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Within the mature field of Anderson transitions, the critical properties of the integer quantum Hall
transition still pose a significant challenge. Numerical studies of the transition suffer from strong
corrections to scaling for most observables. In this work, we suggest to overcome this problem by
using the longitudinal conductance g of the network model as the scaling observable, which we
compute for system sizes nearly two orders of magnitude larger than in previous studies. We show
numerically that the sizeable corrections to scaling of g can be accounted for in a remarkably simple
form which leads to an excellent scaling collapse. Surprisingly, the scaling function turns out to
be indistinguishable from a Gaussian. We propose a cost-function-based approach, and estimate
ν = 2.609(7) for the localization length exponent, consistent with previous results, but considerably
more precise than in most works on this problem. Extending previous approaches for Hamiltonian
models, we also confirm our finding using integrated conductance as a scaling variable.

Introduction. In the field of critical phenomena, the
renormalization group framework explains the signifi-
cance of universal critical exponents and provides recipes
to calculate them from experimental or numerical data
[1]. One such method uses finite-size scaling and allows
us to determine the exponent ν, which governs the diver-
gence of the emergent length scale (usually the correla-
tion length)

ξ ∼ |x|−ν . (1)

Here, the control parameter x is assumed to be in the
vicinity of its critical value xc = 0. Finite-size scaling
considers a (preferably) dimensionless observable F for
various x in a system that has a finite extent L in one
or more directions. If L exceeds all microscopic length
scales, and sufficiently close to the fixed point, F can only
depend on the dimensionless ratio L/ξ, or

F (x, L) = F (L1/νx). (2)

When this single-parameter scaling ansatz is valid, we
can plot F (x, L) against z = L1/νx, and determine the
value of the critical exponent ν as the number that gives
the best collapse of the data. Beyond its simplicity, the
power of this approach rests in the fact that the scal-
ing function F (z) does not need to be known a priori or
expanded around z = 0, but is obtained as a byproduct.

Here we are concerned with critical properties of nu-
merical models for the non-interacting integer quantum
Hall transition (IQHT) [2–4]. The divergent length scale
ξ is the localization length of single-particle wavefunc-
tions. Chalker and Coddington (CC) proposed a simple
network model[5] for the transition and analyzed the di-
mensionless quasi-1D Lyapunov exponents for systems of
varying width L. Using the scaling ansatz (2) they ob-
tained ν ' 2.5±0.5. Subsequent studies also relied on the

ansatz (2) and obtained ν in the range 2.3–2.4 with error
bars & 0.03, see the review [6] and references therein.

This state of affairs changed drastically when Slevin
and Ohtsuki [7] reconsidered scaling in the CC model
with refined numerical accuracy and found that their
data could not be fit to the ansatz (2) due to strong
corrections to scaling coming from irrelevant variables.
In this case one has to add the least-irrelevant scaling
variable with exponent y < 0 as an argument in the scal-
ing function. To leading order in x, this results in the
ansatz

F (x, L) = F (L1/νx, L−y). (3)

This modification makes the use of a simple scaling
collapse with L1/νx impossible. Instead, one must ex-
pand the right-hand-side of Eq. (3) as a polynomial, and
determine a large number of unknown parameters from
tedious least-squares fitting [8–10]. It is evident that a
wide range of system sizes L necessitates the use of poly-
nomials of sufficiently high order, increasing the number
of fitting parameters and partially counteracting the de-
sired gain in accuracy. Thus, while Ref. [7] reported the
value ν = 2.593 [2.587, 2.598], most subsequent papers
reported considerably larger error bars, as well as some
scatter in the values for ν (ν = 2.56− 2.62) [8–12]. Also,
no consensus has been reached on the value of |y| besides
that it likely is much smaller than unity.

In spite of intensive efforts, more than a decade after
the recognition of the importance of irrelevant correc-
tions, the IQHT still evades full understanding. In con-
trast, for other Anderson transitions ν is typically known
to three digit accuracy [4].

