

X M
-3

-2

-1

0

1

2

3

-0.4
-0.2

0

FIG. 4. Results of optimized U(1)-GfPEPS for the π -flux state
on the square lattice. (a) Relative error in energy of U(1)-GfPEPS
versus the number of virtual modes M. (b) Plots of the exact band
structure (solid lines) and the variationally obtained occupied band
at half filling (dashed lines).

lattice has size L × L, and the boundary condition (periodic or
antiperiodic) is adjusted such that exact zero-energy modes at
the Dirac nodes are avoided to ensure a unique ground state.
The optimal U(1)-GfPEPS is determined numerically for each
fixed number of virtual modes M, when the averaged norm of
its energy gradient with respect to the Hamiltonian in Eq. (22)
is smaller than 10−6.

For the π -flux square-lattice model, we observe that the
relative error in the ground-state energy density δE decreases
exponentially with an increasing number of virtual modes M
[see Fig. 4(a)]. Furthermore, the finite-size effect in the energy
density error appears to be small. As shown in Fig. 4(b), the
U(1)-GfPEPS with M = 2 (bond dimension D = 4), which is
variationally optimized on an 80 × 80 lattice, reproduces the
band dispersion in the thermodynamic limit very well.

For the [0, π ]-flux kagome model, the relative error of
the ground-state energy density δE in Fig. 5(a) follows the
same trend as that of the π -flux square-lattice model. At half
filling, the low-energy physics is dictated by two Dirac nodes
[Fig. 5(b)]. The band dispersions along the k1 and k2 directions
(cutting two Dirac nodes) are plotted in Figs. 5(b) and 5(c).
With that, we examine the results due to the U(1)-GfPEPS

1 2 3 4
10-4

10-2

100

8
24
40

FIG. 5. Results of optimized U(1)-GfPEPS for the [0, π ]-flux
model on the kagome lattice. (a) Relative error in energy of U(1)-
GfPEPS versus the number of virtual modes M. (b) and (c) Plots of
the exact band structure (solid lines) and the variationally obtained
lower occupied bands (dashed lines) as a function of k1 and k2.
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approximation at small M. We again find good agreement
between the variational results with M = 2 and the exact
solution in the thermodynamic limit.

B. U(1)-Dirac spin liquids on square and kagome lattices

The optimized U(1)-GfPEPS for Dirac Fermi sea states in
Sec. III A are then used to build PEPSs representing U(1)-
Dirac spin liquids. To this end, we attach a spin index σ =↑
,↓ to the physical modes in Eq. (22) and interpret them as
fermionic partons for a spin-1/2 system. The spin-1/2 oper-
ators are written as S(r) = 1

2

∑
σσ ′ c†

rσ τσσ ′crσ ′ , where τ are
Pauli matrices. The single-occupancy constraint

∑
σ c†

rσ crσ =
1 ensures the physical spin-1/2 Hilbert space and is imposed
by the full Gutzwiller projection.

Starting from a U(1)-GfPEPS |�〉 for spinless fermions,
we just need two copies of it (with different spins) and apply
the Gutzwiller projection to obtain a PEPS for a spin-1/2 sys-
tem, i.e., |�〉 = PG |�↑〉 ⊗ |�↓〉. For |�〉 with virtual bonds
and projector defined in Eqs. (1) and (4), |�↑〉 ⊗ |�↓〉 is
obtained by attaching a spin index σ to both virtual and phys-
ical modes, e.g., the projector with T = ∏Q

q=1

∏
σ=↑,↓ d†

q,σ

(with similar notation for the virtual bonds). If |�〉 has bond
dimension D = 2M , the Gutzwiller-projected PEPS |�〉 has
bond dimension D = 4M . The method for determining the
local tensor of |�〉 is described in Sec. II D.

As the U(1)-GfPEPSs obtained in Sec. III A represent
Dirac Fermi sea states, it is possible to obtain U(1)-Dirac
spin liquids after the Gutzwiller projection [65,66]. The field
theory governing the large-distance behavior of U(1)-Dirac
spin liquids is quantum electrodynamics in 2+1 dimensions
(QED3), with Nf -flavor Dirac fermions coupled to a U(1)
gauge field. The calculation of critical exponents in QED3 is,
however, very challenging, especially when the fermion flavor
Nf is not large [67]. As our setups in Sec. III A have two
Dirac nodes, the Gutzwiller-projected U(1)-GfPEPSs should
be relevant to QED3 with Nf = 4. It is thus an interesting task
to compute their critical exponents with PEPS techniques in
the thermodynamic limit.

