
Eur. Phys. J. B (2022) 95 :108
https://doi.org/10.1140/epjb/s10051-022-00353-6

THE EUROPEAN
PHYSICAL JOURNAL B

Regular Article - Computational Methods

Multiloop flow equations for single-boson exchange fRG
Marcel Gievers1,2, Elias Walter1 , Anxiang Ge1, Jan von Delft1 , and Fabian B. Kugler3,a

1 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science
and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

2 Max Planck Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
3 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Received 13 January 2022 / Accepted 12 May 2022 / Published online 6 July 2022
© The Author(s) 2022

Abstract. The recently introduced single-boson exchange (SBE) decomposition of the four-point vertex of
interacting fermionic many-body systems is a conceptually and computationally appealing parametrization
of the vertex. It relies on the notion of reducibility of vertex diagrams with respect to the bare interaction
U , instead of a classification based on two-particle reducibility within the widely used parquet decom-
position. Here, we re-derive the SBE decomposition in a generalized framework (suitable for extensions
to, e.g., inhomogeneous systems or real-frequency treatments) following from the parquet equations. We
then derive multiloop functional renormalization group (mfRG) flow equations for the ingredients of this
SBE decomposition, both in the parquet approximation, where the fully two-particle irreducible vertex
is treated as an input, and in the more restrictive SBE approximation, where this role is taken by the
fully U -irreducible vertex. Moreover, we give mfRG flow equations for the popular parametrization of the
vertex in terms of asymptotic classes of the two-particle reducible vertices. Since the parquet and SBE
decompositions are closely related, their mfRG flow equations are very similar in structure.

1 Introduction

The understanding of strongly correlated many-body
systems like the two-dimensional Hubbard model
remains an important challenge of contemporary
condensed-matter physics [1]. For this, it is desirable to
gain profound understanding of two-body interactions
which are described by the full four-point vertex Γ .

A powerful technique for calculating the four-point
vertex Γ is the functional renormalization group (fRG)
[2,3]. There, a scale parameter Λ is introduced into the
bare Green’s function G0 → GΛ

0 in such a way that for
an initial value Λ → Λi the theory (specifically, the cal-
culation of the self-energy ΣΛ and the four-point vertex
ΓΛ) becomes solvable, and after successively integrat-
ing out higher energy modes Λ → Λf , the fully renor-
malized objects Σ and Γ are obtained.

Traditionally, fRG is formulated as an infinite hierar-
chy of exact flow equations for n-point vertex functions.
However, since already the six-point vertex is numeri-
cally intractable, truncations are needed. A frequently-
used strategy employs a one-loop (1�) truncation of the
exact hierarchy of flow equations by completely neglect-
ing six-point and higher vertices. This can be justified,
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e.g., from a perturbative [2] or leading-log [4] perspec-
tive. Another truncation scheme is given by the mul-
tiloop fRG approach, mfRG, which includes all contri-
butions of the six-point vertex to the flow of the four-
point vertex and self-energy that can be computed with
numerical costs proportional to the 1� flow [5–7]. In
doing so, it sums up all parquet diagrams, formally
reconstructing the parquet approximation (PA) [8,9]
if loop convergence is achieved. Converged multiloop
results thus inherit all the properties of the PA. These
include self-consistency at the one- and two-particle
level (in that the PA is a solution of the self-consistent
parquet equations [9]); the validity of one-particle con-
servation laws (but not of two-particle ones); and the
independence of the final results on the choice of reg-
ulator (since the parquet equations and PA do not
involve specifying any regulator). The mfRG approach
was recently applied to the Hubbard model [10,11],
Heisenberg models [12,13], and the Anderson impurity
model [14].

A full treatment of the frequency and momentum
dependence of the four-point vertex generally requires
tremendous numerical resources. Hence, it is important
to parametrize these dependencies in an efficient way,
to reduce computational effort without losing informa-
tion on important physical properties. One such scheme
expresses the vertex as a sum of diagrammatic classes
distinguished by their asymptotic frequency behavior
[15,16]: Asymptotic classes which remain nonzero when
one or two frequency arguments are sent to infinity do
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not depend on these arguments, while the class depend-
ing on all three frequency arguments decays in each
direction.

A related strategy is to express parts of the vertex
through fermion bilinears that interact via exchange
bosons [17,18]. Partial bosonization schemes, which
approximate the vertex through one [19–21] or several
boson-exchange channels [22–24], have been employed
within the dual boson formalism, used in diagrammatic
extensions of dynamical mean field theory (DMFT)
aiming to include nonlocal correlations.

A decomposition of the full vertex into single-boson
exchange (SBE) parts, involving functions of at most
two frequencies, and residual parts depending on three
frequencies was developed in Refs. [25–30]. The guiding
principle of the SBE decomposition is reducibility in
the bare interaction U [25]. This criterion distinguishes
SBE contributions, that are U -reducible, from multi-
boson exchange and other contributions, that are not.
The SBE approximation retains only the U -reducible
part while neglecting all U -irreducible terms [26]. The
SBE terms are expressible through bosonic fluctuations
and their (Yukawa) couplings to fermions—the Hedin
vertices—and thus have a transparent physical interpre-
tation. Numerically, two- and three-point objects can be
computed and stored more easily than a genuine four-
point vertex.

Studies of the two-dimensional Hubbard model have
shown that the SBE decomposition is a promising tech-
nique for computing the frequency and momentum
dependences of the vertex [28–30]. In a 1� fRG cal-
culation, it was found that some of its essential fea-
tures are already captured by its U -reducible parts,
which are much easier to compute numerically than
the U -irreducible ones [31]. Reference [31] also obtained
results at strong interaction using DMF2RG, a method
that makes use of a DMFT vertex as the starting point
for the fRG flow [32–34]. Here, a very interesting aspect
of the SBE decomposition is that the SBE approxima-
tion (neglecting U -irreducible contributions) remains a
meaningful approximation also in the strong-coupling
regime [35], which is not the case for a similar approx-
imation scheme based on the parametrization through
asymptotic classes while using functions of at most two
frequency arguments.

Given these encouraging developments, it is of inter-
est to have a strategy for computing the ingredients of
the SBE approach—the bosonic propagators, the Hedin
vertices, and the remaining U -irreducible terms—not
only in 1� fRG [31] but also in mfRG. In this paper,
we therefore derive multiloop flow equations for the
SBE ingredients. To this end, we start from the parquet
equations to derive a general form of the SBE decompo-
sition where the structure of non-frequency arguments
is not specified. We then derive multiloop flow equations
for the SBE ingredients, and finally illustrate the rela-
tion of these objects to the parametrization of the ver-
tex in terms of two-particle reducible asymptotic classes
[16,31]. The numerical implementation of the resulting

SBE multiloop flow equations goes beyond the scope of
this purely analytical paper and is left for the future.

The paper is organized as follows: In Sect. 2, we
recapitulate the parquet equations, the corresponding
mfRG flow equations, and the frequency parametriza-
tion of the four-point vertex adapted to each two-
particle channel. In Sect. 3, we deduce the SBE decom-
position from the parquet equations and derive mul-
tiloop flow equations for the SBE ingredients in two
different ways. We also discuss the SBE approximation
and its associated mfRG flow. In Sect. 4, we recall the
definition of the asymptotic vertex classes and derive
multiloop equations for these. We outline the relation
between SBE ingredients and asymptotic classes and
their respective mfRG equations. We conclude with a
short outlook in Sect. 5. Appendices A and B illustrate
the SBE ingredients and asymptotic vertex classes dia-
grammatically, while Appendix C describes the relation
between our generalized notation of the SBE decom-
position to that of the original papers. Finally, Appen-
dices D and E give details on different definitions of cor-
relators and susceptibilities and show their close rela-
tion to the SBE ingredients.

2 Recap of parquet and mfRG equations

The parquet equations and the associated multiloop
fRG equations form the basis for the main outcomes of
this paper. For ease of reference and use in future sec-
tions, we recapitulate the notational conventions and
compactly summarize the main ingredients and results
of the mfRG approach [5–7]. To make the presenta-
tion self-contained, we also recall from the literature
the motivation for some of the definitions and conven-
tions presented below.

2.1 Parquet equations

The action of a typical fermionic model reads

S = − c̄1′ [G−1
0 ]1′|1c1 − 1

4U1′2′|12 c̄1′ c̄2′c2c1, (1)

with the bare propagator G0. The Grassmann fields
ci are labeled by a composite index i describing fre-
quency and other quantum numbers, such as posi-
tion or momentum, spin, etc. Throughout this paper,
repeated i-indices are understood to be integrated over
or summed over. Furthermore, U is the crossing sym-
metric bare interaction vertex, U1′2′|12 = −U2′1′|12
(called Γ0 in Refs. [6,7]). We assume it to be energy-
conserving without further frequency dependence, as
in any action derived directly from a time-independent
Hamiltonian. Our expression for the action (1) and later
definitions of correlation functions are given in the Mat-
subara formalism [36] and for fermionic fields. However,
our analysis can easily be transcribed to the Keldysh
formalism [37], and/or to bosonic fields, by suitably
adapting the content of the index i on ci and adjust-
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ing some prefactors. Such changes do not modify the
structure of the vertex decomposition and flow equa-
tions that are the focus of this paper.

The time-ordered one- and two-particle correlators,
G1|1′ = −〈c1c̄1′〉 and G

(4)
12|1′2′ = 〈c1c2c̄2′ c̄1′〉, can be

expressed in standard fashion [3] through the self-
energy and the four-point vertex,

Σ1′|1 = Σ
1′ 1

, Γ1′2′|12 = Γ

2 2′

1′ 1

.

(2)

These contain all one-particle irreducible one- and two-
particle vertex diagrams, respectively. Hence, these are
(amputated connected) diagrams that cannot be split
into two pieces by cutting a single bare propagator line.

The one-particle self-energy is related to the two-
particle vertex via the Schwinger–Dyson equation (SDE)
[9]. We do not discuss this equation much further
because its treatment is similar for both vertex decom-
positions discussed below. On the two-particle level, the
starting point of parquet approaches [9] is the parquet
decomposition,

Γ = R + γa + γp + γt. (3)

It states that the set of all vertex diagrams can be
divided into four disjoint classes: the diagrams in γr,
r = a, p, t, are two-particle reducible in channel r, i.e.,
they can be split into two parts by cutting two antipar-
allel (a), parallel (p), or transverse antiparallel (t) prop-
agator lines, respectively. The diagrams in R do not fall
apart by cutting two propagator lines and are thus fully
two-particle irreducible. This classification is exact and
unambiguous [16,38]. In the literature, the diagram-
matic channels are also known as crossed particle–hole
(ph ↔ a), particle–particle (pp ↔ p), and particle–hole
(ph ↔ t) channel.

Since the four classes in the parquet decomposition
are disjoint, one can decompose Γ w.r.t. its two-particle
reducibility in one of the channels r, Γ = Ir + γr.
Here, Ir comprises the sum of all diagrams irreducible
in channel r and fulfills Ir = R + γr̄ with γr̄ =∑

r′ �=r γr′ . The Bethe–Salpeter equations (BSEs) relate
the reducible diagrams to the irreducible ones and can
be summarized by

γr = Ir ◦ Πr ◦ Γ = Γ ◦ Πr ◦ Ir. (4)

The Πr bubble, defined as

Πa;34|3′4′ = G3|3′G4|4′ , (5a)

Πp;34|3′4′ = 1
2G3|3′G4|4′ , (5b)

Πt;43|3′4′ = −G3|3′G4|4′ , (5c)

represents the corresponding propagator pair in chan-
nel r, see Fig. 1. (Note that Πa;34|3′4′ = −Πt;43|3′4′

Fig. 1 Bethe–Salpeter equations in the antiparallel (a),
parallel (p) and transverse (t) channels

is consistent with crossing symmetry.) The connector
symbol ◦ denotes summation over internal frequencies
and quantum numbers (5, 6 in Eqs. (6) below) and its
definition depends on the channel r ∈ {a, p, t}: When
connecting Πr (or other four-leg objects labeled by r)
to some vertex, it gives

a : [A ◦ B]12|34 = A16|54B52|36, (6a)

p : [A ◦ B]12|34 = A12|56B56|34, (6b)

t : [A ◦ B]12|34 = A62|54B15|36. (6c)

By combining Γ = Ir + γr with the BSEs (4), one can
eliminate γr to get the “extended BSEs” [7] needed
later:

1r + Πr ◦ Γ = (1r − Πr ◦ Ir)−1, (7a)

1r + Γ ◦ Πr = (1r − Ir ◦ Πr)−1. (7b)

Here, the channel-specific unit vertices 1r, defined by
the requirement Γ = 1r ◦ Γ = Γ ◦ 1r, are given by

1a;12|34 = δ13δ24, (8a)

1p;12|34 = 1
2 (δ13δ24 − δ14δ23), (8b)

1t;12|34 = δ14δ23. (8c)

(For the p channel, the internal sum in 1p ◦ Γ = Γ ◦1p

runs over both outgoing (or ingoing) legs of Γ . There-
fore, the crossing symmetry of the vertex, i.e., Γ12|34 =
−Γ21|34 = −Γ12|43, is transferred to 1p, resulting in an
expression more involved than for the other two chan-
nels.)

