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Renormalized Lindblad driving: A numerically exact nonequilibrium quantum impurity solver
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The accurate characterization of nonequilibrium strongly correlated quantum systems has been a longstanding
challenge in many-body physics. Notable among them are quantum impurity models, which appear in various
nanoelectronic and quantum computing applications. Despite their seeming simplicity, they feature correlated
phenomena, including small emergent energy scales and non-Fermi-liquid physics, requiring renormalization
group treatment. This has typically been at odds with the description of their nonequilibrium steady state under
finite bias, which exposes their nature as open quantum systems. We present a numerically exact method for
obtaining the nonequilibrium state of a general quantum impurity coupled to metallic leads at arbitrary voltage
or temperature bias, which we call “RL-NESS” (renormalized Lindblad-driven nonequilibrium steady state).
It is based on coherently coupling the impurity to discretized leads which are treated exactly. These leads are
furthermore weakly coupled to reservoirs described by Lindblad dynamics which impose voltage or temperature
bias. Going beyond previous attempts, we exploit a hybrid discretization scheme for the leads together with
Wilson’s numerical renormalization group, in order to probe exponentially small energy scales. The steady state
is then found by evolving a matrix-product density operator via real-time Lindblad dynamics, employing a
dissipative generalization of the time-dependent density matrix renormalization group. In the long-time limit, this
procedure successfully converges to the steady state at finite bond dimension due to the introduced dissipation,
which bounds the growth of entanglement. We thoroughly test the method against the exact solution of the
noninteracting resonant level model. We then demonstrate its power using an interacting two-level model, for
which it correctly reproduces the known limits, and gives the full I-V curve between them.
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I. INTRODUCTION

Quantum impurity models have fascinated theoreticians for
several decades. These models seem extremely simple: they
describe a small, typically interacting, quantum system, i.e.,
the impurity, coupled to a noninteracting environment. The
quantum impurity consists of only a few degrees of freedom,
so that its spectrum can be obtained exactly. However, once
this interacting impurity is coupled to the seemingly inno-
cent quadratic environment, it gives rise to highly correlated
behavior and exotic phenomena which cannot be explained
solely in terms of the bare impurity, such as the Kondo effect
(including its non-Fermi-liquid multichannel varieties) [1,2].
Quantum impurities can thus be seen as the basic building
blocks of higher-dimensional strongly interacting systems.
The most striking feature of these arising phenomena is that
they can occur at emergent energy scales which, a priori, do
not appear in the Hamiltonian of either the bare impurity or the
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environment. An example is the Kondo temperature, which
can be smaller by several orders of magnitude than any bare
energy scale. Thus, in order to expose the physics of these
models, they must be analyzed in a renormalization group
(RG) framework. As of today, the most successful method for
treating such problems, in or close to equilibrium, is Wilson’s
numerical renormalization group (NRG) [3,4], a numerically
exact RG procedure for integrating out high-energy modes
and probing arbitrarily small energy scales.

A wide range of devices with various nanoelectronic and
quantum computing applications, including semiconductor
quantum dots [5,6], carbon nanotubes coupled to metallic
leads [7,8], and molecular junctions [9,10], can be described
as quantum impurity models, with the environment corre-
sponding to two macroscopic leads. Most of their applications
involve imposing a voltage (chemical potential) or tempera-
ture bias between the leads which results in a nonequilibrium
steady state (NESS), with a tunneling current flowing through
the impurity. Experimental results for such systems have suc-
cessfully been explained in different limits, e.g., by linear
response theory together with equilibrium NRG for small
bias, or by solving a master equation at large temperature
or voltage bias [11]. However, for arbitrary bias, a quantita-
tive theoretical description of the NESS properties is still an
open challenge. Any complete solution to this problem must
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FIG. 1. Overview of the RL-NESS method (for more details see Figs. 2 and 3). (a) Two leads with continuous spectra and at a temperature
or voltage bias are replaced by a discrete set of energy levels coupled to Lindblad baths. This discrete set is chosen by logarithmic discretization
(red) above the bias scale and linear discretization below it (blue). (b) The system is mapped to a tight-binding chain with a local Lindblad
bath coupled to each site. (c) High-energy modes are integrated out by equilibrium NRG on the logarithmic sector, resulting in a renormalized
impurity (RI). (d) The system is evolved in real time toward the long-time limit steady state, using a dissipative variant of tDMRG for a
matrix-product density operator.

(i) capture interaction induced many-body correlations, (ii)
resolve a wide range of energy scales, and (iii) deal with an
open system at its steady state.

Attempts to generally tackle this problem analytically, e.g.,
in an RG framework [12–14] or by Keldysh field integral for-
mulation [15], are so far restricted to uncontrolled approxima-
tions. Bethe ansatz approaches have also been tried [16,17],
but are typically case specific. Therefore, much focus has been
placed on finding a general numerical solution. A class of such
attempts is based on capturing the many-body correlations
by modeling the environment as large (but finite) leads, and
evolving the many-body state of this finite system toward a
finite-time quasi-steady state, e.g., using the time-dependent
density matrix renormalization group (tDMRG) method
[18–20]. This approach has further been extended by treating
the finite leads as open systems, governed by Lindblad dy-
namics, and similarly evolving in time toward a well-defined
steady state [21–23]. The Lindblad approach has also been re-
cently investigated in the context of density functional theory
[24]. However, these attempts are typically limited in terms
of the range of energy scales explored by the finite number
of energy levels in the leads, with no RG procedure exploited
in order to integrate out high-energy modes. Other numeri-
cally exact approaches applied to this problem are reported in
[25–28], but are also not designed to explore the wide range of
energy scales. Two attempts to leverage the unrivaled success
of NRG in equilibrium and extend it out of equilibrium are the
so-called scattering-states NRG [29] and the NRG-tDMRG
scheme [30], with the latter a predecessor of the method
presented in this paper. These attempts have been quite suc-
cessful at resolving a wide range of energy scales, while also
capturing the many-body correlations. However, the former
is plagued by logarithmic discretization artifacts within the
dynamical energy window, while the latter is based on nondis-
sipative time evolution of a finite, and thus closed, system,
which results in a quasi-steady state in a limited time interval,
making it challenging to extract steady-state observables.

In this work we present an algorithm combining the full
power of NRG and tDMRG for capturing many-body corre-
lations at a wide range of energy scales, together with open
system dynamics, in order to obtain an actual nonequilibrium
steady state. In what follows, we will refer to this approach as
the renormalized Lindblad-driven NESS (RL-NESS) method.

