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DMRG ground state search algorithms employing symmetries must be able to expand virtual bond
spaces by adding or changing symmetry sectors if these lower the energy. Traditional single-site DMRG
does not allow bond expansion; two-site DMRG does, but at much higher computational costs. We present
a controlled bond expansion (CBE) algorithm that yields two-site accuracy and convergence per sweep, at
single-site costs. Given a matrix product state Ψ defining a variational space, CBE identifies parts of the
orthogonal space carrying significant weight inHΨ and expands bonds to include only these. CBE-DMRG
uses no mixing parameters and is fully variational. Using CBE-DMRG, we show that the Kondo-
Heisenberg model on a width 4 cylinder features two distinct phases differing in their Fermi surface
volumes.
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Introduction.—A powerful tool for studying ground state
properties of one- and two-dimensional quantum systems is
the density martrix renormalization group (DMRG) [1–7].
Prominent two-dimensional applications include the t-J
[8–11] and Hubbard [12–18] models, and quantum mag-
nets [19–22]. Because of their high numerical costs, such
studies are currently limited to either small finite-sized
systems or cylinders with small circumference. Progress
towards computationally cheaper DMRG ground state
search algorithms would clearly be welcome.
In this Letter, we address this challenge. A DMRG

ground state search explores a variational space spanned by
matrix product states [23,24]. If symmetries are exploited,
the algorithm must be able to expand the auxiliary spaces
associated with virtual bonds by adjusting symmetry
sectors if this lowers the energy. Traditional single-site
(1s) DMRG, which variationally updates one site at a time,
does not allow such bond expansions. As a result, it often
gets stuck in metastable configurations having quantum
numbers different from the actual ground state. Two-site
(2s) DMRG naturally leads to bond expansion, but carries
much higher computational costs.
Hence, schemes have been proposed for achieving bond

expansions at sub-2s costs, such as density matrix pertur-
bation [25] or strictly single-site DMRG (DMRG3S) [26].
However, in these schemes, the degree of subspace expan-
sion per local update is controlled by a heuristic mixing
factor. Depending on its value, some subspace expansion
updates increase, rather than decrease, the energy.
Here, we present a controlled bond expansion (CBE)

algorithm which lowers the energy with each step and
yields 2s accuracy and convergence per sweep, at 1s costs.

Given a matrix product state Ψ defining a variational space,
our key idea is to identify parts of the 2s orthogonal space
that carry significant weight in HΨ, and to include only
these parts when expanding the virtual bonds of a 1s
Hamiltonian. Remarkably, these parts can be found via a
projector that can be constructed at 1s costs.
Using CBE–DMRG we study the Kondo–Heisenberg

model on a width 4 cylinder and show that it features two
phases differing in their Fermi surface volumes. We thereby
further advance the understanding of this highly debated
model using a controlled method.
MPS basics.—We briefly recall some standard MPS

concepts [5], adopting the diagrammatic conventions of
Ref. [27]. Consider an L -site system with an open
boundary MPS wave function Ψ having dimensions d
for physical sites and D for virtual bonds. Ψ can be written
in bond-canonical form with respect to any bond l,

ð1Þ

The tensors , and are variational
parameters. They are linked by gauge relations,
AlΛl ¼ Λl−1Bl, useful for shifting the bond tensor Λl
to neighboring bonds. Al and Bl are left- and right-sided
isometries, respectively, projecting Dd-dimensional parent
(P) spaces to D-dimensional kept (K) image spaces [27];
they satisfy

ð2Þ
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The Hamiltonian can similarly be expressed as a matrix
product operator (MPO) with virtual bond dimension w,

ð3Þ

For 2s or 1s DMRG, the energy of Ψ is lowered by
projecting H to a local variational space associated with
sites ðl;lþ 1Þ or l, respectively, and using its ground state
(GS) within that space to locally update Ψ. The effective 2s
and 1s Hamiltonians can be computed recursively using

ð4aÞ

ð4bÞ

To perform 2s or 1s updates, one replaces ψ2s
l ¼

AlΛlBlþ1 or by the GS solutions of

ð5aÞ

ð5bÞ

Updating site by site, one sweeps back and forth through
the MPS until the GS energy converges.
The local variational space is larger for 2s than 1s