The combination of the Dyson equation G = G0(1 +
ΣG), the SDE, the parquet decomposition (3), the
three BSEs (4), and the definitions Ir = Γ − γr con-
stitutes the self-consistent parquet equations. The only
truly independent object is the fully irreducible vertex
R. If R is specified, everything else can be computed
self-consistently via the parquet equations. However,
R is the most complicated object: its diagrams con-
tain several nested integrals/sums over internal argu-
ments, whereas the integrals in reducible diagrams par-
tially factorize. A common simplification, the parquet
approximation (PA), replaces R by U , closing the set
of parquet equations.
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2.2 Parquet mfRG

The conventional mfRG flow equations can be derived
from the parquet equations by introducing a regula-
tor Λ into the bare propagator G0, thus making all
objects in the parquet equations Λ-dependent [7]. The
fully irreducible vertex R is treated as an input and
is thus assumed to be Λ-independent, RΛ ≈ R. For
instance, this assumption arises both in the PA where
R ≈ U or in the dynamical vertex approximation DΓA
[39,40] where R ≈ RDMFT is taken from DMFT—here,
we will not distinguish these cases explicitly. Taking the
derivative of the SDE and the BSEs w.r.t. Λ then yields
flow equations for Σ and Γ . Within the context of this
paper, we will call this mfRG approach parquet mfRG,
to distinguish it from an SBE mfRG approach to be
discussed in Sect. 3.2.

When computing γ̇r = ∂Λγr via the BSEs, one
obtains terms including İr =

∑
r′ �=r γ̇r′ . Thus, one has

to iteratively insert the flow equation for γr into the
equations of the other channels r′ 	= r, yielding an infi-
nite set of contributions of increasing loop order:

Γ̇ = γ̇a + γ̇p + γ̇t, γ̇r =
∞∑

�=1

γ̇(�)
r . (9)

The individual �-loop contributions read [5,7]

γ̇(1)
r = Γ ◦ Π̇r ◦ Γ, (10a)

γ̇(2)
r = γ̇

(1)
r̄ ◦ Πr ◦ Γ + Γ ◦ Πr ◦ γ̇

(1)
r̄ (10b)

γ̇(�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ +Γ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ

+ Γ ◦ Πr ◦ γ̇
(�+1)
r̄ . (10c)

where γ̇
(�)
r̄ =

∑
r′ �=rγ̇

(�)
r′ and Eq. (10c) applies for �+2 ≥

3. In general, all terms at loop order � contain � − 1
factors of Π and one Π̇ (i.e., � loops, one of which is
differentiated), connecting � renormalized vertices Γ .
We have Π̇r ∼ GĠ + ĠG, where

Ġ = S + GΣ̇ G, (11)

with the single-scale propagator S = Ġ|Σ=const. Fig-
ure 2 illustrates Eqs. (10) diagrammatically in the a
channel.

The flow equation for the self-energy, derived in Ref.
[7] by requiring Σ to satisfy the SDE throughout the
flow, reads

Σ̇ = − Γ − γ̇t̄,C

︸ ︷︷ ︸
Σ̇t̄

− Γ

Σ̇t̄

︸ ︷︷ ︸
Σ̇t

.

(12)

Fig. 2 Diagrammatic depiction of the mfRG flow equa-
tions (10) in the a channel. The double-dashed bubble

Π̇a represents a sum of two terms, GĠ + ĠG, where
double-dashed propagators Ġ are fully differentiated ones
(cf. Eq. (11))

It has Γ and γ̇t̄,C =
∑

� Γ ◦Πr◦γ̇
(�)
t̄ ◦Πr◦Γ as input and

holds irrespective of the choice of vertex parametriza-
tion. For this reason, we do not discuss the self-energy
flow further in this paper, but it should of course be
implemented for numerical work.

The 1� contribution (10a) of the vertex flow, with
the fully differentiated Ġ replaced by the single-scale
propagator S in Π̇r is equivalent to the usual 1� flow
equation. Using Ġ instead of S, as done in Eq. (10a),
corresponds to the so-called Katanin substitution [41]:
it contains the feedback of the differentiated self-energy
into the vertex flow and already goes beyond the stan-
dard 1� approximation. By adding higher-loop contri-
butions until convergence is reached, one effectively
solves the self-consistent parquet equations through an
fRG flow. On the one hand, this ensures two-particle
self-consistency and related properties mentioned in the
introduction. On the other hand, it also provides a
way of reaching a solution of the parquet equations by
integrating differential equations. This may be numer-
ically favorable compared to an iteration of the self-
consistent equations. Particularly, when computing dia-
grammatic extensions of DMFT via DMF2RG, one then
needs only the full DMFT vertex as an input, and
not the r-(ir)reducible ones entering the parquet equa-
tions. This is helpful in the Matsubara formalism, where
the r-(ir)reducible vertices sometimes exhibit diver-
gences [42–46], and even more so when aiming for real-
frequency approaches [47,48].

2.3 Frequency parametrization

The four-point vertex Γ is a highly complicated object
and must be parametrized efficiently. In this section,
we summarize the frequency parametrization of the
vertex adapted to the three diagrammatic channels.
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a

b

c

Fig. 3 Definition of the three channel-specific frequency parametrizations of the four-point vertex. a The vertex is nonzero
only if the four fermionic frequencies satisfy ν′

1 + ν′
2 = ν1 + ν2. In that case, they can be expressed in three different

ways through one bosonic transfer frequency, ωr, and two fermionic frequencies, νr, ν′
r. Of course, each term can also be

expressed through the frequencies (ωr, νr, ν
′
r) of any of the three channels, as indicated here for R. b The choice of frequency

arguments in each channel γa, γp, and γt is motivated by the structure of their BSEs (4). c Diagrammatic depiction of
1r ◦ Πr ◦ Γ =

∑
ν′′

r
Πr • Γ (Eqs. (22), third line), a four-leg object obtained by inserting 1r between U and Πr (Eq. (21c)).

The multiplication of 1r◦ onto Πr ◦ Γ carries two instructions: draw Πr such that the endpoints of the lines connected to
1r lie close together (awaiting being connected to U), and perform the sum over the fermionic frequency ν′′

r of Πr

This parametrization is the building block for the SBE
decomposition discussed in Sect. 3.

Focusing on the frequency dependence, we switch
from the compact notation Γ1′2′|12 to the more elabo-
rate Γ1′2′|12(ν′

1ν
′
2|ν1ν2), with frequency arguments writ-

ten in brackets, and the subscripts now referring to non-
frequency quantum numbers (position or momentum,
spin, etc.). As mentioned earlier, we assume the bare
vertex U to have the form

U1′2′|12(ν′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2U1′2′|12, (13)

with U1′2′|12 independent of frequency. If U is
momentum-conserving without further momentum
dependence, our treatment of frequency sums below
may be extended to include momentum sums. To keep
the discussion general, we refrain from elaborating this
in detail. Note that, e.g., in the repulsive Hubbard
model, our sign convention in Eq. (1) is such that
Uσσ̄|σσ̄ = −U σ̄σ|σσ̄ < 0 (where, as usual, σ ∈ {↑, ↓},
↑̄ =↓, ↓̄ =↑).

Due to frequency conservation, one-particle correla-
tors depend on only one frequency,

G1′1(ν′
1, ν1) = δν′

1,ν1G1′1(ν1). (14)

Likewise, three frequencies are sufficient to parametrize
the vertex. For each channel γr, we express the four
fermionic frequencies ν′

1, ν
′
2, ν1, ν2 at the vertex legs

through a choice of three frequencies, a bosonic trans-
fer frequency, ωr, and two fermionic frequencies, νr and
ν′

r. These are chosen differently for each channel (see
Fig. 3a) and reflect its asymptotic behavior [16] as dis-
cussed in Sect. 4.1. We have

γr;1′2′|12(ν′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2γr;1′2′|12(ωr, νr, ν

′
r),

(15)

with ωr, νr, ν′
r related to ν′

1, ν1, ν2 through

ν′
1 = νa − ωa

2 = νp + ωp

2 = ν′
t + ωt

2 ,

ν1 = ν′
a − ωa

2 = ν′
p + ωp

2 = ν′
t − ωt

2 ,

ν2 = νa + ωa

2 = −ν′
p + ωp

2 = νt + ωt

2 . (16)
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This parametrization symmetrically assigns ±ωr

2 shifts
to all external legs. (In the Matsubara formalism, the
bosonic Matsubara frequency closest to ±ωr

2 is chosen
for the shift.) With these shifts, crossing symmetries
ensure that prominent vertex peaks are centered around
ωr = 0, which is convenient for numerical work. How-
ever, other conventions are of course possible, too.

Though the frequencies ωr, νr, ν
′
r are tailored to a

specific channel γr, one may also use them to define
the r parametrization of the full vertex, writing

Γ1′2′|12(ν′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2Γ1′2′|12(ωr, νr, ν

′
r).

(17)

Likewise, R, γa, γp, γt can each be expressed as a δ
symbol times a function of any of the variable sets
(ωr, νr, ν

′
r). The r parametrization of Γ ◦Πr or Πr ◦Γ is

obtained by inserting Eqs. (14) and (17) into Eqs. (6).
The summations

∑
ν5ν6

over internal frequencies can be
collapsed using frequency-conserving δ symbols, leading
to

[Γ ◦ Πr](ωr, νr, ν
′′
r ) = Γ (ωr, νr, ν

′′
r ) • Π(ωr, ν

′′
r ), (18a)

[Πr ◦ Γ ](ωr, ν
′′
r , ν′

r) = Π(ωr, ν
′′
r ) • Γ (ωr, ν

′′
r , ν′

r), (18b)

where the bubble factors Πr(ωr, ν
′′
r ) are given by

Πa;34|3′4′(ωa, ν′′
a ) = G3|3′

(
ν′′

a − ωa
2

)
G4|4′

(
ν′′

a + ωa
2

)
, (19a)

Πp;34|3′4′(ωp, ν′′
p ) = 1

2
G3|3′

(ωp

2
+ν′′

p

)
G4|4′

(ωp

2
−ν′′

p

)
, (19b)

Πt;43|3′4′(ωt, ν
′′
t ) = −G3|3′

(
ν′′

t − ωt
2

)
G4|4′

(
ν′′

t + ωt
2

)
. (19c)

In Eqs. (18), the connector • by definition denotes
an internal summation analogous to ◦, except that
only non-frequency quantum numbers (position, spin,
etc.) are summed over. Correspondingly, the bubble
Γ̃ ◦ Πr ◦ Γ , involving two ◦ connectors, has the r
parametrization

[Γ̃ ◦ Πr ◦ Γ ](ωr, νr, ν
′
r)

=
∑

ν′′
r

Γ̃ (ωr, νr, ν
′′
r ) • Πr(ωr, ν

′′
r ) • Γ (ωr, ν

′′
r , ν′

r), (20)

see Fig. 3b. Here, one frequency sum survives, running
over the fermionic frequency ν′′

r associated with Πr.
For future reference, we define unit vertices for non-

frequency quantum numbers, 1r, by Γ = 1r •Γ = Γ •1r.
(For a bare vertex with momentum conservation and
no further momentum dependence, one could include a
momentum sum,

∑
k′′

r
, in Eq. (20) and exclude momen-

tum indices from the • summation and 1r.) The dis-
tinction between ◦, 1 and •, 1, indicating if connectors
and unit vertices include summations and δ symbols
for frequency variables or not, will be needed for the
SBE decomposition of Sect. 3. There, we will encounter
bubbles involving one or two bare vertices, U ◦ Πr ◦ U ,
Γ̃ ◦ Πr ◦ U , or U ◦ Πr ◦ Γ . Expressing these in the form
(20), the bare vertex U , since it is frequency indepen-
dent, can be pulled out of the sum over ν′′

r . To make

this explicit, we insert unit operators 1r next to U :

U ◦ Πr ◦ U = U • 1r ◦ Πr ◦ 1r • U, (21a)

Γ̃ ◦ Πr ◦ U = Γ̃ ◦ Πr ◦ 1r • U, (21b)
U ◦ Πr ◦ Γ = U • 1r ◦ Πr ◦ Γ. (21c)

We suppressed frequency arguments for brevity, it being
understood that equations linking Πr and 1r use the r
parametrization. Making the frequency sum involved in
◦Πr◦ explicit, we obtain four-leg objects,

[1r ◦ Πr ◦ 1r](ωr) =
∑

ν′′
r

Πr(ωr, ν
′′
r ),

[Γ̃ ◦ Πr ◦ 1r](ωr, νr) =
∑

ν′′
r

Γ̃ (ωr, νr, ν
′′
r ) • Πr(ωr, ν

′′
r ),

[1r ◦ Πr ◦ Γ ](ωr, ν
′
r) =

∑

ν′′
r

Πr(ωr, ν
′′
r ) • Γ (ωr, ν

′′
r , ν′

r)

(22)

that depend on only one or two frequency arguments
(cf. Figure 3c) and are thus numerically cheaper than
Γ . Note that, in general, 1r is not the unit operator
w.r.t. the ◦ connector, i.e., 1r ◦ Γ 	= Γ 	= Γ ◦ 1r since ◦
involves a frequency summation which does not affect
1r.

