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Study of spin symmetry in the doped t-J model using infinite projected entangled pair states
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We study the two-dimensional t-J model on a square lattice using infinite projected entangled pair states
(iPEPS). At small doping, multiple orders, such as antiferromagnetic order, stripe order and superconducting
order, are intertwined or compete with each other. We demonstrate the role of spin symmetry at small doping by
either imposing SU(2) spin symmetry or its U(1) subgroup in the iPEPS ansatz, thereby excluding or allowing
spontaneous spin-symmetry breaking, respectively, in the thermodynamic limit. From a detailed comparison of
our simulations, we provide evidence that stripe order is pinned by long-range antiferromagnetic order. We also
find SU(2) iPEPS, enforcing a spin-singlet state, yields a uniform charge distribution and favors d-wave singlet
pairing.
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I. INTRODUCTION

The discovery of high-temperature superconductivity has
triggered intense research on the properties of the one-band
t-J model on a square lattice, which has been argued to cap-
ture essential low-energy properties of cuprate materials [1].
Despite many analytical and numerical works, full consen-
sus regarding the competing low-energy states with different
charge, spin, and superconducting orders of the t-J model
has not yet been reached. One category includes so-called
stripe states, featuring spin-density waves and charge-density
waves [2–24], where some of these states also exhibit co-
existing d-wave superconducting order. Another potential
candidate for the ground state of the hole-doped t-J model is
a superconducting state with uniform hole density [18,25,26].
Recently, Corboz et al. [24], using infinite projected entangle
pair states (iPEPS), demonstrated the energetically extremely
close competition of the uniform state and the stripe state,
even for the largest accessible numerical simulations. Similar
work on the Hubbard model also pointed towards a striped
ground state [27–33]. Nevertheless, the underlying physical
mechanism causing these intriguing ground-state properties
remains elusive, and refined work in this direction is clearly
necessary.

In this paper, we focus on the so-called λ5 stripe state,
featuring spin and charge modulations with a period of λ =
5 lattice spacings, which was previously shown to be en-
ergetically favorable near hole doping δ � 0.1 at J/t = 0.4
(referred to as the W5 stripe in [24]). We use iPEPS (i) to
study the evolution of λ5 stripe order from its optimal doping
δ � 0.1 into the spin and charge uniform phase and (ii) to pro-
vide insight into the relation between stripes and long-range
antiferromagnetic (AF) order in the thermodynamic limit.

In particular, we show that by implementing either U(1)
or SU(2) spin symmetry in the iPEPS ansatz, the relevance
of long-range AF order can be directly examined. Our anal-
ysis complements the finite-size scaling often used in density
matrix renormalization group (DMRG) and quantum Monte
Carlo (QMC) simulations, thereby addressing the question
of “the fate of the magnetic correlations in the 2D limit”
raised in Ref. [34]. Moreover, we show that the SU(2) iPEPS
ansatz which, by construction, represents a spin-singlet state,
possesses d-wave singlet pairing order. Such SU(2) iPEPS can
be interpreted as a generalized resonating valence bond (RVB)
state [35–39], and in this sense our finding of d-wave pairing
for the SU(2) iPEPS is reminiscent of Anderson’s original
RVB proposal [40–42].

II. MODEL AND METHODS

The t-J Hamiltonian is given by

Ĥ = −t
∑
〈i j〉σ

(c̃†
iσ c̃ jσ + H.c.)+ J

∑
〈i j〉

(
Ŝi · Ŝ j − 1

4
n̂in̂ j

)
, (1)

with the spin operators Ŝi, projected fermionic operators c̃iσ =
ĉiσ (1 − ĉ†

iσ̄ ĉiσ̄ ), spin label σ ∈ {↑,↓}, and 〈i j〉 indexing all
nearest-neighbor sites on a square lattice. To control the dop-
ing, we minimize Ĥ − μN̂ for a specified choice of chemical
potential μ (see the Supplemental Material [62], Sec. S-II.).
We set t = 1 as the unit of energy and use J/t = 0.4 through-
out.