DMRG by a factor d, OðD2d2Þ vs. OðD2dÞ. This enables
2s DMRG to increase (“expand”) the bond dimension
during updates by including new states (and symmetry
sectors) from the 2s space. 1s DMRG cannot do this, and
hence often fails to yield accurate GS energies. The better
performance of 2s vs 1s has its price: much higher
numerical costs, OðD3d3 þD3d2wÞ vs OðD3dwÞ [5].
Discarded spaces.—To track those parts of 2s spaces

not contained in 1s spaces, we introduce orthogonal
complements of Al and Bl, denoted and .
These isometries have image spaces, called discarded (D)
spaces [27], of dimension D ¼ Dðd − 1Þ, orthogonal to
the kept images of Al and Bl. Thus
and are unitaries on their parent spaces,
with

ð6Þ

The unitarity conditions for A1
l and B1

l imply orthonor-
mality and completeness relations complementing Eq. (2),

ð7aÞ

ð7bÞ

If the unitary maps A1†
l and B1†

lþ1 of Eq. (6) are applied to
some of the open indices ofH1s

l ψ
1s
l ,H

1s
lþ1ψ

1s
lþ1, andH

2s
l ψ

2s
l

as indicated below, they map the diagrams of Eqs. (5) to

The first three terms from the third line also appear in the
first two lines, but the fourth, involving does not. Let
DD denote the image of the orthogonal complements

, then DD is orthogonal to the variational
space explored by 1s DMRG on sites ðl;lþ 1Þ. DD is
much larger than the latter, of dimension D2 ¼ D2ðd − 1Þ2
vs 2D2d, and (importantly) may contain new symmetry
sectors. Thus DD is the 2s ingredient lacking in 1s schemes.
This can also be seen considering the energy variance

ΔE ¼ kðH − EÞΨk2. By expanding it into contributions
involving orthogonal projections on one, two, or more sites
[28], ΔE ¼ Δ1⊥

E þ Δ2⊥
E þ � � �, one obtains [27]

ð8Þ

1s DMRG minimizes only Δ1⊥
E , 2s minimizes Δ1⊥

E and
Δ2⊥

E . We thus seek to expand the K image of or at the
expense of the D image of or . This transfers weight
from Δ2⊥

E to Δ1⊥
E , making it accessible to 1s minimization.

Controlled bond expansion.—The CBE algorithm rests
on two new insights, substantiated by the quality of its
results. The first insight is that the subspace of DD relevant
for lowering the GS energy is relatively small: it is the
subspace on which H2s

l ψ
2s
l and hence Δ2⊥

E have significant
weight. When expanding a bond, it thus suffices to add
only this small subspace (hence the moniker controlled
bond expansion), or only part of it, to be called relevant DD
(rDD) [29]. Since DD is the image of ,
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rDD can be viewed as the image of
or , where the isometries or

are truncated versions of Al or Blþ1 and have

image dimensions eD, say. It turns out that one may choose
eD < D, independent of d, thus rDD, of dimension eDD, is
indeed much smaller than DD. The second insight is that eAtr

l

or eBtr
lþ1 can be constructed at 1s costs using a novel scheme

explained in Fig. 1. We call it shrewd selection since it is
cheap, efficient and practical, though not strictly optimal
(that would require 2s costs).
Shrewd selection.—Ideally, eAtr

l should minimize the cost
function C1 (Fig. 1, top), the difference between applying
the projectors AlA

†
l or eAtr

l
eAtr†
l to H2s

l ψ
2s
l B

†
lþ1Blþ1.

However, exact minimization of C1 would involve 2s costs
(feasible if d, w, and D are comparatively small, but in
general undesirable). To maintain 1s costs, OðD3dwÞ, we
instead use shrewd selection, involving two separate
truncations, depicted schematically in Fig. 2 and explained
in detail in Sec. S-1 of the Supplemental Material [30]. The
first truncation (preselection) truncates the central MPS
bond from D → D0 (specified below) in the presence of its
environment by minimizing the cost function C2 (Fig. 1,
bottom left); this replaces the full complement by a
preselected complement, , with reduced

image dimension, D → bD ¼ D0w [44]. The second trun-
cation (final selection) minimizes the cost function C3
(Fig. 1, bottom right) with central MPO bond closed as
appropriate for H2s

l ψ
2s
l : it further truncates bApr

l to yield the
final truncated complement, , bD → D̃ < D. To

ensure 1s costs for final selection we need bD ¼ D, and thus
choose D0 ¼ D=w for preselection.
CBE update.—ACBE update of bond l proceeds in four

substeps. We describe them for a right-to-left sweep for
building eAtr

l and updating Clþ1 (left-to-right sweeps,

building eBtr
lþ1 and updating Cl, are analogous).