In fact, the situation is even more severe: an increasing
number of studies has questioned the very nature of the
IQHT as a conventional localization transition with well-
defined universal critical exponents. Notable examples
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include studies of different continuum models and lat-
tice models [13, 14], Dirac fermions [15], network models
with two-channels [16, 17], random geometry [18, 19], and
models with dissipation [20]. Also, various versions of the
Wess-Zumino model were proposed as analytical theories
of the IQHT [21–23], culminating in the recent proposal
of a conformal field theory with only marginal perturba-
tions (ν = ∞) [17, 24–26]. As a consequence of insuf-
ficient accuracy in numerical results, there is currently
no consensus on any of the above conjectured deviations
from the standard scaling scenario.

There are numerical studies where scaling variables
with no irrelevant corrections to scaling were observed:
the scattering-matrix based variable [12], the number of
conducting states [13], and the curvature of Lyapunov
exponents at x = 0 [6]. However, since numerically ac-
cessible system sizes are limited in these approaches, the
resulting values of ν have to be considered cautiously.

In this work, we consider the longitudinal Landauer
conductance of standard network models as the finite-
size scaling variable, F = g(x, L). Unlike the quasi-1D
Lyapunov exponent, the longitudinal conductance, which
is defined for two-dimensional systems, can be and has
been measured in experiment [27]. However, in numerical
simulations it also suffers from irrelevant contributions,
see Fig. 1 (top).

As our main idea, we demonstrate an empirical ansatz
for a rescaled conductance gr(x, L) which to very high ac-
curacy fulfills the standard single-parameter scaling with-
out any observable irrelevant corrections. This insight al-
lows us to faithfully re-introduce a scaling collapse analy-
sis for the IQHT, involving data for system sizes varying
by a factor of 32, see Fig. 1 (bottom). The quality of the
collapse is reminiscent of long-established scaling behav-
ior found in classical statistical mechanics! In addition,
we find the scaling function to be a simple Gaussian for
not too large arguments.

We propose a cost-function approach to quantify and
automate the search for the critical exponent ν from the
best scaling collapse. For technical reasons, we change to
the rescaled median conductance for this analysis. Tak-
ing into account variations in (i) minimal system size
Lmin, (ii) maximal tuning parameter xmax, and (iii) lower
conductance cutoff, we obtain ν = 2.609(7). We also re-
port consistent results from the finite size scaling of the
x-integrated median conductance.

Rescaled conductance and scaling collapse. We con-
sider the single-channel CC network model [5] in a rect-
angular geometry with L×aL nodes, and periodic bound-
ary conditions in the direction with length aL. For each
disorder realization, the Landauer conductance in the
direction with length L is obtained from the scattering
matrix computed efficiently with the numerical method
described in our previous work [17]. The conductance
distribution depends on a parameter x that drives the
IQHT, with x and −x equivalent by symmetry of the
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FIG. 1. Top: the mean longitudinal conductance g(x, L) for
CC networks of L × aL nodes with aspect ratio a = 1. The
solid lines represent cubic-spline interpolations of the data
(dots). Bottom: Scaling collapse of the the rescaled mean
conductance, Eq. (5), for ν∗ = 2.609 with the restriction x ≤
xmax = 0.4. The inset shows the same data vs. (L1/ν?x)2 on
a logarithmic scale. The resulting straight line (dashed line
is a guide to the eye) indicates that the scaling function is a
Gaussian for not-too-large arguments.

model, and xc = 0. For square samples (a = 1), dis-
tributions of the critical (x = 0) Landauer conductance
take on a characteristic non-Gaussian shape [3, 4], while
at larger x or L the distributions broaden even more and
develop long tails, see appendix. We collected N ' 10000
disorder realizations for each system size.

The disorder-averaged (mean) conductance g(x, L) is
shown by dots in Fig. 1 (top). The data is qualita-
tively similar to that of dimensionless Lyapunov expo-
nents in the apparent lack of a unique crossing point
of different L-traces. In the standard scaling picture
this implies the importance of an irrelevant scaling field
u1(x) in the ansatz g(x, L) = g(L1/νu0(x), L−yu1(x)),
where u0(x) is the relevant scaling field. While u0,1(x)
are generally unknown, their leading order behavior for
x � 1 is u0(x) ∼ x and u1(x) = const, resulting in
g(x, L) = g(L1/νx, L−y), c.f. Eq. (3).