We use iPEPS to obtain an approximate ground state
for Eq. (1). The iPEPS ground state is a tensor network
state consisting of a unit cell of rank-5 tensors, i.e., tensors
with five indices or legs, repeated periodically on an infinite
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FIG. 1. U(1) and SU(2) iPEPS results for the t-J model at J/t = 0.4. (a) The energy per hole eh as a function of hole doping δ for 5×2 and
2×2 unit cells. (b)–(d) Spin, hole, and singlet pairing amplitude profiles at δ � 0.1, 0.2, and 0.3. U(1) iPEPS (D = 8) yields stripes on 5 × 2
clusters and charge-uniform states on 2 × 2 clusters; SU(2) iPEPS (D∗ = 6) yields spin singlets. Symbols and linewidths are drawn to scale as
indicated.

square lattice [24,43–48]. Each rank-5 tensor has one physical
index and four virtual indices (bonds) connecting to the four
nearest-neighboring sites. The accuracy of such a variational
ansatz is guaranteed by the area law and can be systematically
improved by increasing the bond dimension D.

Using the QSPACE tensor network library [49], we can
simply switch between exploiting either U(1) or SU(2) spin
symmetries for our iPEPS implementation [50]. This allows
us to use sufficiently large bond dimensions to obtain accurate
ground state wave functions. With SU(2) iPEPS [35–39,50–
55], we push the reduced bond dimension D∗ up to 8,
where D∗ is the number of retained SU(2) multiplets per
virtual bond, which corresponds to a full bond dimension
of D � 13 states. To optimize the iPEPS wave functions
via imaginary-time evolution, we use full-update and fast
full-update methods [24,45,47,56,57]. The contraction of the
two-dimensional infinite lattice is evaluated approximately by
the corner transfer matrix method [24,58–61], which gener-
ates so-called environment tensors with an environment bond
dimension χ . For SU(2) iPEPS, the environment bond dimen-
sions used here are χ∗ = 144 (χ � 300) for D∗ = 6 (D � 11)
and χ∗ = 128 (χ � 270) for D∗ = 8 (D � 13). For U(1)
iPEPS, the environment bond dimensions are χ = 256 for
D = 8 and χ = 200 for D = 10.

III. ENERGETICS

In Fig. 1(a), we show the energy per hole, eh(δ) ≡ (es −
e0)/δ, as a function of hole doping δ, obtained from vari-
ous iPEPS simulations (plots of es(δ) vs δ are shown in the
Supplemental Material [62], Fig. S3). Here es is the average
ground state energy per site, and e0 = −0.467775 is the nu-
merically exact value for the AF phase at zero doping taken
from Ref. [63]. Using U(1) iPEPS on a 5 × 2 unit cell, we
find a minimum at δc � 0.1, as previously reported [24]. If
phase separation, involving a mixture of AF and stripe orders,
sets in with decreasing δ, then δc provides an upper bound

for this onset (see the Supplemental Material for details).
Increasing the bond dimension from D = 8 to D = 10 im-
proves the ground state energy consistently for every doping
δ considered here. On the other hand, using SU(2) iPEPS
(D∗ = 6), we obtain a spin-singlet state with no stripe fea-
ture on a 5 × 2 unit cell. Moreover, the ground state energy
is almost independent of the shape of unit cells (compare
5 × 2 and 2 × 2 data). We further improve the ground states
using D∗ = 8 on the 2 × 2 unit cell. Overall, for δ � 0.2
in Fig. 1(a), we see that the U(1) λ5 stripe state yields a
substantially lower ground state energy than the spin-singlet
state, while the latter lies below the former for δ � 0.25.
From a technical perspective, our calculations show that for
the non-symmetry-breaking phase favored at δ � 0.25, SU(2)
iPEPS benefits from the full utilization of the spin-rotational
symmetry, even though U(1) iPEPS has a larger number of
variational parameters when D > D∗.