3 SBE decomposition

We now turn to the SBE decomposition. It also yields
an exact, unambiguous classification of vertex dia-
grams, now according to their U -reducibility in each
channel. This notion of reducibility, introduced in Ref.
[26], is very analogous to Π-reducibility, i.e., two-
particle reducibility. A diagram is called U -reducible
if it can be split into two parts by splitting apart a bare
vertex U (in ways specified below) in either of the three
channels. Otherwise, it is fully U -irreducible.

The SBE decomposition was originally formulated
in terms of physical (charge, spin, and singlet pairing)
channels which involve linear combinations of spin com-
ponents. For our purposes, it is more convenient not to
use such linear combinations (the relation between both
formulations is given in Appendix C). Moreover, the
original SBE papers considered models with transla-
tional invariance, with vertices labeled by three momen-
tum variables. We here present a generalization of the
SBE decomposition applicable to models without trans-
lational invariance, requiring four position or momen-
tum labels. Starting from the BSEs, we use arguments
inspired by Ref. [26] to arrive at a set of self-consistent
equations for SBE ingredients which will also enable us
to derive multiloop flow equations directly within this
framework. In terms of notation, we follow Ref. [26]
for the objects ∇r, wr, λ̄r, λr—with ϕfirr there denoted
ϕU irr here—while we follow Ref. [30] for Mr and Tr (the
latter instead of ϕr from Ref. [26]).
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Fig. 4 Illustration of U -r-reducibility, analogous to Fig. 4 of [26]. A and B can be any vertex diagram or simply 1r

3.1 Derivation of SBE decomposition from BSEs

As mentioned earlier, a vertex diagram is called two-
particle reducible in a specified channel r ∈ {a, p, t},
or Π-r-reducible for short, if it can be split into two
parts by cutting the two lines of a Πr bubble (to
be called linking bubble); if such a split is not possi-
ble, the diagram is Π-r-irreducible. The two-particle
reducible vertex γr is the sum of all Π-r-reducible dia-
grams. Following Ref. [26], we now introduce a further
channel-specific classification criterion. A Π-r-reducible
diagram is called U -r-reducible if a linking bubble Πr

has two of its legs attached to the same bare vertex in
the combination U◦Πr or Πr◦U . Then, that bare vertex
U , too, constitutes a link that, when “cut out”, splits
the diagram into two parts. (To visualize the meaning of
“cutting out U” diagrammatically, one may replace U
by 1r•U •1r and then remove U . This results in two pairs
of legs ending close together, ready to be connected
through reinsertion of U , see Figs. 3c and 4.) The low-
est order U -r-reducible contribution to γr is U ◦Πr ◦U .
The lowest-order term of Γ , the bare vertex U (which is
Π-r-irreducible), is viewed as U -r-reducible in all three
channels, corresponding to the three possible ways of
splitting its four legs into two pairs of two. All U -r-
reducible diagrams describe “single-boson exchange”
processes, in the sense that each link U connecting two
otherwise separate parts of the diagram mediates a sin-
gle bosonic transfer frequency, ωr (as defined in Fig. 3),
across that link, as will become explicit below.

All vertex diagrams that are not U -r-reducible are
called U -r-irreducible. These comprise all multi-boson
exchange (i.e., not single-boson exchange) diagrams
from γr, and all Π-r-irreducible diagrams except the
bare vertex (which is trivially U -r-reducible), i.e., all
diagrams from Ir − U = R − U +

∑
r′ �=r γr′ .

Next, we rewrite the parquet equations in terms of
U -r-reducible and U -r-irreducible parts. We define ∇r

as the sum of all U -r-reducible diagrams, including
(importantly) the bare vertex U , and Mr as the sum of
all diagrams that are Π-r-reducible but U -r-irreducible,
thus describing multi-boson exchange processes. Then,
the Π-r-reducible vertex γr, which does not include U ,
fulfills

γr = ∇r − U + Mr. (23)

Inserting Eq. (23) for γr into the parquet decompo-
sition (3) yields

Γ = ϕU irr +
∑

r∇r − 2U, (24a)

ϕU irr = R − U +
∑

rMr , (24b)

where ϕU irr is the fully U -irreducible part of Γ . The
U subtractions ensure that the bare vertex U , which
is contained once in each ∇r but not in ϕU irr, is not
over-counted. Some low-order diagrams of ∇r, Mr, and
R are shown in Fig. 5.

Just as γr, its parts ∇r and Mr satisfy Bethe–
Salpeter-type equations, which we derive next. Insert-
ing Eq. (23) into the full vertex Γ = Ir + γr, we split
it into a U -r-reducible part, ∇r, and a U -r-irreducible
remainder, Tr:

Γ = ∇r + Tr, (25a)
Tr = Ir − U + Mr. (25b)

The relation between the different decompositions of
the full vertex implied by Eqs. (23)–(25) is illustrated
in Fig. 6. Inserting Eqs. (23) and (25a) into either of
the two forms of the BSEs (4) for γr, we obtain

∇r − U + Mr = Ir ◦ Πr ◦ ∇r + Ir ◦ Πr ◦ Tr

= ∇r ◦ Πr ◦ Ir + Tr ◦ Πr ◦ Ir. (26)

This single set of equations can be split into two sep-
arate ones, one for ∇r − U , the other for Mr, contain-
ing only U -r-reducible or only U -r-irreducible terms,
respectively. The first terms on the right are clearly
U -r-reducible, since they contain ∇r. For the second
terms on the right, we write Ir as the sum of U and
Ir − U , yielding U -r-reducible and U -r-irreducible con-
tributions, respectively. We thus obtain two separate
sets of equations,

∇r − U = Ir ◦ Πr ◦ ∇r + U ◦ Πr ◦ Tr

= ∇r ◦ Πr ◦ Ir + Tr ◦ Πr ◦ U, (27)
Mr = (Ir − U) ◦ Πr ◦ Tr

= Tr ◦ Πr ◦ (Ir − U), (28)

the latter of which corresponds to Eq. (17) in Ref. [30].
In Eqs. (27), we now bring all ∇r contributions to the
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Fig. 5 Low-order diagrams for ∇r, Mr, and R, illustrating Π-r-reducibility (blue dashed lines) and U -r-reducibility (red
dotted lines; their meaning is made explicit in Fig. 4). ∇r contains all U -r-reducible diagrams; except for the bare vertex,
they all are Π-r-reducible, too. Ma contains all diagrams that are Π-a- but not U -a-reducible. All diagrams in R are neither
Π-r- nor U -r-reducible, except for the bare vertex, which is U -a-, U -p- and U -t-reducible (as indicated by three red dotted
lines)

U−R

aM pM

tM

U
U−t∇

U−a∇ U−p∇ a∇
U

aT

U−R

UU

aI

aγ aγpγ

tγ

aγ+aIΓ =

a∇+aTΓ =

rγr+RΓ =

)rM+U−r∇(r+RΓ =

a b

dc

Fig. 6 Venn diagrams illustrating various ways of splitting
the full vertex into distinct contributions. Panel a depicts
the parquet decomposition (3), b the Π-a-reducible part γa

and its complement Ia, c the SBE decomposition (24) (mim-
icking Fig. 6 of [26]), and d the U -a-reducible part ∇a and
its complement Ta. For r = p, t, the Π-r- and U -r-reducible
parts and their complements can be depicted analogously

left,

(1r − Ir ◦ Πr) ◦ ∇r = U ◦ (1r + Πr ◦ Tr),
∇r ◦ (1r − Πr ◦ Ir) = (1r + Tr ◦ Πr) ◦ U, (29)

and solve for ∇r by evoking the extended BSEs (7):

∇r = (1r + Γ ◦ Πr) ◦ U ◦ (1r + Πr ◦ Tr)
= (1r + Tr ◦ Πr) ◦ U ◦ (1r + Πr ◦ Γ ). (30)

This directly exhibits the U -r-reducibility of ∇r.
We now adopt the r parametrization and note a key

structural feature of Eq. (30) for ∇r: it contains a
central bare vertex U , connected via ◦Πr ◦ to either
Γ or Tr or both. We may thus pull the frequency-
independent U out of the frequency summations, so
that ◦Πr ◦ leads to •1r ◦ Πr ◦ or ◦Πr ◦ 1r•, where the
multiplication with 1r includes a sum over an internal
fermionic frequency (recall Eqs. (21), (22) and Fig. 3).

Fig. 7 Diagrammatic depiction of Eq. (33) (exemplified for
the a channel), expressing the U -r-reducible vertex ∇r =
λ̄r •wr •λr through two Hedin vertices, λ̄r, λr, and a screened
interaction, wr. The dashed boxes emphasize that λ̄r, wr,
λr all have four fermionic legs; those of wr and the outer
legs of λ̄r and λr are amputated. Still, wr depends on just
a single, bosonic frequency and can hence be interpreted
as an effective bosonic interaction. Its four legs lie pairwise
close together since each pair stems from a bare vertex (see
Eq. (43) and Fig. 3c). The two inward-facing legs of both
λ̄r and λr, connecting to wr, are therefore also drawn close
together, whereas the outward-facing legs are not. To depict
this asymmetry in a compact manner, triangles are used
on the right. For explicit index summations for all three
channels, see Fig. 12 in Appendix A

Thus, Eq. (30) leads to

∇r = (1r + Γ ◦ Πr ◦ 1r) • U • (1r + 1r ◦ Πr ◦ Tr)
= (1r + Tr ◦ Πr ◦ 1r) • U • (1r + 1r ◦ Πr ◦ Γ ).

(31)

In the first or second line, the expressions on the right
or left of • U •, respectively, are U -r-irreducible. These
factors are the so-called Hedin vertices [49] (cf. Ref. [30],
Eq. (5)),

λ̄r(ωr, νr) ≡ 1r + [Tr ◦ Πr ◦ 1r](ωr, νr), (32a)

λr(ωr, ν
′
r) ≡ 1r + [1r ◦ Πr ◦ Tr](ωr, ν

′
r). (32b)

In our notation, the Hedin vertices have four fermionic
legs, but (importantly) depend on only two frequencies.
Indeed, regarding their frequency dependence, they can
be viewed as the U -irreducible, amputated parts of
three-point response functions (see Appendix D and
Ref. [26]). Then, Eqs. (32) have the structure of SDEs
for a three-point vertex with a bare three-point vertex
1r (cf. Refs. [3,7]). Via the Hedin vertices, ∇r factorizes
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Fig. 8 SBE decomposition of the vertex Γ into U -r-irreducible and U -r-reducible contributions, with r = a, p, t. When
connecting Hedin vertices to other objects, the two fermionic legs require a ◦ connector, the bosonic leg a • connector

into functions of at most two frequency arguments and
is thus computationally cheaper than, e.g., γr. Follow-
ing Refs. [26,30], we write

∇r = λ̄r • wr • λr, (33)

where two U -r-irreducible Hedin vertices sandwich a
U -r-reducible object, wr(ωr) (see Fig. 7). The object wr

depends only on the bosonic frequency ωr and can be
interpreted as a screened interaction. To find wr explic-
itly, we first express Eq. (31) through Hedin vertices,

∇r = (1r + Γ ◦ Πr ◦ 1r) • U • λr

= λ̄r • U • (1r + 1r ◦ Πr ◦ Γ ). (34)

Then, Γ = Tr + ∇r leads to implicit relations for ∇r:

∇r = (λ̄r + ∇r ◦ Πr ◦ 1r) • U • λr

= λ̄r • U • (λr + 1r ◦ Πr ◦ ∇r). (35)

