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Abstract

Infinite projected entangled pair states (iPEPS) have emerged as a powerful tool for
studying interacting two-dimensional fermionic systems. In this review, we discuss the
iPEPS construction and some basic properties of this tensor network (TN) ansatz. Special
focus is put on (i) a gentle introduction of the diagrammatic TN representations forming
the basis for deriving the complex numerical algorithm, and (ii) the technical advance
of fully exploiting non-abelian symmetries for fermionic iPEPS treatments of multi-band
lattice models. The exploitation of non-abelian symmetries substantially increases the
performance of the algorithm, enabling the treatment of fermionic systems up to a bond
dimension D = 24 on a square lattice. A variety of complex two-dimensional (2D)
models thus become numerically accessible. Here, we present first promising results
for two types of multi-band Hubbard models, one with 2 bands of spinful fermions of
SU(2)spin⊗SU(2)orb symmetry, the other with 3 flavors of spinless fermions of SU(3)flavor
symmetry.
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1 Introduction

Ever since the discovery of high-Tc superconductivity, there is a great need for developing and
improving numerical approaches for studying one-band and multi-band fermionic many-body
systems in two spatial dimensions. Quantum Monte-Carlo (QMC) is an excellent candidate
for this challenge [1]. However, the presence of the fermionic sign problem in these systems
at finite doping often restricts the applicability of QMC to special points in the phase diagram
close to half filling.

Tensor network techniques represent a promising alternative to QMC to successfully deal
with complex systems of itinerant fermions. In particular, the density matrix renormalization
group (DMRG) applied to two-dimensional clusters has provided us with some remarkable in-
sights. Examples include the discovery of the spin-liquid ground state of the Kagome Heisen-
berg model [2,3] or the first observation of stripe states in the hole-doped t-J model [4]. More
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recently, also the infinite projected entangled pair state (iPEPS) approach was successfully used
for a detailed study of the t-J model [5,6], as well as for clarifying the spin-liquid nature of the
spin-half Kagome Heisenberg model [7, 8]. In addition, a combined iPEPS and DMRG study,
supported by other numerical methods, led to a consensus regarding the existence of stripe
order in the hole-doped Hubbard model [9].

A PEPS can be constructed by considering a lattice system where the entanglement of
each site to the rest of the system is encoded via virtual degrees of freedom (entangled pairs)
associated with the lattice bonds connecting that site to its neighbors. Projecting all virtual
degrees of freedom associated with a given site to the physical Hilbert space of that site gen-
erates a PEPS tensor for that site [10]. Such a tensor network representation can be consid-
ered as a generalization of Affleck, Kennedy, Lieb and Tasaki (AKLT) states or tensor product
states, which date back to even earlier literature [11–14]. In short, many tensor network algo-
rithms to simulate many-body states in 2D are based on the PEPS representation, including the
tensor renormalization group (TRG) [15, 16], the second renormalization group (SRG) [17],
the higher-order tensor renormalization group [18], tensor network renormalization [19,20],
DMRG-like ground-state optimization [21, 22] and promising extensions to excited states by
means of tangent space methods [23].

Despite many interesting developments, PEPS has not yet reached its full potential in appli-
cation to frustrated and fermionic 2D systems. This is mostly due to the technical complexity
of the algorithm, especially when dealing with fermionic signs [24] and when implementing
symmetries explicitly [25–33]. Nevertheless, PEPS has recently proven its competitiveness
and, for instance, provided new insights for underdoped Hubbard model [9, 34, 35] and t-J
models [5,6,36], for spin-1

2 [7,8] and spin-1 Kagome-Heisenberg models [37], as well as for
the Shastry-Sutherland model [38,39]. At the same time, PEPS is still in its infancy and there
is much room for technical progress boosting the performance of the method [40–42].

In this work, we consider the PEPS method applied to translationally invariant systems,
the so-called iPEPS ansatz [43], and focus on an aspect where further technical progress is
certainly possible – the exploitation of symmetries. If the Hamiltonian is invariant under some
symmetry group, its energy eigenstates can be grouped into multiplets transforming as irre-
ducible representations (irreps) under symmetry transformations. Correspondingly, a tensor
network for such a system can be constructed from tensors whose legs (both physical and
virtual) carry irrep labels. Keeping track of this multiplet structure can reduce computational
costs tremendously, since tensors acquire block substructures. Moreover, for non-abelian sym-
metries the relevant bond dimension is reduced from D, the number of individual states per
bond, to D∗, the number of multiplets per bond. Computational costs scaling as Dα can thus
effectively be reduced by a factor of (D/D∗)α. Also, memory requirements, the primary bottle-
neck for iPEPS calculations, can be significantly reduced. However, the tensor block structure
entails overhead in the code complexity and performance, which requires some special care,
specifically so if many, individually small blocks arise. With α ¦ 12 for iPEPS and D/D∗ ' 3
for SU(2) symmetry or larger for SU(N > 2), the potential benefits of exploiting symme-
tries are evidently enormous. In practice, however, keeping track of symmetry labels requires
codes with an additional layer of complexity, in particular for symmetry groups having outer
multiplicity > 1, such as SU(N > 2). While the exploitation of abelian symmetries in PEPS
codes is becoming fairly routine by now, the number of applications of non-abelian PEPS can
still be counted on one hand [33,37,44], all involving SU(2) symmetry.

Believing that non-abelian PEPS nevertheless holds great promise, we devote this tutorial
review to a detailed exposition of its key ingredients. We offer a pedagogical review of the
most important aspects of the PEPS representation and the iPEPS algorithm, mainly following
the work of Philippe Corboz and coworkers [5,6,24,45–47]. In particular, we discuss how to
perform contractions [Sec. 3.3], how to keep track of fermionic minus signs, and how to per-
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form tensor optimization via imaginary-time evolution [Sec. 3.5], including the gauge fixing
for iPEPS [47, 48]. Additionally, we go beyond the scope of Corboz’ work by explaining how
arbitrary non-abelian symmetries can explicitly incorporated in the fermionic iPEPS ansatz in
a generic manner, based on the QSpace [30] tensor library. A pedagogical discussion of SU(2)
iPEPS was recently given in Ref. [49], with benchmarking computations on spin systems re-
ported in Ref. [50]. Our treatment of symmetries represents a fully alternative approach to
theirs, which permits us to deal with non-trivial outer multiplicities (OM) on a general foot-
ing. While OM is not present for SU(2) for rank-3 tensors, it already also occurs for SU(2)
for tensors of rank r > 3. For larger symmetries, such as SU(N > 2), OM already occurs
generically even at the elementary level of rank-3 tensors.

A first application of our non-abelian fermionic iPEPS code, published concurrently with
this tutorial review, is a study of the 2D fermionic t-J model [51] – by exploiting either U(1)
or SU(2) symmetry to allow or forbid spontaneous spin symmetry breaking, we elucidate
the interplay between antiferromagnetic order, stripe formation and pairing correlations. In
the present work, we further illustrate the power of non-abelian iPEPS by presenting some
exemplary results for two 2D fermionic Hubbard models of higher complexity: a model with
two degenerate bands of spinful fermions, featuring SU(2)spin ⊗ SU(2)orb symmetry, and a
model with three degenerate bands of spinless fermions, featuring SU(3)flavor symmetry.

2 Tensor network diagrams and convention

As implied by their name, tensor network techniques typically involve a large number of ten-
sors of various rank that are iteratively manipulated. These manipulation steps may vary in
their complexity and, for example, include matrix multiplication, or decomposition techniques
such as singular value or eigenvalue decompoitions. In order to simplify the lengthy mathe-
matical expressions which describe these steps and typically involve large sums over multiple
indices, we heavily rely on using a diagrammatic representation for tensor network states.
Analogous to the role of Feynman diagrams in quantum field theories, these tensor network
diagrams are pictorial representation of mathematical expressions and help a great deal grasp-
ing the essence a TN algorithm. Since we extensively employ this pictorial language in this
review, we here give a brief summary of our conventions together with an explanation on how
to understand these diagrams in the following.

Each TN diagram consists of one or multiple extended objects (squares, circles, ...), which
are connected by lines. Objects and lines represent tensors and indices, respectively. In the
following, we give a few simple examples. For instance, a matrix or rank-2 tensor A has two
indices α,β ,

Aαβ = . (1)

The number of values that an index can take is called its dimension.
The next expression, illustrating a matrix multiplication

∑

β

AαβBβγ = , (2)

involves the sum over the common index β of A and B. This contraction is indicated by a line
connecting A and B.
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In addition to the simple expressions shown above, we often have to deal with diagrams
containing multiple sums and open indices, such as

∑

α,γ

AαδBαβγCγε = . (3)

It holds generally true, that the diagrammatic representation becomes more beneficial, the
more complex the expression and the larger the number of tensors involved since the logic of
reading and understanding these diagrams remains the same.

For more evolved topics, such as fermionic TN descriptions and symmetric TNs, the dia-
grams will contain extra features. We will introduce these features in detail at the appropriate
parts of this review.

3 Infinite projected entangled pair states

Projected entangled pair states (PEPS) present the natural generalization of the well-known
MPS ansatz to higher spatial dimensions [10]. Analogously to their 1D counterpart, a PEPS
consists of a set of high-ranked tensors which are connected by virtual bonds along the physical
directions of the corresponding lattice system. In addition, PEPS satisfy the area law of the
entanglement entropy in two dimensions [52], thus being able to faithfully represent physical
states in gapped lattice models.

In this section, we give a pragmatic introduction to the PEPS construction from the point
of view of numerical practitioners. To this end, we only briefly elaborate the ansatz and its
properties before discussing numerical details of contraction, optimization, fermionic systems,
and the implementation of symmetries.

3.1 PEPS ansatz and properties

To give a practical example, we consider a generic many-body wavefunction |ψ〉 on a 3 × 3
cluster. In its most general form, the wavefunction can be expressed in terms of the rank-9
coefficient tensor Ψσ1

1σ
1
2 ... σ3

3
acting in the local Fock space |σx

y〉,

|ψ〉=
∑

σ1
1σ

1
2 ... σ3

3

Ψσ1
1σ

1
2 ... σ3

3
|σ1

1〉|σ
1
2〉...|σ

3
3〉 , (4)

where the integer indices x and y enumerate sites in the horizontal and vertical direction. The
local or physical index σx

y ∈ 1, ..., d labels states in the local Hilbert space at site r = (x , y).
Obviously, this generic representation suffers from an exponential system-size scaling, which
is reflected in the fact that the number of elements of Ψ is equal to the total Hilbert space
dN = d9. Here N denotes the total number of sites and the local dimension d describes the
total number of quantum states per site. Typical values are d = 2 for a spin-1

2 system or spinless
fermions, d = 3 for spin-1, and d = 4 for spinful fermions.

The key idea of the PEPS construction is to circumvent the exponential scaling in system
size by decomposing Ψ into a set of high-ranked tensors (in the following denoted M tensors).
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A PEPS representation for the wavefunction in Eq. (4) requires a total of nine M tensors,

|ψ〉=
∑

σ1
1σ

1
2 ... σ3

3
α1α2 ... α6
γ1γ2 ... γ6

M
σ1

1
α1γ1

M
σ1

2
α2γ1γ2

... M
σ3

3
α6γ6
|σ1

1σ
1
2 ... σ3

3〉 . (5)

Each tensor M has a set of virtual indices, αi for horizontal bonds and γi for vertical bonds,
connecting each M to its counterparts on up to four neighboring sites, according to the lattice
geometry. Following Sec. 2, the diagrammatic representation can be easily derived by intro-
ducing the diagram for a rank-5 “bulk” tensor

M
σx

y

αβγρ
= . (6)

The boundary tensors of a finite-size PEPS contain fewer legs. Since we focus on the transla-
tionally invariant formulation of PEPS in the following, we refrain from a detailed discussion
of various boundary conditions and the corresponding tensors [48].

In general, the number of M tensors in the PEPS representation is equal to the number
of sites in the system, e.g., N = L × L tensors for a square lattice of L × L sites. Starting
from Eq. (6), the diagrammatic representation of the full wavefunction |ψ〉 in Eqs. (4) and (5)
follows immediately,

= .

(7)

In principle, one can perform such a decomposition exactly for any arbitrary many-body wave-
function. For larger systems, however, the dimension of the virtual indices has to be increased
exponential which, for numerical purposes, is not practicable. Therefore, one limits the di-
mension of the virtual bonds of each PEPS tensor to some upper cutoff D [53]. Thus adding
an additional site (or row/column of sites) only leads to a polynomial increase in the number
of coefficients of the wavefunction. In numerical practice, D is used as a control parameter
for the numerical accuracy. It is typically restricted to D ≤ 8-16, depending on the model and
lattice geometry, because for larger values the numerical costs become unfeasibly high.

Restricting the bond dimension of the M tensors comes at a price: only a subset of states can
efficiently be represented by a PEPS, since D also limits the maximum amount of entanglement
that can be captured by the construction. Fortunately, this is perfectly in line with the area law
of the entanglement entropy in 2D, which is fully satisfied by a PEPS representation. Hence,
PEPS are ideally suited to approximate low-energy states, including the ground state of local
gapped Hamiltonians in two dimensions. Although this statement cannot yet be put on such a
mathematically rigorous foundation as 1D, it is strongly supported by numerical evidence [54].

Moreover, the PEPS representation has the remarkable property that, in contrast to MPS,
it is capable of faithfully representing algebraically decaying correlation functions, which are
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characteristic for gapless models. This can easily be shown for the example of the partition
function of the 2D Ising model [52]. Therefore, the PEPS ansatz is in principle able to also treat
critical ground state wavefunctions. In practice, however, this does not help substantially in the
context of 2D quantum criticality (the above mentioned example deals with classical and not
quantum criticality). Based on the quantum-to-classical correspondence, one would require a
3D PEPS construction to faithfully approximate a critical 2D quantum system. Thus, in reality
PEPS faces the same challenges in the context of gapless 2D systems as MPS treating critical
1D models: Both TN frameworks may yield results ranging from excellent to moderate quality
depending on the “severeness” of the area-law violation in a particular system [53].

3.2 iPEPS

For finite-size PEPS simulations, each M tensor is typically chosen to be different (similar to
MPS applications for finite systems). Alternatively, it is possible to exploit the translational
invariance of a system and directly work in the thermodynamic limit (of course, this approach
also works for MPS [55]). In this way, finite-size and boundary effects can be completely
eliminated.

In order to construct an infinite PEPS (iPEPS) [43], we first choose a fixed unit cell of a
certain size, and repeat it periodically to cover the entire infinitely large lattice. The size of
the fundamental unit cell directly translates into the number of different M tensors required
for the iPEPS representation. For instance, one can impose strict translational invariance and
choose a unit cell of size 1× 1,

|ψ〉= . (8)

The resulting iPEPS representation of |ψ〉 then requires only a single M tensor.
However, ordered ground states often break translational invariance to some degree. An

iPEPS ansatz of type (8) cannot capture this behavior. Therefore, it is advisable to relax the
translational invariance to some extent by choosing a larger unit cell. For example, the follow-
ing ansatz is fully compatible with a antiferromagnetic ground-state order using two different
M tensors in a 2× 2 unit cell:

|ψ〉= . (9)

7

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.25


SciPost Phys. Lect.Notes 25 (2021)

In principle, unit-cells of arbitrary size can be considered, e.g.,

|ψ〉= . (10)

The numerical costs scale linearly with the number of tensors in the unit cell, meaning that
large unit cells become numerically expensive. A natural guideline to evaluate which unit-
cell sizes should be considered in a simulation is to remember that the unit cell should be
compatible with the actual ground-state order. Otherwise, one does not obtain the actual
ground state from an iPEPS calculation. Instead, one ends up with the lowest-energy state for
the system constrained to the corresponding unit-cell geometry and, therefore, is restricted to
specific orders.