Next, we take a close look at each individual iPEPS for
three values of doping. The stripe states obtained using U(1)
iPEPS, shown in the top left parts of Figs. 1(b)–1(d), exhibit
modulation of charge and spin densities along the y direction.
At δ � 0.1, we find hole doping to be maximal along the top
row, implying a site-centered stripe, in agreement with previ-
ous work [24]. Note that the spins in the two rows on either
side of the top row (rows 2 and 5) are ordered antiferromag-
netically (implying a so-called π phase shift across the top
row), thereby reducing the energy of transverse hole hopping
along the domain wall [10,11,16]. At δ � 0.2, we find hole
doping to be maximal between two rows (the first and second),
implying a bond-centered stripe, as frequently observed in
DMRG, density matrix embedding theory (DMET), and QMC
calculations [10,27]. Finally, at δ � 0.3, the hole densities
are roughly equal across all sites, with residual charge and
spin modulation. Overall, the stripe states we find here are
in agreement with previous studies, which concluded that in
the t-J model stripe formation is predominantly driven by
the competition between the kinetic energy and the exchange
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energy [2,3,9,15]. However, the same mechanism can also
induce the pairing formation [12,18,26,64]. Therefore, it is a
priori unclear under what circumstances the system will favor
stripe order or pairing at small doping. To clarify this issue,
we now turn to our SU(2) iPEPS results.

In contrast to the U(1) iPEPS results, switching on spin-
rotational symmetry on the 5 × 2 unit cell by using SU(2)
iPEPS suppresses the AF order and hence the spin modula-
tion, as shown in the top right parts of Figs. 1(b)–1(d). The
resulting state no longer shows any spin stripes and instead
has the same structure as the uniform state obtained on a
2 × 2 unit cell at similar doping [see the bottom right parts
of Figs. 1(b)–1(d)]. In addition, enforcing SU(2) symmetry
also makes charge modulations completely disappear as well.
This observation suggests that in the t-J model charge density
waves are strongly tied to spin stripes.

We have also examined d-wave superconducting or-
der by computing the singlet paring amplitude, 〈�i j〉 =

1√
2
〈c̃i↑c̃ j↓ − c̃i↓c̃ j↑〉. For the U(1) iPEPS λ5 stripe states in

Figs. 1(b)–1(d), we cannot directly identify a d-wave pairing
character, in contrast to Refs. [24,27], which found opposite
signs for the amplitude of the bonds along the x and y axes.
However, a word of caution is necessary in reading this re-
sult when the ground state spontaneously breaks SU(2) spin
symmetry because even a trivial term, such as 〈c̃i↑c̃ j↓〉, could
yield a nonzero contribution to 〈�i j〉. For a more rigorous
diagnosis, one should explicitly study the pair correlation
function [34,65–67], which goes beyond the scope of this
work. Hence, our results do not exclude the possibility that
stripes and d-wave superconducting order could coexist. For
example, in the case of the U(1) results of Figs. 1(b)–1(d)
we find that local d-wave order including the proper signs
is absent at δ � 0.1 and 0.2. However, it is present for the
2 × 2 U(1) cell at δ � 0.3, where the local magnetization is
too small to sustain significant AF order.

On the other hand, the SU(2) iPEPS is a spin-singlet
state by construction. It takes into account short-range spin
correlations but excludes long-range AF order, which breaks
spin-rotational symmetry in the thermodynamic limit (see
the Supplemental Material for details). This rules out the
aforementioned ambiguity, and the singlet pairing amplitude
becomes a robust measure. As shown in Figs. 1(b)–1(d), a
d-wave pattern appears on both the 5 × 2 and 2 × 2 unit
cells. Figure 2 shows the averaged singlet pairing amplitude,
� = 1