Next, we insert Eq. (33) for ∇r on both sides to obtain

λ̄r • wr • λr = λ̄r • (U + wr • λr ◦ Πr ◦ U) • λr

= λ̄r • (U + U ◦ Πr ◦ λ̄r • wr) • λr. (36)

This implies that wr satisfies a pair of Dyson equations,

wr = U + wr • λr ◦ Πr ◦ U

= U + U ◦ Πr ◦ λ̄r • wr, (37)

which can be formally solved as

wr = U • (1r − λr ◦ Πr ◦ U)−1

= (1r − U ◦ Πr ◦ λ̄r)−1 • U. (38)

As desired, the screened interaction wr is manifestly
U -r-reducible, and depends on only a single, bosonic
frequency, ωr. To emphasize this fact, Eq. (38) can be
written as

wr = U • (1r − Pr • U)−1

= (1r − U • Pr)−1 • U, (39)

where Pr(ωr) is the polarization [30],

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r. (40)

Regarding frequency dependencies, wr can be viewed
as a bosonic propagator and Pr as a corresponding self-
energy; Eq. (40) then has the structure of a SDE for Pr

involving the bare three-point vertex 1r [3,7].
Inserting Eq. (33) for ∇r into Eq. (24a) for Γ , we

arrive at the SBE decomposition of the full vertex of
Ref. [26] in our generalized notation,

Γ= ϕU irr +
∑

rλ̄r • wr • λr − 2U, (41a)

depicted diagrammatically in Fig. 8. For ease of refer-
ence, we gather all necessary relations for its ingredi-
ents:

wr = U + U • Pr • wr = U + wr • Pr • U, (41b)

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r, (41c)

λ̄r = 1r + Tr ◦ Πr ◦ 1r, (41d)
λr = 1r + 1r ◦ Πr ◦ Tr, (41e)

Tr = Γ − λ̄r • wr • λr, (41f)

ϕU irr = R − U +
∑

rMr, (41g)
Mr =(Tr−Mr)◦ Πr ◦ Tr =Tr◦ Πr◦ (Tr−Mr). (41h)

We collectively call Eqs. (41) the SBE equations.
Together with the SDE for the self-energy and an input
for the two-particle irreducible vertex R, the SBE equa-
tions are a self-consistent set of equations and thus
fully define the four-point vertex Γ . They can either be
solved self-consistently (as by Krien et al. in Refs. [27–
30], where an analogous set of equations was set up),
or via multiloop flow equations, derived in Sect. 3.2.

To conclude this section, let us point out the physical
meaning of λ̄r, wr, λr by showing their relation to three-
point vertices and susceptibilities. For this, a symmetric
expression for wr is needed, which can be obtained by
comparing Eqs. (33) and (34) to deduce

λ̄r • wr = U + Γ ◦ Πr ◦ U, (42a)
wr • λr = U + U ◦ Πr ◦ Γ, (42b)
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and inserting these into the Dyson equations (37):

wr = U + U ◦ Πr ◦ U + U ◦ Πr ◦ Γ ◦ Πr ◦ U. (43)

Equations (42) and (43) can be expressed as

[λ̄r • wr](ωr, νr) = Γ̄ (3)
r (ωr, νr) • U, (44a)

[wr • λr](ωr, ν
′
r) = U • Γ (3)

r (ωr, ν
′
r), (44b)

wr(ωr) = U + U • χr(ωr) • U, (44c)

where Γ̄
(3)
r , Γ

(3)
r represent full three-point vertices and

χr susceptibilities, defined by

Γ̄ (3)
r (ωr, νr) = 1r + [Γ ◦ Πr ◦ 1r](ω, νr), (45a)

Γ (3)
r (ωr, ν

′
r) = 1r + [1r ◦ Πr ◦ Γ ](ωr, ν

′
r), (45b)

χr(ωr) = [1r ◦ Πr ◦ 1r](ωr)
+ [1r ◦ Πr ◦ Γ ◦ Πr ◦ 1r](ωr). (45c)

(The bare vertices were pulled out in front of the fre-
quency sums, exploiting their frequency independence.)
The relation of Γ̄

(3)
r and Γ

(3)
r to three-point correlators

and response functions is described in Appendix D; the
relation of χr to physical susceptibilities for a local bare
interaction U is discussed in Appendix E.

3.2 SBE mfRG from parquet mfRG

Having defined all the SBE ingredients, we are now
ready to derive mfRG flow equations for them—the
main goal of this work. Our strategy is to insert the
SBE decomposition of Eqs. (23) and (24) into the par-
quet mfRG flow equations (10) for the Π-r-reducible
vertices γr. An alternative derivation, starting directly
from the SBE equations (41), is given in Sect. 3.3.

We begin by differentiating the decomposition of the
Πr-reducible vertex γr = λ̄r •wr •λr −U +Mr (Eq. (23))
w.r.t. the flow parameter. Since U̇ = 0 (the bare vertex
does not depend on the regulator), we obtain

γ̇r = ˙̄λr • wr • λr+λ̄r • ẇr • λr+λ̄r • wr • λ̇r+Ṁr. (46)

The loop expansion γ̇r =
∑

� γ̇
(�)
r implies similar expan-

sions for ẇr, ˙̄λr, λ̇r, and Ṁr. Each term at a given
loop order � can be found from the mfRG flow (10) for
γ̇
(�)
r , by inserting the decomposition of the full vertex,

Γ = λ̄r •wr •λr+Tr (Eq. (25a)) on the right of Eqs. (10).
The 1� flow equation (10a) for γ̇

(1)
r has four contri-

butions (shown diagrammatically for γ
(1)
a in Fig. 9):

γ̇(1)
r =

(
λ̄r • wr • λr + Tr

) ◦ Π̇r ◦ (
λ̄r • wr • λr + Tr

)

= Tr ◦ Π̇r ◦ λ̄r • wr • λr

+ λ̄r • wr • λr ◦ Π̇r ◦ λ̄r • wr • λr

+ λ̄r • wr • λr ◦ Π̇r ◦ Tr + Tr ◦ Π̇r ◦ Tr. (47)

By matching terms in Eqs. (46) and (47) containing
factors of λ̄r and λr or not, we obtain the 1� SBE flow:

ẇ(1)
r = wr • λr ◦ Π̇r ◦ λ̄r • wr,

˙̄λ(1)
r = Tr ◦ Π̇r ◦ λ̄r,

λ̇(1)
r = λr ◦ Π̇r ◦ Tr,

Ṁ (1)
r = Tr ◦ Π̇r ◦ Tr. (48a)

This reproduces the 1� SBE flow derived in Ref. [31]
(their Eq. (18)). The higher loop terms can be found
similarly from γ̇

(2)
r and γ̇

(�+2)
r of Eqs. (10b) and (10c).

For each loop order �, the γ̇
(�)
r̄ factors on the right side

of these equations can be expressed through the already
known flow of ẇ

(�)
r′ , ˙̄λ(�)

r′ λ̇
(�)
r′ and Ṁ

(�)
r′ . We obtain the

flow equations (� + 2 ≥ 3)

ẇ(2)
r = 0,

˙̄λ(2)
r = γ̇

(1)
r̄ ◦ Πr ◦ λ̄r,

λ̇(2)
r = λr ◦ Πr ◦ γ̇

(1)
r̄ ,

Ṁ (2)
r = γ̇

(1)
r̄ ◦ Πr ◦ Tr + Tr ◦ Πr ◦ γ̇

(1)
r̄ , (48b)

ẇ(�+2)
r = wr • λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r • wr,

˙̄λ(�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ λ̄r + Tr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r,

λ̇(�+2)
r = λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Tr + λr ◦ Πr ◦ γ̇

(�+1)
r̄ ,

Ṁ (�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ Tr + Tr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ γ̇
(�+1)
r̄ . (48c)

Here, γ̇
(�)
r̄ , required for the flow at loop orders � + 1

and � + 2, can directly be constructed from the SBE
ingredients using Eq. (46). Similarly as in Eqs. (10), all
terms at loop order � contain �−1 factors of Π and one
Π̇, now connecting the renormalized objects wr, λ̄r, λr,
Tr.

The SBE mfRG flow equations (48) are the most
important result of this work. For the a channel,
they are depicted diagrammatically in Fig. 10. Equa-
tions (48) can be condensed into more compact ones,
giving the full flow (summed over all loop orders, ẇr =
∑

�≥1 ẇ
(�)
r , etc.) of the SBE ingredients; see the next

section. The multiloop flow equation for the self-energy
[5,7] is given in Eq. (12).

3.3 SBE mfRG from SBE equations

In the previous section, we derived the SBE mfRG flow
equations by inserting the SBE decomposition into the
known parquet mfRG flow equations of the two-particle
reducible vertices γr. They can also be derived without
prior knowledge on the flow of γr, using the techniques
of Ref. [7].

In the parquet setting of Ref. [7], one can view the
Π-r-irreducible vertex Ir as the key ingredient for all
equations related to channel r. In step (i), one uses Ir
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Fig. 9 SBE decomposition of the left and right sides of the 1� flow equation (10a) (Fig. 2) in the a channel. The first line
depicts Eq. (46), the second Eq. (47). Equating terms with matching structure yields Eq. (48a), depicted in Fig. 10, first
line

Fig. 10 Multiloop flow equations (48) for the ingredients of the SBE decomposition in the a channel

to generate γr and thus Γ through a BSE. Then, a
post-processing of attaching and closing external legs
yields (ii) (full) three-point vertices Γ̄

(3)
r , Γ

(3)
r and (iii)

a susceptibility χr. The SBE setting can be under-
stood in close analogy, with the only exception that
one purposefully avoids generating U -r-reducible con-
tributions, because these can (more efficiently) be con-
structed via ∇r = λ̄r • wr • λr. To exclude U -r-reducible
contributions, one uses in step (i) Ir −U to generate Mr

and thus Tr through a BSE. The same post-processing
as before yields (ii) λ̄r, λr and then (iii) wr or Pr.

Because of this structural analogy, the SBE mfRG
flow equations can be derived in the exact same fashion
as the parquet mfRG flow equation of Ref. [7]. One
merely has to replace the variables according to the
dictionary

Ir → Ir − U, γr → Mr, Γ → Tr,

Γ̄ (3)
r → λ̄r, Γ (3)

r → λr, χr → Pr. (49)

For clarity, we now spell out the structural analogies
between the original parquet formalism and its SBE
version, presenting similarly-structured expressions in
pairs of equations, (a) and (b). For both approaches,
the full vertex can be decomposed in several ways:

Γ = R +
∑

r

γr = Ir + γr, (50a)

Γ =R+
∑

r

Mr+
∑

r

(∇r−U)=Tr + ∇r. (50b)

Here, γr and Mr satisfy analogous BSEs,

γr = Ir ◦ Πr ◦ Γ, (51a)
Mr = (Ir − U) ◦ Πr ◦ Tr, (51b)

where the objects on the left reappear on the right
through

Γ = Ir + γr, (52a)
Tr = (Ir − U) + Mr. (52b)

Relations (51) and (52) are used for step (i). Differ-
entiation of Eq. (51a) yields the mfRG flow of γ̇r as
in Eq. (10) and Fig. 2a of Ref. [7]. Here, we replace
the variables as above and start by differentiating
Eq. (51b):

Ṁr = İr ◦ Πr ◦ Tr + (Ir − U) ◦ Π̇r ◦ Tr

+ (Ir − U) ◦ Πr ◦ İr + (Ir − U) ◦ Πr ◦ Ṁr

⇒ Ṁr = (1r − (Ir − U) ◦ Πr)−1 ◦
[
İr ◦ Πr ◦ Tr

+(Ir − U) ◦ Π̇r ◦ Tr + (Ir − U) ◦ Πr ◦ İr

]
.