When studying systems with competing low-energy orders, the flexible unit-cell setup of
the iPEPS algorithm actually becomes a big advantage. By probing different unit cells, it
is possible to stabilize wavefunctions with competing orders independently. Comparing the
energies obtained from the corresponding simulations, one may then determine which order
survives in the ground state of the system [5,6].

3.3 Contractions

To extract local observables, perform overlaps, or to actually optimize the tensors, the (i)PEPS
framework requires contracting an (infinitely) large tensor network. This turns out to be much
more challenging than in context of MPS where, for example, overlaps can be evaluated exactly
with only polynomial costs in system size. For a PEPS tensor network, however, the calculation
of an exact overlap represents an exponentially hard problem [56] and cannot be performed
efficiently. Fortunately, there exist a variety of approximate schemes to deal with this issue.

In this review, we focus on the corner transfer matrix method (CTM) [57, 58], which is
particularly well suited for iPEPS applications on square-lattice geometries. Alternatively, it is
also possible to rely on an infinite MPS technique for the purpose of this work [43, 59, 60].
Other contraction schemes based on renormalization ideas, such as the tensor renormaliza-
tion group [15, 16], or tensor network renormalization [19, 20], do have some technical dis-
advantages (e.g., environmental recycling [47,61] is not possible, and difficulties arise when
calculating longer-ranged correlators, ect.), rendering them unsuitable for our purposes.

Before discussing the details of the CTM scheme for evaluating the scalar product 〈ψ|ψ〉,
we first introduce the corresponding diagram of 〈ψ| for the 3× 3 square-lattice toy example,

= ,
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(11)

which is a mirror image of Eq. (7). The contraction of 〈ψ|ψ〉 can be done site by site using
so-called reduced tensor m = M x†

y M x
y , which is obtained by tracing over the joint physical

index of M x†
y M x

y ,

mx
y (αα′)(ββ ′)(γγ′)(ρρ′) =

∑

σx
y

M
σx

y †

ργβα
M
σx

y

α′β ′γ′ρ′
=

= = , (12)

where the double indices (e.g., (αα′)) have dimension D2, as indicated by their increased line
thickness. In the second line, we redrew the lines representing indices γ and ρ in such a way
that pairs of corresponding primed and unprimed indices match up. This diagrammatically
performed “index bending” exploits the non-uniqueness of the graphical representation for a
tensor network [45]. This modification is completely trivial for bosonic iPEPS but will add
additional complications in the context of fermions [see Sec. 4].

To reduce the complexity of the TN diagrams appearing in the following, we introduce a
modified version of the conjugate tensor that automatically accounts for the index bending
discussed in Eq. (12):

= . (13)

This distinction may seem unnecessary at this point, since M̄ x†
y and M x†

y are mathematically
equivalent objects in the context of bosons. However, this is not the case for fermionic systems
[c.f. Eq. (61)]. Therefore, we emphasize the importance of this modification already here.

The scalar product 〈ψ|ψ〉 for this simple example is obtained by contracting all physical
and virtual index of the nine m tensors,

〈ψ|ψ〉 =
∗
=
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(13)
= =

= (14)

Note that the second step (
∗
=) also exploits the non-uniqueness of the diagrammatic repre-

sentation by employing a number of so-called “jump-moves” [45]. In these operations, it is
possible to drag a line over a tensor without changing the corresponding TN. For example, the
line connecting M2

3 and M3
3 was dragged downward acroos M3

2
†. Again, this modification is

trivial in context of bosonic PEPS, but nontrivial for fermionic PEPS [see Sec. 4].
Studying the small tensor networks in Eq. (14), it becomes obvious that the exact contrac-

tion of the expression scales exponential with system sizes. No matter in which order one
decides to contract the tensors, i.e., which “contraction pattern” one uses, one always gener-
ates an object with a number of open indices scaling with L (here L = 3).

3.3.1 Corner transfer matrix scheme

Since it is not possible to perform the exact calculation of a scalar product efficiently in the
PEPS nor in the iPEPS framework, one has to rely on approximate approaches. A particularly
powerful contraction scheme is based on ideas of the corner transfer matrix (CTM) renor-
malization group proposed by Nishino and Okunishi [57]. Their idea was later adapted by
Orús and Vidal [58] in the context of quantum systems to efficiently evaluate an iPEPS tensor
network contraction.

The key insight of the approach is to represent the infinitely large tensor network by a
small number of tensors, zooming into a 1×1 or 2×2 window of sites (in general, this might
be only a subset of the full unit cell, which in general has the size Lx × L y). The rest of the
system, the so-called “environment”, is represented by a set of corner matrices C and transfer
tensors T . For the 2× 2 subset embedded in the environment, this takes the form

⇒ ,

where the environmental tensor network is represented by a set of four corner matrices
(Clu, Cld , Cru, Crd with subscripts denoting the spatial location, i.e., l, r, u, d stand for left,

10

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.25


SciPost Phys. Lect.Notes 25 (2021)

right, up, down, respectively), and eight transfer tensors (two tensors for each direction,
Tl , Tr , Tu, Td , respectively). In this representation, a new set of virtual indices is introduced
connecting tensors of the environment only. As we discuss below, the dimension χ of these
indices acts as additional parameter controlling the accuracy of the environmental approxima-
tion (reasonable choices are χ ¾ D2).

Figure 1: CTM coarse graining move to the left lattice direction: (i) extra unit cell is
first inserted, and then column-wise integrated into the left part of the environment
by performing two subsequent (ii) absorption and (iii) renormalization steps.

CTM protocol.– The environmental tensors are obtained by performing directional coarse
graining moves in each direction of the lattice. Each coarse graining move consists of three
different steps: (i) insertion of an extra unit cell; (ii) absorption of a single row or column of the
unit-cell tensors into the set of environmental tensors in one lattice direction, leading to an en-
larged environmental bond dimension χD2; (iii) renormalization (or truncation/compression)
of the enlarged environmental tensors to their original size. Steps (ii) and (iii) are repeated
until the inserted unit cell has been fully absorbed into the set of environmental tensors in the
one particular direction. Next, an additional unit cell is inserted next to the original unit cell
in one of the other directions, and the move is carried out with respect to another direction of
the lattice. A full coarse graining step is completed after one move in each of the four lattice
directions (left, right, top, bottom) has been performed.

In the following, we illustrate this procedure for an iPEPS representation with a 2×2 unit
cell, using four M tensors that all have the property M x

y = M x+2
y = M x

y+2 = M x+2
y+2 (as in

Eq.9). A directional move to the left then includes the steps illustrated in Fig. 1. Note that
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the extra unit cell has been inserted horizontally on the left (this is also the case for a move
to the right). Moreover, two absorption and renormalization steps are carried out, at the end
of which the inserted unit cell has been fully integrated into the left part of the environment.
This set of operations yields an updated set of environmental tensors for the direction of the
coarse graining step.

We also sketch in Fig. 2 a coarse graining move towards the top of the lattice. In this case,

Figure 2: CTM coarse graining move to the top of the lattice: (i) extra unit cell is
first inserted, and then row-wise integrated into the upper part of the environment
by performing two subsequent (ii) absorption and (iii) renormalization steps (only
first step is shown).

the unit cell is inserted vertically. Then we follow the same protocol as for the left move. Only
the direction of the absorption and renormalization steps differs. After also carrying out these
coarse graining moves with respect to the other two lattice directions, a full coarse graining
step has been completed. The full cycle is typically repeated multiple times depending on the
correlation length in the system. For example, for a gapped system a few (∼ 10) steps may
be sufficient to obtain converged results. However, for a critical system, due to the absence of
the energy gap, the number of steps required to reach convergence in local observables can be
significantly larger, up to ¦ 100 steps.

Renormalization.– In addition to the number of steps performed, the convergence of the
results also strongly depends on the implementation of the renormalization step, which trun-
cates the environmental tensors after the absorption step. The renormalization is crucial for
the performance of the CTM scheme. However, its implementation details are not very straight-
forward, and currently there seems to be ample room for future improvement. The ambiguity
of implementation details is mostly caused by the lack of an exact canonical representation for

12

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.25


SciPost Phys. Lect.Notes 25 (2021)

a PEPS TN, which implies that there is no obvious optimal way of performing the truncation
(in contrast to an MPS tensor network, which can be truncated optimally even in the context
of translationally invariant systems [60]).

We list and comment on a number of different renormalization schemes. One corresponds
to the directional updated scheme proposed by Orús and Vidal in Ref. [58], which we found
to work well only in the context of very homogenous wavefunctions. This method takes only
small subsets of the environment into account and implicitly assumes full translational in-
variance when generating the projectors (or isometries) to perform the truncation. This ulti-
mately yields a very biased truncation pattern for inhomogeneous systems, where this method
is bound to fail. The second approach is based on the original CTMRG of Nishino and Oku-
nishi [57] and was first employed by Corboz, Jordan and Vidal Ref. [24] in the context of
iPEPS. In this case, the full environment is taken into account in each truncation step, which
presents a crucial advantage for simulating inhomogeneous states. On the other hand, it is
severely limited by machine precision, making it unstable for large values of environmental
bond dimension χ. This is far from ideal since it is desirable to use χ as additional control
parameter. To overcome these shortcomings, Corboz, Rice and Troyer Ref. [6] introduced a
third CTM variant that shows strongly improved convergence properties in comparison to the
original CTMRG scheme and, at the same time, overcomes the inhomogeneity issues of the
directional updated scheme. In the following, we sketch how to obtain the projectors used
to reduce the sizes of the environmental tensors after an absorption step in the left direction,
following Ref. [6]. The protocol works similarly for the other spatial directions of the lattice.

In the first step, we enforce two cuts in the tensor network consisting of the 2×2 unit-cell
subset embedded in the effective environment as follows

⇒ .

(15)

Our goal is to obtain projectors (or isometries) that are inserted after an absorption step at
a specific bond to “project” (or truncate/compress) the enlarged environmental Hilbert space
D2χ back to its original size χ. In this example, we specifically aim for the projectors to be
inserted into the two bonds split by the left cut.1 To this end, we contract the two upper and
lower parts of the tensor network, leading to rank-4 tensors Qu and Qd . By applying a singular
value (or QR) decomposition to both of these tensors, we obtain

= = . (16)

1Analogously, we could use (15) to obtain the projectors for the two split bonds on the right. This becomes
necessary when performing a CTM move into the right direction of the lattice.
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The product RuRd is then subjected to an additional SVD where only the χ largest singular
values are kept,

= ≈ ⇒ ≈ . (17)

Using the inverse matrices R−1
u and R−1

d , we generate the projectors P x
y , P̃ x

y that are inserted
at the left cut of the tensor network (15):

I = ≈ = . (18)

The protocol is repeated for the entire row of the unit cell to be absorbed into the environment
during this particular coarse graining step (i.e., L y times). In our example of an 2×2 unit cell,
we therefore also obtain P x

y+1 and P̃ x
y+1 (or alternatively P x

y−1 and P̃ x
y−1 due to translational

invariance) by considering the tensor network and repeating the procedure sketched above,

⇒ = .

(19)

Now we are fully equipped to renormalize the entire set of environmental tensor which are
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subject to truncation during an absorption step to the left,

= . (20)

What has been achieved is a scheme that compressed the bond dimensions of the environmen-
tal tensors along the left row in a way that encodes information from the full environment.
Thus we can appropriately deal with translational symmetry breaking in the iPEPS wavefunc-
tion. At the same time, this procedure leads to numerically stable results since we can eliminate
spurious parts of the SVD spectrum during the intermediate SVD decompositions in Eq. (16)
by discarding very small singular values (e.g., < 10−7). This helps to reduce the influence of
numerical noise in the subsequent steps.

Figure 3: A unit cell of size 3× 2 consists of six different M tensors (here denoted
M , N , O, P,Q, and R). For each of the six relative coordinates in the unit cell, we have
to obtain a 2×2 CTM representation (indicated by the solid and dashed squares, and
explicitly illustrated for two examples). Therefore, the CTM scheme here requires
storing 24 corner matrices and 24 transfer tensors in total.

Larger unit cells.– The CTM scheme can also deal with rectangular unit cells of arbitrary
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sizes containing Lx × L y = N different M tensors, where the relative position of each tensor
in the unit cell is labeled by its coordinate r = (x , y). To this end, we assign one set of corner
matrices and transfer tensors to each coordinate, requiring a total number of 4N corner matri-
ces and 4N transfer tensors to be stored independently. We illustrate this approach for a 3×2
unit cell in Fig. 3. After initialization (see below), the environmental tensors are then itera-
tively updated by performing coarse graining moves in all four lattice directions, as outlined
above. However, an entire CTM cycle now includes Lx coarse graining steps to the left and
right, respectively, as well as L y coarse graining steps to the top and L y to the bottom of the
lattice. Note that using a larger zooming window is not an option, since the numerical costs
quickly become unfeasible.

Initialization.– While covering the coarse graining procedure to obtain the converged en-
vironmental tensors, we have not yet discussed the initialization of the CTM scheme. In prin-
ciple, one could start from an arbitrary set of corner matrices and transfer tensors. However,
choosing a completely random set can significantly increase the number of coarse graining
steps required for obtaining a stable environment TN and sometimes even cause numerical
instabilities. In practice, we found that optimal convergence is achieved by starting from an
environmental tensor set formed by the corresponding M x

y tensors and their conjugates, which
previously have been generated by means of ground-state optimization [see Sec. 3.5]. We il-
lustrate this initialization procedure for two examples,

= , = . (21)

Effective contraction pattern.– The numerical costs of implementing the square-lattice CTM
scheme presented above scales as O(D6χ3), with iPEPS bond dimension D and environmental
bond dimension χ. Note that these costs are equivalent to those of the infinite MPS method
from Ref. [43]. Assuming that χ =O(D2), we end up with a total cost scaling of O(D12) for the
iPEPS algorithm. The underlying assumption behind this cost scaling is that all contractions are
carried out as efficiently as possible, which forces us to pay some attention to the contraction
patterns. In particular, we cannot directly work with the reduced tensors mx

y , but rather need

to perform contractions involving M x
y and its conjugate M x†

y sequentially.
This is illustrated below for contracting a part of the diagram in Eq. (15). First consider

the case explicitly using the reduced tensor mx
y ,

= = .

(22)

Counting the involved indices in the dashed box, it becomes clear that the last contraction step
scales rather unfavorably as O(D8χ2).
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If we want to achieve the optimal scaling O(D6χ2d) in this step, we have to contract over
M x

y and M x†
y sequentially,

= =

= (23)

The same applies to contraction orders of other TN such as, for example, the one shown in
Eq. (20) and many others. It pays off to constantly pay attention and ensuring that the optimal
contraction pattern is used when implementing an iPEPS algorithm. Otherwise, the backlash
of an inefficient iPEPS implementation will quickly become apparent, since simulations with
moderate to large D will not be feasible. Note that the most expensive steps of the CTM algo-
rithm occur when generating the projectors. To obtain the tensor Qu in Eq. (16), for instance,
one has to perform the contraction,

. (24)

This always yields a cost scaling of O(χ3D6) which cannot be reduced further.