We focus in this work on the staggered spin-spin corre-
lation function C(r) = (−1)r 〈S(0) · S(r)〉, where two spins,
with distance r = |r|, are placed in the same row of the ef-
fective square lattice. Due to the large computational cost, we
have performed only calculations using Gutzwiller-projected
U(1)-GfPEPSs with D = 4 and 16 (M = 1 and 2). For a given
D, we compute the environment of PEPS via the CTMRG
method with a fixed number of symmetry multiplets χ∗,
which roughly corresponds to a typical bond dimension of
χ = 2χ∗ if symmetries are not used. The CTMRG envi-
ronment constitutes the bulk of the infinite lattice, and its
accuracy can be examined by varying χ∗.

For the PEPS representing the Gutzwiller-projected π -
flux state, the results are plotted in Figs. 6(a) and 6(b). For
D = 4, C(r) has a fast exponential decay, which is almost
unchanged when varying χ∗. However, such exponential de-
cay gets slowed down as we increase the bond dimension
to D = 16. We also observe an increase of the correlation
length ξR at large distances [C(r) ∼ e−r/ξR ] by increasing χ∗.
Overall, our results suggest that the spin gap imposed by the
finite bond dimensions (D and χ∗) can be further reduced.

10 20 30 40

3
3.1
3.2
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10-8
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10-4

102

100
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100
200
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1 2 4 8 16
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FIG. 6. Staggered spin correlations for Gutzwiller-projected
U(1)-GfPEPS from the π -flux state on the square lattice. Semilog-
arithmic plots for (a) D = 4 and (b) D = 16 with different
environmental bond dimensions χ∗. (c) Log-log plots with χ∗ =
400; the blue solid line shows a power law decay with an exponent
η = 1.7.

However, at this stage, we cannot predict to which value
of D one may achieve an algebraic decay at large distance.
Turning to the short-distance regime [Fig. 6(c)], we observe
a buildup of a power law decay C(r) ∼ r−η with exponent
η ≈ 1.7. This is in rough agreement with previous Monte
Carlo estimates (η ≈ 1.6 [68] and η ≈ 2 [69]) on finite-size
clusters but is smaller than the extrapolation of the large-Nf

result η = 4 − 64/(3π2Nf ) + O(1/N2
f ) [70] to Nf = 4, which

gives η ≈ 3.46.
For the kagome-lattice case, the calculation with the

Gutzwiller-projected U(1)-GfPEPS is very challenging since
the physical index of each PEPS local tensor contains six 1/2
spins (physical dimension d = 32). This makes it difficult
to contract double-layer tensors in CTMRG. Therefore, for
D = 16, we report only results with small environmental bond
dimensions χ∗ = 20 and 40. Nevertheless, in Fig. 7(a), one
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100

1 2 4 8 16
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10-4
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100
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16

FIG. 7. Staggered spin correlations for Gutzwiller-projected
U(1)-GfPEPS from the [0, π ]-flux state on the kagome lattice.
(a) Semilogarithmic plots for D = 4 and D = 16 with different en-
vironmental bond dimensions χ∗. (b) Log-log plots with the largest
possible χ∗. The blue solid line showing the power law decay with
exponent η = 1.7 is a guide to the eye.
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can still observe an increase in the correlation length when
going from D = 4 to 16. This entails a rather severe finite
D effect, similar to the square-lattice case. From the plot in
log-log scale [Fig. 7(b)], we see a quick deviation from the
power law behavior. Thus, for the Gutzwiller-projected [0, π ]-
flux state, reliable conclusions cannot be made from these
results. This issue, instead, should be further investigated with
even larger bond dimensions, which is beyond our current
computational capability.