(53)

For the first argument of Eq. (53), we used ∂Λ(Ir−U) =
İr, as U̇ = 0. Next, we use the extended BSE 1r + Tr ◦
Πr = (1r − (Ir − U) ◦ Πr)

−1 for Mr, cf. Eqs. (7) and
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(51). Recollecting the terms, we obtain the flow of Ṁr

as

Ṁr = Tr ◦ Π̇r ◦ Tr + İr ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ İr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ İr. (54)

A loop expansion with İr = γ̇r̄ =
∑

� γ̇
(�)
r̄ then yields

our Eqs. (48) and Fig. 10.
For step (ii), we have the analogous relations

Γ̄ (3)
r = 1r + Γ ◦ Πr ◦ 1r, Γ (3)

r = 1r + 1r ◦ Πr ◦ Γ,
(55a)

λ̄r = 1r + Tr ◦ Πr ◦ 1r, λr = 1r + 1r ◦ Πr ◦ Tr.
(55b)

Differentiation of Eq. (55a) yields the mfRG flow of
Γ

(3)
r as in Eq. (42) and Fig. 7 of Ref. [7]. Here, we

again replace the variables as above and differentiate
Eq. (55b):

˙̄λr = Ṫr ◦ Πr ◦ 1r + Tr ◦ Π̇r ◦ 1r,

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ Ṫr. (56)

As Ṫr = İr+Ṁr (cf. Eq. (52b)), we insert the flow equa-
tion (54) for Ṁr into Eq. (56) and use again Eq. (55b)
This yields the flow equations

˙̄λr = Tr ◦ Π̇r ◦ λ̄r + İr ◦ Πr ◦ λ̄r + Tr ◦ Πr ◦ İr ◦ Πr ◦ λ̄r,

λ̇r = λr ◦ Π̇r ◦ Tr + λr ◦ Πr ◦ İr + λr ◦ Πr ◦ İr ◦ Πr ◦ Tr.
(57)

Their loop expansion reproduces Eqs. (48) and Fig. 10.
Finally, in step (iii), we have the relations

χr = Γ (3)
r ◦ Πr ◦ 1r = 1r ◦ Πr ◦ Γ̄ (3), (58a)

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r. (58b)

Differentiation of Eq. (58a) yields the mfRG flow
of χr as in Eq. (44) and Fig. 8 of Ref. [7]. Replacing
the variables as above one more time, we differentiate
Eq. (58b):

Ṗr = 1r ◦ Πr ◦ ˙̄λr + 1r ◦ Π̇r ◦ λ̄r. (59)

After inserting Eqs. (55b) and (57), we eventually
obtain

Ṗr = λr ◦
(
Π̇r + Πr ◦ İr ◦ Πr

)
◦ λ̄r. (60)

The relation between Ṗr and ẇr follows from the
Dyson equation (41b) as

ẇr = U • Ṗr • wr + U • Pr • ẇr. (61)

Solving this for ẇr yields

ẇr = (1r − U • Pr)−1 • U • Ṗr • wr = wr • Ṗr • wr,
(62)

having inserted the inverted Dyson equations (39). A
loop expansion of Eq. (60) yields:

Ṗ (1)
r = λr ◦ Π̇r ◦ λ̄r,

Ṗ (2)
r = 0,

Ṗ (�+2)
r = λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r. (63)

Inserting the loop expansion Ṗ
(�)
r into Eq. (62) for ẇr

yields the same flow equation for wr as in our Eqs. (48)
and Fig. 10.

Depending on the specific model, it can be more effi-
cient to calculate the flow of the polarization, Ṗr, by
Eqs. (63) instead of the flow of the screened interac-
tion, ẇr, by Eqs. (48). The screened interaction on the
contrary can be obtained by the inverted Dyson Eqs.
(39).

Altogether, Eqs. (54), (57), (60) and (62) (with
Tr given by Γ − ∇r̄, Eq. (50b)) build a system of
closed fRG equations, as full derivatives of the SBE
equations (41). Hence, combined with an appropri-
ate self-energy flow (cf. Eq. (12) and Ref. [7]), they
yield regulator-independent results. To integrate the
flow equations in practice, one employs the mfRG loop
expansions (48) and (63).

3.4 mfRG flow of the SBE approximation

To reduce numerical costs, it may sometimes be desir-
able to approximate the flow of the vertex treating only
objects with less than all three frequency arguments.
The simplest choice is to restrict the flow to functions
depending on a single frequency. In the present context,
this corresponds to keeping all objects except wr con-
stant. With ˙̄λr = 0 = λ̇r, the flow of the polarization
(59) is simply

Ṗr = λr ◦ Π̇r ◦ 1r = 1r ◦ Π̇r ◦ λ̄r. (64)

Hence, the flow equations of Pr and wr completely
decouple, and one effectively obtains a vertex consisting
of three independent series of ladder diagrams. Never-
theless, such a flow may be helpful for code-developing
purposes.

An approximation of the vertex with objects of at
most two frequency arguments is given by the SBE
approximation [26], which sets ϕU irr = 0. More gen-
erally, one may also keep ϕU irr 	= 0 constant during the
flow, e.g., as obtained from DMFT (called SBE-DΓA
in Ref. [26]). This was used in a 1� implementation of
DMF2RG in Ref. [31]. In the following, we will refer to
the approximation of using a non-flowing U -irreducible
part, ϕ̇U irr = 0, as SBE approximation, regardless of
whether ϕU irr is set to zero or not.
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We now derive mfRG flow equations for the SBE
approximation, so that Ṙ = 0, as before, and fur-
thermore Ṁr = 0. For the most part, the SBE equa-
tions (41) remain unchanged. Only the BSE for Mr

(41h) is not considered anymore, since now ϕU irr =
R − U +

∑
r Mr is used as an input. The correspond-

ing flow equations can be obtained as in Sect. 3.3. The
flow of the polarization, the screened interaction and
the Hedin vertices, prior to any transformation, is still
given by Eqs. (59), (62) and (56) (collected here for
convenience)

Ṗr = 1r ◦ Π̇r ◦ λ̄r + 1r ◦ Πr ◦ ˙̄λr

= λ̇r ◦ Πr ◦ 1r + λr ◦ Π̇r ◦ 1r, (65a)

ẇr = wr • Ṗr • wr, (65b)
˙̄λr = Tr ◦ Π̇r ◦ 1r + Ṫr ◦ Πr ◦ 1r, (65c)

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ Ṫr. (65d)

However, the flow of Tr = Ir − U + Mr now has no Ṁr

contribution. It is induced solely by İr = ∇̇r̄, the flow
of the U -reducible contributions from complementary
channels,

Ṫr = ∇̇r̄, (65e)

and thus is fully determined by ˙̄λr̄, λ̇r̄ and ẇr̄.
Equations (65) can be rewritten by inserting the flow

of the higher-point objects into the lower-point objects:

˙̄λr = Tr ◦ Π̇r ◦ 1r + ∇̇r̄ ◦ Πr ◦ 1r, (66a)

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ ∇̇r̄, (66b)

Ṗr = 1r ◦ Π̇r ◦ λ̄r + 1r ◦ Πr ◦ Tr ◦ Π̇r ◦ 1r

+ 1r ◦ Πr ◦ ∇̇r̄ ◦ Πr ◦ 1r

= 1r ◦ Π̇r ◦ λ̄r + λr ◦ Π̇r ◦ 1r

− 1r ◦ Π̇r ◦ 1r + 1r ◦ Πr ◦ ∇̇r̄ ◦ Πr ◦ 1r. (66c)

In the last line, we expressed 1r ◦ Πr ◦ Tr in terms
of the Hedin vertex λr − 1r. Equations (66) are simi-
lar to the previous flow equations (57) and (60) of the
more general case, but some occurrences of the Hedin
vertices λ̄r, λr on the right there are here replaced by
their zeroth-order term 1r. Evidently, the contributions
needed to upgrade these 1r to λ̄r, λr are omitted when
setting Ṁr = 0.

A loop expansion of the above equations then yields

Ṗ (1)
r = 1r ◦ Π̇r ◦ λ̄r + λr ◦ Π̇r ◦ 1r − 1r ◦ Π̇r ◦ 1r,

˙̄λ(1)
r = Tr ◦ Π̇r ◦ 1r,

λ̇(1)
r = 1r ◦ Π̇r ◦ Tr, (67a)

Ṗ (2)
r = 0,

˙̄λ(�+1)
r = ∇̇(�)

r̄ ◦ Πr ◦ 1r,

λ̇(�+1)
r = 1r ◦ Πr ◦ ∇̇(�)

r̄ , (67b)

Ṗ (�+2)
r = 1r ◦ Πr ◦ ∇̇(�)

r̄ ◦ Πr ◦ 1r,

ẇ(�)
r = wr • Ṗ (�)

r
• wr. (67c)

Apart from the fact that Ṁr is not needed here, the
other flow equations are also simpler than Eqs. (48)
without Ṁr, obtained from the full SBE equations. To
be specific, Eqs. (48) contain λ̄r or λr on the right of
the flow equations for ˙̄λ(�)

r or λ̇
(�)
r , whereas the simplified

Eqs. (67) contain 1r there, and, for � ≥ 2, only one term
where Eqs. (48) had two.

When using the above flow equations for the SBE
approximation, the self-energy flow (12) should also be
re-derived from either the SDE or the Hedin equation
for Σ (e.g. Eq. (23) in Ref. [27]). Since the present paper
focuses on vertex parametrizations, we leave a deriva-
tion of a suitably modified self-energy flow for future
work. Here, it suffices to note that, when used together
with such a modified self-energy flow, Eqs. (67) are
again total derivatives of a closed set of equations. So,
integrating the flow until loop convergence would yield
the regulator-independent solution of the SBE approx-
imation.

Transforming the self-consistent equations of the
SBE approximation on the vertex level to an equiva-
lent mfRG flow reveals its simplistic nature, with rela-
tions like λ̇

(1)
r = 1r •Π̇r •Tr, and demonstrates how fRG

offers an intuitive way to go beyond that, using, e.g.,
λ̇
(1)
r = λr • Π̇r • Tr (still treating only functions of at

most two frequencies). However, the latter flow would
be regulator-dependent per se. It remains to be seen
how severe the lack of regulator independence for this
flow, as used, e.g., in Ref. [31], is.

The simplified schemes presented in this section [i.e.,
Eqs. (64) and (67)] are closed flow equations on the ver-
tex level and thus offer an appealing way for approach-
ing the full SBE mfRG equations (48). Thereby, SBE
ingredients with more complicated frequency depen-
dence can be taken into account successively during
code development. To what extent they can succeed
in actually capturing the essential physics of a given
problem will have to be investigated on a case-by-case
basis. Generally, we showed that mfRG offers a way to
make the choice of a certain approximation regulator
independent, either for the simplistic flow of the SBE
approximation or for the full SBE mfRG flow reproduc-
ing the PA.

4 Asymptotic classes

In numerical implementations of parquet mfRG [10–14],
it is useful to handle the numerical complexity of the
vertex by decomposing it into asymptotic classes with
well-defined high-frequency behaviors. It is convenient
to compute the flow of these asymptotic classes using
their own flow equations; here, we recapitulate their
derivation. We also elucidate the close relation between
vertex parametrizations using the parquet decomposi-
tion with asymptotic classes or the SBE decomposition,
deriving explicit equations relating their ingredients.
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These equations may facilitate the adaption of codes
devised for parquet mfRG to SBE mfRG applications.

4.1 Definition of asymptotic classes

The parametrization of two-particle reducible vertices
γr via asymptotic classes was introduced in Ref. [16] to
conveniently express their high-frequency asymptotics
through simpler objects with fewer frequency argu-
ments. One makes the ansatz

γr(ωr, νr, ν
′
r)

= Kr
1(ωr)+Kr

2(ωr, νr)+Kr
2′(ωr, ν

′
r)+Kr

3(ωr, νr, ν
′
r).