Our starting point is a general impurity coupled to continuous
leads (i.e., leads with a continuous spectrum). As shown in
Fig. 1(a), each continuous lead is separated into a finite set
of representative discrete energy levels, which in turn are
coupled to the remaining continuous modes. The impurity
together with this finite set of energy levels (large enough
to allow the coherent formation of, e.g., the Kondo screen-
ing cloud, and the emergence of energy scales such as the
Kondo temperature), is considered as an open system, coupled
to an environment consisting of the remaining continuous
modes, which are traced out. The latter is performed under the
Born and Markov approximations, i.e., that the environment
is memoryless and indifferent to the state of the system. As a
result, the dynamics of the system is governed by a Lindblad
[31] master equation:

dρ

dt
= Lρ = −i[H, ρ] + Dρ. (1)

The Liouvillian superoperator L can be separated into a von
Neumann term consisting of the discrete system Hamiltonian
H , and a dissipative superoperator D, describing a suitably
modeled dissipation into the environment. The two key el-
ements of our method are (i) the specific choice of discrete
energy levels, such that high-energy modes can be integrated
out, and (ii) the numerical solution of the Lindblad equation
in the low-energy dynamical regime, formulated as a tensor-
network algorithm.

With these requirements in mind, the Lindblad equation is
obtained as follows: The Hamiltonian of the discrete system
is derived by employing a mixed discretization scheme that
crosses over from logarithmic to linear level spacing at the
bias scale [30]. This permits integrating out modes whose en-
ergies are high compared to the bias voltage or temperature by
means of NRG, with the logarithmic RG flow eventually cut
off at this scale. Instead of formally deriving the dissipators,
they are chosen based on two criteria: (i) the solution of the
Lindblad equation reproduces the continuum limit, and (ii)
Eq. (1) can be numerically solved efficiently. An important
property of the chosen dissipators is that they are local in
the basis in which the leads are diagonal. A set of exact
transformations, dubbed the Lindblad-driven discretized leads
(LDDL) scheme [32], is then applied to the Lindblad equation,
mapping it to a so-called chain geometry, shown in Fig. 1(b),
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which, due the short rangedness (or locality) of interactions
is more favorable for treatment in the tensor-network frame-
work, e.g., by tDMRG [33,34]. At this stage, high-energy
modes (far above the bias voltage and temperature scales)
are integrated out using equilibrium NRG, arriving at a local
Lindblad equation in an effective low-energy basis, as de-
picted in Fig. 1(c). The state of the system is represented as
a matrix-product density operator (MPDO), and is evolved in
real time by a dissipative variant of tDMRG in Liouvillian
space, as shown in Fig. 1(d), until convergence to a steady
state is obtained. Due to the dissipation induced by the en-
vironment, the entanglement entropy of the system saturates
as a function of time, rather than diverging, as is the case in
the absence of dissipation. Hence, the long-time limit steady
state can be obtained with finite MPDO bond dimension. A
full description of the method will be presented in Sec. II.

By repeating the simulation for different bias voltages, a
full I-V curve can be obtained. When numerically differen-
tiated, one obtains the differential conductance. The method
is demonstrated on two spinless fermionic models: the non-
interacting resonant level model (RLM), and an interacting
two-level model (I2LM). The RLM, discussed in Sec. III, can
be solved exactly in the single-particle basis (in and out of
equilibrium). It will therefore serve as a benchmark for the
presented method. The I2LM, discussed in Sec. IV, contains
two interacting dot levels with level spacing � and interaction
energy U . Our method recovers known results in the limits of
small and large bias, yet goes beyond them by giving the full
I-V curve. Conclusions and future directions are discussed in
Sec. V, followed by a series of appendices covering technical
details.

II. METHOD

In this section the RL-NESS method is outlined in detail.
The initial part follows much of the strategy in Ref. [30]. We
start by presenting a general impurity model with continuous
leads in Sec. II A. The leads are then discretized in Sec. II B,
resulting in a Lindblad equation for a discrete system. In
Sec. II C we follow by a short overview of the LDDL scheme,
used to bring this equation into a local form, both in the
Hamiltonian and in the dissipators. In Sec. II D we integrate
out high-energy modes by NRG in order to obtain a renor-
malized impurity. In Sec. II E we describe a matrix-product
density operator procedure for real-time evolution toward the
steady state. Finally, in Sec. II F we discuss the extraction of
observables from the obtained steady state. Steps II B–II D are
described schematically in Fig. 2, and step II E is described
in Fig. 3. Throughout this section, superoperators acting on
the density matrix will be represented in calligraphic script,
while regular operators will be represented in roman script.
Tensor-network calculations (NRG, MPDO evolution) were
implemented using the QSPACE tensor library, which can ex-
ploit both Abelian and non-Abelian symmetries on a generic
footing [35,36].

A. Model

The total Hamiltonian of an impurity system can be gener-
ically separated into three parts: the (interacting) impurity, the

noninteracting leads with a continuum density of states, and
the coupling between them:

Htotal = Hdot + Hcoupling + Hleads. (2)

The dot Hamiltonian describes λ ∈ {1, . . . , m} (here spinless)
levels with onsite Coulomb repulsion U :

Hdot =
m∑

λ=1

ελndλ + U
2 nd (nd − 1), (3)

with fermionic creation operators d†
λ , and total impurity

occupation nd = ∑
λ ndλ, where ndλ = d†

λdλ. More compli-
cated local interactions, such as exchange interactions or spin
Hund’s coupling, may also be incorporated.

The lead Hamiltonian in this work is described by two
metallic, i.e., noninteracting, leads located left and right of the
impurity. They are assumed to be featureless, with constant
hybridization �αλ of lead α ∈ {L, R} with impurity level λ

over a bandwidth ε ∈ [−D,+D], resulting in the total hy-

bridization strength vαλ ≡
√

2D�αλ

π
. The lead and coupling

Hamiltonians can therefore be written in the diagonal bath
basis as

Hleads =
∑

α

∫ D

−D
dε ε c†

αεcαε, (4)

Hcoupling =
∑
αλ

vαλ

∫ D

−D

dε√
2D

(c†
αε︸ ︷︷ ︸

≡c†
α0

dλ + H.c.), (5)

where c†
αε creates an electron in lead α at energy ε. As

indicated, c†
α0 defines the normalized bath level that the im-

purity couples to, i.e., at the location of the impurity, obeying
{cα0, c†

α0} = 1. The generalization to spinful and multichan-
nel leads is straightforward, while the generalization to a
featured hybridization function is conceptually also possible.
Throughout, we assume the limit of large bandwidth, i.e., that
all energy scales and parameters are much smaller than D.
Without loss of generality then, the voltage bias is chosen
symmetric with respect to the Fermi energy, so that the chem-
ical potentials of the leads are μL = −μR = −V

2 (taking unit
of charge e = 1, throughout). For concreteness we will mostly
concentrate on the case of zero temperature in both leads, but
the described procedure also applies to finite and nonequal
temperatures.