In what follows, we will demonstrate that the conduc-
tance exhibits the factorized form

g(L1/νx, L−y) = g0(L1/νx)g1(L−y). (4)

If the ansatz (4) holds, the rescaled conductance, which
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we define as

gr(x, L) = g(x, L)/g(x = 0, L) (5)

will have no irrelevant contribution and should show a
scaling collapse,

gr(x, L) = g0(L1/νx)/g0(0) = gr(xL
1/ν). (6)

In Fig. 1 (bottom) we plot gr(xL
1/ν) for a range of

sizes L varying by a factor of 32. The perfect collapse
for ν = ν? = 2.609 shows one of our main results: the
rescaled conductance is a scaling observable without ir-
relevant contributions.

To investigate the functional form of the scaling func-
tion which controls the conductance g(x, L) in the large-L
limit when irrelevant corrections are practically absent,
we plot gr as a function of (xL1/ν?

)2 on a logarithmic
scale, see the inset in Fig. 1 (bottom). The resulting
straight line indicates that the scaling function is a sim-
ple Gaussian. This surprising result places strong con-
straints on putative analytical theories of the IQHT [26].
Notice that we do not expect the scaling function to re-
main Gaussian for large values of the argument, since
this corresponds to the localized phase with g ∼ e−L/ξ.

In order to quantitatively analyze the quality of the
scaling collapse beyond visual inspection and to take
into account errors of the raw data, we proceed with a
cost-function analysis. Due to the aforementioned non-
Gaussian shape for conductance distributions for large x
and L, the mean and its error are difficult to estimate
with a limited number of realizations. Therefore, we pre-
fer to base the subsequent analysis on the median con-
ductance, denoted by γ(x, L). Our analysis supports the
expectation that the critical exponent ν is universal and
thus can be found from either g or γ. This is not true for
the scaling function, which shows slight deviations from
a Gaussian for γ. To find the error of the median we
use the asymptotic variance formula, σ2 = [4NP 2(γ)]−1,
where P (γ) is the spline-interpolated probability distri-
bution of g evaluated at g = γ and N is the number of
disorder realizations.

We arrange the system sizes in increasing order L1 <
. . . < LNL

. For each system size Li, we define fi(z) =

γr(Li, x = zL
−1/ν
i ) using a cubic spline interpolation of

the rescaled median γr(Li, x) with respect to x for all
x that fulfill (i) x ≤ xmax and (ii) γr(Li, x) ≥ γr,min.
Restriction (i) is required by the approximation u0 ∼ x in
Eq. (3), while (ii) allows us to exclude too heavily skewed
conductance distributions for which even the estimate of
the median might become problematic. Both conditions
together define a range z ≤ zmax

i . We compute the error
δi(z) of fi(z) by error propagation using the error σ(Li, x)
of γ(Li, x).

Single-parameter scaling means that, for appropriately
chosen ν, all fi(z) should collapse onto a single curve
defining the scaling function. We thus assert that the
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FIG. 2. Top: The cost function λ(ν). Minimum ν∗ esti-
mates the critical exponent of the IQHT. We restrict to data
points where γr ≥ γr, min, L ≥ Lmin for several choices of
γr, min, Lmin. In this analysis we fix xmax = 0.7. The shaded
region spans the minima for all combinations of these param-
eters that result in minimum cost λmin < 1. Note that we
exclude L = 72 in this analysis but include it in the scaling
collapse of Fig. 1. Bottom: Histograms for the best ν ob-
tained from the synthetic data method described in the main
text below Eq. (8).

random variable fi−fj is Gaussian distributed with zero
mean and variance δ2i + δ2j . For i < j we can evalu-
ate the collapse quality for z ∈ [0, zmax

i,j ] with zmax
i,j =

min(zmax
i , zmax

j ), using the following definition of a cost
function,

λ(ν) =
1

NP

∑
i<j

1

zmax
i,j

∫ zmax
i,j

0

|fi(z)− fj(z)|2

δ2i (z) + δ2j (z)
dz, (7)

where the summation is over the NP = NL(NL − 1)/2
pairs of distinct system sizes. The best ν is the one that
minimizes the cost function, and the scaling hypothesis
can only be accepted if the minimum of the cost function
is smaller than unity.

