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In this work we analyze the nonequilibrium transport through a quantum impurity (quantum dot or molecule)
attached to ferromagnetic leads by using a hybrid numerical renormalization group—time-dependent density
matrix renormalization group thermofield quench approach. For this, we study the bias dependence of the
differential conductance through the system, which shows a finite zero-bias peak, characteristic of the Kondo
resonance and reminiscent of the equilibrium local density of states. In the nonequilibrium settings, the resonance
in the differential conductance is also found to decrease with increasing the lead spin polarization. The latter
induces an effective exchange field that lifts the spin degeneracy of the dot level. Therefore, as we demonstrate,
the Kondo resonance can be restored by counteracting the exchange field with a finite external magnetic field
applied to the system. Finally, we investigate the influence of temperature on the nonequilibrium conductance,
focusing on the split Kondo resonance. Our work thus provides an accurate quantitative description of the
spin-resolved transport properties relevant for quantum dots and molecules embedded in magnetic tunnel

junctions.
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I. INTRODUCTION

Charge and spin transport through nanostructures such as
nanowires, quantum dots, and molecules have been under rig-
orous experimental and theoretical research worldwide. These
studies are motivated primarily by the possible applications
in spintronics, nanoelectronics, and spin caloritronics, as well
as fascinating physics emerging at the nanoscale [1-4]. In
particular, the high research interest in transport through ar-
tificial quantum impurity systems stems from the observation
of the Kondo effect, a many-body phenomenon, in which the
spin of a quantum impurity becomes screened by conduction
electrons of attached electrodes [5—7]. Many studies, both ex-
perimental and theoretical ones, focused on providing a deep
understanding of the interplay between the Kondo physics
and other many-body phenomena, such as ferromagnetism
[8,9] and superconductivity [10,11], have been carried out.
In this regard, especially interesting in the context of spin
nanoelectronics are quantum dots or molecules attached to
ferromagnetic electrodes [12,13]. Besides the fact that such
nanostructures allow for implementing devices with highly
spin-resolved properties, they enable the exploration of the
interplay between the itinerant ferromagnetism and the strong
electron correlations [9,14—16]. In fact, the spintronic trans-
port properties of ferromagnetic quantum impurity systems
have been the subject of extensive investigations [8,9,14—
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25]; however, their accurate quantitative description in truly
nonequilibrium settings still poses a formidable challenge.

Reliable equilibrium and linear-response studies of trans-
port through quantum impurity systems have been made
possible by a robust nonperturbative numerical renormaliza-
tion group (NRG) method [26,27]. Unfortunately, this method
falls short when describing the nonequilibrium behavior. On
the other hand, although nonequilibrium situations can be
studied by various analytical methods, their main drawback
is an approximate treatment of electron correlations. It is im-
portant to note that these disadvantages have been overcome
by the time-dependent density matrix renormalization group
(tDMRG) method [28], which, however, has the drawback that
it can reliably study the system’s behavior only for timescales
of the order of 1/D, where D is the half bandwidth of the
conduction band. A reliable quantum quench approach to
study the transport through quantum impurity systems out of
equilibrium was recently proposed by Schwarz et al. [29].
This approach combines both the NRG and tDMRG methods
and, in addition, makes use of the thermofield treatment [30]
to efficiently describe the system.

In this paper, by employing the hybrid NRG-tDMRG
thermofield quench approach [29], we provide an accu-
rate theoretical investigation of the nonequilibrium transport
through a quantum impurity interacting with ferromagnetic
leads. In particular, we study the bias voltage dependence of
the differential conductance, which exhibits a zero-bias peak,
a characteristic feature of the Kondo effect, when the system
is tuned to the particle-hole symmetry point. We show that
the Kondo energy scale in the applied bias potential decreases

©2022 American Physical Society
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FIG. 1. Model system. A magnetic impurity (quantum dot or
molecule), characterized by an orbital level of energy &, and
Coulomb correlations U, is attached to two ferromagnetic contacts
with spin-dependent coupling strengths I';, and I'g,, respectively.
These leads are locally in equilibrium at a global temperature 7,
but with a voltage bias V = p; — ug that is applied symmetrically
across them.

with increasing the lead spin polarization. On the other hand,
when we detune the system away from this symmetry point,
we observe a splitting of the zero-bias peak for finite lead
spin polarization, which can be attributed to the emergence
of a local exchange field in the impurity. Furthermore, we
study the behavior of this split Kondo peak under external
parameters, such as applied magnetic field or temperature.
We show that a particular value of the magnetic field can
lead to the restoration of the Kondo resonance in the system.
Moreover, we determine the temperature dependence of the
differential conductance at the bias voltage corresponding to
the split Kondo peak.