B. Lindblad equation

The Lindblad equation is a first-order linear differential
equation. Its general solution, given some initial condition ρ0,
can thus be written by exponentiating the Liouvillian super-
operator:

∂ρ

∂t
= Lρ ⇒ ρ(t ) = eLtρ0. (6)

The dynamics in our case is designed to have a unique
nonequilibrium steady state defined by

LρNESS ≡ 0 ⇐⇒ ρNESS = lim
t→∞ρ(t ), (7)
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FIG. 2. Schematic description of the RL-NESS method leading up to the point of solving the Lindblad equation. (a) The system of interest
is a general impurity coupled to two macroscopic and thus continuous leads at chemical potential difference V . This system can be mapped
exactly onto (b), where the bath has been coarse grained into distinct intervals. Each of these is written as a representative level that the impurity
couples to, and a continuous bath consisting of the remainder of the modes in that interval. The discrete set of energy levels together with the
impurity thus form a finite system. The remaining lead modes are integrated out, resulting in a Lindblad bath coupled to each discrete energy
level. (b′) The width of the intervals is chosen according to a logarithmic-linear discretization scheme, such that levels in the low-energy
window [−D∗, +D∗] are equally spaced by δ (blue), with a smooth transition to logarithmic spacing ∼�n at large energies (red). (c) The
targeted occupation of each individual lead mode, originally encoded in the couplings to the Lindblad baths in (b), can be transferred onto
the lead-impurity couplings, such that the resulting two leads now represent particles or holes, and are driven to be completely full or empty,
respectively. (c′) This rotation of the local Liouvillian basis is performed separately for each original (physical) lead level. A general such level
is coupled to the impurity with coupling constant v, and to two Lindblad baths, one filling it and the other emptying it, at rates proportional
to γ and chosen such that they drive the level toward its equilibrium occupation (determined by chemical potential and temperature). From
the Liouvillian description, an auxiliary level is introduced at the same energy, and linear combinations of the two levels are chosen such that
one is driven to be completely full (particle) and the other to be completely empty (hole), both at rate γ . (d) The particle and hole leads can
be exactly mapped onto nearest-neighbor Wilson chains via tridiagonalization, with local dissipators filling one chain and emptying the other.
The hopping amplitudes along the chains away from the impurity initially exhibit exponential decay due to the logarithmic discretization at
large energies (red), until they cross over into more uniform hopping amplitudes of order δ in the linear discretization regime (blue). (e) The
sites in the logarithmic sector, together with the impurity, are numerically integrated out in standard NRG spirit. This provides an effective
subspace for the low-energy description in terms of an effective renormalized impurity (RI) with multiple dissipators. (e′) This is achieved
by collecting all the logarithmic sector sites into a single Wilson chain (via a retridiagonalization) for the sake of numerical stability of the
subsequent iterative diagonalization by NRG. The fixed number of states coming out of the last NRG iteration constitute the RI low-energy
subspace.

i.e., either as a solution of a linear equation (left-hand side),
or as the state to which an arbitrary initial state decays to
in the long-time limit (right-hand side). The uniqueness of
the solution stems from the driving of the leads, which is
explicitly designed to drive each discretized lead level to its
unique thermal equilibrium state in the absence of the impu-
rity. The uniqueness of the steady state should not be affected
by the introduction of the impurity, which contains only a
small number of degrees of freedom. This is demonstrated
for the noninteracting case in Appendices C and D. Adding
interactions is not expected to impair this.

The first stage of the RL-NESS method is obtaining a
Lindblad equation for a discrete system from the original
continuous system, as shown in Fig. 2(b). Formally, this can
be done by dividing the full band [−D,+D] of each lead into
consecutive distinct intervals In. By the bilinear structure of
the coupling in Eq. (5), the impurity couples to a particular
mode in each interval, which itself is then coupled to the
remainder of the modes in that interval. The latter can be
integrated out, leaving a single representative level for each in-
terval. Explicitly performing this integration (under the Born
and Markov approximations) yields the structure of the Lind-
blad baths and their couplings to the system. However, we will
allow ourselves some freedom in choosing the exact values

of the couplings to the Lindblad baths so as to simplify the
subsequent simulation of the driven system, while enforcing
that the correct steady state is obtained.

The choice of the intervals In and corresponding energy
levels relates to coarse graining that depends on a dis-
cretization scheme. A common discretization scheme used
for treating quantum impurity models is the logarithmic dis-
cretization scheme, introduced by Wilson as part of NRG
[3,4]. This scheme produces discrete semi-infinite leads with
level spacing shrinking exponentially as the lead Fermi energy
is approached. It is designed to generate energy scale separa-
tion, and subsequently justifies integrating out of high-energy
modes via iterative exact diagonalization as part of a loga-
rithmic RG flow. This enables us to accurately and reliably
resolve exponentially small energy scales which frequently
arise in impurity models due to Kondo-type physics. However,
for an open system, e.g., due to coupling to a thermal reservoir
or the presence of finite voltage bias, energy scale separation
ceases to exist below the corresponding energy scale, and the
logarithmic RG flow will be cut off. In the nonequilibrium
case this gives rise to a dynamical low-energy window de-
scribed by a reduced bandwidth D∗, which is of order of the
bias voltage or temperature (see below). For a least-biased
numerical approach then, the discretization scheme within this
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regime should be uniform. Therefore, RL-NESS employs a
mixed discretization scheme [30,37]. This consists of a log-
arithmically discretized region extending from the band edge
down to just above the lead bias voltage or temperature, that
smoothly crosses over into a linearly discretized region (with
uniform level spacing) in the bias window [−D∗,+D∗]. Such
a scheme allows one to make use of NRG to integrate out
high-energy modes (relative to V or T ), in order to obtain
an effective low-energy nonequilibrium system, to be simu-
lated in a controlled manner by a DMRG-like approach. This
scheme has also been discussed for the setup of two leads
with a voltage or temperature bias in a previous work [30],
but without the Lindblad driving (previously suggested in
Ref. [32]). It is therefore briefly outlined here for complete-
ness.