In Fig. 2 (top), we show λ(ν) for xmax = 0.7, γr,min =
0.003, and for system sizes L ≥ Lmin = 144 (red
solid line). The optimal ν falls close to 2.609 where
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FIG. 3. The cost-function analysis for Lmin = 144, restricted
to data points where γr ≥ γr, min and x ≤ xmax. The values of
γr,min in Fig. 2 are used in tandem with xmax = 0.15, 0.2, 0.25.
The shaded region spans the minima for all combinations of
these parameters that result in minimum cost λmin < 1. Re-
sults are consistent with Eq. (8).

λ ≤ 1 indicates an excellent collapse. Choosing γr,min =
0.02, and 0.03, we obtain the red dashed and dotted
curves, respectively. Their minima are indicated by ar-
rows. Likewise, consistent results are obtained for dou-
bling Lmin, see the green lines. We exclude minima if
λ(νmin(γr,min, Lmin)) > 1. Taking the spread of all in-
cluded minima (the shaded region in Fig. 2), we obtain

ν = 2.609(7), (8)

which is in the previously reported range but with the
error that is smaller than in most previous studies.

Consistent results for ν are obtained from the synthetic
data method. Using the input data for γr and its error,
we generate 400 sets of synthetic data on which to repeat
the cost-function analysis of Eq. (7). The bottom panel
of Fig. 2 shows the histograms of the best values of ν ob-
tained this way, for Lmin as above and γmin = 0.003, 0.02.
The means for all histograms fall within the range indi-
cated in Eq. (8), and their standard deviation is on the
order of 0.01.

We repeat the cost-function analysis for Lmin = 144
with three more choices of xmax = 0.15, 0.2, 0.25, see
Fig. 3. The resulting spread of the minima λmin (the
shaded region) is nearly identical to that of Fig. 2, and
includes the estimate of Eq. (8).

Integrated Conductance. Once a scaling observable
is thought to obey the single-parameter scaling like
gr(x, L) = gr(xL

1/ν) above, an alternative option for the
evaluation of ν is via the x-integrated observable

g̃r(L) =

∫ ∞
0

gr(x, L)dx ∼ L−1/ν , (9)

where the predicted scaling behavior on the right hand
side follows from a substitution. Sidestepping the scal-
ing collapse check, this approach however crucially re-
quires that the system sizes are large enough so that
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FIG. 4. Scaling of the x-integrated rescaled median conduc-
tance of the CC model. A power-law fit for L ≥ 144 is denoted
by a dashed line, the fit parameters are given in the legend.
The inset shows the data in a tilted version for better visual-
ization.

the integrand is negligible in regions where higher-order-
in-x corrections to the scaling function become impor-
tant (c.f. the discussion of xmax above). We thus chose
L ≥ 144.

To compensate for under-sampling the rare regions in
the tails of the conductance distributions discussed ear-
lier, we integrate the median rescaled conductance γr.
We generate 200 artificial data sets that lie within the
error bars of γr(x, L), apply cubic spline interpolation
and integration, and estimate the mean and standard
deviation of the 200 values to be γ̃r(L) and its associated
error. The results are shown in Fig. 4. The fit to Eq. (9)
yields ν consistent with the result (8).

We remark that a similar integrated scaling observ-
able for the IQHT was proposed and studied previously
in Refs. [13] and [28]. These works considered the num-
ber of conducting eigenstates of lattice- and continuum
Hamiltonian models, but did not include a rescaling of
the energy-resolved data which thus may have had irrel-
evant contributions that changed the right-hand-side of
Eq. (9) and affected the extracted value of ν. Moreover,
the use of the exact diagonalization limited the avail-
able system sizes, which might also explain a significantly
smaller result [13] for ν = 2.48(2).