This paper is organized as follows. In Sec. II we describe
the model and method used in calculations. The main results
and their discussion are presented in Sec. III, where we first
analyze the differential conductance at the particle-hole sym-
metry point and then study the effect of the finite exchange
field on the transport behavior. We also examine the possi-
bility to restore the Kondo effect using magnetic field and
determine the temperature dependence. Finally, this paper is
summarized in Sec. I'V.

II. MODEL AND METHOD

The considered system consists of a quantum impurity
(quantum dot or a molecule) attached to two ferromagnetic
leads with spin-dependent couplings, subject to a voltage bias,
as shown schematically in Fig. 1. More specifically, such a
system can be described by a single-impurity Anderson model
[31], in which the quantum impurity is modeled as

I_Iimp = stana + UnT”iv (D

where n, = d}d,, where d} creates an electron with spin
o € {1, 1} ={+1, -1} at the impurity; eso = &4 — 5B de-
notes the energy of an impurity energy level, with B being
the external magnetic field in units of gug = 1; and U is
the Coulomb repulsion experienced when the level is doubly
occupied.

The leads attached to the impurity are assumed to be
ferromagnetic metals and are characterized by the Fermi func-
tions, fy(w) = [ *)/T 4 117! (using units of /i = kz =
e = 1 throughout), where the index « refers to the leads, o €
{L,R} ={—1,+1}, and uy, = «V/2. The lead Hamiltonian

reads as follows:

T
Hicaa = E Eako Coypo Coko > 2

ako

with clkg creating an electron in lead o with energy &yo,
momentum k, and spin o. The quantum impurity is coupled
to the leads according to the Hamiltonian Hyyp,

thb = Z(Uakadgcaka + H.c.). (3)

ako

The electronic transition between each lead mode cyui
and the impurity spin state o is specified by the tun-
nel matrix elements v,i,. This coupling between the lead
and impurity induces an impurity-lead hybridization in the
system, expressed by the hybridization function Ty, (w) =
T Zk (Voo |28(® — Eako ). Finally, the total Hamiltonian of the
system reads

Hiy = Himp + Hiead + thb- (4)

In this work we assume a constant hybridization function over
the entire bandwidth 2D (we use D := 1 as the unit of energy
throughout, unless specified otherwise). The hybridization
function can thus be written as Iy (@) = [ye (D — |w]),
with ¥ (-) being the Heaviside step function and constant
Tyo = 7 Puo |Vao |>» Where poo is the spin-dependent density
of states of lead . Assuming that v,, = v is independent of
the spin or lead, it is then convenient to introduce the spin
polarization p,, of the ferromagnetic contact «,

Pat —Pay (5)

Po = PatrtPa)

The coupling strength can then be written as [y, =
(1 + 0 po)ly, with 'y = (I'gy + Iy )/2. The total coupling
strength for spin o is given by I'; = I'f; + gy In the fol-
lowing we assume that the system is left-right symmetric, i.e.,
I' =Tg=T/2 and p; = pr = p. Consequently, the com-
puted electrical current through the impurity is independent of
the sign of the applied bias voltage V, and therefore, it suffices
to analyze V > 0.
The impurity parameters are fixed to

U =0012, T =000l (©6)

throughout this paper to ensure a well-defined Kondo regime
well isolated from the finite bandwidth, with the impurity level
position g4 varied from particle-hole symmetric (¢, = —U/2)
to asymmetric (¢, = —U/3).