We define D∗, the characteristic energy scale of the leads,
as the energy at which the Fermi-Dirac distribution of the lead
drops below some preselected threshold. For zero temperature
this implies D∗ = V

2 , while for finite temperature the specific
value of D∗ depends on the chosen threshold. The intervals
In, as shown in Fig. 2(b′), are chosen such that in the range
[−D∗,+D∗] they are of equal size δ, referred to as the linear
discretization parameter, while away from this range they
scale exponentially as ∼�n, where � > 1 is referred to as
the logarithmic discretization parameter. In the intermediate
region the interval widths cross over smoothly between be-
ing constant and growing exponentially. In each interval a
representative energy level εn is selected with corresponding
coupling vαnλ to the impurity λth level. For details regarding
the choice the intervals and corresponding energies and cou-
plings, see Appendix A. The same intervals are chosen for
both leads such that by construction εn are lead independent,
while the coupling constants vαnλ can differ between the leads.
The resulting leads and coupling Hamiltonians are

H (disc)
leads =

∑
α,n

εnc†
αncαn, (8)

H (disc)
coupling =

∑
α,λ

∑
n

vαnλ(c†
αn︸ ︷︷ ︸

≡tα0λc†
α0

dλ + H.c.). (9)

Following through with this procedure, the dissipators can
formally be derived. If such a path is pursued, the continuum
of modes of a specific interval will serve as the environment
only of its representative level, thus resulting in a local dissi-
pator for each level:

Dαnρ = γn[1 − fα (εn)](2cαnρc†
αn − {c†

αncαn, ρ})

+ γn fα (εn) (2c†
αnρcαn − {cαnc†

αn, ρ}), (10)

where fα (ε) ≡ fFD(ε; μα, Tα ) is the Fermi-Dirac distribution
for lead α (depending on the lead specific chemical potential
and temperature), and {γn} are referred to as Lindblad-driving
rates. This structure implies that when the leads are decoupled
from the impurity, i.e., vαnλ = 0, they are driven to their equi-
librium occupation, as expected. The total Lindblad equation
is then given by

Lρ = −i
[
H (disc)

total , ρ
] +

∑
αn

Dαnρ , (11)

where H (disc)
total ≡ Hdot + H (disc)

leads + H (disc)
coupling is the total Hamil-

tonian, now with discrete leads, and hence effectively of a
finite system that becomes an open system by means of the
Lindblad driving. As shown in Refs. [32,38,39], a wide range
of driving rates reproduce the same continuum limit observ-
ables. Therefore, one is free to choose them, in this range,
so as to best suit the numerics. With this in mind, and for
reasons to be explained in Sec. II C, the rates will all be
chosen to be energy independent, i.e., γn = γ , and of order
of the linear level spacing δ. Let us note that driving of energy
modes (exponentially) larger than D∗ will have negligible
effect on the results since, importantly, these modes start and
practically remain in equilibrium throughout the dynamics.
Thus, the corresponding rates can further be tuned, or even
completely turned off, in order to enhance numerical stability,
as we further discuss in Sec. III and Appendix F. At this
point, the Lindblad equation to be solved is fully defined. As
a consistency check, note that properly taking the limits of
this equation converges back to the continuum limit: In the
limit � → 1 the discretization scheme collapses to a linear
(equal spacing) discretization, which in turn converges to the
continuous system in the γ = δ → 0 limit [32].

C. Local form

The Lindblad-driven discretized levels (LDDL) scheme
[32] is a set of exact manipulations, applied to the Lindblad
equation (11) with the goal of bringing it to a form more
favorable for treatment in the framework of tensor networks.
The system Hamiltonian obtained after discretization is for-
mulated in the so-called star geometry, involving diagonal
leads, as in Eq. (8), with all levels directly coupled to the
impurity, as in Eq. (9). This geometry is nonlocal (in the
sense that all lead levels couple to the impurity), and there-
fore less convenient in the framework of tensor networks.
The dissipators, on the other hand, are already local in this
geometry, with each lead level coupled to its own Lindblad
bath, which is a property we would like to retain. A standard
procedure, employed for example in NRG, is to perform an
exact mapping in terms of a basis transformation from the
star geometry to a chain geometry [4]. The bilinear structure
of the coupling term in Eq. (9) directly defines the only bath
level c†

α0 that the impurity couples to. This level constitutes
the first site of a nearest-neighbor tight-binding chain, which
can be obtained by tridiagonalizing the single-particle basis of
the remainder of the lead levels, e.g., by construction of a full
Krylov space:

H (disc)
leads =

∑
α,k

tαk (c†
αkcαk+1 + c†

αk+1cαk ) +
∑
α,k

εαkc†
αkcαk . (12)

Such a basis transformation, however, will result in nonlocal
dissipators due to the n-dependent prefactors in Eq. (10),
which include the Fermi factors. The LDDL scheme circum-
vents this problem and yields a Lindblad equation which is
local in both the dissipators and the Hamiltonian in the chain
geometry. For completeness it will be described here briefly.
The idea behind this scheme is to shift the Fermi-Dirac infor-
mation from the dissipators in Eq. (10) to the lead-impurity
couplings in an effective Hamiltonian, still in the star geome-
try. With an appropriate choice of Lindblad-driving rates, the
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system can then be tridiagonalized into the chain geometry,
without losing the locality of the dissipators.

Consider a single discrete lead level with creation operator
c†
αn, referred to as a physical level, in lead α at energy εn and

coupling constants vαnλ to the impurity levels. We temporarily
drop the subscripts αn for readability in what follows. Its dis-
sipator is given according to Eq. (10), meaning it is constantly
depopulated and repopulated at a constant Lindblad-driving
rate γ , weighted by 1 − f (ε) and f (ε), respectively. In the
LDDL scheme this single physical level is mapped onto two
artificial lead levels with creation operators c†

h and c†
p, referred

to as hole and particle levels, thus effectively doubling the
number of levels. The former is constantly depopulated at rate
γ and the latter constantly repopulated at rate γ :

Dhρ = γ (2chρc†
h − {c†

hch, ρ}),

Dpρ = γ (2c†
pρcp − {cpc†

p, ρ}). (13)

These two levels both have the same onsite energy ε, yet are
now coupled to the impurity with amplitudes that depend on
temperature and chemical potentials:

vλ,h =
√

1 − f (ε) vλ, vλ,p =
√

f (ε) vλ. (14)

Formally this mapping is obtained by introducing an auxiliary
level at energy ε which is decoupled both from the impurity
and the Lindblad baths, and performing a unitary rotation
between the physical and auxiliary levels, thus shifting the
Fermi-Dirac information from the dissipators to the lead-
impurity couplings, as shown in Fig. 2(c′). For more details,
as well as a discussion of the resemblance of this procedure
to purification of the level, or the thermofield approach, see
Ref. [30].

The described procedure is repeated for each lead level.
This replaces each physical lead with a corresponding hole
lead and particle lead, as in Fig. 2(c), thus doubling the total
number of lead levels. By selecting Lindblad-driving rates γ

to be energy independent, one obtains dissipators for each of
the hole or particle leads which do not depend on the energy
index n (i.e., are proportional to to the identity matrix with
respect to this index). Each such lead can therefore be tridi-
agonalized separately into a nearest-neighbor chain while the
dissipators remain unaltered, resulting in a Lindblad equation
which is local both in the dissipators and the Hamiltonian, as
desired [see Fig. 2(d)].