(68)

Here, Kr
1 contains all diagrams having both νr legs con-

nected to the same bare vertex and both ν′
r legs con-

nected to another bare vertex. (For a diagrammatic
depiction, see Appendix B, Fig. 14.) These diagrams
are thus independent of νr, ν′

r and stay finite in the
limit |νr| → ∞, |ν′

r| → ∞,

lim
|νr|→∞

lim
|ν′

r|→∞
γr(ωr, νr, ν

′
r) = Kr

1(ωr). (69a)

Kr
2 (or Kr

2′) analogously contains the part of the vertex
having both ν′

r (or νr) legs connected to the same bare
vertex while the two νr (or ν′

r) legs are connected to
different bare vertices. Hence, it is finite for |ν′

r| → ∞
(or |νr| → ∞) but vanishes for |νr| → ∞ (or |ν′

r| → ∞):

lim
|ν′

r|→∞
γr(ωr, νr, ν

′
r) = Kr

1(ωr) + Kr
2(ωr, νr),

lim
|νr|→∞

γr(ωr, νr, ν
′
r) = Kr

1(ωr) + Kr
2′(ωr, ν

′
r). (69b)

Kr
3 exclusively contains diagrams having both νr legs

connected to different bare vertices, and likewise for
both ν′

r legs. Such diagrams depend on all three fre-
quencies and thus decay if any of them is sent to infin-
ity. When taking the above limits for bubbles involving
channels r′ different from r, we obtain zero,

lim
|νr|→∞

γr′ �=r = lim
|ν′

r|→∞
γr′ �=r = 0, (69c)

as each Πr′ in γr′ has a denominator containing ωr′ �=r,
which is a linear combination of ωr, νr and ν′

r.
Since R explicitly depends on all frequencies, it

decays to the bare vertex U at high frequencies, and
the asymptotic classes can be obtained by taking limits
of the full vertex. Explicitly, Kr

1 can be obtained from

lim
|νr|→∞

lim
|ν′

r|→∞
Γ (ωr, νr, ν

′
r) = U + Kr

1(ωr), (70a)

taking the double limit in such a way that νr ±ν′
r is not

constant, to ensure that all bosonic frequencies |ωr′ �=r|
go to ∞ [16]. Similarly, Kr

2, Kr
2′ can be obtained from

objects Γ r
2 , Γ r

2′ defined via the limits

Γ r
2 (ωr, νr)= lim

|ν′
r|→∞

Γ (ωr, νr, ν
′
r)=U + Kr

1+Kr
2, (70b)

Γ r
2′(ωr, ν

′
r)= lim

|νr|→∞
Γ (ωr, νr, ν

′
r)=U + Kr

1+Kr
2′ . (70c)

For each of the latter two limits, we denote the com-
plementary part of the vertex (vanishing in said limit)
by

Γ̄ r
2 (ωr, νr, ν

′
r)=Γ −Γ r

2 = Kr
2′ + Kr

3 + γr̄+R−U, (70d)

Γ̄ r
2′(ωr, νr, ν

′
r)=Γ −Γ r

2′ = Kr
2 + Kr

3 + γr̄+R−U. (70e)

By taking suitable limits in the BSEs (4), the asymp-
totic classes can be expressed through the full vertex Γ
and the bare interaction U [16]:

Kr
1(ωr) = U ◦ (Πr + Πr ◦ Γ ◦ Πr) ◦ U, (71a)

Kr
2(ωr, νr) = Γ ◦ Πr ◦ U − Kr

1, (71b)

Kr
2′(ωr, ν

′
r) = U ◦ Πr ◦ Γ − Kr

1. (71c)

Hence, they are directly related to the three-point
vertices Γ̄

(3)
r , Γ

(3)
r and susceptibilities χr (cf. Eqs. (45)

and Ref. [16]) as

χr(ωr) = U−1 • Kr
1(ωr) • U−1, (72a)

Γ̄ (3)
r (ωr, νr) = [U + Kr

1 + Kr
2](ωr, νr) • U−1, (72b)

Γ (3)
r (ωr, ν

′
r) = U−1 • [U + Kr

1 + Kr
2′ ](ωr, ν

′
r). (72c)

Kr
1 diagrams are therefore mediated by the bosonic

fluctuations described by the susceptibility χr, whereas
Kr

2 and Kr
2′ describe the coupling of fermions to these

bosonic fluctuations via the three-point vertices Γ̄
(3)
r

and Γ
(3)
r . This hints at the close relation between

asymptotic classes and SBE components which is fur-
ther discussed in Sec. 4.3.

4.2 mfRG equations for asymptotic classes

When the vertex is parametrized through its asymp-
totic classes, it is convenient to compute the latter
directly during the flow, without numerically sending
certain frequencies to infinity. This facilitates system-
atically adding or neglecting higher asymptotic classes.
Therefore, we now derive explicit mfRG flow equations
for the asymptotic classes, starting from the general
multiloop flow equations (10), similar to the derivation
of the mfRG flow equations for the SBE ingredients
in Sect. 3.2. (For a diagrammatic derivation, see Refs.
[50,51].)

The parametrization (68) of γr in terms of asymptotic
classes holds analogously at each loop order,

γ̇(�)
r = K̇r(�)

1 + K̇r(�)
2 + K̇r(�)

2′ + K̇r(�)
3 . (73)
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Then, each summand can be obtained from Eqs. (10)
for γ̇

(�)
r by taking suitable limits of the fermionic fre-

quencies νr, ν
′
r, as specified in Eqs. (69). For example,

consider a bubble of type Γ ◦Π̇r ◦Γ̃ , in the r representa-
tion of Eq. (20). In the limit |νr| → ∞, the first vertex
reduces to Γ r

2′ (Eq. (70c)), while for |ν′
r| → ∞, the sec-

ond vertex reduces to Γ̃ r
2 (Eq. (70b)). Using Eq. (20),

we thus obtain

lim
|νr|→∞

Γ ◦ Π̇r ◦ Γ̃ = Γ r
2′ ◦ Π̇r ◦ Γ̃ , (74a)

lim
|ν′

r|→∞
Γ ◦ Π̇r ◦ Γ̃ = Γ ◦ Π̇r ◦ Γ̃ r

2 . (74b)

By contrast, when taking these limits for bubbles
involving channels r′ different from r, we obtain zero,

lim
|νr|→∞

Γ ◦ Π̇r′ �=r ◦ Γ̃ = 0, lim
|ν′

r|→∞
Γ ◦ Π̇r′ �=r ◦ Γ̃ = 0,

(74c)

by similar reasoning as that leading to Eq. (69c). In
this manner, the 1� flow equation (10a) for γ̇

(1)
r readily

yields

K̇r (1)
1 = Γ r

2′ ◦ Π̇r ◦ Γ r
2 ,

K̇r (1)
2 = Γ̄ r

2′ ◦ Π̇r ◦ Γ r
2 ,

K̇r (1)
2′ = Γ r

2′ ◦ Π̇r ◦ Γ̄ r
2 ,

K̇r (1)
3 = Γ̄ r

2′ ◦ Π̇r ◦ Γ̄ r
2 . (75a)

Similarly, the two-loop contribution γ̇
(2)
r , Eq. (10b),

yields

K̇r (2)
1 = 0,

K̇r (2)
2 = γ̇

(1)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (2)
2′ = Γ r

2′ ◦ Πr ◦ γ̇
(1)
r̄ ,

K̇r (2)
3 = γ̇

(1)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(1)
r̄ . (75b)

Due to Eq. (69c), K̇r (2)
1 vanishes and K̇r (2)

2 or K̇r (2)
2′

contain no terms with γ̇
(1)
r̄ on their right or left sides,

respectively. Finally, Eq. (10c) for γ̇
(�+2)
r , with � ≥ 1,

yields

K̇r (�+2)
1 = Γ r

2′ ◦ Πr ◦ γ̇
(�)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (�+2)
2 = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (�+2)
2′ = Γ r

2′ ◦ Πr ◦ γ̇
(�)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ r
2′ ◦ Πr ◦ γ̇

(�+1)
r̄ ,

K̇r (�+2)
3 = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ̄ r

2

+ Γ̄ r
2′ ◦ Πr ◦ γ̇

(�+1)
r̄ . (75c)

Here, K̇r(�+2)
1 	= 0 since γ̇

(1)
r̄ appears in the middle in

the central term of Eq. (10c); hence, Eq. (69c) does not
apply.

Note that these equations can also be used in the con-
text of DMF2RG [32,33]. There, only the full vertex Γ is
given as an input. While Kr

1, Kr
2 and Kr

2′ can be deduced
from Γ by sending certain frequencies to infinity (cf.
Eqs. (70)) or using Eqs. (71), it is not possible to sim-
ilarly extract Kr

3 in a given channel as some frequency
limit of the full vertex Γ . However, the classes Kr

3 do
not enter the right-hand sides of the flow equations
(75) individually, but only the combination R + K3 =
R +

∑
r Kr

3. This is already clear from the general for-
mulation of the mfRG flow equations (10). Consider,
e.g., the 1� contribution K̇r(1)

2 of Eq. (75a). There, Γ̄ r
2′

contains R+Kr
3+γr̄ = R+K3+

∑
r′ �=r(Kr′

1 +Kr′
2 +Kr′

2′),
and hence only requires knowledge of the full R + K3.
This holds equivalently for all insertions of the full ver-
tex into flow equations at any loop order. Now, inser-
tions of the differentiated vertex in loop order � into
the flow equations of order � + 1 and � + 2 do require
a channel decomposition K̇3 =

∑
r K̇r

3. For example,
the two-loop contribution K̇r (2)

2 of Eq. (75b) contains
γ̇
(1)
r̄ , which, by Eq. (73), involves differentiated vertices

K̇r′ �=r (1)
3 . These are available via Eq. (75a). Therefore,

in the DMF2RG context, one would start with Kr
1, Kr

2,Kr
2′ and the full R + K3 from DMFT, compute the dif-

ferentiated vertices K̇r
i independently (including K̇r

3),
successively insert them in higher loop orders, and even-
tually update K3 using K̇3 =

∑
�,r K̇r (�)

3 in each step of
the flow (recall that R does not flow, Ṙ = 0). The same
reasoning also applies to the multi-boson terms Mr.

4.3 Relating SBE ingredients and asymptotic classes

The asymptotic classes and SBE ingredients are closely
related [31]. This is not surprising as the properties of
both follow from the assumption that the bare vertex
contains no frequency dependence, except for frequency
conservation. For convenience, we collect these relations
below.

Comparison of Eqs. (43) and (71a) yields

wr(ωr) = U + Kr
1(ωr). (76)

Similarly, using Eqs. (42), (43), (71b), and (71c), we can
write the products of Hedin vertices and the screened
interaction as

λ̄r • wr = U + Γ ◦ Πr ◦ U = U + Kr
1 + Kr

2, (77a)
wr • λr = U + U ◦ Πr ◦ Γ = U + Kr

1 + Kr
2′ . (77b)

We now insert Eq. (76) for U+Kr
1 and solve for λr, λ̄r,

formally defining w−1
r through wr•w−1

r = w−1
r

•wr = 1r.
Thus, we obtain

λ̄r = 1r + Kr
2

• w−1
r , λr = 1r + w−1

r
• Kr

2′ , (78)
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Fig. 11 Overview over vertex decompositions: The par-
quet decomposition (second line) can be grouped by asymp-
totic classes (third line) or U -r-reducibility (fourth line),
highlighting the relation between these two notions. Arrows
link terms that can be identified: Kr

3 = Mr + Kr
2 • w−1

r • Kr
2′

and Kr
1 +Kr

2 +Kr
2′ +Kr

2 • w−1
r • Kr

2′ = λ̄r • wr • λr −U for the
Π-r-reducible contributions, and ϕU irr = R − U +

∑
r Mr

for the fully U -r-irreducible contributions. The colors indi-
cate whether the objects depend on 1, 2, or 3 frequency
arguments

which, when inserted into Eq. (33), yields

∇r =
(
1r + Kr

2
• w−1

r

)
• wr •

(
1r + w−1

r
• Kr

2′
)

= U + Kr
1 + Kr

2 + Kr
2′ + Kr

2
• w−1

r
• Kr

2′ . (79)

Depending on model details, it may happen that not all
components of w−1

r are uniquely defined. However, the
right-hand sides of Eqs. (78)–(79) are unambiguous as
the SBE ingredients are well defined through Eqs. (41).

Recalling that γr = ∇r − U + Mr, we conclude that

Mr = Kr
3 − Kr

2
• w−1

r
• Kr

2′ . (80)

Hence, ∇r contains a part of Kr
3, namely Kr

2
• w−1

r
• Kr

2′ ,
which can be fully expressed through functions that
each depend on at most two frequencies. Mr con-
tains the remaining part of Kr

3, which must be explic-
itly parametrized through three frequencies and thus
is numerically most expensive. A recent study of the
Hubbard model showed that

∑
r Mr is strongly local-

ized in frequency space, particularly in the strong-
coupling regime [31]. This allows for a cheaper numer-
ical treatment of the vertex part truly depending on
three frequencies and constitutes the main computa-
tional advantage of the SBE decomposition.

Equations (76)–(79) fully express the SBE ingredi-
ents through asymptotic classes. Analogous results were
obtained by similar arguments in Appendix A of Ref.
[31]. Figure 11 summarizes the relation between the two
vertex decompositions and their ingredients.

Conversely, the asymptotic classes can also be
expressed fully through the SBE ingredients. Using
Eqs. (23), (68), (76), and (78), one finds

Kr
1 = wr − U (81a)

Kr
2 = (λ̄r − 1r) • wr, (81b)

Kr
2′ = wr • (λr − 1r), (81c)

Kr
3 = Mr + (λ̄r − 1r) • wr • (λr − 1r). (81d)

Moreover, Eqs. (25a), (70b), (70c), and (77) imply

Γ r
2 = λ̄r • wr, (82a)

Γ r
2′ = wr • λr, (82b)

Γ̄ r
2 = λ̄r • wr • (λr − 1r) + Tr (82c)

Γ̄ r
2′ = (λ̄r − 1r) • wr • λr + Tr. (82d)

For the latter two equations, we used Eq. (25a) in the
form Γ = λ̄r • wr • λr + Tr. Equivalently, using the
definitions of the Hedin vertices in Eqs. (32), we can
express Kr

2, Kr
3, and Eqs. (82) as

Kr
2 = Tr ◦ Πr ◦ wr, (83a)

Kr
2′ = wr ◦ Πr ◦ Tr, (83b)

Kr
3 = Mr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr, (83c)

Γ r
2 = wr + Tr ◦ Πr ◦ wr, (83d)

Γ r
2′ = wr + wr ◦ Πr ◦ Tr, (83e)

Γ̄ r
2 = Tr + wr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr, (83f)

Γ̄ r
2′ = Tr + Tr ◦ Πr ◦ wr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr.(83g)

Since the asymptotic classes and SBE ingredients are
closely related, the same is true for their mfRG flow.
Indeed, it is straightforward to derive the mfRG SBE
flow equations (48) from the flow equations (75) for
K̇r (�)

i . We briefly indicate the strategy, without pre-
senting all details.