3.4 Expectation value

The CTM scheme enables us to evaluate observables within the iPEPS framework. For this
case, we consider a simple two-site observable Ô(x+1,y)

(x ,y) which, for example, represents a spin-
spin correlation function involving two neighboring sites. To compute an approximation for
the expectation value 〈Ô(x+1,y)

(x ,y) 〉 = 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉/〈ψ|ψ〉, we represent the environment of

the two contiguous sites r = (x , y) and r ′ = (x , y + 1) in terms of the corner matrices and
transfer tensors encountered in the last section,

〈ψ|Ô(x+1,y)
(x ,y) |ψ〉χ =
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=

= . (25)

The contraction of the final tensor network, consisting of the six environmental tensors E1, ... , E6,
the two M tensors, their conjugates, and the operator Ô can be carried out efficiently. It pro-
duces an approximation of 〈ψ|Ô(x+1,y)

(x ,y) |ψ〉 ≈ 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉χ which is generally expected to

deviate from the exact value due to the non-exact representation of the full tensor network.
The correct value of 〈ψ|Ô(x+1,y)

(x ,y) |ψ〉/〈ψ|ψ〉 ≈ 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉χ/〈ψ|ψ〉χ should be recovered

in the limit χ →∞. In practice, one evaluates Eq. (25) for a number of different values of
χ = 10, 20, ..., 100,150, ... until the observable shows no more significant dependence on χ.
The required value for χ to obtain converged results strongly varies depending on the physical
properties of the corresponding system and the employed iPEPS bond dimension D. If one is
already well within the relevant low-energy critical regime, it can therefore be useful to ex-
trapolate observables towards 1/χ → 0 and 1/D → 0 [62, 63]. A theoretical justification for
such an approach is based on the theory of finite entanglement scaling, which has been well
analyzed in the one-dimensional scenario [64–67].

3.5 Ground state search

An iPEPS is an approximate representation for the ground-state wavefunction of a local Hamil-
tonian on a two-dimensional lattice. Having addressed the contraction issue by means of the
CTM scheme [see previous Sec. 3.3], the remaining open question concerns finding the ground-
state iPEPS representation, given some Hamiltonian Ĥ with only nearest-neighbor interactions.
(Albeit technical more complicated, iPEPS can also treat longer-ranged interactions, for more
details see Ref. [24,38].)

Here we follow the strategy proposed in the original iPEPS formulation by Jordan, Orús,
Vidal, Verstraete and Cirac [43], and use the imaginary time evolution to target the ground
state,

|ψ0〉= lim
τ→∞

e−τĤ |ψ〉
�

�

�

�e−τĤ |ψ〉
�

�

�

�

. (26)

The time-evolution operator e−τĤ is further decomposed by Suzuki-Trotter decomposition,

e−Ĥτ ≈
Nb
∏

j=1

e
−ĥx ,x′

y,y′τ +O(τ2), (27)
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where ĥx ,x ′

y,y ′ describes the local interaction terms acting on a pair of nearest-neighbor sites in

the unit cell, and Ĥ =
∑

〈(x ,y),(x ′,y ′)〉 ĥ
x ,x ′

y,y ′ . The two-site gates, e
−ĥx ,x′

y,y′τ, are subsequently applied

to the corresponding pairs of M tensors, M x
y and M x ′

y ′ . As in the case of MPS, the resulting
tensor has to be truncated accordingly to restore the original form of the iPEPS representation.

In the MPS framework, the truncation can be implemented in an optimal way using the
canonical form of the MPS and employing a single singular value decomposition. In the con-
text of iPEPS, this step turns out to be more evolved. Due to the lack of an exact canonical
form for the iPEPS, one has to rely on approximate techniques to account for the effects of the
environment when employing the truncation. This can be done using several different opti-
mization schemes, such as the simple update [68] and the full update [43]. We discuss both of
these approaches extensively in the rest of this section.

Although not employed in the context of this review, we also note that two groups recently
introduced alternative optimization schemes, which do not rely on imaginary time evolution
[21,22]. Instead, they implement a variational update method,

min
{M x

y }

�

E0

�

=
〈ψ0|Ĥ|ψ0〉
〈ψ0|ψ0〉

. (28)

The major technical challenge of these newly developed schemes is to find an approximate,
yet accurate, representation for the full Hamiltonian Ĥ. Corboz [21] achieves this based on
a modified CTM scheme, while Vanderstraeten, Haegeman, Corboz and Verstraete [22] build
on MPS techniques. In addition, it is still unclear how to optimally translate the local update
performed on a pair of tensors to the iPEPS representation in the infinite system. Despite
these issues, both variational optimization techniques already obtain very impressive results,
illustrating that the iPEPS formalism will continuously improve and become more competitive
in the near future.

3.5.1 Bond projection

In this work, we only consider the optimization via imaginary-time evolution based on two-
site Trotter gates, which implies that we constantly have to update two neighboring M tensors
at once (i.e., there is no one-site version of this algorithm). Hence, it is essential to perform
the tensor updates as efficiently as possible. Treating the full M tensors in this context turns
out to be numerically very inefficient (i.e., numerical costs of O(D12) in the context of the full
update). Instead, it is always advisable to perform the tensor update on two subtensors with
lower rank which are easily obtained by a bond projection [69], leading to a significant cost
reduction (i.e., O(D6d3) [47]. Note that this scheme does not introduce further approxima-
tions since the two-site Trotter gate only changes properties of the corresponding bond but
leaves the remaining bonds of the iPEPS tensors unchanged.

The bond projection is obtained by performing two exact SVD (or QR) decompositions:

= =

= . (29)
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The tensor optimization now only affects the subtensors v x
y and wx+1

y , whereas the remain-
ing bonds are shifted into the subtensors X x

y and Y x
y , which can be treated as parts of the

environment tensor network during the optimization.
Each tensor update is initialized by applying the corresponding Trotter gate in the bond

projection,

e−ĥx ,x+1
y,y τ|ψ〉 =

=

= = |ψ(ṽ, w̃)〉 . (30)

The Trotter gate increases the initial bond dimension D of the subtensors v x
y and wx+1

y . Restor-

ing the original representation exactly yields a pair of enlarged subtensors ṽ x
y and w̃x+1

y with
bond dimension dD (illustrated by the increased line thickness in Eq. (30)). In a next step, we
have to find an appropriate truncation scheme to obtain a pair of subtensors v′xy and w′x+1

y
with the original bond dimension D to prevent an exponential blowup of the iPEPS tensors.

In the following, we present two different truncation methods: (i) the simple update [68],
a numerically very efficient and fast approach which, however, relies on a strong simplification
of the environmental tensor network and thus carries out the truncation in a suboptimal way;
(ii) the full update scheme [43] which leads to an optimal truncation by incorporating the
effects of the entire wavefunction appropriately. However, the full update comes at the price
of requiring significantly more numerical resources.

3.5.2 Simple update

The simple update, introduced by Jiang, Weng and Xiang Ref. [68] is formulated in a slightly
modified iPEPS representation. So far, we only dealt with M tensors located directly at sites of
the lattice. For the simple update we put an extra set of tensors on the bonds of the iPEPS tensor
network. These tensors, here labeled λx

y for horizontal and λ̃x
y for vertical bonds, are diagonal

matrices similar to those used in Vidal’s TEBD and iTEBD formulation for time-evolving matrix
product states [59,70].

Starting from the standard iPEPS representation that has been adopted in this review, so
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far, it requires only a minor adaption to translate into this modified representation,

= , (31)

where Γ x
y in combination with the roots of all four bond tensors yields the original M x

y tensor.
The key idea of the simplified update is to approximate the full environment of two neighboring
sites, r = (x , y) and r ′ = (x+1, y), by only the diagonal tensors surrounding this pair of sites.
This procedure is adopted from MPS-based time evolution via the iTEBD algorithm.

To perform the simple update explicitly, we switch first into the bond projection to carry
out the optimization more efficiently. We illustrate the projection here explicitly since different
tensors are involved in the modified iPEPS representation,

=

= . (32)

Now the Trotter gate is applied to the subtensors on the bond, adding entanglement and po-
tentially increasing the bond dimension to dD. To obtain the pair of subtensors v′xy and w′x+1

y
with the original bond dimension D, the simple update relies on a simple SVD,

=

=

=

= . (33)

No extra iteration or optimization is required to complete the update (hence, the name “simple”
update). The updated diagonal bond matrix λ′xy contains the D largest singular values, the

optimized subtensors are obtained from v′xy = U and w′x+1
y = V †.
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To restore the form of the iPEPS tensors from Qx
y and Qx+1

y , we apply the inverse of the
additional bond tensors, which have not been altered by this optimization step,

= , = . (34)

The simple update is particular appealing due to its low complexity and high numerical effi-
ciency; the truncation based on a plain SVD in Eq. (33) only scales with O(D3d6) operations.
Yet, the truncation itself cannot be considered optimal in the context of iPEPS. It would have
been optimal if we had gauged the surrounding bonds in such a way that they exclusively
contain orthonormal basis sets. Unfortunately, this is only possible if the environment is sepa-
rable, as in the case of MPS or other tensor networks without loops. In fact, one can show that
a tensor optimization performed in this way presents an optimal update for an infinite tensor
network on a Bethe lattice [69].

Any iPEPS representation on a standard 2D lattice, however, does feature loops, which
means that we cannot separate the environment into two blocks and find a gauge with or-
thonormal basis sets on all surrounding bonds. Hence, the simple update introduces a sys-
tematic error, as it does not properly account for the full environment of the bond during the
optimization. The magnitude of this error turns out to be less severe than one might expect.
Especially for systems in gapped phases, the simple update leads to excellent results [45].
Moreover, its numerical efficiency often allows simulations with larger bond dimensions com-
pared to the full update; thus it can give access to complex systems which remain out of reach
for full-update calculations.

We conclude this section with a few practical comments concerning the implementation of
the simple update:

• For a generic unit cell, the simple update is employed sequentially on all bonds in the
system. One can easily work with a second-order Trotter decomposition by reversing the
application order of the gates in every second step.

• The normalization of the tensor network can be conveniently achieved on the fly by
normalizing the trace of each updated diagonal bond matrix λ′xy to unity. This procedure
leads to a numerically fully stable algorithm.

• To obtain a meaningful representation of the ground state by means of imaginary-time
evolution, we start from a random set of tensors and use a fairly large time step
τ=O(10−1). A large initial time step is important since it minimizes the risk of getting
stuck in a local energy minimum and, in case of symmetric iPEPS implementation, it en-
ables us to dynamically adapt the symmetry sectors on the bonds (starting from a very
small time step, one can get stuck in the initial symmetry configuration and not reach all
relevant sectors). To decrease the effect of the Trotter error, we then gradually reduce
τ as soon as we observe convergence with respect to the SVD spectra (typically after a
few hundred or thousand time steps). After reaching a time step of the order O(10−5),
the ground-state wavefunction is typically converged.

• Measurements of observables are performed with the converged iPEPS representation,
obtained from the simple update, as input for the CTM scheme. Relying on CTM, this
leads to a total numerical cost scaling of O(χ3D6), which is, in principle, equivalent to
the cost scaling of the full update. In the latter, however, the full environment has to be
calculated in every step and not just at the end to perform measurements.
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3.5.3 Full update

The full update introduced by Jordan, Orús, Vidal, Verstraete and Cirac [43] represents a clean
and accurate protocol for performing the tensor update during imaginary-time evolution. Its
name is derived from the fact that the effects of the entire wavefunction on the bond tensors
are considered, including the full environmental TN. The only approximation stems from the
non-exact contraction of the environmental TN, which we carry out based on the CTM scheme
[see Sec. 3.3.1].

After the application of the Trotter gate in Eq. (30), the full update generates the optimized
pair of subtensors v′xy and w′x+1

y with bond dimension D by minimizing the squared norm
between |ψ(v′, w′)〉 and the wavefunction |ψ(ṽ, w̃)〉 containing the exact subtensors ṽ x

y and

w̃x+1
y with enlarged bond dimension dD,

d(ṽ, w̃, v′, w′) =
�

�

�

�|ψ(v′, w′)〉 − |ψ(ṽ, w̃)〉
�

�

�

�

2
. (35)

To minimize Eq. (35) with respect to v′xy and w′x+1
y , we first have to obtain an effective repre-

sentation of the environment with respect to the bond to be updated (marked red):

. (36)

This is achieved via the CTM scheme, leading to an approximate representation of the envi-
ronment in terms of corner matrices and transfer tensors,

=

(37)

As in the case of the simple update, we carry out the tensor update for efficiency reasons
in the bond projection, as discussed above. In order to generate the full environment in this
representation, we have to account for the subtensors X x

y and Y x+1
y as well as their conjugates,

and multiply them to the effective environment shown in Eq. (37), obtaining

= . (38)
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In this way, it is possible to represent the cost function (35) diagrammatically,

d(ṽ, w̃, v′, w′)

= 〈ψ(v′, w′)|ψ(v′, w′)〉+ 〈ψ(ṽ, w̃)|ψ(ṽ, w̃)〉 − 〈ψ(v′, w′)|ψ(ṽ, w̃)〉 − 〈ψ(ṽ, w̃)|ψ(v′, w′)〉

= +

− − . (39)

d(ṽ, w̃, v′, w′) is a quadratic function of the tensors v′xy and w′x+1
y . Thus, the optimized sub-

tensors can be found using an alternating least-square algorithm [43].
To this end, we can first optimize v′xy while keeping w′x+1

y fixed. Analogous to the MPS

compression, we form the partial derivative of Eq. (39) with respect to v′†,x
y ,

∂

∂ v′†
d(ṽ, w̃, v′, w′)

!
= 0 ⇒ = . (40)

The solution for v′xy in Eq. (40) is found by inverting R. Using the bond projection, the in-

version can be computed exactly with moderate numerical effort O(d3D6). The full M tensor
representation, on the other hand, leads to an unfeasible costs of O(D12) for the exact inver-
sion, and O(D8) employing approximation methods.

After obtaining the optimized subtensor v′xy , we next update w′x+1
y while keeping v′xy fixed

by forming the partial derivative of Eq. (39) with respect to w′†,x+1
y ,

∂

∂ w′†
d(ṽ, w̃, v′, w′)

!
= 0 ⇒ = . (41)
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The solution for w′x+1
y is again computed by matrix inversion of R.

This alternation process is repeated until the subtensors v′xy and w′x+1
y converge. Monitor-

ing the cost function d(ṽ, w̃, v′, w′) after every iteration step i, the convergence is detected by
means of a fidelity measure which, following Phien, Bengua, Tuan, Corboz and Orús [47], can
be defined as

fd = |di+1 − di|/d0 . (42)

The alternating optimization is stopped in case fd drops below some small threshold
εd =O(10−10) while showing no sign of large fluctuations.

Equipped with the converged subtensors v′xy and w′x+1
y , the original iPEPS form is then

restored,

= , = , (43)

so that we can apply the next Trotter gate and repeat the full update optimization.

3.5.4 Alternative approaches

By accounting for the entire many-body wavefunction of the infinite system, the full update
provides an optimization scheme that is free from the systematic error plaguing the simple
update. Only the CTM representation of the effective environment induces some approximate
character to the algorithm. The high accuracy of the method, however, comes at the price
of drastically enhanced numerical costs since the full effective environment, in principle, has
to be calculated after the application of every single Trotter gate (i.e., typically thousands of
times). The fast-full update [47], where one updates the effective environment and site tensors
simultaneously, offers an immediate improvement to this problem. Another possibility is the
cluster update [71, 72], a hybrid version of the simple and the full update, which takes into
account an improved, yet not complete version of the effective environment. Also, we note
that it may be possible to achieve improvements in accuracy when computing the environment
by properly removing the short-range entanglement residing in loops. To this end, it may
be fruitful to combine the CTM method with other entanglement filtering algorithms, such
as the Loop-TNR algorithm [73], graph-independent local truncation [74], full environment
truncation [75], or entanglement branching [76].