Conclusions and outlook. To summarize, in the con-
text of the IQHT, we have identified the rescaled longi-
tudinal Landauer conductance of the CC network model
as a promising scaling observable. It satisfies the single-
parameter scaling and exhibits no detectable irrelevant
corrections. This allows us to sidestep the tedious
polynomial expansion of scaling functions that is com-
monly done in the literature, and apply the intuitive
and straightforward scaling collapse for a wide range of
system sizes with Lmax/Lmin = 32. We devise a cost-
function approach to quantify the quality of the collapse
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and automate the extraction of the critical exponent.
Our result ν = 2.609(7) is consistent with previous es-
timates in the literature but with higher accuracy than
most studies.

This strategy also gives access to the scaling function of
the mean conductance, which takes a surprisingly simple
Gaussian form; this will inform further analytical stud-
ies on the subject. Inspired by previous works [13, 28]
on the total number of conducting states in Hamiltonian
systems, we also consider the integral of the rescaled con-
ductance which sidesteps the necessity for a scaling col-
lapse and allows for even simpler fitting.

Our findings might also offer a new approach to exper-
imental studies of the IQHT, even though critical proper-
ties in real samples may be strongly affected by the pres-
ence of electron-electron interactions. The latest scaling
analysis of experimental data is based on the slope of the
Hall conductivity with respect to the magnetic field [29–
31]. However, the longitudinal conductance peak as a
function of the magnetic field is routinely measured as
well. While earlier studies have already used the peak
width as a scaling observable [2], we propose to consider
the full shape of the peak measured for various sample
sizes below the phase coherence length, a regime reached
in Ref. [31]. After centering to the respective peak max-
imum and performing rescaling as in Eq. (5), a scaling
collapse could be achieved. In order to get a good es-
timate of the mean or median conductance, it will be
essential to revisit the issue of the full conductance dis-
tributions, see Ref. [27] for previous experimental work.

We emphasize that the results presented above do not
settle the question about the validity of the marginal scal-
ing scenario [24–26] according to which the exponent ν
would be scale- and model-dependent [17]. While our
results lower the upper bound for a possible scale depen-
dence of ν, it is conceivable that it might be revealed
in future studies reaching even larger scales or accura-
cies. We also suggest to attempt a scaling collapse of
the rescaled conductance distribution as a whole. Fur-
ther, it would be interesting to test if a rescaling pro-
cedure can also eliminate the irrelevant contributions to
the quasi-1D Lyapunov exponents, which is a standard
scaling observable in the literature [7].

Regarding a possible model dependence of ν, re-
cent studies indeed seem to point in this direction [13–
17, 19, 20]. As a demonstration of the scaling-collapse
method applied for an alternative model, we consider the
two-channel CC network model (CC2) [16, 32] in the ap-
pendix. We show that the rescaled conductance collapses
for νCC2 = 3.8(1), significantly different from the expo-
nent for the (single-channel) CC case but in line with
recent results using a different method [17].

We acknowledge useful discussions with Ravindra
Bhatt, Nils Niggemann, Sasha Mirlin, Ferdinand Evers,

Tomi Ohtsuki and Keith Slevin. Computations were per-
formed at the Lawrencium cluster at Lawrence Berkeley
National Lab. EJD received financial support from the
Graduate Research Fellowship program, USA, NSF DGE
1752814. BS acknowledges financial support by the Ger-
man National Academy of Sciences Leopoldina through
Grant Number LPDR 2021-01, by a MCQST-START fel-
lowship and by the Munich Quantum Valley, which is
supported by the Bavarian state government with funds
from the Hightech Agenda Bayern Plus.