Two remarks are in order regarding the doubling of lead
levels, before the tridiagonalization is performed. The first is
that for physical levels lying far from the chemical potential
in units of temperature, where f (ε) is 0 (1), the particle (hole)
level decouples from the impurity, and can thus be disregarded
in subsequent calculations. For zero temperature this holds for
all physical levels, and so the described mapping is reduced
to relabeling physical levels above (below) the lead chemical
potential as holes (particles), with no doubling actually occur-
ring.

The second remark relates to exploiting a left-right sym-
metry in the lead spectrum. In equilibrium calculations, when
both leads have the same energy levels and for each lead
level the left and right coupling constants to all impurity
levels are proportional, only a specific linear combination

of left and right levels couples to the impurity, precisely as
defined by the coupling Hamiltonian. The complementary
orthogonal combination of left and right levels decouples from
the impurity and hence becomes irrelevant for the impurity
dynamics. This simplifies the model from a two-lead model
to an effective single-lead model. In the nonequilibrium case,
the different potentials applied to the left and right leads break
this symmetry, and prevent its exploitation. However, once the
physical leads are separated into hole and particle leads, the
symmetry is reinstated (for holes and particles separately),
and can therefore be exploited. Thus, for models in which
this symmetry exists, the final number of artificial lead lev-
els is actually smaller than the original number of physical
levels.

D. Renormalized impurity: NRG

The LDDL scheme is indifferent to the specific discretiza-
tion scheme employed, as long as the Lindblad-driving rates
are kept energy independent. Observe now the implications
of the linear-logarithmic scheme on the resulting Lindblad
equation. The obtained onsite energies {εαk} and nearest-
neighbor hopping amplitudes {tαk} in the vicinity of the
impurity are of the largest magnitude and decay exponentially
as the distance from the impurity grows, all the way down
to D∗. The corresponding sites will therefore be referred to
as the logarithmic sector. Below D∗, the onsite energies and
hopping amplitudes remain of order of the linear level spacing
δ and D∗, respectively, and will be referred to as the linear
sector. Due to the smooth transition in the discretization, the
exact boundaries between these two sectors are fuzzy, and in
practice are chosen with some fine tuning in order to enhance
convergence.

In the chain geometry, the logarithmic sector, including the
impurity, can be considered as a mesoscopic system, coupled
to the linear sector leads. By construction, the vast majority of
the (many-body) energy levels of this mesoscopic system are
at energies larger than D∗, and so are expected to be indifferent
to the voltage bias applied, thus largely remaining in the
equilibrium state. They are therefore expected to contribute
to the nonequilibrium dynamics only through renormalization
effects on the low-energy modes in the linear sector, which
in turn actively participate in the dynamics. As argued in
Ref. [30], it is therefore sufficient to approximate the meso-
scopic system by a renormalized impurity (RI) residing in
an effective significantly reduced low-energy basis. This is a
controlled approximation, as one can monitor the weight on
all states in the RI while time evolving toward ρNESS. Note
that the chemical potential of this RI is set midway between
the chemical potentials of the leads, so that the effective low-
energy subspace consists of states with RI particle number
which is close to its average occupation in the NESS.

The RI is obtained by the following procedure, as described
in Fig. 2(e′): an additional subsequent tridiagonalization is
applied to merge the two (particle and hole) chains in the
logarithmic sector. This brings them into a single-lead Wilson-
chain structure, which is important for NRG since it keeps
correlations at a given energy scale local. An NRG sweep is
then applied to the chain: starting from the impurity, at each
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step a site is added to the chain, the Hamiltonian is diago-
nalized, and high-energy modes are discarded. At the end of
the sweep through the logarithmic sector, the R lowest-lying
many-body states are taken as the effective basis of the RI. All
operators acting on the impurity, or on sites in the logarithmic
sector, are then projected to this effective reduced basis.

The leads in the linear sector, together with the RI, now
form the dynamical system under consideration, as shown in
Fig. 2(e). The Lindblad equation for this system still consists
of a nearest-neighbor Hamiltonian, however, with a more
complicated local term acting on the RI site. The dissipators
are also local in this setup, and again the local terms acting
on the RI are more complicated, corresponding to the multiple
dissipators acting on the logarithmic sector. Note that although
the dissipators on different sites of the chain originally com-
mute, the logarithmic sector dissipators, after being projected
to the RI basis, no longer do. Another concern regarding
the logarithmic sector dissipators is that because they were
not taken into account during the RG flow, they might drive
the RI out of the effective low-energy basis. In practice, this
issue can be handled, as discussed below in Sec. III and
Appendix F.

E. MPDO solution: tDMRG

The obtained Lindblad equation is solved for the steady
state by real-time evolution, implemented in the tensor-
network formalism. The system (mixed) state is represented
as a matrix-product density operator (MPDO) [40,41]. Anal-
ogously to the matrix-product state (MPS) representation of
wave functions, which has a single (physical) index for each
chain site, the MPDO has two (physical) indices for each
chain site, as shown in Fig. 3(a). For the chain at hand, each
of these physical indices is of dimension d corresponding to
a single fermionic Hilbert space, except at the RI, where it
is of dimension R corresponding to the effective low-energy
subspace. It is common practice to combine the two physical
indices of each MPDO site into a single effective index of
dimension d2 and simply treat it as an MPS. However, in the
case of a large physical index dimension, e.g., for the RI, keep-
ing the indices separate enables more efficient contractions
and reduces the computation cost.

Local symmetries in the continuous system imply charge
conservation. By construction, the derivation of the Lindblad
equation will respect these symmetries, so that the Lindblad
dynamics conserves the corresponding charges in the full sys-
tem, i.e., the discrete system together with the baths. However,
it does not necessarily conserve these charges in the discrete
finite system alone. Still, the fact that the symmetries are
respected results in related conserved quantities in the discrete
system [42,43], which can be exploited in order to decom-
pose the MPDO into symmetry sectors, further reducing the
computational cost. For concreteness we demonstrate this for
a U(1) charge (particle number) conserved in the original
continuous system, and the generalization to other sym-
metries is straightforward. Define the superoperators N± =
N ⊗ I ± I ⊗ N , where N is the particle-number operator, I
is the identity, and A ⊗ B is understood to operate on to the
density operator as AρB. The Liouvillian superoperator L