Besides imaginary time evolution based algorithms, gradient-based energy minimization
algorithms have also been found to be useful [22, 77, 78]. In particular, an automatic dif-
ferentiation (AD) approach can be applied to reduce the complexity of the implementation,
as the evaluation of gradients involves a huge number of summation of tensor environments
[77,79–83], which always needs to be done iteratively in any case. The prescription is generic,
and may therefore also be attractive when combining AD techniques with non-abelian iPEPS
in the future.

3.5.5 Gauge fixing

A well-known technical fact in the context of MPS is that the gauge degree of freedom on the
bond indices can be efficiently exploited to generate a canonical representation [84]. Through
the correct gauge, the effective environment of a specific bond, or rather its tensor network
representation, can be replaced by identity matrices, ensuring numerical precision and stabil-
ity of the MPS framework. The success of this scheme is closely linked to the fact that the
environmental tensor network of an MPS is separable, such that the left and right block can be
gauged independently. In the case of PEPS and iPEPS, the environment no longer factorizes
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into different blocks, due to the presence of loops in the tensor network. In other words, cut-
ting the TN at a single bond does not yield a bipartition of the system (as in the case of MPS),
and therefore no full canonical PEPS or iPEPS representation exists.

Nevertheless, it is still possible to exploit the gauge degree of freedom on the bonds to
improve the stability of the algorithm. Inspired by the 1D gauging protocol, Lubasch, Cirac,
and Bañuls [48] recently introduced a gauge-fixing prescription for finite PEPS calculations
that was later adapted in the context of iPEPS by Ref. [47]. It yields a significantly better
conditioned effective environment and thus strongly improves the stability of the tensor opti-
mization during the full update.

The gauge protocol [48] starts from the effective environment in the bond projection (38)
which, after symmetrization, is subject to an eigenvalue decomposition,

= ≈ = . (44)

During this process, we remove the contributions from small negative eigenvalues to restore
the positivity of Efull. Next we independently apply a QR and LQ decomposition to the tensor
Z ,

= = , (45)

and insert two identities LL−1 and R−1R, into the left and right bond indices of the effective
environment, respectively. This yields a renormalized pair of subtensors v̄ x

y and w̄x+1
y and a

modified environment Ēfull:

= . (46)

Moreover, one also has to apply the inverse L−1, R−1 to the subtensors X x
y and Y x+1

y , respec-
tively, so that the full M tensors can be restored properly after the tensor update [c.f. Eq. (43)],

= , = . (47)

4 Fermionic tensor networks

For the tensor network representations discussed so far, we implicitly restricted our discus-
sion to bosonic quantum many-body models. However, some of the most challenging and
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interesting open questions with respect to the physics of strongly correlated systems involve
fermions. Especially in two dimensions, the t-J model, the Hubbard model, and its multi-band
extensions continuously attract much attention, since they are believed to play an important
role for understanding of high-Tc superconductivity and quantum criticality. Due to the lack
of alternative approaches (QMC is particularly limited by the sign problem in this context),
much hope is set on tensor network techniques to treat these complex fermionic models under
controlled conditions.

TN representations can incorporate fermionic statistics in any spatial dimension, and sev-
eral different approaches have been developed for its efficient implementation, being mathe-
matically all equivalent [45,46,85–89]. The most useful point of view for practitioners is that
taken by Corboz and Vidal [85], adapted to the iPEPS by Corboz, Orús, Bauer and Vidal [45].
It fully implements the fermionic exchange rules in terms of modifications to the tensor net-
work diagrams. In the following, we briefly review the main ingredients for fermionic tensor
networks, mostly following [45], although not with the same formal rigor, to keep the presenta-
tion compact. We refer to Sec. 4.4 for technical details on the fermionic iPEPS implementation
in combination with non-abelian symmetries.

For simplicity, we focus on a lattice of spinless fermions with a local Hilbert space dimension
d = 2 on every site (though everything can easily be generalized to fermions with d > 2 [45]).
The fermionic statistic of this model is typically treated at the level of operators, specifically
by the anticommutation relations of the fermionic annihilation and creation operators, ĉ j and

ĉ†
j ,

{ĉ j , ĉ†
j′}= δ j j′ {ĉ j , ĉ j′}= 0 . (48)

In addition, one always imposes some fermionic ordering of the sites, such that a fully occupied
state on the lattice containing N sites can be expressed by means of second quantization using
the vacuum state |01〉|02〉 ...|0N 〉 and an ordered sequence of creation operators,

|11〉|12〉 ... |1N 〉= ĉ†
1 ĉ†

2 ĉ†
3 ... ĉ†

N |01〉|02〉 ... |0N 〉 . (49)

Starting from the techniques discussed in the context of bosonic systems, how can we incor-
porate the fermionic statistic into the framework of tensor networks? One possibility is to
employ a Jordan-Wigner transformation to represent the fermionic operators in terms of Pauli
matrices. In this way, the fermionic operator ĉ j is expressed in terms of bosonic operators
in a non-local form, which can be described by a so-called Jordan-Wigner string acting on all
sites j′ < j that appear “earlier” in the fermionic order of Eq. (49) [90]. These strings can be
treated efficiently in the MPS framework, where it is always possible to choose the fermionic
order j equivalent to the position of a site in the MPS chain mapping. However, it leads to
severe complications in the context of PEPS, where two nearest-neighbor sites r = (x , y) and
r ′ = (x + 1, y) on the lattice might appear far apart in terms of their fermionic order j and
j′ [45].

To retain the “locality” of the iPEPS algorithm as well, we here adopt a different approach
for the treatment of fermionic statistic in the tensor network language. This formulation builds
on two simple “fermionization” rules discussed below, that were pioneered in the context of
fermionic MERA by Refs. [85] and [46], and later adapted to the PEPS and iPEPS framework
[45].

4.1 Parity conservation

A Fermionic Hamiltonian typically preserves the parity of the particle number of the state it
acts on, defined to be p = 1 or −1 for an even or an odd number of particles, respectively.
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This Z2 parity symmetry enables us to define wavefunctions and operators in terms of a well-
defined parity quantum number p, resulting in a block structure in the tensor network. In
particular, every index of a tensor can be assigned a well-defined parity.

The first fermionization rule enforces parity conservation in a TN representation. To this
end, all tensors have to be chosen to be parity preserving. Taking a generic element of some
M tensor as example, it means that

M
[σx

y ]

αβγρ
= 0 if p(α)p(β)p(γ)p(ρ)p(σx

y) = −1 , (50)

with p(α) ∈ {−1, 1} describing the parity of the state labeled by the index α [45]. This imme-
diately has the consequence that operators changing the parity number of a state, such as ĉ j
have to be encoded with an additional index (see below). Parity conservation does not directly
capture the fermionic statistic. However, it is crucial in order to track the fermionic signs, since
we are able to distinguish states containing an even or odd number of fermions.

4.2 Fermionic swap gates

The second fermionization rule of [85] incorporates the fermionic statistics into the tensor
network formalism. It implies that each line crossing in the TN is replaced by a fermionic
swap gate,

Ŝαβ
β ′α′
= δαβ ′δβα′ S(α,β) = , (51)

with S(α,β) = −1 if p(α) = p(β) = −1 and S(α,β) = 1 otherwise.
Why do the swap gates mimic the anticommutation relations of the fermions? Each line

of the TN diagrams corresponds to a fermionic degree of freedom representing either physical
(site indices) or virtual particles (bond indices). Any line crossing then corresponds to a parti-
cle exchange [85]. The implication of such an exchange depends on the nature of the particles.
In the case of bosons such a swap is a trivial operation without any consequence. In the context
of other particles, such as fermions, the underlying particle statistic does yield non-trivial con-
sequences. For instance, additional factors of −1 have to be multiplied to the tensor network
when swapping two states with odd fermionic parity number. Thus, the fermionic statistic of
any tensor network can be captured by adding swap gates of type (51) to the diagrammatic
representation. As a prerequisite, one has to be able to read out the parity of every index in
the TN (hence, the first rule).

We emphasize that the fermionization rules can be readily implemented into any standard
bosonic TN algorithm without altering the leading numerical costs, since the swap gates can
typically be absorbed into a single tensor [85]. All steps can be performed completely analo-
gously. In our iPEPS implementation we were able to recycle most parts of our code for bosonic
systems by simply adding swap gates at the appropriate lines.

4.3 Fermionic operators

Another prerequisite to capture the fermionic statistic in a TN representation relates to the
proper definition of local fermionic operators. Consider a generic two-site operator Ôi j acting
on sites i and j, with j > i not necessarily labeling contiguous sites in terms of the imposed
fermionic order. Applied to a generic wavefunction, the resulting TN diagram contains a num-
ber of fermionic swap gates (illustrated in detail for MPS and iPEPS below). The impact of
these gates on the wavefunction can be interpreted as swapping the physical index of site i
such that it becomes contiguous to j with respect to the fermionic order. But this alone does
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not fully account for the fermionic statistics. In addition, the fermionic order of the local two-
site Hilbert space generated by sites i and j has to be properly incorporated on the level of the
operators, which leads to factors of −1 for some matrix elements.

While easily generalizable to arbitrary systems [45], we illustrate this briefly for the simple
example of spinless fermions, where the operator is expanded in the two-site basis
|σiσ j〉= (c

†
i )
σ j̃ (c†

j )
σ j |0i0 j〉, with σ j ∈ {0,1}:

Ô =
∑

σ′iσ
′
j

σiσ j

O
σ′iσ

′
j

σiσ j
|σiσ j〉〈σ′iσ

′
j| . (52)

The coefficients O
σ′iσ

′
j

σiσ j
are given by

O
σ′iσ

′
j

σiσ j
= 〈σiσ j|Ô|σ′iσ

′
j〉= 〈0i0 j|(ĉi)

σi (ĉ j)
σ j Ô(ĉ†

i )
σ′i (ĉ†

j )
σ′j |0i0 j〉 . (53)

If the operator describes a pairing term, Ô = ĉi ĉ j , the only non-vanishing coefficient is

O
1i1 j

0i0 j
= 〈0i0 j|ĉi ĉ j ĉ

†
i ĉ†

j |0i0 j〉= −1 . (54)

A standard hopping term Ô = ĉ†
i ĉ j also has only a single nonzero element,

O
0i1 j

1i0 j
= 〈0 j′0 j|ĉi ĉ†

i ĉ j ĉ
†
j |0i0 j〉= 1 . (55)

We conclude this part with an additional comment on operators that change the parity of
a state, such as Ô = ĉ j . The first fermionization rule restricts our TN description to parity
preserving tensors, as defined in Eq. (50). Naively, this would imply that simple annihilation
or creation operators could not be properly described by fermionic TNs, since their tensor
representation does not conserve fermionic parity. However, any parity changing tensor can
be represented by a parity conserving tensor just by adding an additional single-valued index
δ with p(δ) = −1 [45]. For instance, the diagrammatic form ĉ j is then given by

(ĉ)
σ′j
σ j ,δ
= , (56)

where the red line indicates that δ only takes a single value, i.e., represents a singleton dimen-
sion in a rank-3 tensor. This representation ensures that the only nonzero element, (ĉ)

1 j

0 j ,δ
, now

satisfies Eq. (50):
p(1 j)p(0 j)p(δ) = (−1)(+1)(−1) = 1. (57)

4.4 Fermionic PEPS implementation

To enter this discussion, we return to our finite-size PEPS example on a 3 × 3 square-lattice
cluster used in the beginning of Sec. 3.1. Recall that each site is labeled according to its coor-
dinate in space, r = (x , y), so that the local basis states are denoted by |σx

y〉. In addition, we
now have to decide on a specific fermionic order and use an additional label j, running from
1 to 9, to enumerate all sites of the system, |σx

y, j〉 (the red color of the fermionic index acts as
guide for the eyes). Thus, a specific state in the Fock space can be expressed as

|σ1
1,1〉|σ

1
2,2〉...|σ

3
3,9〉= (ĉ

†
1)
σ1

1(ĉ†
2)
σ1

2 ... (ĉ†
9)
σ3

3 |01
1,1〉|0

1
1,2〉...|0

3
1,9〉 . (58)
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Diagrammatically, this ordering always corresponds to the order in which the open indices of
the wavefunction |ψ〉 are drawn, and directly affects the specific appearance of the PEPS TN,

(59)

= .

We emphasize that a different fermionic order automatically leads to a different diagrammatic
representation, where the swap gates (black diamonds) potentially act on a different set of
bonds. In this work, we only consider the fermionic ‘zig-zag‘ order of Eq. (59) which (i) can
also easily be applied to an infinite lattice system and (ii) enables us to recycle all bosonic
iPEPS diagrams depicted in Sec. 3.1. For an explicit example of imposing another fermionic
order, see Ref. [45].

After obtaining the proper diagrammatic form of the PEPS, all subsequent operations follow
in complete analogy from the bosonic case. The only additional feature are the swap gates,
which are put on every line crossing. For instance, an overlap calculation 〈ψ|ψ〉, derived in
Eq. (14) for the bosonic PEPS by performing a number of jump moves, is carried out similarly
for a fermionic system,

(60)

〈ψ|ψ〉 = = .

To reduce the complexity of the diagram, we again introduced a modified representation M̄ x†
y

of the conjugate tensors in the second step of Eq. (60). In contrast to the bosonic case, where
M̄ x†

y and M x†
y are mathematically equivalent objects [see Eq. (13)], we emphasize that M̄ x†

y
here includes two fermionic swap gates that are absorbed into the tensor, according to

= . (61)

4.5 Fermionic iPEPS implementation

Considering fermions in an infinite lattice system, the protocol of imposing a zig-zag fermionic
order on the lattice can be adopted in a very straightforward manner [45]. In hindsight,
we already implied this kind of ordering when drawing the iPEPS diagrams in Sec. 3.1. The
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extensions from the bosonic to the fermionic case is easily achieved by the presence of the
fermionic swap gates at line crossings.

In most iPEPS applications, the modified definition of the conjugate tensor M̄ x†
y , (61), and

the fermionic version of the reduced tensor mx
y

= (62)

simplify the algorithm by a great deal. For instance, the calculation of an overlap 〈ψ|ψ〉 can
even be represented diagrammatically without any swap gates present,

(63)

= .

In principle, this would also enable us to carry out the coarse graining steps in the CTM cal-
culation exactly in the same way as in bosonic iPEPS in terms of the reduced m tensors. To
perform the algorithm with an efficient cost scaling, however, the M tensors and their con-
jugates have to be kept separated [see Sec. 3.3]. This typically leads to the presence of four
additional swap gates for each site (only two when using M̄ x†

y ).
The strategy of incorporating the swap gates appearing in a TN is to absorb them into one

single tensor [85]. Depending on the TN, this is not always possible in the very first contraction
step. Nevertheless, every swap gate can typically be absorbed at some intermediate contraction
step. We illustrate this procedure for the contraction of parts of the CTM environment,

= =

= =
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= . (64)

Swap gates also appear in the context of tensor optimization and the evaluation of a two-site
operator, such as,

〈ψ|Ô|ψ〉= . (65)

We conclude this section by pointing out the modifications to the full-update protocol in the
context of fermions. Again, most of the steps are exactly the same as in the bosonic version of
the algorithm. In particular, the actual tensor optimization does not contain any swap gates
due to the absence of line crossings in Eq. (39). However, the initialization slightly differs since
one has to account for the presence of swap gates when performing the bond projection,

=

= (66)

Importantly, the swap gate acts differently on the conjugate tensors, so that the conjugate
subtensors have to be generated by two independent SVD or QR decompositions,

=

= . (67)

The tensor network representation of the effective environment also contains an additional set
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of swap gates,

Efull = . (68)

Whereas the tensor optimization does not differ from the bosonic formulation, the restoration
of the actual iPEPS representation after the update works in a slightly modified way,

= = . (69)

Compared to the bosonic case in Eq. (43), we have to account for the additional swap gate.