Appendix

Conductance distributions. We present conductance
distributions for N ' 10000 square CC network models
at fixed x = 0 and x = 0.128, see Fig. 5. Away from
criticality (x > 0), the distribution becomes increasingly
skewed with larger system size.The shape of these distri-
butions motivates the use of the median rather than the
mean for the scaling collapse analysis of the main text.
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FIG. 5. Top: Critical conductance distribution for square CC
network model of size L. Bottom: Conductance distribution
at x = 0.128 (non- critical) for square CC network model of
size L.
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Two-channel CC network model. The two-channel gen-
eralization of the CC model (CC2) was first studied in
Refs. [16, 32]. The present authors previously studied
this model and its phase diagram in Ref. [17] and we
refer to this reference for a detailed discussion. Here we
limit ourselves to the diagonal (xc+x, xc+x) in the phase
diagram of the CC2 which is spanned by the tuning pa-
rameters (xa, xb) of the individual layers and xc = 0.227.
At the point (xc, xc), the critical line of the phase dia-
gram intersects the diagonal [17]. As for the CC, we ob-
tain the rescaled longitudinal conductance for the CC2
at sizes L = 288, 576, 1152, 2304 (N ' 1000 realizations)
at various x > 0 and examine the scaling collapse.

In Figs. 6 and 7, we repeat the analysis of the main
text. We find νCC2 = 3.8(1), substantially different from
our estimates for the single-channel case. Our finding
also agrees with our result for the same critical point
using an alternative scaling variable [17], ν = 3.90(5).
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FIG. 6. Top: Mean longitudinal conductance g(xc + x, xc +
x, L) of square CC2 networks. Solid lines represent cubic-
spline interpolations of the data (dots). Bottom: The inset
shows the rescaled longitudinal conductance of various sys-
tems of size L and its failure to collapse with the critical
exponent of the single-channel CC network, νCC = 2.6. This
suggests the CC2 has a different critical exponent. The main
panel shows a reasonable collapse for ν∗ = 3.9 with the re-
striction x < 0.4.
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FIG. 7. The cost function λ(ν) estimates the critical expo-
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points where γr ≥ γr,min, L ≥ Lmin for several choices of
γr,min, Lmin. The shaded region spans the minima for all
combinations of these parameters shown. Note that while no
choice gives λ(ν)min ≤ 1 in this case, however, the cost does
show a clear minimum with λ(ν)min ' 1.
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[19] A. Klümper, W. Nuding, and A. Sedrakyan, Random
network models with variable disorder of geometry, Phys.
Rev. B 100, 140201 (2019).

[20] A. Beck and M. Goldstein, Disorder in dissipation-
induced topological states: Evidence for novel localiza-
tion transition, Phys. Rev. B 103, L241401 (2021).

[21] M. J. Bhaseen, I. I. Kogan, O. A. Soloviev, N. Taniguchi,
and A. M. Tsvelik, Towards a field theory of the plateau
transitions in the integer quantum Hall effect, Nuclear
Physics B 580, 688 (2000).

[22] A. M. Tsvelik, Wave Functions Statistics at Quan-
tum Hall Critical Point, in Statistical Field Theories,
NATO Science Series, Vol. 23, edited by A. Cappelli
and G. Mussardo (Springer, Dordrecht, 2002) p. 329–335,
arXiv:cond-mat/0112008.

[23] A. M. Tsvelik, Evidence for the PSL(2|2) Wess-Zumino-
Novikov-Witten model as a model for the plateau transi-
tion in the quantum Hall effect: Evaluation of numerical
simulations, Phys. Rev. B 75, 184201 (2007).

[24] R. Bondesan, D. Wieczorek, and M. R. Zirnbauer, Gaus-
sian free fields at the integer quantum Hall plateau tran-
sition, Nuclear Physics B 918, 52 (2017).

[25] M. R. Zirnbauer, The integer quantum Hall plateau tran-
sition is a current algebra after all, Nuclear Physics B
941, 458 (2019).

[26] M. R. Zirnbauer, Marginal CFT perturbations at the in-
teger quantum Hall transition, Annals of Physics 431,
168559 (2021).

[27] D. H. Cobden and E. Kogan, Measurement of the conduc-
tance distribution function at a quantum Hall transition,
Phys. Rev. B 54, R17316 (1996).

[28] Y. Huo and R. N. Bhatt, Current carrying states in the
lowest landau level, Phys. Rev. Lett. 68, 1375 (1992).
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