(i) Compute using shrewd selection. (ii) Expand

bond l from dimension D to Dþ eD by replacing Al by an
expanded isometry , and Clþ1 by an
expanded tensor initialized as , defined such that

Aex
l C

ex;i
lþ1 ¼ AlClþ1:

ð9Þ

Also construct an expanded one-site Hamiltonian, defined
in a variational space of dimension DðDþ eDÞd:

ð10Þ

(iii) Update Cex
lþ1 variationally by using an iterative

eigensolver, as usual in DMRG, to find the GS solution
of ðH1s;ex

lþ1 − EÞCex
lþ1 ¼ 0, starting from Cex;i

lþ1. (We employ
a Lanczos eigensolver.) This has costs of OðD3dwÞ. Thus,
Cex
lþ1 can be updated at 1s costs, while including only the

most relevant 2s information via the contribution of eAtr
l.

(iv) Shift the isometry center from site lþ 1 to site l using
a singular value decomposition (SVD) and truncate (trim)
bond l from dimension Dþ eD back to D, removing low-
weight states. The discarded weight, say ξ, of this bond
trimming serves as an error measure [30].
The energy minimization based on H1s;ex

lþ1 is variational,
hence each CBE update strictly lowers the GS energy.
Though shrewd selection involves severe bond reductions,
it yields rDDs suitable for efficiently lowering the GS
energy (in step (iii)). Moreover, although CBE explores
a much smaller variational space than 2s DMRG, it
converges at the same rate and accuracy (see below and
Ref. [30]), since it focuses on the subspace that really
matters for energy reduction. Section S-1 in [30] illustrates
this by analyzing singular value spectra. All in all, CBE
is a 1s cost version of the 2s update, compatible with
established DMRG parallelization schemes [45]. Similar to

FIG. 1. Shrewd selection for a right-to-left sweep: Ideally, the
truncated complement should be found by minimizing
the cost function C1, but that would involve 2s cost, OðD3d2wÞ.
To achieve 1s cost, OðD3dwÞ, we instead use shrewd selection,
involving two separate truncations: The first truncation (prese-
lection) truncates to by minimizing the cost
function C2. The second truncation (final selection) further
truncates by minimizing the cost function
C3. For details, see Fig. S-2 in Sec. S-1 of the Supplemental
Material [30].

FIG. 2. The projection H2s
l ψ

2s
l ↦

A†
l
H1s

lþ1ψ
1s
lþ1 to the tangent

space (yellow) of the MPS manifold (blue) discards information
from DD (depicted by gray arrows for DD basis vectors). Relevant
information is recovered at 1s cost by constructing rDD through
preselection (red), then final selection (orange).
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2s [7], CBE can also be combined with mixing during the
initial few sweeps (see Ref. [30], Sec. S-3).
We note that bond expansion using a truncated DD has

been proposed before [26,46]. But our outperforms
that of DMRG3S [26] (see below and Ref. [30]); and we
find at 1s costs, whereas Ref. [46] (on variational
uniform MPS [47]) uses an SVD requiring 2s costs.
Sweeping.—Our computations exploit Uð1Þch ⊗

SUð2Þsp charge and spin symmetries using QSpace
[48,49], with bond dimensions D� (or D) counting sym-
metry multiplets (or states). Usually, D� is increased with
each update during sweeping, from an initial D�

i to a final
D�

f ¼ αD�
i , with α > 1. To achieve this with CBE we (i,ii)

useD0� ≃D�
f =w

�, bD� ¼ D�
f (cf. Fig. 1) and expand fromD�

i

toD�
i þ eD� ¼ D�

f ð1þ δÞ, (iii) call the iterative eigensolver,
and (iv) truncate back to D�

f when shifting the isometry
center. We use δ ¼ 0.1 for CBE, unless stated otherwise.
Benchmarks.—As a first benchmark, we consider the 1D