5 Implementation of symmetries

The exploitation of symmetries, where available, is very important for writing efficient tensor
network codes. In this Section we address various aspects of this issue.

5.1 Abelian symmetries

For a lattice model with abelian symmetries, quantum states can be labeled |ql〉, where q is an
abelian “charge” quantum number, and l distinguishes different states with the same charge.
Consider the simplest non-trivial example of a rank-3 tensor A, which fuses the tensor product
of two elementary state spaces with abelian symmetry, |q′m〉 and |q′′n〉, into the combined
tensor product space |ql〉. This operation can be expressed as

|ql〉=
∑

q′ l ′

∑

q′′ l ′′
|q′l ′〉|q′′l ′′〉 (Aq

q′q′′)
l
l ′ l ′′ . (70)

To reflect the system’s abelian symmetry, the A tensor carries a q-label for the symmetry sector
of each of the indices l, l ′ and l ′′. From a numerical perspective this introduces additional
bookkeeping effort. At the same time, symmetry-specific selection rules enforce a large num-
ber of elements of A to be exactly zero [for the example of U(1) particle conservation, the
selection rule takes the form q = q′ + q′′]. Keeping only the nonzero elements leads to sparse
tensor structures and, hence, results in significant computational speed-up and reduced mem-
ory requirements.

5.2 Non-abelian symmetries

Let us now consider the same example in the context of non-abelian symmetries. Then quan-
tum states can be organized into irreducible symmetry multiplets (irreps) that carry an addi-
tional label qz that specifies the internal structure of an individual multiplet, e.g. |ql〉 → |ql; qz〉.
The decomposition of a direct product of two irreps into a direct sum of irreps is fully defined
by the Clebsch-Gordan coefficients (CGCs) of the symmetries present. In this description, the
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coefficients of the A tensor in Eq. (70) factorize into tensor products of reduced matrix elements
and CGCs, so that Eq. (70) generalizes to

|ql; qz〉=
∑

q′ l ′q′z

∑

q′′ l ′′q′′z

�

�q′l ′; q′z
� �

�q′′l ′′; q′′z
�

·


Aq
q′q′′





l
l ′ l ′′ ·

�

Cq
q′q′′

�qz

q′zq′′z
. (71)

Here
�

Cq
q′q′′

�qz

q′zq′′z
≡



qq′; qzq′z
�

�q′′; q′′z
�

represent CGCs, and


Aq
q′q′′





l
l ′ l ′′ denote reduced matrix

elements of the basis transformation [30]. This allows one to compress the nonzero data blocks
of the tensors, further reducing the numerical requirements, yet at the price of a significantly
increased bookkeeping effort.

The same structure as in Eq. (71) also carries over to the coefficients of arbitrary operators
Ôq′q′z

that acts in a given (local) state space |ql; qz〉, where the latter itself is already properly
organized w.r.t. given symmetries. Clearly, if one wants to exploit symmetries in numerical
simulations, these symmetries must be well-defined throughout at every step and, in partic-
ular, for each individual tensorial object under consideration. Hence one also needs to know
how operators transform under given symmetries. That is, all operators can be reduced to or
built from irreducible tensor operators (irrops). These elementary objects consist of a set of
operators (like a spinor) that under symmetry operation are transformed into each other com-
pletely analogously to the states of a particular irreducible multiplet q′, in which case q′z labels
the individual operators in the set. The intimate relation to states becomes apparent when the
irrop acts on a scalar state |0〉, i.e., a singlet in all symmetries having q = 0 like a vacuum state.
Then Ôq′q′z

|0〉 ≡ |q′q′z〉 associates an irrop with an irrep, up to normalization and assuming the
state is not destroyed. Both of them transform according to the irrep q′. Generally then, a
particular irrop with multiplet index l ′(= 1), can be expressed in a factorized form exploiting
the Wigner-Eckart theorem,




ql; qz

�

�Ôq′ l ′;q′z

�

�q′′l ′′; q′′z
�

≡



ql; qz

�

� ·
�

Ôq′ l ′;q′z

�

�q′′l ′′; q′′z
�

�

=


Oq
q′q′′





l
l ′ l ′′ · (C

q
q′q′′)

qz
q′zq′′z

, (72)

with CGCs Cq
q′q′′ and reduced matrix elements ‖Oq

q′q′′‖
l
l ′ l ′′ . The latter describe transitions be-

tween multiplets ql and q′′n within a given Hilbert space induced by the irrop Ôq′ l ′ .
The conceptual structure of the tensor describing a basis transformation or operator ma-

trix elements is thus the same. With focus on the tensor alone, i.e., skipping the ket states
contracted with the tensor in Eq. (71), the tensor itself may be written more compactly in the
generic form [31],

A=
⊕

q
‖A‖q ⊗ Cq , (73)

where q now is the full collection of symmetry labels for all indices (legs) in a particular
block realization. For example for the cases above, q← (q′, q′′; q) where, by convention, e.g.,
subscript indices are grouped and listed before superscript indices. This demonstrates that
each tensor acquires a block structure (collected via the outer sum), and that for each such
block, Clebsch-Gordan tensors are split off in a tensor-product structure. The tensor product
involves a reduced matrix element tensor (RMT) and a corresponding generalized Clebsch-
Gordon coefficient tensor (CGT) with the same tensor rank. This reduces the actual number of
freely choosable matrix elements, and thus the effective dimensionality of the tensor, A→ ‖A‖q,
e.g., going from D states on a given index (leg) to D∗ ≤ D multiplets. For abelian symmetries
there is no reduction, D∗ = D, whereas for SU(N), one empirically finds an effective average
dimensional reduction of D∗ ∼ D/3N−1� D.

The conceptual framework described above forms the basis for the QSpace tensor library
[30,31] for building many-body state spaces in the presence of symmetries [Eq. (71)] and for
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describing the actions of operators therein [Eq. (72)]. It allows one to construct a tensor net-
work and its constituent tensors step by step in an iterative fashion. For a tutorial illustration
of its underlying ideas, see App. A.

5.3 Outer multiplicity

When dealing with non-abelian symmetries, one generically also encounters outer multiplicity,
i.e. direct sums in which the same irrep or irrop (or the same combination of several of them)
occurs more than once. Consider, for example, an SU(2) rank-4 CGT having two incoming
and two outgoing legs with symmetry labels (S1, S2) and (S′1, S′2), respectively. Then, there are
several different possibilities to fuse (S1, S2) to an intermediate irrep S and to subsequently
split the latter into (S′1, S′2):

.

(74)

In this sense, the outer multiplicity (OM) of the rank-4 CGT on the left is larger than one. Each
of the terms in the direct sum on the right corresponds to an independent CGT within a set of or-
thognal CGTs Cµq , all carrying the same external symmetry labels q ≡ (S1, S2; S′1, S′2), but distin-
guished by an outer multiplicity labelµ (here given by S). For example, if S1 = S2 = S′1 = S′2 = S,
then the outer multiplicity label µ = S can take the values 0,1, . . . , 2S. Since the outer multi-
plicity label is being summed over on the right, it is no longer visible at the level of the rank-4
CGT on the left.

SU(2) CGTs generically have OM larger than 1 once their rank is r ≥ 4. For general non-
abelian symmetries such as SU(N ≥ 3), OM larger than 1 already also occurs at the level of
rank-3 CGTs, e.g., in the standard state space decomposition as in Eq. (71). There, the same
q on the l.h.s. can arise in several different ways, which needs to be distinguished through an
outer multiplicity index µ:

|q(lµ); qz〉=
∑

q′ l ′q′z

∑

q′′ l ′′q′′z

�

�q′l ′; q′z
� �

�q′′l ′′; q′′z
�

·


Aq
q′q′′





lµ
l ′ l ′′ ·

�

Cqµ
q′q′′

�qz

q′zq′′z
, (75)

where l̃ ≡ (lµ) just labels the overall mutiplets on the l.h.s., whereas the multiplicity index µ on
the r.h.s. constitutes an additional dimension of the RMT ‖A‖ within its particular symmetry
sector tied to the CGT Cqµ

q′q′′ . In the presence of OM, the tensor representation in Eq. (73)
generalizes to

A=
⊕

q

�∑

µ

‖A‖µq ⊗ Cµq
�

, (76)

with a regular summation over the multiplicity index µ here. OM evidently also increases the
effective dimension of the reduced matrix element tensors ‖A‖qµ. In general, OM needs to
be properly accounted for (once and for all) at the level of rank-3 CGTs [30]. Moreover, to
ensure overall consistency, OM needs to be tracked meticulously not only when performing
direct product decompositions into direct sums, but also when performing (iterative pairwise)
contractions of tensors [31].

5.4 PEPS with symmetries

Building on the fusion rules for different state spaces in Eq. (71), one can generate symmetric
tensor networks consisting of higher-rank tensors. This can be easily understood from the per-
spective of contracting multiple A tensors to some larger-ranked object. The resulting tensor
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⇔

Figure 4: Schematic construction of a PEPS tensor network state. The elementary
tensor M associated with each site (left panel) is tiled in a translational invariant
fashion into a PEPS (right panel). The index order of its five legs is arbitrary but
fixed. Here we use the order (l, r, t, b,σ) ≡ (1, 2,3, 4,5) for left, right, top, bottom,
and local state spaces, respectively. When exploiting symmetries, every individual
index (i.e., leg of a tensor or line) represents a state space that must be expressed
in terms of symmetry subspaces, throughout. For non-abelian symmetries, a given
index describes a state space s that is organized as |s〉 ≡ |qn; qz〉, where q specifies
a symmetry sector, n a specific multiplet within the symmetry sector q, whereas qz
indexes the internal multiplet structure which can be split off as a tensor product
with a generalized CGTs [30].

then represents a tensor product of several state spaces. Setting up a symmetric PEPS tensor
network, for example, follows exactly this pattern, leading to the diagrammatic representa-
tions in Fig. (4) for a single tensor (left) and a contraction of several such tensors (right): The
symmetrized M tensors contain additional arrows on the index lines to indicate which state
spaces are incoming and outgoing (i.e., which (group of) state spaces are fused into which,
according to Eq. (71)). We have some freedom in fixing the direction of these arrows and some
choices might be more convenient to implement than others. Note that the extra index of M3

3
determines the global symmetry state of a specific PEPS representation. Of course, the sym-
metric PEPS also guarantees that the corresponding quantum state is symmetric, i.e., forms a
well-defined symmetry multiplet.

Symmetry-induced selection rules cause a large number of matrix elements to be exactly
zero, thus bringing the Hamiltonian into a block-diagonal structure and subdividing tensors
into well-defined symmetry sectors. Keeping only the nonzero elements, we can achieve
tremendous improvement in speed and accuracy in numerical simulations by the incorpo-
ration of symmetries. In the context of non-abelian symmetries, the nonzero data blocks are
not independent of each other and can be further compressed using reduced matrix elements
together with the Clebsch-Gordan algebra for multiplet spaces.

The special ingredient of our fermionic iPEPS implementation, that sets our work apart
from that of other iPEPS practitioners, concerns the explicit incorporation of non-abelian sym-
metries, such as SU(2)spin ⊗ SU(N)orb with the fermionic Z2 parity symmetry in the particle
sector. The non-abelian symmetries are fully encoded in the QSpace [30] tensor library, which
automatically handles the symmetry-induced fusion rules of both the reduced matrix elements
and the Clebsch-Gordan space.

Non-abelian iPEPS was pioneered by Liu, Li, Weichselbaum, von Delft and Su [37] for the
case of the spin-1 Kagome Heisenberg antiferromagnet, which illustrated an SU(2)spin symmet-
ric iPEPS representation in terms of a “projection” picture. Following ideas of SU(2) invariant
iPEPS representations for the spin-1

2 resonating valence-bond state [91, 92] and the spin-1
resonating AKLT state [93], the symmetric iPEPS tensors can be understood as emerging from
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sets of “virtual particles” associated with each site that are pairwise maximally entangled along
each virtual bond with their nearest neighbor sites, and then projected into the local degrees
of freedom of the corresponding site. Starting from such an SU(2) invariant iPEPS, even-
tually one only specifies the effective bond dimension D∗, and lets the tensor optimization
dynamically determine the relevant symmetry sectors on each bond. The number of multi-
plets D∗ translates into a significantly larger actual number of states, D, associated with each
bond (note that D may vary for the same D∗ depending on the actual multiplets being used).
In practice, the maximal feasible values for D∗ correspond to retaining an actual number of
states D which typically lies out of reach of standard iPEPS calculations incorporating abelian
symmetries only.

5.5 Technicalities

In the remainder of this section we briefly point out some important technicalities when im-
plementing non-abelian iPEPS.

5.5.1 Global symmetry sector

Ref. [37] states that the projection picture is dense, in the sense that it can cover the full
Hilbert space and generate any symmetry eigenstate. Whereas this is true for finite-size PEPS,
we emphasize that for translational invariant systems where the iPEPS is tiled with the same
M tensor, by construction, there cannot be a “drift” in average value of a quantum number
along any line of M tensors. In the case of non-abelian symmetries this implies that the global
symmetry label of the iPEPS is always constrained to the singlet sector. This is conceptually
similar to the case of U(1) symmetries in iPEPS, where states are restricted to a global sym-
metry sector corresponding to the quantum number zero, i.e., q = 0 (see Ref. [94], referred
as ‘identity charge’ therein).

We note, however, that for abelian U(1) symmetries such as charge, any local filling can
be realized based on the simple observation that U(1) symmetry labels are additive. Hence
one is free to shift them locally and scale them globally at will. Specifically, one may shift the
charge labels associated with the local state space of each site relative to the targeted mean
local occupation q̄, i.e., q→ q− q̄. By this simple relabeling trick, average charges associated
with the virtual bonds can fluctuate around q = 0. For non-abelian symmetries, however, such
a relabeling scheme appears ill-suited, so that, by construction, our iPEPS implementation
represents a global singlet. For our results below at finite doping, we still also only use Z2
charge parity even though charge itself is conserved.

5.5.2 Arrow convention

When exploiting symmetries, every index represents a state space with a particular symmetry
multiplet. Now when fusing state spaces across tensors, this naturally introduces the concept
of state spaces that ‘enter’ a given tensor, and state spaces that ‘emerge’ from it. For tensors this
implies in a graphical depiction that one has to distinguish ingoing and outgoing legs, i.e., every
leg acquires a direction, specified by an arrow [e.g., see Fig. 4]. Mathematically, this is equiva-
lent to distinguishing between co- and contravariant indices (a notational convention not used
here) [31]. The action of raising or lowering indices then corresponds to reverting arrows, as
schematically depicted in Fig. 5. This is an operation that represents gauge-transformations of
tensor network states, leaving the physical properties of the individual states unaffected [95].
Importantly, within a tensor network state, a summed over, i.e., contracted index connecting a
pair of tensors, where it is outgoing from one tensor, and incoming to the other.
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Figure 5: Arrow inversion. An identity, I = U†U , is inserted on a bond (here the
center bond) where up to normalization the unitary U represents a 1 j symbol [31],
i.e., a (degenerate) rank-3 tensor which combines two state spaces, q and its dual
q̄ into a scalar singlet state. Upon absorbing U and U† on opposite sides with the
neighboring tensors, effectively, the arrow on the center bond has been reverted.
The singlet index (dashed line) can be omitted in the end.

(a) (b)

Figure 6: Arrow convention for M tensor (panel a) as they enter inside the corner
transfer matrix (CTM) setup in (panel b). The latter combines bra and ket state as
required for the minimization of the total energy E = 〈ψ|H|ψ〉when truncating [58].
From the perspective of an individual site, this “double layer” tensor network trans-
lates into 〈M | . . . |M〉. For this, note that we have reverted the bond indices of the
‘bra-tensor’ M → M̄ such that they point in the same direction as the corresponding
indices of M . Only then one can fuse the ‘double bond index’ into a single fat in-
dex. This greatly simplifies many fusion steps during the CTM procedure. The black
diamonds in (a) indicate fermionic swap gates [45,85].