We use a hybrid NRG-tDMRG thermofield quench method
[29] to study the nonequilibrium behavior of the system. This
initializes the leads in thermal equilibrium at their respective
chemical potentials before they get dynamically coupled when
smoothly turning on the coupling to the impurity. This method
can treat the correlations exactly while sustaining the nonequi-
librium conditions of a fixed chemical potential difference and
fixed temperature in the leads. We define a transport window
(TW) using the Fermi functions of the leads [ f; (w) # fr(w)].
The energies outside the TW are assumed to be in equi-
librium and are discretized logarithmically according to the
logarithmic discretization parameter A, and energies inside
the TW are assumed to be out of equilibrium and discretized
linearly according to the linear discretization parameter §.
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A thermofield treatment is performed on the discrete energy
levels which maps the system to a particle-hole representa-
tion. Moreover, in this particle-hole picture, the tunnel matrix
elements turn out to be functions of the bias voltage V, thus
containing information about the nonequilibrium settings. The
particle and hole modes in the leads are recombined sepa-
rately, leaving the impurity coupled with one set of effective
particle modes and one set of effective hole modes. Then,
NRG is applied to the logarithmically discretized part of the
system, resulting in a renormalized impurity (RI), which is
coupled to the linearly discretized part of the hole and particle
chain. We represent the RI in the matrix product state (MPS)
framework as one site of the MPS chain coupled to completely
filled particle and completely empty hole modes in the linearly
discretized sector. The system is then time evolved using a
second-order Trotter time evolution, where the coupling be-
tween the RI and the lead modes is switched on over a finite
time window. Further details of the method are presented in
the Appendix.

III. RESULTS AND DISCUSSION

In the case of quantum dots or molecules attached to
ferromagnetic contacts the transport properties are strongly
dependent on the spin-resolved charge fluctuations between
the impurity and ferromagnets. These fluctuations give rise
to the level renormalization d¢,. Because, for p > 0, dg4 #
dey, a spin splitting of the impurity level can be generated,
Aéexen = d&y — dg, referred to as a ferromagnetic-contacted
induced exchange field. Here the exchange field is defined
such that Agexch > O tends towards a negative impurity mag-
netization, which in terms of sign is contrary to the definition
of B in Eq. (1). Hence, the effective total magnetic field
experienced by the impurity is given by

B ~ B — Aeexen. (7)

tot —

The exchange field in the local moment regime can be esti-
mated within the second-order perturbation theory, and it is
given by [8]

2pT
Aely, = “oRelp(en) — pea + UL (®)

where ¢(¢) = \IJ(% + 2§T—ST), with W(z) being the digamma
function. At 7 = 0, the formula for the exchange field simply
becomes

Ed |
gq+U '

=y, %4)

Ag? = pz—rln| 9)
T

The most important property of Ageyep 1S its tunability with
changing the position of the orbital level. As follows from
the above formula, A changes sign when crossing the
particle-hole (p-h) symmetry point, &, = —U/2, at which it
vanishes.

We begin our analysis with the study of the influence of the
lead polarization on the nonequilibrium conductance of the
system when the impurity energy level is tuned to ¢, = —U /2.
We then proceed to examine the case when the system is
detuned from the p-h symmetry point (¢, # —U/2), where
the exchange field can introduce spin splitting in the system.
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FIG. 2. The bias voltage dependence at 7 = 0 and particle-hole
symmetry &, = —U/2 of (a) the mean current J on a log-log scale
(inset lin-log) and (b) the corresponding differential conductance G
on a lin-log scale. The various curves are for different values of the
lead spin polarization p, as indicated.

We also analyze the influence of temperature and applied
magnetic field on the split Kondo resonance observed in the
differential conductance out of the p-h symmetry point.

A. Conductance at the p-h symmetry point

The mean current J(V) and the corresponding differen-
tial conductance G(V') through the system calculated at the
particle-hole symmetry point (¢, = —U/2) for different val-
ues of the lead spin polarization p are presented in Fig. 2. For
this we always evaluate the symmetrized current as discussed
in Sec. A2 [see Eq. (A4)]. For p = 0, we observe a zero-bias
conductance peak, characteristic of the Kondo effect [6,7].
However, when p is finite, the Kondo temperature is found
to decrease with increasing lead spin polarization. This was
predicted to affect the Kondo temperature of the system at
equilibrium using the poor man’s scaling method [8]:

rv U tanh
T, = /TU exp { meq(eq + U) arctanh(p) } (10)
2 2I'u )4

The decrease in the Kondo energy scale with spin polar-
ization can be understood by realizing that by construction
with Eq. (5), increasing polarization reduces the hybridization
of the suppressed spin orientation. As such, this decreases
the rate of spin-flip cotunneling processes responsible for the
Kondo effect.