N

∑
〈i j〉 f (ri j ) 〈�i j〉, as a function of doping, where N is

the number of sites in the unit cells, ri j ≡ r j − ri, and f (r)
is a d-wave form factor, which takes the values f (±ŷ) =
−1 and f (±x̂) = 1, respectively. The error bar indicates the
mean absolute deviation of the pairing amplitudes among all
bonds. In the 2 × 2 case, the pronounced deviation is mostly
attributed to the difference in pairing amplitudes along the x
and y directions. A similar phenomenon was also observed in
a recent large-scale DMRG calculation [34], and an almost
equal mixture between d-wave and s-wave singlet paring am-
plitude was suggested. Upon increasing the bond dimension
D∗ from 6 to 8, the d-wave pairing order increases. This
is different from the previous analysis of charge uniform
states using U(1) iPEPS, where pairing is suppressed with
increasing D [24]. Furthermore, the 5 × 2 case also shows a
rather uniform d-wave pattern. The magnitude of the pairing
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FIG. 2. Averaged singlet pairing amplitude as a function of dop-
ing using SU(2) iPEPS. The error bar shows the mean absolute
deviation of the pairing amplitudes among all bonds. For the 5 × 2
unit cell, the error bars are smaller than the symbols.

amplitude in Fig. 2 is small but finite, even if about an order
of magnitude smaller than reported in other U(1) iPEPS or
DMRG simulations [19,21,24]. This appears consistent with
Fig. 1(d) for δ�0.3, showing d-wave order with an amplitude
slightly smaller for 2×2 SU(2) than for 2 × 2 U(1) or 5×2
SU(2), which are comparable. All in all, our SU(2) iPEPS
results show that, if spin rotational symmetry is enforced,
the doped t-J model exhibits d-wave superconductivity in the
thermodynamic limit, in agreement with an early prediction
from mean-field theory [41].

IV. INFLUENCE OF STRIPES ON
ANTIFERROMAGNETIC ORDER

In the previous section we showed that stripes can be
stabilized as ground states using the U(1) iPEPS at doping
0.1 � δ � 0.2 on a 5 × 2 unit cell. By contrast, the SU(2)
iPEPS shows no signature of any spatial modulations of spin
and charge density. This suggests that the stripes and the AF
order are intimately related. While such a viewpoint has been
discussed extensively both theoretically and experimentally
since the discovery of the so-called 1

8 anomaly [68–71], direct
understanding of how AF order coexists with stripes is still
lacking.

To address this, we have computed the staggered spin-spin
correlation functions for the ground state,

C(i) = (−1)x+y

3
4 (1 − δ)N

∑
j∈unit cell

〈Ŝ j+i · Ŝ j〉, (2)

with i = (x, y). The prefactor normalizes the same-site corre-
lator to unity, C(0) = 1, given (1 − δ)N spins per unit cell.
This facilitates the comparison of different unit cells and dop-
ing. In the following, we analyze C(i) along the long (y) and
short (x) directions of the unit cell.

First, we study the staggered spin-spin correlations on a
5 × 2 unit cell at doping δ � 0.1, 0.2, and 0.3, using U(1)
iPEPS. In Fig. 3(a), we can clearly identify λ5 stripe order at
δ � 0.1 and 0.2, with staggered spin-spin correlations oscillat-
ing around zero, reflecting the pattern already seen in the left
panels of Figs. 1(b) and 1(c). The staggered magnetic order
undergoes a phase shift of π across the length of the 5 × 2
unit cell, resulting in a period of λm = 10. At doping δ � 0.3,
the correlations decay much more rapidly, with weak residual

075127-3



JHENG-WEI LI et al. PHYSICAL REVIEW B 103, 075127 (2021)

FIG. 3. Normalized staggered spin-spin correlation functions,
computed on a 5 × 2 unit cell along the long (y) direction (left
column) and the short (x) direction (right column), using (a) and
(b) U(1) iPEPS and (c)–(f) SU(2) iPEPS, on linear and semilogarith-
mic scales, respectively. Solid symbols indicate the variational state
[U(1) or SU(2)] with the lower energy for a given δ.