When setting up a symmetric iPEPS representation, we therefore have to choose an “arrow
convention” for all iPEPS tensors. On a square lattice, when a single M tensor with four virtual
bond indices tiles an entire 2D iPEPS, this necessarily implies that two virtual bond indices
must be ingoing and two outgoing [cf. Fig. 4(b)].

For compactness and readability of the code, we want to minimize the number of steps in
the algorithm that involve reverting arrows as in Fig. 5. To this end, we establish the arrow
convention for M tensors as well as the corner transfer matrices as shown in Fig. 6. Thus the
quantum labels on all virtual bonds always “flow” from the upper left to the lower right corner
of the tensor network.

5.5.3 Efficient contractions

The standard procedure when contracting tensors in the absence of any symmetries is to reshape
a contraction into an effective matrix product [96] where efficient libraries can be utilized.
That is, for any tensor in a contraction, the indices that are contracted as well as the ones that
are kept, are grouped, i.e., permuted into order, and then fused into hyperindices.

This strategy also carries over when implementing symmetries, abelian and non-abelian
alike. In principle, one has the option of matching symmetry sectors first, and then do the
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contractions for every match in the above spirit. However, for abelian and non-abelian sym-
metries alike, this would cause a significant proliferation of symmetry sectors with increasing
rank already for an individual tensor, yet also for matching symmetry combinations when con-
tracting a pair of tensors. Roughly, if there are on average m symmetry sectors associated
with each of the r legs of a given rank-r tensor, one may expect up to mr possible symmetry
combinations. The situation is worse still for non-abelian symmetries, where the tensor prod-
ucts of two multiplets can give rise to many different multiplets. Therefore a computation
of a contraction is slowed down by (exponentially) many combinations with increasing rank
of the involved tensors. Yet the individual contractions of matching symmetry sectors often
involve only small effective block matrices. As a consequence, the above strategy becomes
prohibitively inefficient strongly with increasing rank of the tensors. For an efficient way to
proceed, one therefore first needs to merge indices into hyperindices (respecting fusion rules
in the presence of non-abelian symmetries), and then do the contraction.

An efficient non-abelian iPEPS implementation therefore must fuse indices in contractions
prior to the actual contraction, while being aware that only legs that point in the same direction
can be fused [e.g. see Fig. 6]. After the contraction, the remaining open indices must be
given back their original structure. In the presence of non-abelian symmetries, the fusion is
effectively taken care of by an additional contraction with unitary tensors, which need to be
reapplied on the open indices. This is an extra layer of complication that concerns each and
every contraction that involve tensors with rank r ¦ 4.

To be specific, we consider the the two-band Hubbard model (discussed in Sec. 6.1 below)
with Z2 ⊗ SU(2)spin ⊗ SU(2)orb, retaining D∗ = 6 multiplets on each bond. Already the M
tensors of rank 5 are complicated objects. However, the numerically most demanding tensors
appear during the CTM coarse graining. Here, we typically have to deal with rank-6 and rank-
7 tensors, and it depends strongly on the implementation details whether the CTM procedure
is still feasible. Let us focus on a typical rank-6 tensor appearing several times in a CTM step,
obtained by contracting the following TN diagram,

= . (77)

Each thin line corresponds to a single-layer bond index of dimension D∗, while the thick lines
are environmental bond indices of dimension χ∗ = 80. The resulting tensor on the r.h.s of
Eq. (77) requires only 390 MB of memory for the reduced matrix elements, as compared to
an estimated 883 GB without symmetries. This highlights the efficiency of the non-abelian
symmetries, where here we gain more than factor of 2,000 only in terms of storage require-
ment! At the same time, its QSpace consists of about 430, 000(!) individual symmetry blocks.
Numerically, this number corresponds to (0.61χ∗)2(0.61 D∗)4, in agreement with an expected
exponential proliferation of symmetry blocks with increasing rank. The sizes of the symmetry
blocks, of course, are comparatively small, on average containing only 100 = 102 individual
coefficients.

To reduce the rank of this tensor, it is possible to fuse the three indices pointing to the left
and to the bottom, respectively. This yields the rank-2 matrix representation,

= , (78)
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with size 28,000 × 28, 000 on the multiplet level. Being a rank-2 object, it must be block-
diagonal. The matrix only contains 37 symmetry blocks of larger size (on average, each block
consists of 7502 coefficients). Remarkably, the reduced matrix elements of the latter matrix
require slightly less memory (350 MB) than those of the original rank-6 tensor. To a very
minor extent, this may be attributed to overhead for organizing the long lists of symmetry
blocks in the tensor. More importantly, the rank-6 tensor has significant outer multiplicity [30,
31], which is absent in the rank-2 tensor. Most importantly, however, this simple comparison
strongly suggests that the symmetry blocks in the rank-2 matrix representation are densely
populated by the entries in the rank-6 tensor.

Now how do the two different representations perform in terms of contraction speed? To
compare them, we consider the next step of the CTM scheme, which requires forming the upper
part of the environment, by contraction the following tensor network, both in the rank-6 and
rank-2 representation

⇔ . (79)

The speed of the contraction vastly differs. Contracting two rank-2 objects results in 37 con-
tractions of the block-diagonal rank-2 objects, which is performed with QSpace [30] in about
one second of CPU time. In contrast, we had to terminate the contraction of the rank-6 ten-
sors after four hours (!) of calculation time. In the latter case, 109 individual contractions are
allowed by symmetry. Although the effort for each of these contractions is minimal, having to
process their vast number step by step leads to a significant overhead, and thus to a drastic
decrease in numerical efficiency.

6 Examples

Our main goal here is to illustrate the potential of non-abelian iPEPS, discussing both the
benefits and limitations of exploiting non-abelian symmetries, by showing exemplary results
for symmetric two and three band Hubbard models. A full analysis of the intricate physics of
each of these systems goes beyond the scope of this work and is left for future studies.

Whereas the one-band Hubbard model already features important aspects of strongly cor-
related materials, such as the Mott insulator transition or the emergence of d-wave super-
conducting pairing, for a multi-band Hubbard model a number of fascinating phenomena
emerge from the interplay of different electron orbitals which cannot be captured by an ef-
fective model with a single band. Both intra-atomic Coulomb exchange or the presence of
crystal field splitting can give rise to a number of intriguing effects, such as the existence of
an orbital-selective Mott insulating phase, where only one orbital becomes insulating while
the other retains its metallic properties [97–101]. In order to understand this physics from
a theoretical perspective, it is clearly necessary to go beyond a single-band system and study
multi-band generalizations of the Hubbard model.

In addition to perspectives in strongly correlated materials, multi-band high-symmetry
models, such as SU(N) Hubbard models or related Heisenberg models give rise to fascinat-
ing new types of quantum states including exotic magnetically ordered phases. These are not
only of general academic interest but recently have also become experimentally accessible in
the context of cold atoms [102,103].

The exponentially large quantum many-body Hilbert space and the ensuing strong elec-
tronic correlations pose an extreme challenge to numerical approaches. Besides, one also
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has to deal with an enlarged parameter space that substantially adds to the complexity of
these systems. For instance, the spinful symmetric two-band Hubbard model with only on-
site interactions already contains additional parameters such as Hund’s interaction energy in
comparison to its single-band version. Therefore, wide regions of the phase diagram of these
models remain blank and there is a compelling need for developing numerical methods that
can reliably deal with such systems in an unbiased way.

6.1 Spinful two-band Hubbard model

In this section, we demonstrate that fermionic iPEPS enhanced with non-abelian symmetries is
a valuable ansatz to deal with symmetric complex multi-band systems in 2D. As a first example,
we consider the repulsive Hubbard model with M = 2 bands and spin and orbital degeneracy
on the square lattice. Specifically, we consider the Hamiltonian [104],

Ĥ =
∑

〈i j〉

∑

mσ

�

− t ĉ†
imσ ĉ jmσ +H.c.

�

+ U
2

∑

i

n̂i(n̂i − 1) (80a)

Ĥµ = Ĥ − (µ+ 3U
2

︸︷︷︸

≡µ0

)
∑

i

n̂i , (80b)

with hopping amplitude t between nearest-neighbor sites 〈i j〉, spin index σ ∈ {↑,↓}, orbital
index m = 1, . . . , M , and site occupation n̂i ≡

∑

mσ n̂imσ. We take t := 1 as unit of energy,
throughout. We tune the average occupation via the chemical potential µ in Eq. (80b). But
when computing the ground state energies, we compute the expectation values of the Hamil-
tonian in Eq. (80a), otherwise. The chemical potential in Eq. (80b) was offset by µ0 such that
µ = 0 corresponds to half-filling in the presence of a finite onsite Coulomb energy U . Over-
all, the Hamiltonian in (80) features both an SU(2)spin and SU(2)orbital symmetry, which we
exploit in our iPEPS implementation. We ignore local Hund’s coupling. Therefore spin and
orbital index become interchangeable, resulting in 4 equivalent flavors. Overall, this actually
leads to an enlarged SU(4) symmetry of 4 spinless flavors (not exploited here). Also, we
exploit only charge parity conservation rather than U(1) charge, and tune the filling via a
chemical potential. The reason for this is partly technical, in that by being interested in finite
doping we do not necessarily have integer filling in our unit cell. As a benefit, by just tracking
charge parity, this immediately also permits the study of superconducting correlations.

For the ground state of a given average filling n = n(µ), set via Eq. (80b), we define the
ground state energy per site e0, the bond energy ei j

0 , and the generalized spin-singlet pairing
amplitude ∆i j as the expectation values

e0 ≡ 1
N 〈Ĥ〉 (81a)

ei j
0 ≡

¬

−t
∑

mσ

�

ĉ†
imσ ĉ jmσ +H.c.

�

+ U
8

�

n̂i(n̂i − 1) + n̂ j(n̂ j − 1)
�

¶

(81b)

∆i j ≡ 1p
2

∑

m




ĉim↑ ĉ jm↓ − ĉim↓ ĉ jm↑
�

, (81c)

with N the (fictitious total) number of sites. Here the ‘bond energy’ includes the Coulomb
interaction energy U/2 of each of its associated pair of sites, weighted by 1/z with z = 4 the
coordination number on the square lattice. Therefore, the average bond energy of all nearest

beighbor bonds, ei j
0 =

1
4

∑

j∈[n.n. of i]
ei j , is related to the average energy per site, e0, by ei j

0 =
e0
2 ,

since on average there are two bonds associated with each site.
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Table 1: Typical multiplet configurations on the auxiliary bonds obtained from sym-
metric iPEPS simulations on the square lattice with two symmetric spinful orbitals.
The rows show the results for varying multiplet bond dimension D∗ (left column) at
half filling. The corresponding state space dimension D is listed in the right column.
In the multiplet listing on the left, the notation (·)m indicates m multiplets in the sym-
metry sector (·), with m= 1 if not specified. For better readability, we also adopt the
QSpace [30] convention of specifying SU(2) multiplets through the integer number
2S (i.e., the number of boxes in the corresponding Young tableaux).

D∗ multiplets in symmetry sectors (Z2, SU(2)spin, SU(2)orb) D
3 (1,0, 0)⊕ (−1,1, 1) ⊕ (1, 2,0) 1+ 4+ 3= 8
4 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0) 1+ 8+ 3= 12
5 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0)⊕ (1,2, 2) 1+ 8+ 3+ 9= 21
6 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0)⊕ (1,0, 2)⊕ (1,2, 2) 1+ 8+ 3+ 3+ 9= 24

We study the Hamiltonian (80) for finite hole hoping by tuning µ≤ 0 (which is equivalent
by particle-hole transformation to particle doping µ ≥ 0). To our knowledge, the phase dia-
gram of this system is largely unknown away from integer filling. However, some interesting
results are available for certain points in parameter space.

At half-filling 〈n〉 = 2, several studies based on a sign-problem-free determinant quantum
Monte-Carlo method addressed the magnetic properties of the model [105–107]. Their find-
ings support the existence of long-ranged antiferromagnetic (AF) order for larger interactions
U ≥ 2 [106]. Interestingly, the AF order does not show a monotonic behavior with respect
to U; instead, it exhibits a maximum around U ≈ 8 and then decreases again towards larger
interactions strengths. Whether or not the long-ranged AF order persists in the limit U →∞
remains an open question. A previous QMC study of the corresponding Heisenberg model
found no AF order but potentially a gapless spin-liquid phase in this regime [108]. Another
recent work based on variational QMC [109] addressed the Mott transition of the half-filled
Hubbard model, finding a critical coupling Uc ≈ 11 for the case of degenerate bands (their
ansatz is rather biased, however, as it only accounts for a non-magnetic solutions).

In the quarter-filled case 〈n〉= 1 at infinite U , the Hamiltonian (80) can be mapped on an
SU(4)-symmetric Heisenberg model, which was studied in Ref. [110]. Their combined iPEPS
and ED study finds a rather exotic Neel-like order with dimers alternating between pairs of
flavors, pointing towards a spontaneously broken SU(4) symmetry with an enlarged unit cell.

In this section, we present a first step towards a systematic iPEPS study of the symmetric
two-band Hubbard model (80) that, in addition to half- and quarter filling, also investigates
arbitrary doping regimes. The main challenge for iPEPS in the context of such a two-band
model is the strongly enlarged local Hilbert space. In total, we need to deal with four different
flavors of fermions (2 spins × 2 orbitals) resulting in a local state space dimension d = 16 per
site, larger by a factor of four relative to the d = 4 in the one-band version.

To treat systems with a large local state space within iPEPS (or other TN approaches) one
can follow two different strategies, as illustrated in Fig. 7: (a) either one keeps a lattice as a
single unit with a large local state space (and hence preserves its symmetry), or (b) artificially
splits it, for the sake of the iPEPS simulation, into smaller sublattices. Strategy (a) is hardly
feasible for standard iPEPS techniques, even when incorporating all abelian symmetries of the
system. For (b), a natural choice is to split the lattice into two interleaved sublattices, one
for each orbital. The drawback, besides an artificially broken lattice symmetry, is that iPEPS
then has to handle longer-ranged interactions and correlations in its ansatz. This necessitates
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Figure 7: Schematic depiction of two-band setups for a spinful Hubbard model, with
the two bands depicted by the different colors red and green. In setup (a) all four
fermionic flavors still reside on a given lattice site, leading to an enlarged Hilbert
space of d = 42. This setup respects flavor symmetry, which thus may be exploited.
Setup (b) avoids the enlarged local Hilbert space by splitting the lattice into two
sublattice, one for each band. This comes at the cost of introducing an additional set
of sites, causing interaction terms to become longer-ranged.
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Figure 8: Non-abelian iPEPS results for the two-band Hubbard model with a 2×2 unit
cell using simple update at half-filling 〈n〉 = 2. Panels (a) and (b) display the nor-
malized ground-state energy per site e0/U as a function of U from iPEPS for various
multiplet bond dimensions D∗ (black symbols) in comparison to QMC data (red sym-
bols). The iPEPS energies were obtained by extrapolation vs. 1/D∗2→ 0 (squares),
with the extrapolations shown in (c). The convergence of the energy with the envi-
ronmental bond dimension χ∗ is shown in (d), where the maximum χ∗ = 60 roughly
corresponds to χ = 200. Labels (1) and (2) in panels (a) and (b) point to individ-
ual iPEPS wavefunctions characterized in panels (e) and (f). There the diameter of
the black dots is proportional to the average local occupation, and the bond width
to the bond energy ei j

0 [Eq. (81b)]. To better illustrate the breaking of translational
invariance in the unit cell, the right subpanels in (e) and (f) depict the same wave-
functions, but with bond energies shifted relative to their mean, ei j

0 → ei j
0 − (e0/2).