IV. SUMMARY AND OUTLOOK

To summarize, we have put forward a formalism for
constructing particle-number-conserving Gaussian fermionic
projected entangled pair states. These states are suitable for
describing the ground states of gapped band insulators and
gapless fermions with band touching points but incapable of
describing gapless fermions with a Fermi surface. We further
developed a systematic method using these states as varia-
tional Ansätze for approximating the Fermi sea ground states
of free fermionic Hamiltonians. Benchmark calculations on
the π -flux square-lattice model and the [0, π ]-flux kagome-
lattice model showed excellent results. The implementation of
additional Gutzwiller projection on top of these variationally
obtained U(1)-GfPEPSs provides the PEPS representation of
U(1)-Dirac spin liquid states for spin-1/2 systems. Using the
CTMRG method to calculate spin-spin correlation functions
in the thermodynamic limit, we have obtained the critical ex-
ponent η ≈ 1.7 from the Gutzwiller-projected U(1)-GfPEPS
representing the π -flux U(1)-Dirac spin liquid state on the
square lattice.

Computationally, the optimization of the U(1)-GfPEPS
using the correlation matrix is efficient, as the number of pa-
rameters scales linearly with respect to the number of virtual
modes M. The size of the real-space PEPS tensor, on the other
hand, grows exponentially with increasing M. This turns out
to be the bottleneck for constructing the Gutzwiller-projected
U(1)-GfPEPS with larger bond dimensions.

For future works, one interesting direction is to use our
method to test the quality of Gutzwiller-projected wave func-
tions for challenging strongly correlated systems, such as the
kagome Heisenberg antiferromagnet and the t-J model. It is
also a promising direction to use them as initial Ansätze to
improve the performance of PEPS variational algorithms.
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APPENDIX A: PARTICLE-NUMBER-CONSERVING
FERMIONIC GAUSSIAN STATES

In this Appendix, we provide further details on particle-
number-conserving fermionic Gaussian states. The proof of
Eq. (13) is also given.

To begin with, we briefly review the formalism of
fermionic Gaussian states [50]. Consider a system of n
fermionic modes with creation (annihilation) operators c†

j (c j),
j = 1, . . . , n. Their linear combinations

γ2 j−1 = c†
j + c j, γ2 j = (−i)(c†

j − c j ) (A1)

define 2n Majorana operators satisfying {γa, γb} = 2δab

(a, b = 1, . . . , 2n). The density operator ρ for both pure and
mixed states can be written as a polynomial in γa:

ρ = 1

2n

(
1 + i

2
γ T Gγ + · · ·

)
, (A2)

where γ = (γ1, γ2, . . . , γ2n)T , 1 is the identity operator in the
2n-dimensional Hilbert space, and the ellipsis stands for terms
with more than two (but an even number of) Majorana oper-
ators. The real skew-symmetric matrix G encodes two-point
correlators in ρ, i.e., Gab = i

2 tr(ρ[γa, γb]). This so-called cor-
relation matrix G satisfies GT G � 12n, with 12n being the
2n × 2n identity matrix, and GT G = 12n is achieved if and
only if ρ describes a pure state. An operational definition
of the fermionic Gaussian state is through the Grassmann
representation of ρ in Eq. (A2): If one replaces each γa by
its corresponding Grassmann variable θa (and the identity op-
erator 1 by 1), the Grassmann representation for a fermionic
Gaussian state ρ, denoted by ω(ρ, θ ), takes the following
Gaussian form:

ω(ρ, θ ) = 1

2n
exp

(
i

2
θT Gθ

)
, (A3)

where θ = (θ1, θ2, . . . , θ2n)T . The expansion of the exponen-
tial in Eq. (A3) gives all multipoint correlators in ρ, which are
just coefficients of the respective Grassmann monomials and
can be easily verified to be determined by Wick’s theorem.

For our purpose, we would like to restrict ourselves to
fermionic Gaussian states with a fixed particle number. That
means that the density operator ρ in Eq. (A2), apart from
being Gaussian, should also commute with the total fermion
number operator

N =
n∑

j=1

c†
j c j = n

2
1 − i

2
γ T Qγ , (A4)

with Q = 1n ⊗ iσ y. For [ρ, N] = 0 to hold, the correlation
matrix G must take the following form:

G = G1 ⊗ 12 + G2 ⊗ iσ y, (A5)

where the n × n matrix G1 (G2) is real and skew symmetric
(symmetric). This structure can also be seen by requiring
that there are no pairing correlations in ρ, i.e., tr(ρc†

i c†
j ) =

tr(ρcic j ) = 0 ∀ i, j. It is then more natural to use an n × n
“complex” correlation matrix