To quantitatively elucidate the influence of p on the Kondo
effect, we define the Kondo energy scale Vi in the applied bias
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FIG. 3. Comparison of the Kondo energy scale Vx in the ap-
plied bias potential at ¢, = —U/2 [Eq. (6)] with the corresponding
equilibrium values of Tx obtained from NRG calculations and
the theoretical prediction for Tx (denoted by Tk ,) using the poor
man’s scaling approach, Eq. (10). The Kondo energy scales are
normalized with their corresponding values at p = 0, with Tx o =
2.2 x 1075 and Vg (0) = 3.6 x 107> = 1.64 T o, and Tx (0) = 2.6 x
1075 =1.18 TK,().

voltage as the half-maximum point of the conductance curve,
ie., G(Vx)/G(0) = % at T =B =0. In Fig. 3 we present
the dependence of Vk obtained from our NRG-tDMRG nu-
merical calculations along with the Kondo temperature Tk ,
estimated from Eq. (10) using the poor man’s scaling and
Tk (p) calculated using the equilibrium NRG [32] from the
temperature dependence of the linear conductance based on
the definition G(Tx)/G(0) = % Our nonequilibrium data cor-
roborate the general tendency to decrease the Kondo energy
scale with increasing spin polarization p. However, Fig. 3
also demonstrates some deviations: Vx is slightly larger than
the equilibrium 7k but smaller than the Kondo temperature
predicted by the analytical formula (10), after normalizing the
Kondo energy scales with respect to their respective values at
p=0.

B. Effect of finite exchange field

We now discuss the behavior of the differential conduc-
tance in the case when the energy level is away from the p-h
symmetry point (¢4 = —U/3) but still in the local moment
regime where strong electron correlations play a vital role.
The solid lines in Fig. 4(a) show the bias dependence of the
conductance with an increase in the lead spin polarization
p, computed at zero external magnetic field. We observe a
finite zero-bias peak that gets suppressed when p grows. This
effect can be attributed to the emergence of exchange field
in the system [see Eq. (8)]. The exchange field introduces a
spin splitting of the orbital level, which suppresses the Kondo
resonance, once |Aé&exen| 2 Tk, Vi The color-coded arrows in
Fig. 4(a) indicate the magnitude of the exchange field for the
corresponding spin polarizations obtained from Eq. (8) with
T = 0. When the exchange field energy approaches the Kondo
energy scale of the system, | Aéexen| = Tk, the zero-bias con-
ductance becomes suppressed. When the spin polarization
increases further, the differential conductance starts to develop

e
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....... Vieak[Aexen = 0, B = Ae?, ]
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FIG. 4. (a) The differential conductance G as a function of the
bias voltage in the case when the orbital level is detuned from the
particle-hole symmetry point (solid lines) using e, = —U/3 [Eq. (6)]
for different values of the spin polarization p as indicated in the
legend. To check the continuity from the equilibrium regime, the
corresponding NRG results for the linear-response conductance are
marked by the color-matched squares on the left vertical axis. For
comparison, we also show curves, where the macroscopic spin po-
larization was turned off and replaced, instead, by the corresponding
local magnetic field B = Asé’xch (dotted curves). Here the value
for Ag? , was determined by Eq. (8) at 7 =0, and its absolute
value is indicated by the color-coded arrows. For p = 0, we obtain
Txo=3.7x 1073, Vx = 6 x 1075 = 1.62 T ¢ for the voltage bias
where the differential conductance drops to half its zero-bias value.
(b) The solid (open) circles maps the location of the split Kondo
peak from the solid (dotted) curves in (a), denoted by Vi, tracked
as a function of spin polarization p. Solid lines in (b) present the
extrapolation using a linear fit of the squared data for the smallest po-
larizations (first three data points), thus fitting Vyeax = aoy/p?> — p(z)
with Ageen = ¥y p, Where y = 0.4413T [see Eq. (9)], and the fit
parameters ay = 1.001, po = 0.072 (vertical line). Similarly, the fit
of the open symbols (dotted line) results in ay = 0.860, py = 0.070.

a peak around V = Vjeak & [Agexch|, Which is reminiscent of
the splitting of the local density of states (LDOS) vs frequency
in the presence of a sufficiently strong local magnetic field.
To be specific, the peak in the differential conductance pre-
sented in Fig. 4(a) emerges for p = 0.1. For this value of spin

polarization, we can find that T , = 3.66 x 107>, [A&l | ~
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44 x 1075 =127k, p- Increasing the polarization further, the
peak at V & |Agexcn| persists while the conductance overall
diminishes.