Here red (gray) bond correspond to positive (negative) values, respectively.
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swap gates in the implementation of imaginary time evolution, which generates an additional
source of error.

Here we follow strategy (a) because this preserves the orbital SU(2) symmetry, where we
can fully exploit all available non-abelian symmetry. Specifically, with finite doping in mind, we
incorporate Z2 ⊗ SU(2)spin ⊗ SU(2)orb symmetry. This way, the local state space with d = 16
is reduced to an effective multiplet dimension d∗ = 6. At the same time this enables us to
retain up to D∗ = 6 multiplets on each virtual bond, which corresponds to an effective bond
dimension of D = 24 states [cf. Table. 1]. This enables us to run simple-update simulations
for a wide regime of parameters, the results of which are presented in the following.

We start with the half-filled case 〈n〉 = 2, i.e., µ = 0 in (80b), to benchmark against ex-
isting determinant projector QMC data [111]. The results of this analysis are summarized
in Fig. 8. Panels (a,b) show the normalized ground-state energies per site versus the inter-
action strength U obtained from a simple-update iPEPS simulation on a 2× 2 unit cell. The
various bond dimensions D∗ = 3, 4,5, 6 in Fig. 8(a,b) are made up of dominant multiplets
which emerge dynamically from the iPEPS simulations for each D∗. They are listed in Table 1,
for completeness. The extrapolated energies for 1/(D∗)2 → 0 are empirically determined by
polynomial fits as depicted in Fig. 8(c). The convergence of our data with respect to the en-
vironmental bond dimension χ∗ is shown in Fig. 8(d). We attach no significance to the bump
seen at small χ∗, since our focus is on the large-χ∗ convergence. Note that QMC simulates
finite-size systems with periodic BC, hence its ground state energy, specifically so in Fig. 8(a),
is expected to still increase with increasing system size, as it converges from below. Never-
theless, we find good agreement, to within 1%, of our extrapolated energies with the QMC
results, confirming the reliability of our approach.

At half filling, following the work of Ref. [106], we expect the presence of long-ranged AF
order for all values of U considered in Fig. 8. This is also supported by the Mott plateau seen
in Fig. 9(b,d) at half-filling. Since by construction our iPEPS is SU(2)spin invariant, however,
a direct measurement of the local magnetization is not possible. Nevertheless, we expect that
the symmetry-breaking AF order still to be present, yet symmetrized and hence only accessible
via static spin-spin correlations over longer distances.

In the context of symmetric iPEPS simulations for a spin-1
2 Heisenberg model, we have

observed (not shown) that the two-fold degeneracy in the AF ground state manifests itself as a
spontaneous formation of row or column stripes which, in agreement with the AF state itself,
breaks translational symmetry within the unit cell. Interestingly, we here also observe such an
effect in the iPEPS wavefunctions in the 2-band Hubbard model as shown in Figs. 8(e,f). For
U = 4 [Fig. 8(e)], we clearly observe that two out of eight independent bonds in the unit cell
carry a substantially reduced energy. This suggests (at least) a 4-fold degenerate ground state.

Based on this loose connection, we will refer to the symmetry-broken regime as the AF
regime where the strength of the spatial symmetry breaking in our simulations may roughly
correlate with the AF magnetic moment. For U = 10 [Fig. 8(f)] the “AF order” is weaker than
at U = 4, consistent with the finding of Ref. [106] that the strength of AF order decrease for
U → ∞. Ultimately, of course, the precise AF nature needs to be studied via long-ranged
spin-spin correlations. This is left for future work.

Next we turn to the case of arbitrary filling away from half-filling, which is equally accessi-
ble to iPEPS, but not to QMC. We focus on small to intermediate interactions, U = 4 and U = 8.
By symmetry, it is sufficient to consider only the case of finite hole doping, δ ≡ 2−〈n〉> 0, i.e.,
〈n〉 < 2. For the 2-band case, this regime has not been explored in detail by other methods
so far. Figure 9 summarizes our iPEPS results as a function of filling, tuned by means of a
chemical potential [cf. Eq. (80b)]. Figures 9(a,c) show the ground-state energy per site, e0/U ,
as a function of δ for D∗ = 5 and 6.

The dependence of the filling 〈n〉= 2−δ on the chemical potential is shown in Figs. 9(b,d).
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Figure 9: Non-abelian iPEPS results for the two-band Hubbard model away from half
filling for U = 4 (left panels) and U = 8 (right panels). Panels (a) and (c) display the
normalized ground-state energy e0/U as a function of doping δ for multiplet bond
dimensions D∗ = 5,6. (b) and (d) show the filling 〈n〉 as a function of the chemical
potential µ. (In contrast to Figs. 8(a,b), no QMC data are available for comparison
here, hence no 1/D∗2 extrapolations were performed.) The parameter points (1) to
(6) are analyzed in detail in the corresponding panels (1-6) in the center by char-
acterizing the underlying iPEPS wave function. Again, the filling per site and the
bond energy are proportional to the diameter of the black dots and the width of the
bonds, where red (gray) bond correspond to positive (negative) values, respectively.
The bond energies change signs at small doping, which is due to the definition of
ei j

0 in Eq. (81b), where the Coulomb interaction energy (positive) competes with the
kinetic energy (negative).

For either U , the systems are in the AF regime for zero or small doping δ, as inferred from
the symmetry-broken states depicted in Figs. 9(1,4). For U = 4 we find an energy minimum
around δ ' 1.2. In this regime, we still observe a significant dependence of the energy on bond
dimension D∗, hinting at a strongly entangled ground state. For U = 8, for the same range
in chemical potential [Fig. 9(b,d)], we reach a smaller range in doping [Fig. 9(c)]. Since here
the interaction strength is comparable to the non-interacting bandwidth is W = 8, we also see
a Mott plateau at 〈n̂〉= 1 [Fig. 9(d)] that is absent for U = 4 [Fig. 9(b)] [112].

At zero filling, i.e, δ = 2, the ground state energy is zero, i.e. with Eq. (81a), e0(n= 0) = 0
[similar as in Fig. 9(a)] irrespective of the strength of U . Therefore the data in Fig. 9(c), al-
ready turning negative, will necessarily also reach a minimum somewhere in the regime for
1< δ < 2.

In addition to antiferromagnetism, we also expect superconducting order to play an im-
portant role in the two-band Hubbard model at finite hole doping. To check for the presence of
d-wave superconductivity, we measure a generalized singlet-pairing amplitude∆i j [Eq. (81c)].
The results for different values of U and δ are displayed in Fig. 10. We find that, indeed, super-
conducting order is present for the entire doping range 0< δ < 1 for all considered interaction
strengths. Two effects that will require further attention in the future, are the suppression of
superconductivity at δ = 1, and the fact that∆ decreases with increasing interaction strength.
Both appear justified on intuitive grounds, however: Charge fluctuations are suppressed with
increasing interaction strength, specifically so at integer filling. Moreover, for filling n ® 1,
local double occupancy is strongly suppressed for sizable U , yet double occupancy is required
for finite∆ to start with. We also observe strong inhomogeneity of∆i j across different bonds.
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Figure 10: Generalized singlet-pairing amplitude |∆| per site, extracted from iPEPS
wavefunctions with D∗ = 5 as a function of the hole doping δ. |∆| ≡ 〈|∆i j|〉 is
obtained by averaging over the absolute value of ∆i j for each bond in the unit cell.
Labels 1 and 2 point to individual iPEPS wavefunctions characterized on the right,
where the filling per site and the singlet-pairing amplitude are proportional to the
diameter of the black dots and the width of the bonds, respectively [blue (cyan) bond
correspond to positive (negative) ∆i j].

This may indicate a tendency toward spontaneous symmetry breaking of the orbital symmetry
that is conserved by construction in our iPEPS implementation, or to the fact that the actual
ground state breaks translational symmetry in a different way. Simulations on different unit-
cell geometries are needed to shed light on this issue.

In conclusion, we have presented first fermionic iPEPS simulations of the two-band Hub-
bard model, which incorporates spin- and orbital SU(2) symmetry explicitly in the TN ansatz.
The excellent agreement of our results found at half-filling with QMC data encouraged us to
explore also the hole-doped regime, where our initial results uncover a number of intriguing
features. Going forward, much work remains to be done to fully understand the guiding mech-
anisms and phases in this regime. This includes the study of longer-ranged spin-spin correla-
tors, the comparison to simulations on different unit cells and unveiling the dependencies of
various quantities such as energy and d-wave pairing as a function of interaction strength and
doping more carefully. Since in the present model spin and orbital flavors are equivalent (e.g.,
there is no onsite Hund’s coupling J), the efficiency of iPEPS could be further enhanced by
exploiting the full SU(4)flavor symmetry present in the Hamiltonian within QSpace [30]. After
fully understanding the phase diagram in this parameter regime, it will be highly interesting to
study the effects of finite Hund’s coupling J on the emergence of superconductivity and other
competing orders. Moreover, it would also be worthwhile to analyze whether abelian iPEPS
simulations are numerically feasible in a modified setup involving separate sublattice for the
two bands (c.f. Fig. 7). This would yield a different perspective on the ground-state properties
of the model, especially in the context of spontaneous symmetry breaking.

6.2 Three-flavor Hubbard model

In addition to basic SU(2) symmetries, QSpace [30] also provides a convenient framework for
the incorporation of more complex non-abelian symmetries such as SU(N > 2). To explore the
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potential of this feature within fermionic iPEPS, we consider a symmetric spinless three-flavor
Hubbard model where we fully exploit the SU(3) flavor symmetry. Its Hamiltonian has the
same form as in (80), except that the composite index (m,σ) is replaced by a single flavor
index, m = 1, 2,3. Choosing µ0 = U here, this again also ensures that µ = 0 corresponds to
half-filling. In contrast to the spinful case, however, the fact that N = 3 is odd implies that
half-filling is metallic, unless symmetry broken (see below). Only integer filling results in Mott
or Heisenberg physics for larger U [112].

Although systems with a total of three symmetric flavors are not naturally realized by the
atomic configuration of any real electronic material, SU(N > 2) realizations of the fermionic
Hubbard model currently attract a lot of attention in the context of cold-atom experiments
based on alkaline earth-like atoms such as ytterbium [102, 103], where such systems have
become directly accessible in highly controlled setups. SU(N) symmetric systems feature a
number of exotic phases and magnetic properties, which are of interest from a condensed
matter perspective. In addition, they are also relevant for other fields, for example in the
context of studying lattice gauge theories for quantum chromodynamics [113].

So far, little is known for the spinless SU(3) Hubbard model on the 2D square lattice. Some
work has been done for the weak to intermediate coupling limit, where one expects the emer-
gence of a flavor density wave breaking the translational symmetry of the lattice [114]. At
half filling in particular, it is expected that two flavors occupy the same lattice site whereas
neighboring sites exclusively host the third flavor, such that a bipartite two-sublattice struc-
ture emerges. This is motivated by the following consideration: a site with single occupancy
transforms in the defining three-dimensional representation 3 of SU(3), whereas a doubly
filled site is a fully filled site with one hole, which transforms in the conjugate representation
3̄. Within the symmetry broken setting above then, neighboring sites could, in principle, bind
into a singlet configuration.

At integer filling n = 1 and in the strong coupling limit, the model can be mapped onto
an SU(3) Heisenberg model in the defining 3 representation (physically equivalent, for n= 2,
this becomes the dual 3̄). This is believed to favor a three-sublattice order with finite magnetic
moments [115]. On intuitive grounds, note that for an SU(3) Heisenberg model in the 3
representation, a multiple of three sites is required to form a singlet. This is not naturally
suited to the square lattice, and hence results in frustration, eventually giving rise to a three-
sublattice order.

We have again reduced the numerical complexity of our model system by fully incorporat-
ing the non-abelian SU(3) symmetry in the fermionic iPEPS ansatz. To this end, the full local
fermionic state space, d = 8, can be reduced to d∗ = 4 multiplets. We then performed simple-
update calculations with a multiplet bond dimensions up to D∗ = 6. Again, the symmetry
sectors are dynamically adapted during the optimization. We illustrate examples of the rele-
vant multiplet contributions encountered in iPEPS simulations with varying D∗ at half filling
in Table 2.

We performed iPEPS simulations on both 2 × 2 and 3 × 3 unit cells with two and three
different tensors, respectively, to slightly bias the emergence of the two- and three-sublattice
order expected from the considerations discussed above. Any tendency towards spontaneous
symmetry breaking of SU(3), are, however, symmetrized by our setup. Figures 11(a,b) sum-
marize our results for the ground-state energy per site, e0/U , as a function of filling, 〈n〉, both
at weak coupling U = 1 and stronger coupling U = 6. In either case, the simulations on both
unit-cell geometries surprisingly yield very compatible ground-state energies.

For U = 1 at half-filling, which in the present case of N = 3 corresponds to half-integer
filling on average, we observe a tendency toward translational symmetry breaking in the form
of modulation of the occupancy on different sites for both 2×2 and 3×3 clusters (wavefunction
1 and 2). This is in qualitative agreement with Ref. [114], which predicts a phase with
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Figure 11: Non-abelian iPEPS results for the three-flavor Hubbard model for U = 1
(left panels) and U = 6 (right panels). Panels (a) and (c) display the ground-state
energy e0/U as a function of filling 〈n〉 for iPEPS simulations on a 2×2 and 3×3 unit
cell, whereas (b) and (d) show the filling 〈n〉 as a function of the chemical potential
µ. Panels (1) to (6) depict individual iPEPS wavefunctions at the points marked in
panels (a,c). The filling per site and the bond energy are proportional to the diameter
of the black dots and the width of the bonds, respectively.

Table 2: Typical multiplet configurations on the auxiliary bonds obtained from SU(3)
symmetric iPEPS simulations on the square lattice Hubbard model with three equiv-
alent flavors. The different rows show the results for increasing multiplet bond di-
mension D∗ (left column) at half filling. The SU(3) multiplet labels are in Dynkin
form, where we adopt the compact QSpace [30] notation. For the center column we
use the same notation as in Table 1.

D∗ multiplets in symmetry sectors (Z2, SU(3)flavor) D
4 (−1,00)⊕ (−1, 01)⊕ (1, 01) ⊕ (1, 10) 1+ 3+ 3+ 3= 10
5 (−1,00)⊕ (−1, 11)⊕ (1, 01) ⊕ (1, 10) 1+ 8+ 3+ 3= 16
6 (−1,00)⊕ (−1, 11)⊕ (1, 01)2 ⊕ (1, 10) 1+ 8+ 6+ 3= 19

two-sublattice order with single and double occupancy on neighboring sites. This is almost
realized by wavefunction 1 shown in Fig. 11, with occupancies N ≈ 1.19 and N ≈ 1.81 on
neighboring sites. For the 2 × 2 cluster, this also goes hand in hand with a pinning of the
occupation at average 〈n〉= 1.5 [Fig. 11(b,d)], suggesting that the system energetically prefers
a translationlly symmetry broken state. The density modulation are substantially suppressed
on the 3 × 3 unit cell, where we find two sites having the same occupancy N ≈ 1.58 while
slightly fewer particles occupy the third site N ≈ 1.32 at essentially no pinning of the average
occupation when changing the chemical potential. The density-wave modulation disappears
both in the case when the occupation significantly deviates from the half-filled case, and also
for stronger interaction, as illustrated by the wave functions 3, 4, 5, and 6 in Fig. 11.