Hubbard-Holstein (HH) model [31–35], described by

HHH ¼ −
X
lσ

ðc†lσclþ1σ þ H:c:Þ þ 0.8
X
l

nl↑nl↓

þ 0.5
X
l

b†lbl þ
ffiffiffiffiffiffiffi
0.2

p X
l

ðnl↑ þ nl↓ − 1Þ

× ðb†l þ blÞ: ð11Þ

Here, c†lσ creates an electron and b
†
l a phonon at site l, and

nlσ ¼ c†lσclσ. We search for the GS with N ¼ L ¼ 50,
total spin S ¼ 0, and restrict the maximum local number of
excited phonons to Nmax

ph . Then, d�½d� ¼ 3ðNmax
ph þ 1Þ

½4ðNmax
ph þ 1Þ�. Figure 3(a) shows the relative error in

energy vs number of half-sweeps ns for different D�
max

at fixed d� ¼ 12, comparing CBE and 2s DMRG schemes.
The convergence with ns is similar for CBE and 2s.
Figure 3(b) compares the CPU time (measured on a single
core of an Intel Core i7-9750H CPU) per sweep for CBE
and 2s for different d� at fixed D�

max. Linear and quadratic
fits confirm the expected d� (1s) or d�2 (2s) scaling,
respectively, highlighting the speedup from CBE.
Next, we consider L x ×L y ¼ 10 × 4 and 10 × 6

Hubbard cylinders (HC), described by (following Ref. [28])

HHC ¼ −
X

hl;l0i;σ
ðc†lσcl0σ þ H:c:Þ þ 8

X
l

nl↑nl↓: ð12Þ

Here, l ¼ ðx; yÞ is a 2D site index and
P

hl;l0i a nearest-
neighbor sum. We search for the GS with total filling
N ¼ 0.9L xL y and spin S ¼ 0. We use a real-space MPO,
not the hybrid-space MPO [13,50] used in Ref. [28].
Figures 3(c) and 3(d) benchmarks CBE (black) against
2s DMRG (red); their accuracies match (same GS energy
for given D�). CBE-DMRG yields controlled convergence

for sufficiently large D�, where the energy error decreases
linearly with ξ. DMRG3S does not reach 2s accuracy for
this model, as is clear from the data shown in Ref. [28]
Sec. V E.
Further benchmarks and comparison to DMRG3S are

shown in Ref. [30], Secs. S-2,3. We find that CBE has
similar run time per sweep but converges faster than
DMRG3S [26]: for given D�

max, the energy converges in
fewer sweeps and less run time, and reaches a lower value.
Kondo-Heisenberg cylinders.—Finally, to include some

new physics results in this Letter, we study the Kondo-
Heisenberg (KH) lattice model on a cylinder. The KH
model is believed to describe the essential physics of
heavy-fermion (HF) materials [36,51–53], which feature
many interesting phenomena. One of the most intriguing is
the so-called Kondo breakdown (KB) quantum critical
point (QCP) [38,42,54], where collective Kondo singlets
[42] formed at strong coupling break up, leading to a FS
reconstruction [55–58] at T ¼ 0. Strange metal behavior is
observed at finite temperatures with, e.g., ∼T resistivity
[58–62] or ∼T logT specific heat [61–64].
Theoretical understanding of the KB-QCP is still

incomplete, in part due to scarceness of numerical simu-
lations. Prior numerical studies used dynamical mean-
field theory [65–69] and Monte Carlo methods [70–73],
but we are not aware of DMRG results on the KB-QCP.
Here, we take first steps in this direction by studying
FS reconstruction on a KH cylinder: we show that at
T ¼ 0, there are two distinct phases featuring different
Fermi surfaces.