We differentiate the equations (81) expressing Kr
i

through SBE ingredients, and subsequently use Eqs. (32)
to eliminate λ̄r − 1r and λr − 1r. Thereby, we obtain

K̇r
1 = ẇr, (84a)

K̇r
2 = ˙̄λr • wr + Tr ◦ Πr ◦ ẇr, (84b)

K̇r
2′ = ẇr ◦ Πr ◦ Tr + wr • λ̇r, (84c)

K̇r
3 = ˙̄λr • wr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ ẇr ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ wr • λ̇r + Ṁr. (84d)

Now, we use Eqs. (75) to express the K̇r (�)
i on the left

through Γ r
2 , Γ r

2′ , Γ̄ r
2 , Γ̄ r

2′ , and Eqs. (82) to express the
latter through SBE ingredients. By matching terms on
the left and right in each loop order, we obtain flow
equations for ẇ(�), ˙̄λ(�)

r , λ̇
(�)
r and Ṁ

(�)
r . For example, at

1� order, Eqs. (75a) and (84a) for K̇r (1)
1 yield

ẇ(1)
r = Γ r

2′ ◦ Π̇r ◦ Γ r
2 = wr • λr ◦ Π̇r ◦ λ̄r • wr, (85)

consistent with Eq. (48a). Similarly, for K̇r (1)
2 , we

obtain

˙̄λ(1)
r

• wr + Tr ◦ Πr ◦ ẇ(1)
r = Γ̄ r

2′ ◦ Π̇r ◦ Γ r
2

= Tr ◦ Π̇r ◦ λ̄r • wr + Tr ◦ Πr ◦ wr • λr ◦ Π̇r ◦ λ̄r • wr.
(86)
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The second terms on the left and right cancel due to
Eq. (85). The remaining terms, right-multiplied by w−1

r ,
yield ˙̄λ(1)

r = Tr ◦ Π̇r ◦ λ̄r, consistent with Eq. (48a). All
of the equations (48) can be derived in this manner.

5 Conclusions and outlook

The SBE decomposition of the four-point vertex was
originally introduced in Hubbard-like models respect-
ing SU(2) spin symmetry and was written in terms of
physical (e.g., spin and charge) channels [26]. Inspired
by Refs. [25–30], we here formulated the SBE decompo-
sition without specifying the structure of non-frequency
arguments (such as position or momentum, spin, etc.)
starting from the parquet equations for general fermionic
models. The only restriction on the structure of the
bare vertex U is that, apart from being frequency-
conserving, it is otherwise constant in frequency. Our
formulation can thus be used as a starting point for
a rather general class of models. It can also be easily
extended to the Keldysh formalism or to other types of
particles such as bosons or real fermions.

In this generalized framework, we re-derived self-
consistent equations for the ingredients of the SBE
decomposition ∇r = λ̄r • wr • λr, the so-called SBE
equations, by separating the BSEs for the two-particle
reducible vertices regarding their U -reducibility. The U -
reducible ∇r have a transparent interpretation through
bosonic exchange fluctuations and Hedin vertices,
describing the coupling of these bosonic fluctuations
to fermions. As our main result, we derived multiloop
flow equations for the SBE ingredients in two differ-
ent ways: first by inserting the SBE decomposition into
parquet mfRG and second by differentiating the SBE
equations. Thereby, we presented the multiloop gener-
alization of the 1� SBE flow of Ref. [31]. In addition,
we gave a detailed discussion of the relation between
the SBE ingredients, Mr and ∇r = λ̄r • wr • λr, and
the asymptotic classes Kr

i of the two-particle reducible
vertices. Finally, we also presented multiloop flow equa-
tions for the Kr

i and thus provided a unified formulation
for the mfRG treatment of the parquet and the SBE
vertex decompositions.

A numerical study of the SBE mfRG flow for relevant
model systems, such as the single-impurity Anderson
model or the Hubbard model, is left for future work.
Below, we outline some open questions to be addressed.

The numerically most expensive SBE ingredient is
the fully U -irreducible vertex ϕU irr, involving the multi-
boson exchange terms Mr, because these all depend
on three frequency arguments. One may hope that, for
certain applications, it might suffice to neglect ϕU irr (as
done in Ref. [35] for a DMFT treatment of the Hubbard
model), or to treat it in a cheap fashion, e.g., by not
keeping track of its full frequency dependence or by not
letting it flow (cf. Ref. [31]). This spoils the parquet

two-particle self-consistency while retaining SBE self-
consistency. It is an interesting open question which of
the main qualitative features of the parquet solution,
such as fulfillment of the Mermin–Wagner theorem [52],
remain intact this way.

One formal feature, namely regulator independence,
is maintained if multiloop flow equations in the SBE
approximation are used. These equations are derived
by setting ϕU irr = 0 and Ṁr = 0 from the beginning
(Sect. 3.4) and are actually simpler than those obtained
by setting Ṁr = 0 in the full SBE mfRG flow. We
left the derivation of a self-energy flow directly within
the SBE approximation for future work. The combina-
tion of such a self-energy flow with the vertex flow of
Sect. 3.4 would constitute the total derivative of the
SBE approximation. Therefore, if loop convergence can
be achieved when integrating these simplified flow equa-
tions, the results will be regulator independent, just as
for the full SBE mfRG flow with ϕU irr =

∑
r Mr and

Ṁr 	= 0, reproducing the PA.
Even if it turns out that a full treatment of ϕU irr

is required for capturing essential qualitative features
of the vertex, this might still be numerically cheaper
than a full treatment of K3. The reason is that each
Kr

3 contains a contribution, the Kr
2

• w−1
r

• Kr
2′ term in

Eq. (79), which is included not in Mr but in ∇r, and
parametrized through the numerically cheaper Hedin
vertices and screened interactions, see Fig. 11. If these
terms decay comparatively slowly with frequency, their
treatment via the Kr

i decomposition would be numeri-
cally expensive, and the SBE decomposition could offer
a numerically cheaper alternative. A systematic com-
parison of the numerical costs required to compute the
multiloop flow of the two decompositions should thus
be a main goal of future work.
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Fig. 12 Illustration of the structure of ∇r using wr = U + Kr
1 (Eq. (76)), including an exemplary sixth-order diagram.

While λ̄r, wr, λr factorize w.r.t. their frequency dependence (since they are connected by bare vertices in ∇r), they are
viewed as four-point objects w.r.t. the other quantum numbers (the internal indices 3, 3′, 4, 4′ have to be summed over,
cf. Eqs. (6))
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A Diagrams of SBE ingredients

Figure 12 illustrates which parts of the U -r-reducible dia-
grams ∇r belong to the Hedin vertices λ̄r, λr and which
parts belong to the screened interactions wr (for exemplary
low-order diagrams, see Fig. 5).

B Diagrams of asymptotic classes

We illustrate the channel-specific frequency parametrizations
of the vertex (Fig. 3) in second-order perturbation theory
in Fig. 13.

The bosonic frequency ωr is transferred through the bub-
ble in which each diagram is reducible, while the fermionic
frequencies νr, ν

′
r parametrize the frequency dependence on

each side of the bubble. Evidently, the internal propaga-
tor lines only depend on the bosonic transfer frequency of
the corresponding channel (and the internal integration fre-
quency). The external fermionic frequency νr flows in and
out at the same bare vertex, and so does ν′

r at another bare
vertex, such that the value of each diagram is independent
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Fig. 13 Diagrams in second-order perturbation theory including the channel-specific frequency parametrization

Fig. 14 Illustration of the decomposition of the two-particle reducible vertices γr into asymptotic classes, Kr
1+Kr

2+Kr
2′ +Kr

3

of νr, ν
′
r. This notion can be generalized [16], leading to

the decomposition of each Π-r-reducible vertex γr into four
different asymptotic classes, Kr

1 + Kr
2 + Kr

2′ + Kr
3, depicted

diagrammatically in Fig. 14. A formal definition is given by
Eqs. (69) in the main text.

C Relation to SBE in physical channels

The SBE decomposition was originally defined in terms of
the charge, spin, and singlet pairing channels [26]. These
involve specific linear combinations of the spin components,
chosen to diagonalize the spin structure in the BSEs for
SU(2)-symmetric systems [9]. Assuming SU(2) spin symme-
try, we show below how these “physical” SBE channels are
related to the “diagrammatic” SBE channels used in the
main text.

By spin conservation, each incoming spin σ ∈ {↑, ↓} must
also come out of a vertex. The nonzero components thus are

Γ σσ̄ = Γ σσ̄|σσ̄, Γ̂ σσ̄ = Γ σσ̄|σ̄σ, Γ σσ = Γ σσ|σσ. (87)

Furthermore, crossing symmetry relates Γ ↑↓ and Γ̂ ↑↓, and
SU(2) spin symmetry yields Γ σσ = Γ σσ̄ + Γ̂ σσ̄ [53].

On the level of the full vertex, one defines the charge,
spin, and singlet or triplet pairing channels as [9,38]

Γ ch/sp = Γ ↑↑ ± Γ ↑↓, Γ tr/si = Γ ↑↓ ± Γ̂
↑↓

. (88)

This notation carries over to all vertex objects like ∇α
r , λα

r

and wα
r , with α denoting ch, sp, si, or tr.

The bare vertex has U↑↑ = 0 and U↑↓ = −Û↑↓, so that

Uch/sp = U↑↑ ± U↑↓ = ±U↑↓, (89a)

U si = U↑↓ − Û↑↓ = 2U↑↓. (89b)

The bare interaction U tr in the triplet pairing channel van-
ishes and does not give a U -reducible contribution [26].

We now show that, if the ingredients of the SBE decom-
position Eq. (41a) are expressed through the physical charge
and spin components (ch, sp) rather than the diagrammatic
components (↑↑, ↑↓) used here, one indeed obtains the orig-
inal form of the SBE decomposition depicted in Fig. 1 of
Ref. [26].
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This is trivial to see for the fully U -irreducible part ϕU irr

(analogous to Eq. (88)) and the bare vertex U (Eqs. (89)).
It remains to show that for the U -r-reducible terms ∇r =
λ̄r •wr •λr, the components ∇α

r have the form given in Fig. 1
of Ref. [26], with α = ch or sp.

We start with the t channel. Defining sign factors for
charge and spin channels, sch = 1 and ssp = −1, we have

∇α
t = ∇↑↑

t + sα∇↑↓
t

= λ̄
σ↑|σ↑
t w

σ′σ|σ′σ
t λ

↑σ′|↑σ′
t + sαλ̄

σ↓|σ↓
t w

σ′σ|σ′σ
t λ

↑σ′|↑σ′
t .

(90)

Here, we sum as usual over spin indices σ, σ′. Making use
of w↑↑

t = w↓↓
t , w↓↑

t = w↑↓
t , and similarly for λ̄t, λt, we can

collect the summands as

∇α
t = (λ̄↑↑

t + sαλ̄↑↓
t )(w↑↑

t + sαw↑↓
t )(λ↑↑

t + sαλ↑↓
t )

= λ̄α
t wα

t λα
t , (91)

which is equivalent to ∇ph in Ref. [26]. (Note that in our
convention of depicting diagrams, all diagrams are mirrored
along the diagonal from the top left to bottom right (i.e.,
the bottom left and top right legs are exchanged) compared
to the convention used in Ref. [26]: The ph (ph) channel
corresponds to the t (a) channel.)

We continue with the a channel, which is related to the t
channel by crossing symmetry,

Γ̂
↑↓

(ωa, νa, ν′
a) = −Γ ↑↓(ωt = ωa, νt = νa, ν′

t = ν′
a). (92)

The frequency arguments on the right are defined according
to the t-channel conventions (ωt, νt, ν

′
t), and then evaluated

at the a-channel frequencies occurring on the left. In partic-
ular, we have (cf. Eq. (11) of Ref. [26])

Γ α(ωa, νa, ν′
a)

= − 1
2

[
Γ ch + (1 + 2sα)Γ sp

]
(ωt = ωa, νt = νa, ν′

t = ν′
a).