Ci j ≡ 2tr(ρc†
i c j ) − δi j, (A6)
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which relates to the “real” one in Eq. (A5) via C = −G2 −
iG1. The complex correlation matrix C is Hermitian and has
eigenvalues λq ∈ [−1, 1] ∀ q = 1, . . . , n. If all λq = ±1, ρ

is a pure state, and the complex correlation matrix satisfies
C−1 = C. The diagonalization of C with a unitary matrix U
via (U †CU )qq′ = λqδqq′ defines the eigenmodes of ρ:

d†
q =

n∑
j=1

U †
q jc

†
j . (A7)

This brings ρ into a simple form:

ρ =
n∏

q=1

(
1 + λq

2
d†

q dq + 1 − λq

2
dqd†

q

)
, (A8)

where d†
q dq (dqd†

q ) is a projector onto an occupied (empty)
state of the dq mode. Thus, the eigenmodes d†

q associated with
λq = 1 (−1) correspond to occupied (empty) single-particle
orbitals in ρ. For a pure state ρ, the number of eigenvalues
with λq = 1 is equal to the total number of occupied fermions.

The Grassmann representation is a convenient tool for
fermionic Gaussian states [50]. To adjust this tool for the
particle-number-conserving case, we define n pairs of com-
plex Grassmann variables

ξ̄ j = 1√
2

(θ2 j−1 − iθ2 j ), ξ j = 1√
2

(θ2 j−1 + iθ2 j ), (A9)

with j = 1, . . . , n. After substituting them into Eq. (A3) and
using the relation between real and complex correlation matri-
ces [Eqs. (A5) and (A6)], we arrive at the following complex
Grassmann representation of ρ:

ω(ρ, ξ̄ , ξ ) = 1

2n
exp(−ξ̄T Cξ ), (A10)

where ξ = (ξ1, ξ2, . . . , ξn)T and ξ̄ is similarly defined.
To construct GfPEPSs, one needs to deal with both physi-

cal and virtual fermionic modes. Let us consider n physical
and m virtual modes whose creation operators are c†

j ( j =
1, . . . , n) and b†

l (l = 1, . . . , m), respectively. The input is a
Gaussian density operator ρin residing solely in the virtual
Hilbert space. The GfPEPS projector, formulated as another
Gaussian density operator ρT, lives in the composite Hilbert
space of physical and virtual modes. The Gaussian density
operator of GfPEPS is written as

ρout ∝ trv(ρTρin ), (A11)

where the partial trace trv is with respect to the virtual Hilbert
space. Reference [71] showed that the correlation matrix of
ρout can be calculated by using the Grassmann representation
of trv(ρTρin ). We can readily generalize this approach to the
particle-number-conserving setting by converting real Grass-
mann variables to complex ones [see Eq. (A9)] and obtain

trv(ρTρin )(ξ̄ , ξ ) = 2m
∫

Dη̄DηDμ̄Dμ eη̄T μ−μ̄T η

× ω(ρT, ξ̄ , ξ , η̄, η)ω(ρin, μ̄, μ), (A12)

where ξ̄ , ξ (η̄, η, μ̄, μ) are Grassmann variables for physi-
cal (virtual) modes and Dη̄Dη = d η̄1dη1 · · · d η̄mdηm (with
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FIG. 8. Two-point function C(r) of the U(1)-GfPEPS with M =
1–4 for the π -flux state on the square lattice. The correlation is
measured along the x direction. Inset: Log-log plot of |C(r)|.

similar notation for Dμ̄Dμ). By using the Grassmann repre-
sentation of ρT and ρin, namely,

ω(ρT, ξ̄ , ξ , η̄, η) = 1

2n+m
exp

[
−(ξ̄T η̄T )

(
A B
B† D

)(
ξ

η

)]
,

ω(ρin, μ̄, μ) = 1

2m
exp(−μ̄T Cinμ),

and performing Gaussian integrations in Eq. (A12), we obtain

trv(ρTρin )(ξ̄ , ξ ) = 1

2n+m
det(Cin ) det

(
D + C−1

in

)
× exp(−ξ̄T Coutξ ), (A13)

where the correlation matrix of ρout reads

Cout = A − B
(
D + C−1

in

)−1
B†. (A14)

For U(1)-GfPEPSs, ρin is a pure state and satisfies C−1
in = Cin.