The dotted lines in Fig. 4(a) correspond to the case in
which the system has no exchange field (i.e., p = 0) but an
external magnetic field is applied, whose magnitude equals
the exchange field calculated from Eq. (8) according to the
spin polarizations mentioned in Fig. 4(a). This comparison
shows two major differences between the exchange field and
the magnetic field. First, a strong enough exchange field sup-
presses the split Kondo peak in the differential conductance
significantly more strongly and leaves only a residual conduc-
tance derived from the hybridization side peak energies V ~
&4 [note the log scale in Fig. 4(a)]. This is mainly attributed
to the fact that the Kondo scale gets reduced with increasing
spin polarization (see Fig. 3), such that the ratio |Agexen|/Tx
is enhanced for the presence of an exchange field when com-
pared to a local magnetic field. Second, the location of the split
Kondo peak for finite p occurs at slightly higher voltages than
for the case of a local magnetic field. The latter effect may be
attributed to B & Agexcn representing a lowest-order estimate.
The explicit dependence of Vjea on the spin polarization p
in the two above-discussed cases is shown in Fig. 4(b). For
comparison, we also present the p dependence of Agen and
Tk, estimated from the respective analytical formulas. We
can see that, indeed, the split Kondo peak emerges when
|Agexen| 2 Tk, p- Moreover, by comparing Agech and Tk, wWe
can find that these two energy scales become equal for p =
0.0834. Keeping in mind that this is an approximate estimate,
our numerical results corroborate this tendency very well. The
split Kondo peak shows a slightly nonlinear behavior around

low spin polarizations. We fit the szeak data against p* to

unveil any behavior of the form Vpeu~,/ P — p%. Both the

fits for the exchange field and the corresponding magnetic
field give essentially the same value of pp~0.071, indicated
by the gray vertical line in Fig. 4(b). The prefactor of the fit is
exactly 1 (1.001) within numerical accuracy in the presence of

J@el )2 = (v o) [see Eq. O)].
This is also clearly seen in Fig. 4(b) in that the fit exactly
coincides with Aegep for larger p. In the case of a substitute
local magnetic field B = Ag” . but unpolarized leads, the fit

exch

polarization, with Vpeax >

reads Vpeak = 0.860\/ (A€l )? — (v po)?. This systematically

offsets the peaks with the dashed data in Fig. 4(a) by a con-
stant factor of 0.860 towards slightly smaller values of the
bias voltage yet leads to the disappearance of the split peak
at around the same polarization pg. On the semilog scale in
Fig. 4(b) this change in the prefactor simply shifts the fits
vertically relative to each other, as also reflected in the data
for the full polarization range.

The symbols on the left vertical axis in Fig. 4(a) correspond
to the linear-response data obtained by NRG, which is equiv-
alent to the differential conductance for V. — 0. As also seen
in later figures, while we have good overall consistency [e.g.,
see the inset in Fig. 6(b) below], there are minor quantitative
differences in the NRG-tDMRG results compared with the
linear-response NRG results. These are attributed to the differ-
ent parametrization and discretization schemes. Specifically,

1 T
0.8 {B/|A
- ()
. + 0 : — (.2
i~ 0.6 10° 101 == 0.6
:\g B/‘Asgxrh‘ 11
{D/ 0.4 1.7
—_— 3.4
0.2 11.3
~—
ol L . .
1074 1073 1072 1071

vV/U

FIG. 5. The differential conductance G as a function of the bias
voltage calculated at fixed p = 0.2 for different values of external
magnetic field as indicated using ¢, = —U/3 [Eq. (6)], thus with
Asg? —0.0882I" [Eq. (9)]. The color-matched arrows indicate

exch —

|BET| as defined in Eq. (7). The corresponding NRG results for
the linear-response conductance are shown by the color-matched
squares on the left vertical axis. The inset shows the behavior of
G(B,V — 0) as a function of the magnetic field B, with a signif-
icantly denser set of data points from NRG-tDMRG (line) and the
symbols from NRG as in the main panel. The maximum of G(B)

occurs at By, = 1.12 Ag”

exch*

linear conductance within linear response in NRG can be ob-
tained strictly at V = 0% [33]. In contrast, the NRG-tDMRG
approach always must assume a small, but finite, voltage in
the presence of finite level spacing with the objective being
to numerically compute a steady-state current via a real-time
simulation.