(93)

The U -a-reducible diagrams ∇a can therefore be expressed
through the U -t-reducible diagrams ∇t:

∇α
a (ωa, νa, ν′

a)

=−1
2

[
λ̄ch

t wch
t λch

t +(1 + 2sα)λ̄sp
t wsp

t λsp
t

]
(ωa, νa, ν′

a), (94)

reproducing ∇ph in Ref. [26]. The frequency arguments on
the right have the same meaning as in Eq. (92).

Last, we consider the p channel. With SU(2) symmetry,

∇↑↑
p = ∇↑↓

p + ∇̂↑↓
p , we have

∇α
p = ∇↑↑

p + sα∇↑↓
p = ∇̂↑↓

p + (1 + sα)∇↑↓
p

= λ̄↑↓|σσ̄
p wσσ̄|σ′σ̄′

p λσ′σ̄′|↑↓
p

+ (1 + sα)λ̄↑↓|σσ̄
p wσσ̄|σ′σ̄′

p λσ′σ̄′|↓↑
p . (95)

Note that the spins in the first and second pair of spin
indices of wp have to be opposite, σσ̄ and σ′σ̄′, since they
connect to the same bare vertex (cf. Fig. 12), and Uσσ = 0.

Furthermore, the crossing relation U↑↓ = −Û↑↓ implies

w↑↓
p = −ŵ↑↓

p . By use of this, we can combine the terms
in the spin sums as

∇α
p = sα

2
(λ̄↑↓

p − ˆ̄λ↑↓
p )(w↑↓

p − ŵ↑↓
p )(λ↑↓

p − λ̂↑↓
p )

= sα

2
λ̄si

p wsi
p λsi

p , (96)

which gives ∇pp in Ref. [26].
In summary, we thus reproduce the decomposition of Ref.

[26]:

Γ α = ϕU irr,α + ∇α
a + ∇α

p + ∇α
t − 2Uα, (97a)

where the U -r-reducible parts are defined as

∇α
a (ωa, νa, ν′

a) = − 1
2
∇ch

t (ωa, νa, ν′
a)

− ( 3
2

− 2δα,sp)∇sp
t (ωa, νa, ν′

a), (97b)

∇α
p (ωp, νp, ν′

p) = ( 1
2

− δα,sp)[λ̄
si
p wsi

p λsi
p ](ωp, νp, ν′

p), (97c)
∇α

t (ωt, νt, ν
′
t) = [λ̄α

t wα
t λα

t ](ωt, νt, ν
′
t). (97d)

D Correlators and susceptibilities

Reference [26] established that the SBE ingredients λ̄r, wr,
λr are related to three-point correlators and generalized sus-
ceptibilities. For completeness, we illustrate here how these
relations arise within the present framework. The starting
point is the general relation between the four-point correla-
tor G(4) and the four-point vertex Γ ,

G
(4)

12|1′2′ = 〈c1c2c̄2′ c̄1′〉 = G1|1′G2|2′ − G1|2′G2|1′

+ G1|5′G2|6′Γ5′6′|56G5|1′G6|2′ .
(98)

By combining two fermionic fields, one obtains the bosonic
exchange field ψ, the pairing field φ, and its conjugate φ̄,

ψ12′(ω) =
∑

ν

c1(ν − ω
2
)c̄2′(ν + ω

2
) = ψ̄2′1(−ω), (99a)

φ12(ω) =
∑

ν

c1(
ω
2

+ ν)c2(
ω
2

− ν), (99b)

φ̄1′2′(ω) =
∑

ν′
c̄2′(ω

2
− ν′)c̄1′(ω

2
+ ν′). (99c)

Three-point correlators and bosonic two-point correlators
involving these fields can be obtained from G(4) by summing

over the frequency ν
(′)
r in the channel-specific parametriza-

tion (cf. Equation (17) and Fig. 3):

Ḡ
(3)

r;12|1′2′(ωr, νr) =
∑

ν′
r

G
(4)

12|1′2′(ωr, νr, ν
′
r), (100a)

G
(3)

r;12|1′2′(ωr, ν
′
r) =

∑

νr

G
(4)

12|1′2′(ωr, νr, ν
′
r), (100b)

Dr;12|1′2′(ωr) =
∑

νr,ν′
r

G
(4)

12|1′2′(ωr, νr, ν
′
r). (100c)

For example, in the p channel, we have

Ḡ
(3)

p;12|1′2′ =
〈
c1c2φ̄1′2′

〉
, Dp;12|1′2′ =

〈
φ12φ̄1′2′

〉
. (101)

The four-point correlator G(4) is closely related to the

generalized susceptibilities χ
(4)
r [38]:
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χ
(4)

a;12|1′2′(ωa, νa, ν′
a)

= G
(4)

12|1′2′(ωa, νa, ν′
a) + δωa,0G1|2′(νa)G2|1′(ν′

a)

= δνaν′
a
Πa;12|1′2′(ωa, νa) + [Πa◦Γ ◦Πa]12|1′2′(ωa, νa, ν′

a),

(102a)

χ
(4)

p;12|1′2′(ωp, νp, ν′
p) = 1

4
G

(4)

12|1′2′(ωp, νp, ν′
p)

= δνpν′
p

1
2
Πp;12|1′2′(ωp, νp) − δνp,−ν′

p

1
2
Πp;12|2′1′(ωp, νp)

+ [Πp◦Γ ◦Πp]12|1′2′(ωp, νp, ν′
p), (102b)

χ
(4)

t;12|1′2′(ωt, νt, ν
′
t)

= G
(4)

12|1′2′(ωt, νt, ν
′
t) − δωt,0G1|1′(ν′

t)G2|2′(νt)

= δνtν′
t
Πt;12|1′2′(ωt, νt) + [Πt◦Γ ◦Πt]12|1′2′(ωt, νt, ν

′
t).

(102c)

In analogy to Eqs. (100), we then obtain three-point func-

tions χ̄
(3)
r , χ

(3)
r and physical susceptibilities χr by summing

over frequencies:

χ̄
(3)

r;12|1′2′(ωr, νr) =
∑

ν′
r

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r), (103a)

χ
(3)

r;12|1′2′(ωr, ν
′
r) =

∑

νr

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r), (103b)

χr;12|1′2′(ωr) =
∑

νr,ν′
r

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r). (103c)

The prefactor 1
4

in Eq. (102b) ensures that the susceptibility
χr in Eqs. (103c) is consistent with its counterpart in the
main text (cf. Eq. (45c)).

To make a connection between χ̄
(3)
r , χ

(3)
r , χr and SBE

objects, we use Eqs. (102), multiply by the bare interaction
U , and express the result in terms of the four-point vertex:

χ̄(3)
r • U = Πr ◦ (U + Γ ◦ Πr ◦ U), (104a)

U • χ(3)
r = (U + U ◦ Πr ◦ Γ ) ◦ Πr, (104b)

U • χr • U = U ◦ Πr ◦ U + U ◦ Πr ◦ Γ ◦ Πr ◦ U. (104c)

Finally, comparing these expressions to Eqs. (42)–(44)
shows their relation to the SBE ingredients:

χ̄(3)
r = Πr ◦ λ̄r • wr • U−1 = Πr ◦ Γ̄ (3)

r , (105a)

χ(3)
r = U−1 • wr • λr ◦ Πr = Γ (3)

r ◦ Πr, (105b)

χr = U−1 • (wr − U) • U−1. (105c)

These relations are analogous to those given in Eqs. (6), (8)
and (15) in Ref. [26]. Relations between the bosonic correla-

tors Ḡ
(3)
r , G

(3)
r , Dr from Eqs. (100) and the SBE ingredients

λ̄r, wr, λr are analogous up to disconnected terms and can
be readily constructed from Eqs. (103), (102), and (105).
For example, in the a channel, we have

Ḡ
(3)

a;12|1′2′(ωa, νa) = [Πa ◦ λ̄a • wa • U−1]12|1′2′(ωa, νa)

− δωa,0G1|2′(νa)
∑

ν′
a

G2|1′(ν′
a),

Da;12|1′2′(ωa) = [U−1 • (wa − U) • U−1]12|12′(ωa)

− δωa,0

∑

νa

G1|2′(νa)
∑

ν′
a

G2|1′(ν′
a).

(106)

E Susceptibilities for Hubbard interaction

The susceptibilities defined in Eq. (45c) and in Appendix D
exhibit general dependencies w.r.t. their non-frequency
indices 12|1′2′. In the following, we show how they are
related to physical charge, spin, and pairing susceptibilities.
To this end, we focus on models with a local (momentum-
independent) bare interaction, which has only spin degrees
of freedom subject to the Pauli principle. In the a and t
channel, Eq. (44c) with Kr

1 = wr − U then reads

Ka;σσ′|σσ′
1 = Uσσ̄|σ̄′σ′

χσ̄′σ̄|σ̄′σ̄
a U σ̄′σ′|σσ̄, (107a)

Kt;σσ′|σσ′
1 = U σ̄′σ′|σ̄′σ′

χ
σ̄σ̄′|σ̄σ̄′
t Uσσ̄|σσ̄. (107b)

We further specify Uσσ̄|σ̄′σ′
= u(δσσ′ − δσσ̄′), with the

(scalar) bare interaction strength u. With SU(2) symmetry,

χ
σ1σ′

1|σ2σ′
2

r = χ
σ̄1σ̄′

1|σ̄2σ̄′
2

r , Eqs. (107) thus simplify to

χ
σσ′|σσ′
a/t = Ka/t;σσ′|σσ′

1 /u2. (108)

In the p channel, we have

Kp;σσ′|σσ′
1 =

∑

σ1σ2

Uσσ′|σ1σ̄1 χσ1σ̄1|σ2σ̄2
p Uσ2σ̄2|σσ′

(109a)

= Uσσ′|σσ′
χ̃σσ′|σσ′

p Uσσ′|σσ′
. (109b)

Here, the second line (109b) follows from SU(2) and crossing
symmetry. It employs

χ̃p(ωp) = [1p ◦ Π̃p ◦ 1p](ωp)

+ [1p ◦ Π̃p ◦ Γ ◦ Π̃p ◦ 1p](ωp), (110)

where Π̃p;34|3′4′ = G3|3′G4|4′ = 2Πp;34|3′4′ does not include
a prefactor 1/2 (introduced in Eq. (5b) to avoid double
counting within internal spin sums), since there are no spin
sums in Eq. (109b). (This definition of the p susceptibil-
ity agrees with the related literature, e.g., Ref. [38].) With

Uσσ′|σσ′
= −uδσσ̄′ , we can write

χ̃σσ′|σσ′
p = δσσ̄′ Kp;σσ′|σσ′

1 /u2, (111)

in analogy to Eq. (108).
The relation between these “diagrammatic” susceptibil-

ities χr and their “physical” counterparts can be made
explicit by means of the bilinears

ρσσ′ = c̄σcσ′ , δρσσ′ = ρσσ′ − 〈ρσσ〉δσσ′ (112a)

ρ−
σσ′ = cσcσ′ , ρ+

σσ′ = c̄σ′ c̄σ. (112b)

Then, we have in the imaginary-time domain

χσσ′|σσ′
a (τ) = −〈δρσ′σ(τ)δρσσ′(0)〉, (113a)

χ̃σσ′|σσ′
p (τ) = 〈ρ−

σσ′(τ)ρ+
σσ′(0)〉, (113b)

χ
σσ′|σσ′
t (τ) = 〈δnσ(τ)δnσ′(0)〉. (113c)

with nσ = ρσσ. Choosing the spin arguments as χ↑↓
r =

χ
↑↓|↑↓
r , we furthermore get
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χ↑↓
a (τ) = −〈S−(τ)S+〉, (114a)

χ̃↑↓
p (τ) = 〈Δsi(τ)Δ†

si(0)〉, (114b)

χ↑↓
t (τ) = 〈δn↑(τ)δn↓(0)〉. (114c)

Hence, χ↑↓
a describes spin fluctuations (S− = c̄↓c↑, S+ =

c̄↑c↓) and χ̃↑↓
p singlet pairing fluctuations (Δsi = c↑c↓). By

SU(2) spin symmetry, 1
2
χ↑↓

a (τ) = −〈Sz(τ)Sz〉, with Sz =
1
2
(n↑ − n↓) = 1

2
(δn↑ − δn↓). It then follows that

χ↑↓
t (τ) − 1

2
χ↑↓

a (τ) = 1
2
(〈δn↑(τ)δn↑〉 + 〈δn↑(τ)δn↓〉)

= 1
4
〈δn(τ)δn〉 (115)

describes charge fluctuations with n = n↑ + n↓.

References
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