oscillations remaining at large distances. Given its higher
variational energy compared to its SU(2) counterpart, this
reflects the numerical inefficiency of using a broken-
symmetry ansatz to simulate a spin singlet when many
low-energy states are nearly degenerate. By contrast, Fig. 3(b)
shows that the correlations along the “short” direction de-
crease with doping but remain positive at large distances,
indicating long-range AF order, i.e., C(|i| → ∞) = 0, al-
though attenuated with increasing δ. Therefore, Figs. 3(a)
and 3(b) suggest that stripes along the long direction go hand
in hand with long-range AF order along the short direction.

To further elucidate this point, we turn our attention to
the SU(2) iPEPS. Again, we have computed the staggered
spin-spin correlations on a 5 × 2 unit cell using SU(2) iPEPS.
In Figs. 3(c) and 3(d), the correlations along the long and
short directions are nearly identical and rapidly decay to zero,
showing no sign of either stripes or the long-range AF order.
Note that for SU(2) iPEPS, the instability of a given state
towards AF order can be detected by the increase in corre-
lation length with increasing χ∗. (We illustrate this for the
Heisenberg model in the Supplemental Material [62], Sec.
SI). However, this tendency is not observed at δ = 0.1 [see
Figs. 3(e) and 3(f)]. In short, we conclude that stripes emerge
only in the presence of long-range AF order.

To strengthen our previous statement, we further consider
L × 2 unit cells with L = 5, 4, 3, 2 at δ � 0.2 using U(1)
iPEPS (D = 8). Those could host spin stripes of periods
λ = L or an AF ordered state for L = 2. A previous iPEPS
study showed a very close competition between a λ5 stripe
state and an AF state with uniform charge distribution (L = 2)
at δ � 0.1 [24]. For a 2 × 2 unit cell [Fig. 4(a)], the spin-
spin correlations along both the long and short directions
quickly decay to nearly zero, showing that AF order is weak
at δ � 0.2 if a charge-uniform state is assumed. The same
charge-uniform state is also favored for a 4 × 2 unit cell:

(a) 2 2 (eh = -1.438)

short direction
long direction

0

0.1

0.2

0.3 (b) 4 2 (eh = -1.438)
eh = -1.404
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0.3

0 10 20
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0.2
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C
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)
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FIG. 4. Comparison of normalized staggered spin-spin correla-
tion functions for δ � 0.2 using U(1) iPEPS at D = 8 along the
long (y) direction and the short (x) direction on L × 2 unit cells for
L = 2, 3, 4, 5 in (a)–(d), respectively. The inset in (b) is a λ4 stripe
state obtained from different initialization.

we obtain this by initializing the 4 × 2 unit cell of a full-
update optimization using two copies of the 2 × 2 unit cell
in Fig. 4(a), which yields a slightly lower energy than a λ4
stripe state [inset in Fig. 4(b)] initialized from simple-update
results. By contrast, 3 × 2 and 5 × 2 unit cells show a clear
stripe feature along the long direction, together with nonzero
long-range AF order along the short one [Figs. 4(c) and 4(d)],
and slightly lower ground state energy than those of 2 × 2 and
4 × 2. However, the bond dimension D used here is not large
enough to conclusively resolve the close competition between
the different states. Overall, by plotting the correlations along
both the short and long directions in the same panel, we see
that the amplitude of the stripe modulation is the same as that
of attenuated long-rage AF correlations. This further confirms
that the stripes and the long-range AF order are indeed tied to
each other at finite doping.