C. The influence of magnetic field

In Fig. 5 we study the influence of external magnetic field
on the split Kondo peak exhibited by the system detuned out
of the p-h symmetry point assuming the lead spin polarization
p = 0.2. We observe a full restoration of the zero-bias Kondo
resonance by an applied magnetic field with a magnitude that
can counterbalance the spin splitting induced by the exchange
field; see the curve for B = 1.1 |Asepxch| in Fig. 5. However,
a further increase in magnetic field is shown to suppress the
zero-bias peak again. This behavior qualitatively matches the
experimental results discussed in Fig. 2 in Ref. [14]. As seen
from the color-coded arrows in Fig. 5, the position of the
split Kondo resonance corresponds to V & |BS| as defined
in Eq. (7). The revival of the Kondo resonance can be dis-
tinctly observed from the inset in Fig. 5, where G(V — 0)
exhibits a maximum around By > |Ag” | such that BT ~
0 [Eq. (7)]. More precisely, from the inset in Fig. 5, By, =
1.12 |Asep;ﬁ‘2|, with the small difference being primarily at-
tributed to the perturbative nature of the analytic formula (8).
The prefactor approximately coincides with a similar scale
factor already encountered in Fig. 4(b), where B = |Ag? , |
also underestimated the peak position by an approximate fac-

tor of 1/0.860 = 1.16.
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FIG. 6. The bias voltage dependence of the differential con-
ductance G for fixed p =0.2 and B = 0 calculated for different
temperatures as indicated in the legend, using ¢, = —U/3 [Eq. (6)].
(a) presents G(V') on the logarithmic scale, while (b) shows the same
data on the linear scale with a focus on the low-bias behavior. The
linear-response NRG results are shown by the color-matched squares
on the left axis. The inset in (b) compares the linear-response conduc-
tance as a function of the temperature of our hybrid scheme (using
V = 1073 T) with NRG results, where the large square symbols of
the latter are identical to the ones in the main panels.

D. Temperature dependence of the split Kondo peak

In this section we analyze the effect of finite temperature
on the split Kondo resonance. Figure 6 shows the bias volt-
age dependence of the differential conductance for various
temperatures calculated for ¢, = —U/3 and p = 0.2. One can
see that increasing T results in the suppression of the split
Kondo peak, which completely disappears once the thermal
energy exceeds the induced exchange splitting. Increasing
temperature still further overall suppresses the differential
conductance. The suppression of the split Kondo peak is ac-
companied by a weak increase in the conductance at zero bias
for temperatures corresponding to the splitting of the LDOS
due to the exchange field, as seen in the inset in Fig. 6(b). This
can be used to estimate the temperature where the splitting in
the differential conductance disappears. The split Kondo peak
can survive up to a maximum temperature Tp,x defined as
the temperature at which G(V — 0,T) = G(V = Vpeax, T).
For the spin polarization p = 0.2, we estimate Tj,x = 2.06 x
1072 = TK,O.Z-

0.2} J
0.1F .
0 - 1 1 1 1 - 1
-10t  -107t  -107? 0 1073 107! 10!
w/U

FIG. 7. The energy dependence of the equilibrium zero-
temperature normalized spectral function n[';A, (w) calculated for
eq =—-U/3, p=0.2, and B=0 [Eq. (6)]. Note the logarithmic
energy scale.

The V — 0 differential conductance is equivalent to linear
response in thermal equilibrium. The latter is readily obtained
with NRG, with a direct comparison shown in the inset in
Fig. 6(b). Overall, we observe good quantitative agreement.
The points corresponding to the temperatures plotted in the
main panels are marked by the same color-matched squares.
Since linear response can be efficiently obtained with NRG, a
denser set of data points is permitted in the inset.

The weak increase in the linear-response conductance
for a finite temperature can be explained by examining
the energy dependence of the equilibrium local density
of states, i.e., the impurity spectral function, assuming
that this LDOS changes only weakly at low tempera-
tures T < max(7k, |Agexch|). The linear-response conduc-
tance G = ¥,G, is obtained from the spectral function
using G,(T) = Z€ [P dwT,A, (@)[—f ()] [33], where
Ay (w) = —%Im G, (w) is the spin-resolved spectral function
based on the retarded impurity Green’s function G, (w) and
f(w) is the derivative of the Fermi function at temperature 7.
Now if the exchange field due to polarization is sufficiently
strong, |Aégexen| 2 Tk, it will already split the spin-averaged
LDOS at equilibrium, as shown for p = 0.2 in Fig. 7. When
temperature is increased, the transport window widens and
thus encompasses more weight from the split peaks. Assum-
ing that the LDOS changes only weakly by turning on a small
temperature 7 < max(7k, | Agexcn|), the contributions from
the peak in the spectral function around @ =~ |Agexn| Will
increase the linear-response conductance up to 7' < | A&exchls
where it reaches a maximum before it starts to decrease.