This completes the proof of Eq. (13).

APPENDIX B: TWO-POINT FUNCTION OF U(1)-GfPEPS

Here we consider the two-point function C(r) = 〈C†
r C0〉

of the U(1)-GfPEPS approximating the π -flux state on the
square lattice. In Fig. 8, we plot C(r) along the x direction
to compare it with the exact results in the thermodynamic
limit. For short distances (r < 8), the increase in M improves
the accuracy systematically. The power law behavior (see
inset in Fig. 8) can be recovered at M = 3 and 4. On the
other hand, the U(1)-GfPEPS shows less control over the
long-distance behavior. This limitation, as expected, carries
over to the Gutzwiller-projected cases and restricts our abil-
ity to probe the long-distance physics in the thermodynamic
limit. In a sense, while PEPSs (in contrast to variational
Monte Carlo) are not confined to the study of finite-size
clusters, one still needs to be aware of the finite bond di-
mension effect, as well as its consequence on the induced
correlation length. Nevertheless, our results complement the
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state-of-the-art Monte Carlo analysis, and the consistency
between different approaches in the short distance consti-

tutes an important step towards understanding U(1)-Dirac
spin liquids.

[1] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[2] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).
[3] P. W. Anderson, Science 235, 1196 (1987).
[4] F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).
[5] B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
[6] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[7] C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36, 381 (1987).
[8] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490

(1987).
[9] C. Gros, Ann. Phys. (NY) 189, 53 (1989).

[10] M. T. Fishman and S. R. White, Phys. Rev. B 92, 075132
(2015).

[11] Y.-H. Wu, L. Wang, and H.-H. Tu, Phys. Rev. Lett. 124, 246401
(2020).

[12] H.-K. Jin, H.-H. Tu, and Y. Zhou, Phys. Rev. B 101, 165135
(2020).

[13] A. M. Aghaei, B. Bauer, K. Shtengel, and R. V. Mishmash,
arXiv:2009.12435.

[14] G. Petrica, B.-X. Zheng, G. K.-L. Chan, and B. K. Clark, Phys.
Rev. B 103, 125161 (2021).

[15] N. G. Jones, J. Bibo, B. Jobst, F. Pollmann, A. Smith, and R.
Verresen, Phys. Rev. Res. 3, 033265 (2021).

[16] H.-K. Jin, R.-Y. Sun, Y. Zhou, and H.-H. Tu, Phys. Rev. B 105,
L081101 (2022).

[17] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[18] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[19] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143

(2008).
[20] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[21] H.-K. Jin, H.-H. Tu, and Y. Zhou, Phys. Rev. B 104, L020409

(2021).
[22] J.-Y. Chen, J.-W. Li, P. Nataf, S. Capponi, M. Mambrini, K.

Totsuka, H.-H. Tu, A. Weichselbaum, J. von Delft, and D.
Poilblanc, Phys. Rev. B 104, 235104 (2021).

[23] H.-K. Jin, R.-Y. Sun, H.-H. Tu, and Y. Zhou, Sci. Bull. 67, 918
(2022).

[24] R.-Y. Sun, H.-K. Jin, H.-H. Tu, and Y. Zhou, arXiv:2203.07321.
[25] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[26] H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101,

090603 (2008).
[27] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.

Rev. Lett. 101, 250602 (2008).
[28] P. Corboz, Phys. Rev. B 94, 035133 (2016).
[29] L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete,

Phys. Rev. B 94, 155123 (2016).
[30] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Phys. Rev. X 9,

031041 (2019).
[31] T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 65, 891 (1996).
[32] M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007).
[33] R. Orús and G. Vidal, Phys. Rev. B 80, 094403 (2009).
[34] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T.

Xiang, Phys. Rev. B 86, 045139 (2012).
[35] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J.

Haegeman, and F. Verstraete, Phys. Rev. B 98, 235148 (2018).

[36] N. Schuch, I. Cirac, and D. Pérez-García, Ann. Phys. (NY) 325,
2153 (2010).

[37] O. Buerschaper, Ann. Phys. (NY) 351, 447 (2014).
[38] D. J. Williamson, N. Bultinck, M. Mariën, M. B. Şahinoğlu, J.
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