FIG. 3. Hubbard-Holstein (HH) model: (a) Convergence
of the GS energy versus number of half-sweeps ns at fixed
d� ¼ 3ðNmax

ph þ 1Þ. E0 was obtained by linear ξ extrapolation of
data from D�

max ∈ ½1000; 1200�. (b) CPU time per sweep for
various d� at fixed D�

max, showing d� (CBE) vs d�2 (2s) scaling.
Hubbard cylinders (HC): Error in GS energy vs ξ for (c) 10 × 4
and (d) 10 × 6 HCs, obtained with CBE (black) and 2s (red)
DMRG, for various D�

max (legends). Since 2s CPU times far
exceed those of CBE, 2s data is only shown for D�

max ≤ 10k.
Reference energies E0 ¼ −27.881 694 2 (10 × 4) and
−41.747 496 1 (10 × 6) are obtained by linear ξ extrapolation
of the four most accurate CBE results to ξ ¼ 0 (gray line).
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We study aL x×L y ¼ 40×4KH cylinder, described by

HKH ¼ −
X

hl;l0i;σ
ðc†lσcl0σ þ H:c:Þ þ JK

X
l

Sl · sl

þ 1

2

X
hl;l0i

Sl · Sl0 :

Here, sl ¼ 1
2

P
σσ0 c

†
lσσσσ0clσ0 and Sl are electron and local

moment spin-1
2
operators at site l. We search for the GS

with total filling N ¼ 1.25L xL y and spin S ¼ 0.
For a L y ¼ 4 cylinder, the Brillouin zone consists of

four lines, since ky ∈ f0;�ðπ=2Þ; πg is discrete. If such
a line cuts the L y → ∞FS, that defines a “Fermi point,”
with Fermi momentum ðkFxðkyÞ; kyÞ. We have extracted the
corresponding kFxðkyÞ values from CBE-DMRG results for
the single-particle density matrix (see Ref. [30], Sec. S-4 B
for details; Fig. S-13 shows controlled convergence of this
quantity). Figure 4 shows the results for various values
of JK . There are clearly two distinct phases with qualita-
tively different Fermi points kFxðkyÞ. At small JK ≤ 2,
we find Fermi points at ðjkFxj; jkyjÞ ¼ ð0.625π; π=2Þ and
ð0.256π; πÞ, matching the free-electron values at JK ¼ 0.
By contrast, at large JK ≥ 2.8, we find Fermi points only at
ðπ=2; 0Þ, suggesting a FS reconstruction at some JKc in
between. Note also that kFxðkyÞ remains JK independent in
each of the two regimes. This is expected from Luttinger’s
sum rule [39,41], which links the effective number neff of
mobile charge carriers (defined modulo 2, i.e., up to filled
bands) to the FS volume (see Ref. [30], Sec. S-4 C for
details). For small JK ≤ 0.75, we find neff ¼ 1.25, con-
sistent with 25% electron doping. By contrast, at large JK ≥
2.8 we find neff ¼ 0.25 ¼ 2.25 mod 2, consistent with
the spins becoming mobile charge carriers by “binding” to
the electrons [42]. Pinpointing and studying a possible
KB-QCP separating the two phases is left for future work.
Summary and outlook.—CBE expands bonds by adding

subspaces on which Δ2s
E , the 2s contribution to the

energy variance, has significant weight, thus making these

subspaces accessible to 1s energy minimization. CBE is
fully variational and has 1s costs, since the variational space
is only slightly expanded relative to 1s DMRG.
By significantly saving costs, CBE opens the door to

studying challenging models of current interest at higher
accuracy (larger D) than previously possible, or tackling
more complex models, with d or w so large that they were
hitherto out of reach. Examples are multiband models with
several different type of couplings, in particular in two-
dimensional settings, models involving bosonic excitations,
and quantum-chemical applications. We have made a first
step in this direction by showing that the KH model on a
width 4 cylinder features two phases with distinct FS
volumes. Our study of the KH model opens the door to
investigate this model in more depth; for example, follow-
up work may aim to sort out the range of applicability of
existing approximate approaches, e.g., parton mean-field
theories [74,75] or DMFT based studies [65–69].
More generally, CBE can be used for any variational

MPS optimization task. Besides energy minimization, an
example is approximating a given Ψ by a Ψ0 with smaller
bond dimension through minimization of kΨ0 −Ψk. CBE
can also be used to build Krylov spaces with 2s accuracy at
1s costs, relevant for all of the many MPS methods relying
on Krylov methods. For example, in a follow-up paper [76]
we focus on MPS time evolution using the time-dependent
variational principle (TDVP), and use CBE to achieve
dramatic improvements in performance. Finally, analogous
statements hold for variational optimization or time evo-
lution of MPOs. Thus, CBE will become a widely used,
indispensable tool in the MPS=MPO toolbox.
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