FIG. 3. (a) MPDO description of the system density operator:
each site is described by a rank-4 tensor (i.e., 4 legs) with two
physical indices, of local dimension d for chain sites or R for the
renormalized impurity (RI), and two virtual indices, of bond dimen-
sion χ , connecting it to its neighboring tensors. The initial MPDO is
chosen as a product state, where all particle sites are full, all hole sites
are empty, and the RI is in its ground state. (b) A single second-order
Trotterized time step consists of a dissipative half-time-step sweep
(b.1), a Hamiltonian full time-step sweep (b.2: sweep forward and
backward at τ/2), and then another dissipative half-time-step sweep
in the opposite direction [cf. Eq. (16)]. (b.1) Dissipative evolution
half-time-step sweep: each red square corresponds to the set of Kraus
gates applied to a specific site, and the sum on all gates at that site
is implied by the red contraction line (see text). At the RI, multiple
gates are sequentially applied, corresponding to the multiple driven
sites incorporated into it. (b.2) Hamiltonian evolution time step: each
red bar corresponds to a half-time-step Trotter gate e±iHk,k+1τ/2 [cf.
Eq. (17)] applied to sites k, k + 1. The gates are applied from left to
right and then back from right to left for a full time step.

commutes with N− but not with N+. The dynamics there-
fore does not conserve particle number in the discrete system
N ⊗ I = N++N−

2 . However, the conservation of N− suffices
in order to decompose the MPDO into particle-number sym-
metry sectors. It also implies that the parity of N+ and thus of
N ⊗ I is conserved, which suffices in order to account locally
for fermionic signs.

Following Ref. [30], the system is set in an initial state
|ψ0〉 which is a product state between the ground state of
the decoupled RI, and the steady state of the decoupled lin-
ear sector leads. The latter is defined as the pure product
state where all lead particle (hole) sites are full (empty).
This initial state can be written either as an MPS, or as an
MPDO for ρ0 ≡ |ψ0〉〈ψ0|, both with bond dimension χ = 1.
This starting point is assumed to be sufficiently close to the
desired final steady-state solution, so that when the coupling
to the RI is turned on, the full system will quickly converge
to its steady state (as our results confirm). One could also
initialize the RI in its decoupled steady state, but in practice
this does not improve convergence. Note that the initial setup,
together with its transient dynamics, are regarded only as a
means to obtain the desired steady state, so that the spe-
cific choice of initial state can be fully based on numerical
considerations.
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The coupling between the RI and the leads is then turned
on, and the system is evolved in time by a variant of tDMRG,
formulated to accommodate for Lindblad dynamics. Note
that in this work the RI-lead coupling is turned on in an
immediate quench, and slow ramping up of the coupling,
as employed in Ref. [30], was not necessary. In the spirit
of tDMRG, this time evolution is based on a second-order
Trotter-Suzuki decomposition with a sufficiently small time
step τ . Then, the propagator can be written as a product of
short-time propagators eLt = ∏Nt

i=1 eLτ , with Nt steps required
in order to arrive at a time t = τNt . Each short-time propa-
gator is Trotter decomposed into local and nearest-neighbor
gates based on the short rangedness of the Liouvillian in-
troduced above. The total Hamiltonian can be written as a
sum of local two-site operators H = ∑N−1

k=1 Hk,k+1 where non-
adjacent terms commute. Defining the Hamiltonian two-site
superoperators as Hk,k+1ρ ≡ −i[Hk,k+1, ρ], the Liouvillian L
can then be written as the sum of these two-site Hamiltonian
terms and single-site dissipative (hole/particle) terms defined
in Eq. (13):

L =
N−1∑
k=1

Hk,k+1 +
N∑

k=1

Dk . (15)

For an exact representation of the superoperators, the Hamil-
tonian terms commute with all nonadjacent Hamiltonian and
dissipative terms, and the dissipative terms all commute with
each other. However, inside the RI the fermionic anticom-
mutation relations of the original fermionic operators are
compromised by the NRG truncation, which results in non-
commuting terms in its vicinity. The second-order Trotter
decomposition adopted here and depicted in Fig. 3(b) is simi-
lar to the one discussed in Ref. [44]:

eLτ ≈
N∏

k=1

e
τ
2 Dk

︸ ︷︷ ︸
Fig. 3(b.1)

2∏
k=N

e
τ
2 Hk−1,k

N−1∏
k=1

e
τ
2 Hk,k+1

︸ ︷︷ ︸
Fig. 3(b.2)

1∏
k=N

e
τ
2 Dk

︸ ︷︷ ︸
Fig. 3(b.1)

. (16)

The two-site Hamiltonian gates are given by

e
τ
2 Hk,k+1ρ ≡ e−i τ

2 Hk,k+1ρ ei τ
2 Hk,k+1 , (17)

and the dissipative single-site gates translate into Kraus oper-
ators [45,46]. In the spinless case they are respectively given
for particles or holes by

e
τ
2 Dηρ = K1ηρK†

1η + K2ηρK†
2η, η ∈ {h, p},

K1h = e− γ τ

2 c†c = cc† + e− γ τ

2 c†c, K2h = √
1 − e−γ τ c,

K1p = e− γ τ

2 cc† = c†c + e− γ τ

2 cc†, K2p = √
1 − e−γ τ c†.

(18)

For spinful fermions there will be four Kraus operators for
each site, replacing η → (η, σ ), with σ ∈ {↑,↓}. For terms
which are bilinear in the fermionic operators, such as the
Hamiltonian or K1η, fermionic signs arising from the anticom-
mutation relations can be accounted for locally. The operators
K2η in the dissipative terms, however, act simultaneously on
both sides of the density matrix. Hence, they give rise to a
global Jordan-Wigner string. In the present MPDO setup, it
can be efficiently “pulled” in locally [47]. This requires that

charge parity is fully tracked on all tensors, which is the
case here when decomposing the MPDO into U(1) charge
symmetry sectors, in the sense discussed above. In the local
configuration, as shown in Fig. 3(b.1), the crossing of the red
line with the bond index implies that the charge parity operator
Z ≡ (−1)q, with charge q, must be simultaneously applied to
the bond state space when acting with K2η.

A quick overall complexity analysis of the method can
be performed assuming a fixed bond dimension χ on all
MPDO sites. Since the treatment of the RI is clearly the
most expensive step, the following considers operations in-
volving the RI. The analysis is completely analogous for all
other sites where one simply replaces R with the regular
local dimension d of a physical site. The cost of the Trot-
ter gate contraction is O(d2R2χ3 + d3R3χ2), where the two
terms correspond to merging the RI tensor with its neigh-
boring tensor and to applying the nearest-neighbor Trotter
gate, respectively. The SVD back into local tensors then costs
O(d4R2χ3). Finally, the cost of the Kraus gate contractions is
O(kR3χ2), where k is the number of Kraus gates acting on
the RI, which is proportional to the number of sites in the
logarithmic sector. Ignoring the cost of all other sites in the
linear sector, the total cost of the method can be approximated
as O(Nt (d3R + kR + d4χ )R2χ2), where Nt is the number of
sweeps.