An explicit temperature dependence of the split Kondo
peak conductance for a few selected values of spin polar-
ization is shown in Fig. 8. Figure 8 is determined at finite
bias voltage V (p) ~ |Aeepxch|, i.e., at the voltage correspond-
ing to the location of the split Kondo peak Vyeux shown in
Fig. 4. As seen by the vertical markers in Fig. 8, V agrees
well with |Ael | for large polarization p but clearly starts
to differ for smaller p, given that there is no peak at finite
V for p < 0.0834. By starting from the peak conductance,

125413-6



NONEQUILIBRIUM SPINTRONIC TRANSPORT THROUGH ...

PHYSICAL REVIEW B 106, 125413 (2022)

0L L El.
1073 1072 1071 10°
T/T

FIG. 8. The temperature dependence of the differential con-
ductance G at fixed bias voltage V = V. corresponding to the
maximum of the split Kondo peak in Fig. 4(a) calculated for different
spin polarizations using ¢, = —U/3 [Eq. (6)], where the circles on
the left axis replicate the peak in the zero-temperature data in Fig. 4.
The color-matched vertical dotted lines mark the peak bias voltage
V(p) at which conductance is calculated, whereas the dashed lines
indicate |Ag” . |. These are roughly located where the peak conduc-
tance is reduced by about half relative to a background conductance
due to the hybridization side peaks at energy &,.

we can now clearly see in Fig. 8 the decrease in the re-
maining Kondo resonance as the temperature increases. The
logarithmic decrease in the split Kondo peak conductance at
higher temperatures was experimentally observed in Fig. 3(a)
of Ref. [9]. In the case of p = 0.1, the split Kondo peak just
emerged, with |Asf;ﬁ'1 | &~ Tk, as can be observed from Fig. 4
and the vertical blue lines in Fig. 8. Hence, we can see a slight
nonmonotonic behavior arising from the interplay between
the Kondo effect and the exchange field. More generally, we
can infer from Figs. 6 and 8, for the split Kondo regime,
i.e., sufficiently strong polarization p with |Agexen| > Tk, that
Gy vs T (G7 vs V) will exhibit a nonmonotonic behavior if
T < |Agexen| (V < |Aégexen|) but a monotonic decay if T 2
[Agexcn| (V 2 |Agexcn|). We also note that the temperature
dependence of the nonequilibrium differential conductance at
V & | A€exch| does not show a universal dependence. This can
be understood by realizing that the system is then out of the
Kondo regime.

IV. SUMMARY

In this paper we have studied the nonequilibrium spin-
resolved transport through a quantum dot coupled to ferro-
magnetic leads while treating the correlations exactly. We
showed that when the dot level is at the particle-hole sym-
metry point, the Kondo resonance can be observed for any
value of spin polarization p, but the Kondo energy scale in the
bias potential Vx reduces with increasing spin polarization.
However, when the dot level is detuned out of the particle-hole
symmetry point, we observed the emergence of an exchange
field Agexch in the system, which splits the zero-bias conduc-
tance peak when it is comparable to or larger than the Kondo
energy scale. A finite value of magnetic field B & | Agexch| Was
able to restore the Kondo resonance in such a system. More-

over, we determined the temperature dependence of the split
Kondo peak and showed that the character of this dependence
depends on the ratio of exchange field to the Kondo energy
scale. Our work provides benchmark results for nonequilib-
rium spintronic transport through quantum impurity systems
in the presence of ferromagnetic leads.
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APPENDIX: THE HYBRID NRG-tDMRG THERMOFIELD
QUENCH APPROACH

This Appendix provides more details of the hybrid NRG-
tDMRG thermofield quench method [29] used to calculate the
spin-resolved transport properties of the system in nonequilib-
rium settings.

1. Thermofield treatment of the leads

To describe the leads we use the thermofield approach
[30,34,35], in which an auxiliary Hilbert space, equivalent
to the lead Hilbert space but decoupled from the system, is
introduced to the lead Hamiltonian, effectively doubling the
Hilbert space. This allows us to simplify the computational
problem since the decoupled modes of thermal leads can be
expressed as simple product states. More importantly, the
thermofield approach enables the description of the thermal
states as pure states, which can then be time evolved within
the matrix product state framework.