As already pointed out with Figs. 11(b,d), the occupancy is clearly not a smooth increasing
function of the chemical potential, which drives the filling. While the 2 × 2 unit cell shows
plateaus – and hence favors – half-filling, this is not the case for the 3 × 3 unit cells. The
situation is completely reverse, however, at integer filling 〈n〉= 2 as seen in Figs. 11(b,d).
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At this filling, a 2× 2 unit cell cannot be in a singlet configuration, but has residual spin.
Hence there is a certain degree of frustration in this setup. By contrast, the 3× 3 unit cell can
host a singlet configuration at 〈n〉 = 2. Interestingly, the 3× 3 unit cell already shows charge
locking for the case of rather smaller U = 1, which may be due to frustration in the present
case. Eventually, however, this will require a more thorough analysis based on an extrapolation
of D∗→∞.

Locking of charge at integer filling is typically a signature of Mott physics, which is to some
extent also expected in the three-flavor model at 〈n〉 = 2 [112, 116]. However, locking may
also occur if the occupation inside an enlarged unit cell changes by integers. This effect may
be physical, e.g., as suggested above, in that 3 and 3̄ bind into singlets, which occurs at half-
filling. The effect may also be artificial, in which case it depends on numerical details and
should become less pronounced with increasing D∗. This can be observed for the plateau at
filling 〈n〉= 1.5 (data not shown).

In summary, nevertheless, based on the earlier arguments we do expect that in the present
case the 2× 2 unit cell is more suitable for the half-filled case, whereas the 3× 3 unit cell is a
better fit for integer filling. Furthermore, it should be possible to reveal additional information
about the flavor order by studying (i) longer-ranged correlators and (ii) switching off the SU(3)
in favor of two abelian U(1) symmetries and explicitly allowing spontaneous breaking of the
flavor symmetry.

7 Conclusion

In this review, we attempt to give an overview of the rapid developments of iPEPS, which
has reached a remarkable sophistication over the last few years. A large part of the review,
addressed to newcomers to the field, is dedicated to to two widely used ground state search
methods: simple-update and full-update. Simple-update is very competitive in run-time, while
full-update yields highly accurate results that are important to characterize ground states of
correlated electrons. Besides that, we present a comprehensive technical detail about using
non-abelian symmetry in iPEPS, where a seemly formidable computational overhead can be
avoided by careful implementation. Two non-trivial examples, the two-band Hubbard model
and the three-flavor Hubbard model, are included to show how exploiting symmetry can be
useful. All in all, we hope that this review will motivate more efforts to the development of
2D tensor network algorithms, which have the potential for achieving crucial for advances in
computational studies of correlated electrons.

Funding information The Deutsche Forschungsgemeinschaft supported BB, JWL and JvD
through the Excellence Cluster “Nanosystems Initiative Munich” and the Excellence Strategy-
EXC-2111-390814868. JWL was also supported by DFG WE4819/3-1. AW was supported
by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-
SC0012704.

A Constructing tensors with symmetry

In this Appendix, we provide a sketch of how to deal with non-abelian symmetry in tensor net-
works. For simplicity, we use SU(2) as a concrete example. The strategy can be generalized
to SU(N) (for more detail, we refer to Ref. 30, 31). The example illustrates the conceptual
bottom-up approach underlying the QSpace tensor library [30, 31] for implementing sym-
metries in tensor networks: construct all ingredients step by step, systematically combining
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elementary building blocks into more complex structures.

A.1 SU(2) spin algebra

A group element of SU(2) can be represented by an unitary transformation, Ĝ = eiŜ , in
a complex vector space, with Ŝ an arbitrary Hermitian matrix in that space. This matrix
can be parametrized by three independent real numbers ϕa, with a ∈ {x , y, z}, such that
Ŝ =

∑

aϕaŜa ≡ ϕ · Ŝ, with Ŝa the generators of the symmetry, satisfying [Ŝa, Ŝb] = iεabc Ŝc . In
the defining, two-dimensional representation with spin multiplet label S = 1

2 , the generators
can be chosen as Ŝa ≡ 1

2σ
a, with σa the Pauli matrices.

This is the smallest non-trivial SU(2) matrix representation. More generally, an SU(2)
irreducible representation (irrep) with spin S has dimension 2S + 1, i.e. the generators Ŝ are
represented by matrices of size (2S + 1)× (2S + 1).

In general, an irreducible multiplet consists of a set of states that can be labeled by their
eigenvalues of the generators that were chosen diagonal, i.e., in the SU(2) context, Sz . For a
general non-abelian symmetry, this can be a set of generators, say Qz , resulting in a tuple of
labels qz . These can be lexicographically sorted, with the largest, i.e., the maximum weight
state being unique. Its weights qz therefore can be used to label the entire multiplet. In the
SU(2) context, max(Sz) = S.

Alternatively, the complete set of Casimir operators also labels a multiplet uniquely. Hence
there exists a well-defined polynomial mapping from the maximum weight labels to the Casimir
labels. For example, in the case of SU(2), S→ S(S+1), with the latter being the eigenvalue of
the quadratic Casimir, Ŝ2 ≡ ŜaŜa, using Einstein summation convention. Other than that, the
Casimir operators are not required, and so we do not use them. Instead, we use convenient
internal conventions on the normalization of generators, with a subsequent linear mapping of
the maximum weight labels to standard Dynkin labels. In particular, this implies for SU(2) the
symmetry labels q = 2S. For one, this is consistent with SU(N > 2), e.g., in that q is equiv-
alent to the number of boxes in its corresponding Young tableau. Moreover, this also has the
advantage that all symmetry labels are integers, which we find more readable and convenient
on practical grounds. We use the notation q as label for irreducible multiplets, in order to
emphasize that this can be a tuple of labels for an irreducible multiplet for any symmetry.

A.2 Tensor product decomposition

A tensor product of two irreps q1 and q2 can be decomposed into a direct sum of irreps,

V q1 ⊗ V q2 =
⊕

q
Mq

q1q2
V q , (82)

where in this symbolic notation, the multiplicity coefficients Mq
q1q2

are integers encoding the
fusion rules. That is, irreps that do occur in the product decomposition have Mq

q1q2
> 0,

whereas multiplets q with Mq
q1q2
= 0 do not occur in the decomposition [for SU(2) Mq

q1q2
= 1

for q = 2S ∈ |q1− q2|, |q1− q2|+2, q1+ q2, and Mq
q1q2
= 0 otherwise]. For general non-abelian

symmetries as for SU(N ≥ 3), the same irrep q can routinely occur multiple times, i.e., having
outer multiplicity Mq

q1q2
> 1.

The coupled basis vector |q, qz〉 and the direct product basis |q1, q1z〉⊗ |q2, q2z〉 are related
by a unitary basis transformation matrix, namely,

|q1, q1z〉 ⊗ |q2, q2z〉 =
�∑

q,qz

|q, qz〉 〈q, qz|
�

|q1, q1z〉 ⊗ |q2, q2z〉
︸ ︷︷ ︸

≡
�

Cq
q1q2

�qz

q1zq2z

, (83)
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where (Cq
q1q2
)qz
q1zq2z

are the standard Clebsch-Gordan coefficient (CGC) spaces. The notation
here emphasizes the tensorial structure, in that the Clebsch-Gordan tensor (CGT) Cq

q1q2
is in-

dexed by the qz-labels (in the presence of inner multiplicity where degeneracies in the the
qz-labels occur, caveats apply [30]). The rank-3 CGTs above are fundamental building blocks
since any higher-rank CGC can be generated from them.

Example: Direct product of two spin-half multiplets The tensor product of the two vector
spaces of two spin-half multiplets, having q1 = q2 = 2S = 1, can be decomposed into a spin-
singlet, q = 0, and a spin-triplet, q = 2S = 2, i.e, 1⊗ 1= 0⊕ 2.

The unitary basis transformation matrix from the direct product basis to the coupled basis
can be read as

(using the familiar labels 〈S, Sz| for the rows and |S1z , S2z〉 for the columns on the r.h.s.),









C0
q1q2

C2
q1q2









=
〈0, 0|
〈1, 1|
〈1, 0|
〈1,−1|

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉








0 1/
p

2 −1/
p

2 0

1 0 0 0
0 1/

p
2 1/

p
2 0

0 0 0 1









. (84)

This includes two sets of CGCs concatenated vertically, namely for q = 0 and q = 2, as indicated
by the horizontal lines separating them. These CGCs are fully defined by symmetries. They
can be explicitly computed via (generalized) tensor-product decomposition [30], and stored
as separate tensors in sparse format in a database.

A.3 Irreducible tensor operator

State spaces and operators are tightly related. For example, if one creates a particle with spin-
half on top of a singlet (or vacuum state), ĉ†

σ|0〉 ≡ |σ〉, the operator on the l.h.s. necessarily
needs to transform under symmetry like the resulting state on the r.h.s. Symmetry operations
on the state to the right translate into commutation relations for the operators on the left, and
Clebsch-Gordan coefficients come into play, as also evidenced by the Wigner-Eckart theorem.

For example, in the case of SU(2), the operation of a raising or lowering operator for
an irreducible operator (irrop) T̂ SSz , which by notation transforms like a spin-S multiplet,
translates into the following relations:

[(Ŝx ± iŜy), T̂ SSz ] =
Æ

S(S + 1)− Sz(Sz ± 1) T̂ SSz±1 (85)

[Ŝz , T̂ SSz ] = Sz T̂ SSz . (86)

This demonstrates that just as a multiplet |SSz〉 is irreducible under a given symmetry, so is the
irrop. In particular, an irrop represents a set of operators, here labeled by Sz , which carries a
representation of the symmetry group.

Now if an irrop acts on a non-trivial state space that itself transforms like a non-scalar sym-
metry multiplet, the resulting states correspond to a tensor product of symmetry multiplets,
and the rules of tensor product decomposition of multiplets apply. This is manifested in the
Wigner Eckart theorem (returning to generic ‘q-labels’),

〈q1q1z| T̂ qqz |q2q2z〉 ≡ 〈q1q1z| ·
�

T̂ qqz × |q2q2z〉
�

= 〈q1‖T̂ q‖q2〉
�

Cq1
qq2

�q1z

qzq2z
, (87)

where the reduced matrix element 〈q1‖T̂ q‖q2〉 is the only remaining effective matrix element
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not determined by symmetry, but depending on the physical action of the operator. Other
than that, the Wigner-Eckart theorem demonstrates that the matrix elements of an irrop are
not independent of each other, but are highly constrained by symmetry operations, i.e., related
by CGCs. In other words, an SU(2) symmetric tensor can be factorized into two parts, reduced
tensor elements and CGCs. With both state space decomposition and operator representation
thus linked to CGTs, this forms a natural framework to build tensors of arbitrary complexity
precisely on the basis of tensor network states.

A.4 PEPS tensor construction

Here we demonstrate, based on an instructive example relevant for the present context, how
complex tensors can be built from elementary building blocks, making explicit use of rank-3
CGTs. With the focus on iPEPS in this work, the building block of the iPEPS itself is a local rank-
5 tensor M , with four virtual bond indices, say L(eft), R(ight), U(p), and D(own), together
with a local state space, P(hysical). So how would one build, or even initialize such a tensor
while respecting non-abelian symmetries in a generic fashion?

(a) (b)

(c) (d)

L U

P

DL U

R

D*

P R*A1 A2 B1
*

A1 A2 B1

VI VO*

VI VO

M̃

U

L

P D

R

Figure 12: Steps (a)-(c) for building rank-5 PEPS tensor in (d) from ele-
mentary rank-3 tensors. (a) Iterative fusion of the “incoming” state spaces,
V P ⊗ V L ⊗ V U ≡

�

V P ⊗ V L
�

⊗ V U ≡ V I , first combining the physical states space
P with the left bond L via A1, then fusing the result with the upper bond U via A2.
(b) Fusion of the ‘outgoing’ states spaces, V R∗ ⊗ V D∗ ≡ V O∗. (c) Fusing together the
results of (a) and the conjugate [31] of (b) into a global singlet via the bond tensor
M̃ . The latter is block-diagonal with trivial CGCs; its reduced matrix elements can be
chosen arbitrarily, e.g., such that the overall tensor may satisfy certain lattice sym-
metries. The indices R and D became outgoing indices in the last step. (d) The final
rank-5 PEPS tensor after contracting all tensors in (c). Each leg U , D, L, R and P rep-
resents a state space which in the presence of non-abelian symmetries is organized
via the generic composite labels |ql; qz〉 as introduced with Eq. (71).

The prescription to build such a rank-5 PEPS tensor M is summarized in Fig. 12. We assume
that the state spaces of each of the constituent bonds are already specified (or have been
obtained in some fashion). Importantly, each bond also has a direction, indicating whether an
index enters or leaves the final desired object. As indicated in Fig. 12(d), the tensor M has three
incoming indices, (P, L, U), and two outgoing indices, (R, D). So one can fuse the state spaces
in either case. A set of state spaces, such as (L, U , P), can be build iteratively by adding one
state space at a time, V P ⊗ V L ⊗ V U ≡

�

V P ⊗ V L
�

⊗ V U ≡ V I , where I stands for the combined
incoming state space, as depicted in Fig. 12(a). The same can be done for the outgoing state
spaces, except that by the very concept of fusing input spaces into output, the tensor product
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deals with the opposite direction of R and D, namely also ingoing. Hence the state space in
the dual (or conjugate) representation needs to be considered in the fusion itself, as indicated
by the asterisk in V R∗ ⊗ V D∗ ≡ V O∗ in Fig. 12(b). Here O stands for the combined state spaces
of legs eventually leaving the tensor M .

Having fused in- and outgoing state spaces separately and without truncation, the final
step is to tie together the two fused state spaces into a global singlet, symbolically written as
V I ⊗ V O∗→ 0, with q = 0 the scalar representation, i.e., a singlet. This sixth index, namely a
global singlet state, then corresponds to a singleton dimension that can be skipped. Since for
any irrep q only the combination with its dual q∗ can result in a singlet, the CGCs for this step
are simple (1 j symbols in the language of [31]), as one can only link in a 1-to-1 correspondence
between V I and V O∗. However, the situation is much simpler still, since one needs to contract
the conjugate of the V O∗ above, in order to obtain the final desired index directions. The
conjugate of the entire object in Fig. 12(b) can be drawn pictorially as a mirror image [here
left-to-right, as in Fig. 12(c)], with all arrows reversed [see [31] for details]. This now can be
simply contracted with the tensors in Fig. 12(a) as shown in Fig. 12(c). Since arrow directions
are preserved, this implies that the only free choice of tensor coefficients left are in the tensor
M̃ in Fig. 12(c) that ties together in- and outgoing state spaces. Via Wigner Eckart theorem,
the tensor M̃ is a scalar operator, where with the corresponding singleton dimension of the
irrop set skipped, this can be written as a plain block-diagonal tensor, with the corresponding
CGTs Cq

0q = 1q being trivial identity matrizes in the multiplet space of the respective multiplet
q.

The above example reflects the generic transparent guiding principle when working with
symmetric tensors, namely: to construct arbitrarily complex tensors from known, manage-
able, elementary building blocks. In the present case, this included (i) the fusion of pairs of
state spaces [via Ai and Bi , as well as the final fusion into a trivial scalar multiplet via M̃ in
Figs. 12(a-c)]. This was followed by (ii) the pairwise contraction of symmetric tensors [31] to
obtain M in Fig. 12(d). Here, for example, one may have used the nested pairwise grouping
A1A2M̃B1 = ((A1 ∗A2) ∗ (M̃ ∗ B1)), where ‘∗’ refers to the contraction of a pair tensors on fully
connected indices, which simply generalizes matrix multiplication to tensors.
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