The most important property of the MPDO ansatz is that
it can efficiently represent the steady state, using a relatively
small number of parameters. Another important constraint on
the represented state is that it must be a physical state, i.e.,
a positive-semidefinite Hermitian operator with finite trace.
While the MPDO ansatz does not enforce these constraints,
the Lindblad evolution (also after Trotterization) is a com-
pletely positive trace-preserving (CPT) map [46], and thus
guarantees that starting from a physical state will always result
in a physical state. The only loss of positivity (and trace) can
come from truncation of singular values during the tDMRG
sweep. This relates to a drawback of the MPDO ansatz: the
singular values obtained after a Schmidt decomposition no
longer correspond to the singular values of the reduced density
matrix (as for an MPS). However, if the singular values drop
quickly enough, as is the case for the models analyzed here,
only small singular values are truncated, resulting in negligi-
ble loss of positivity.

F. Observables

At any point throughout the evolution, single-time correla-
tions can be extracted from the MPDO, with the long-time
limit representing the steady-state value. As correlations in
the chain geometry are easily obtained, in practice, it is con-
venient to map all observables of interest to this geometry,
as shown in Ref. [30]. In this work we focus on the particle
current flowing from one lead to the other. The time derivative
of the impurity occupation can be separated into contributions
Iα corresponding to the current flowing from lead α into the
impurity:

−e
d

dt
〈nd〉 = −ei

h̄
〈[H, nd ]〉 =

∑
α

Iα. (19)
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FIG. 4. (a.1) NESS current and (a.2) differential conductance of the RLM (in units of the conductance quantum G0 = e2/h) as a function
of bias voltage V and at different gate voltages ε0, as calculated exactly (solid lines) and by RL-NESS (circles). Simulation results are obtained
for δ = 0.1D∗, D∗ = V

2 and after linear extrapolation in γ /δ = 2, 1 → 0 and � = 8, 6 → 1, with bond dimension χ = 256 and R = 32 states
kept in the RI. (b.1) Comparison of the RL-NESS MPDO evolution (χ = 256), after extrapolation to γ → 0 (blue), and the NRG-tDMRG
MPS evolution (χ = 1024) for γ = 0 (red), both with the same discretization, at bias voltage V = � and ε0 = 0. Exact results for both cases
are also plotted (shaded). The MPDO result is then further linearly extrapolated from � = 8, 6 to � = 1 (solid black) and compared to the
exact continuous leads (CL) result (shaded gray). (b.2) Truncation error (sum of singular values squared accumulated over several time steps)
plotted for the RL-NESS MPDO with γ = δ (blue) and the NRG-tDMRG MPS (red) evolution. (c) Discretization error εdisc for the RLM at
ε0 = 0 as a function of γ for different values of �, with δ = 0.0005V (solid) and δ = γ (shaded). The inset displays the � dependence of the
lower bound on the discretization error εdisc (corresponding to the circles in the main figure).

Thus, Iα is given in the continuum limit (taking e = 1, h̄ = 1),
and approximated after discretization by

Iα = 2
∑

λ

vαλ

∫ D

−D

dε√
2D

Im
〈
c†
αεdλ

〉 ≈ 2
∑
n,λ

vαnλIm〈c†
αndλ〉.

(20)

In the steady state d
dt 〈nd〉 = 0, the current flowing from the

left lead into the impurity is equal to the current flowing from
the impurity into the right lead I ≡ IL = −IR. From a nu-
merical perspective, the average combination I = (IL − IR)/2
converges more rapidly, and is less prone to noise. Running
simulations for different voltages, a full I-V curve can be
obtained, and numerically differentiated in order to produce
the differential conductance G(V ) = �I/�V . Note that the
numerical derivative is very sensitive to noise, so that the I-V
curve must be obtained with high accuracy.

III. ERROR ANALYSIS AND THE RLM

In order to estimate the accuracy of the presented method,
we apply it to the exactly solvable noninteracting resonant
level model (RLM). This model, with dot Hamiltonian

HRLM
dot = ε0n0, (21)

describes a single spinless impurity level with energy ε0 (e.g.,
controlled by a gate voltage), coupled to two spinless leads
described by Eq. (4) via the coupling Hamiltonian (5). An
end-to-end comparison of the steady-state current and the
differential conductance, between the exact result of the RLM
in the continuum limit and the RL-NESS result, is shown in
Fig. 4(a). It displays a good agreement over a wide range of
bias voltages and impurity level energies ε0, with parameter
values given in the caption.

The RL-NESS real-time evolution of the current, for a
typical case of V = �, ε0 = 0 with finite � = 6 and lin-
early extrapolated to γ → 0, is plotted in Fig. 4(b) (blue).
It demonstrates several key aspects of the method. After an
initial rapid rise in the current over a period of order V −1, the
oscillations (discretization artifacts related to the logarithmic
sector) decay exponentially at a rate which is proportional to
γ , finally stabilizing on a steady-state value. For further dis-
cussion regarding the evolution timescales, see Appendix D.
The convergence to the steady state can also be observed in the
lower panel, where the truncation error saturates. Throughout
the entire evolution, our method displays excellent agree-
ment with the corresponding exact result (shaded blue) of the
same driving protocol. After linearly extrapolating also to the
� → 1 limit, the RL-NESS current (black), once the NESS
is reached, displays excellent agreement with the continuum
limit exact result (shaded gray).

If the dissipation is initially set to γ = 0, while keeping a
finite level spacing, RL-NESS reduces to the NRG-tDMRG
scheme [30], in which the state of the system is represented
by an MPS (instead of an MPDO), and the real-time evolution
is unitary. In what follows, this will simply be referred to
as MPS evolution. As in the case of finite dissipation, the
γ = 0 evolution of the current can be calculated (for the same
� = 6) either explicitly as an MPS evolution (solid red) or
exactly in the single-particle basis (shaded red). These results
agree with the RL-NESS current in the early transient os-
cillatory regime, but later residual oscillations persist. Thus,
only a quasi-steady state is obtained, whose mean is neverthe-
less consistent with the γ → 0 limit. Eventually, the current
drifts away, due to truncation errors that, without dissipation,
do not saturate. Later on, even for the exact solution, this
quasi-steady state will be lost due to reflection off the edges
of this closed system at a time t = L/vF = 2π

δ
, dictated by

the finite linear level spacing. In stark contrast, in the case
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of RL-NESS, for strong enough damping γ � δ, the discrete
levels become sufficiently blurred out, such that the dynam-
ics truly represents an open system, where reflection off the
edges and the accompanying drop in the current no longer
occur.