V. SUMMARY

We have studied the doped t-J model with J/t = 0.4 using
U(1) and SU(2) iPEPS. For doping 0.1 � δ � 0.2, the λ5
striped charge and spin order with U(1) symmetry is energet-
ically favorable compared to a spin-singlet state with SU(2)
symmetry. By contrast, for δ � 0.25, the latter is favored. By
studying the spin-spin correlations, we find a close link be-
tween stripe order and long-range AF order. At small doping,
the U(1) iPEPS shows that spin stripes emerge along one spa-
tial direction, while attenuated long-range AF order persists
along the other spatial direction. Upon increasing doping, the
strength of stripe order decreases hand in hand with long-
range AF order. By contrast, the SU(2) iPEPS, which does
not break spin rotational symmetry, excludes long-range AF
order and hence stripe formation but yields d-wave super-
conducting order at finite doping. Our study demonstrates the
utility and importance of being able to turn on and off the
SU(2) spin-rotational symmetry at will—it gives direct insight

075127-4



STUDY OF SPIN SYMMETRY IN THE DOPED t-J … PHYSICAL REVIEW B 103, 075127 (2021)

into the interplay between regimes with spontaneously broken
symmetries and where SU(2) invariance remains intact.

ACKNOWLEDGMENTS

The Deutsche Forschungsgemeinschaft supported
B.B., J.-W.L., and J.v.D. through the Excellence Cluster

“Nanosystems Initiative Munich” and the Excellence
Strategy-EXC-2111-390814868. J.-W.L. was also supported
by German Research Foundation (DFG WE4819/3-1)
under Germany’s Excellence Strategy—EXC-2111-
390814868. A.W. was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, under Contract No.
DE-SC0012704.

[1] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
[2] D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989).
[3] J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).
[4] K. Machida, Physica C (Amsterdam, Neth.) 158, 192 (1989).
[5] H. Schulz, J. Phys. (Paris) 50, 2833 (1989).
[6] S. R. White, D. J. Scalapino, R. L. Sugar, N. E. Bickers, and

R. T. Scalettar, Phys. Rev. B 39, 839 (1989).
[7] V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64,

475 (1990).
[8] V. Emery and S. Kivelson, Physica C (Amsterdam, Neth.) 209,

597 (1993).
[9] C. Nayak and F. Wilczek, Phys. Rev. Lett. 78, 2465 (1997).

[10] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272
(1998).

[11] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 81, 3227
(1998).

[12] S. R. White and D. J. Scalapino, Phys. Rev. B 60, R753(R)
(1999).

[13] H. Eskes, O. Y. Osman, R. Grimberg, W. van Saarloos, and J.
Zaanen, Phys. Rev. B 58, 6963 (1998).

[14] L. P. Pryadko, S. A. Kivelson, V. J. Emery, Y. B. Bazaliy, and
E. A. Demler, Phys. Rev. B 60, 7541 (1999).

[15] S. R. White and D. J. Scalapino, Phys. Rev. B 61, 6320
(2000).

[16] A. L. Chernyshev, S. R. White, and A. H. Castro Neto, Phys.
Rev. B 65, 214527 (2002).

[17] A. Himeda, T. Kato, and M. Ogata, Phys. Rev. Lett. 88, 117001
(2002).

[18] C.-P. Chou, N. Fukushima, and T. K. Lee, Phys. Rev. B 78,
134530 (2008).

[19] S. R. White and D. J. Scalapino, Phys. Rev. B 79, 220504(R)
(2009).

[20] K.-Y. Yang, W. Q. Chen, T. M. Rice, M. Sigrist, and F.-C.
Zhang, New J. Phys. 11, 055053 (2009).

[21] P. Corboz, S. R. White, G. Vidal, and M. Troyer, Phys. Rev. B
84, 041108(R) (2011).

[22] S. Sorella, G. B. Martins, F. Becca, C. Gazza, L. Capriotti, A.
Parola, and E. Dagotto, Phys. Rev. Lett. 88, 117002 (2002).

[23] W.-J. Hu, F. Becca, and S. Sorella, Phys. Rev. B 85, 081110(R)
(2012).

[24] P. Corboz, T. M. Rice, and M. Troyer, Phys. Rev. Lett. 113,
046402 (2014).

[25] C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 83, 132
(1999).

[26] M. Raczkowski, M. Capello, D. Poilblanc, R. Frésard, and
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