A pure state |€2) is defined on this enlarged space such that
the thermal expectation value of an observable A in the origi-
nal physical Hilbert space can be obtained from the enlarged
space using (A) = (2|A|2), where the state |€2) is defined as

Q) = [ [T =710, 1) + /711, 0)).
q

(AD)

Here the composite index corresponds to g = {a, k, 0}, f, =
Jo(&ako ), and the Fock states, |0, 1), and |1, 0),, which act as
the basis for the new Hilbert space, are defined as ¢,110, 1), =
c;2|0, 1), = ch,|1, 0), = c,l1,0), = 0. We define the modes

&,; in a rotated basis such that |0, 1), = /1 — 7,10, 1), +
\/]Tq |1, 0)4, using the transformation

(2)-( ()

With this transformation, the initial pure product state |€2) is
such that ¢,0, 1), = E;2|0, 1)4 = 0, which essentially results
in one set of modes (j = 2) being fully occupied, while the
rest (j = 1) are empty. The fully filled (empty) states in the
new basis resemble the particle (hole) description of the lead
Hamiltonian. The particles and holes will be recombined later

(A2)

125413-7



ANAND MANAPARAMBIL et al.

PHYSICAL REVIEW B 106, 125413 (2022)

for the NRG part of the calculations but will be treated sepa-
rately for the tDMRG time evolution, as described later.

2. The hybrid NRG-tDMRG time evolution

The hybrid NRG-tDMRG approach we employ combines
the strong assets of both NRG and DMRG, namely, the ability
of NRG to resolve logarithmic energy scales and the ability of
DMRG to describe nonequilibrium situations at energy scales
close to the bandwidth. One fundamental difference between
the two methods is that while NRG is fundamentally based on
logarithmic discretization, DMRG studies have found incred-
ible success based on a linear discretization of the lead energy
continuum. The energy scales that distinguish the regimes of
implementation of these methods are denoted by the transport
window (TW), which is determined by the difference in the
electrochemical potentials of the leads, fi(w) # fr(w). As-
suming that the lead levels far from the TW are essentially
in equilibrium, we implement a logarithmic discretization
scheme outside the transport window in order to later treat
them with the aid of the NRG. On the other hand, the energies
inside the TW are discretized linearly to be compatible with
the DMRG formalism. The discretized energy intervals are
denoted by E; and are defined as

8x, | x [< D*/8,

Ey(x) = {%WZFSD*’ xgiD*/a,
where § and A are the linear and logarithmic discretization
parameters, respectively. The energy levels outside the TW
are treated using the numerical renormalization group method,
giving rise to a renormalized impurity (RI) with a reduced
effective bandwidth 2D*. As a result of the thermofield trans-
formation in the linear sector, the system can be effectively
described as a renormalized impurity coupled to two chains,
corresponding to the tridiagonalized chains of the particle and
hole modes.

The Hamiltonians, Hieaq and Hyyp, transform according to
the aforementioned rotation as

— — E i = E &z
Hiead = Hiead + Haux = chqjcqj = Sququj,
qj qj

Hy, = Y (9g;d}cy; + Hee), (A3)
qj

where je{l,2} and the transformed couplings
g1 = vgy/1 — fy and B2 = v,/ f,. After the transformation,
we recombine the particles and holes in the logarithmically
discretized regime through another tridiagonalization in order
to apply NRG. Furthermore, we recombine the transformed
left and right lead modes so that one set of modes decouples
from the system, which is common in the case of equilibrium
NRG studies [27].

We perform a second-order Trotter time evolution on the
initial state of the system, |Vini) = |Pini) ® |€2), during which
the coupling between the linear and logarithmic sectors is
switched on over a finite time interval. Here |¢;y;) is the initial
state of the RI, and |2) is the pure product state of the linear
sector. We calculate the symmetrized current

J=Jp—Jr (A4)
at each time step of the system’s evolution, where J; (Jg) is
defined as the current flowing from the left (right) lead to the
impurity and J, = )" Juo. The system is time evolved until
the relevant observables start to fluctuate around a mean value
and a nonequilibrium steady state is reached. We evaluate our
main quantity of interest—the current—as the mean of the
symmetrized current over a finite time interval where the sys-
tem shows steady-state behavior. The averaging time window
is chosen by scanning through the current dynamics to find the
one with least error around the mean value. The corresponding
differential conductance G = dJ(V)/dV is calculated from
the mean symmetrized current. Both NRG and tDMRG calcu-
lations are implemented in the matrix product state framework
[36]. In calculations we assume A = 2.5 and § = 0.0625D*.
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