As part of the analysis, steady-state observables of the
RLM are calculated exactly by means of Keldysh formalism,
both for the continuous system and in an arbitrary discretiza-
tion (Appendix B). The exact time evolution of single-time
observables (in a given discretization) is also calculated by
solving a differential continuous Lyapunov equation for the
single-particle correlation matrix (Appendix C).

The remainder of this section is dedicated to an analysis of
the two major error contributions in the method: the lead dis-
cretization error (how well do the discrete system observables
represent the continuous system), and the simulation error
(how accurately does the tensor-network method solve for the
discrete system steady state). Generally, there is a tradeoff
between the two contributions, as a finer discretization better
reproduces the continuum limit, but is also harder to solve for
numerically.

The lead discretization error depends both on the fineness
of the discretization grid, controlled by the logarithmic � and
linear δ discretization parameters, and on the broadening of
the discrete levels, controlled by the Lindblad driving rates γ .
We introduce the relative measure for the discretization error
εdisc ≡ maxV |1 − IDL/ICL|, as the maximal relative distance
over a range of bias voltages V ∈ [0.01, 100]�, between the
exact discrete leads current IDL (for a specific choice of �

and ratios δ/V, γ /V ) and the exact continuous leads current
ICL. This measure can be explicitly evaluated for the RLM
and is plotted in Fig. 4(c) as a function of γ /V and for several
values of �. The specific choice of δ has only a minor effect,
as long as δ � γ , which is required in order to negate finite-
size effects. Fixing δ/V to a small value results in a smooth
curve (solid), while taking δ = γ results in a slightly more
noisy curve (shaded) with the same trend. Note that εdisc is
approximately linear in γ /V , down to a lower bound on the
error, dictated by �. This lower bound in turn is linear in �

[see inset to Fig. 4(c)]. These two observations justify a linear
extrapolation in these two parameters to the continuum limit
� → 1, δ = γ → 0 at each V .

The simulation error has multiple contributions, listed in
ascending order of significance. First consider the Trotter er-
ror, arising from the discretization of the Liouvillian real-time
evolution. In practice, exploiting second-order Trotter decom-
position, it is numerically feasible to choose sufficiently small
time steps such that this error is negligible compared to the
other ones. A second source of simulation error is introduced
by the NRG procedure, and controlled by the number of kept
states in each NRG iteration. As in equilibrium, the number
of required kept states can be reduced by taking a coarser
logarithmic discretization, i.e., larger �. In practice, only the
number of kept states R in the last NRG iteration, dictating
the size of the restricted low-energy subspace of the RI, poses
a computational bottleneck. The numerical cost in setting
up the RI by previous NRG iterations is entirely negligible.
Therefore, earlier NRG iterations can be, and in practice are,
less harshly truncated, but a larger � is still required in any
case in order to keep R sufficiently small in the last iteration.

The third, and most significant, source of simulation error
is the truncation of the MPDO to a fixed bond dimension
χ after each time step, by discarding small singular values.
Empirically, the singular values decay faster than polynomi-
ally with the singular value index, at a rate which decreases
with decreasing γ (see Appendix E). This implies that the
required bond dimension (for a fixed truncation error) scales
exponentially with γ . This exponential scaling can naturally
be understood in the γ → 0 limit, in which the entanglement
entropy grows linearly in time, thus leading to an exponential
blowup in the required bond dimension. Choosing a finite γ

sets a timescale 1/γ at which the entanglement entropy stops
growing. For any finite γ the steady state can therefore be rep-
resented with a finite (possibly large) bond dimension, which
in the small-γ limit must grow exponentially with 1/γ in or-
der to match the expected exponential blowup. It is important
to stress that even though there is an exponential bound on
simulating small γ , this represents the thermodynamic limit,
which can be approached by working with finite γ and then
linearly extrapolating to small γ .

Finally, let us discuss the issue of whether or not to apply
the Lindblad terms coupled to the RI. Physically, since the RI
represents the degrees of freedom far above the voltage and
temperature bias scales, it is reasonable to expect that they
are barely affected by the nonequilibrium conditions. Thus,
whether or not the Lindblad terms acting on the RI are applied,
we expect to obtain similar results. We demonstrate this for
the RLM in Appendix F. Numerically, however, the effort
involved in the two approaches (for the same accuracy) is
different. The effect on the numerical results becomes more
pronounced in the interacting case, considered in the next
section. There, for a large logarithmic discretization parameter
�, the RI spectrum contains nearly degenerate levels, which
can be coupled even by weak Lindblad driving at the sites
composing the RI. In practice this can drive, and hence affect,
high-energy modes in the RI (which in principle should re-
main in equilibrium), resulting in artifacts which are enhanced
in the differential conductance. Taking small values of � ∼ 2
could resolve this problem. However, this necessitates increas-
ing the number R of states kept in the RI, and therefore is often
impractical. Taking the manageable intermediate value � = 3
for the interacting case (instead of extrapolating to � → 1),
at the cost of a larger R = 64, suppresses these artifacts, but
still does not completely eliminate them. For these reasons, in
the interacting case it becomes preferable to entirely turn off
the Lindblad terms coupled to the RI. This does not adversely
affect the physics. On the contrary, it leads to a stable numer-
ical solution without artifacts, with reasonable computational
costs.

IV. INTERACTING SYSTEM

We now wish to demonstrate the method on an interacting
system, which has no known solution for the NESS current.
For this we choose an interacting two-level model (I2LM),
consisting of two interacting dot levels ε1, ε2 with onsite
interaction energy U , coupled to noninteracting leads. The
dot levels are taken with level spacing � ≡ ε2 − ε1, and can
be shifted by changing ε0 by a gate voltage (taken relative
to particle-hole symmetry), such that the dot Hamiltonian is
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FIG. 5. RL-NESS simulation results for the interacting two-level model (I2LM) with level spacing � = �

5 and interaction U = 5�, marked
by dashed lines. The simulation is run with discretization parameters � = 3, δ = 0.1D∗, D∗ = V

2 , linearly extrapolated to γ → 0 from
γ /δ = 4, 2, 1, and with simulation parameters χ = 256, R = 64. (a) Zero-bias linear conductance as a function of gate voltage ε0, calculated
by RL-NESS at V = 0.01� (circles) and compared to the numerically exact equilibrium NRG result (shaded). (b.1) Comparison of the RL-
NESS MPDO evolution (χ = 256), after extrapolation to γ → 0 (solid), and the NRG-tDMRG MPS evolution (χ = 1024) for γ = 0 (shaded),
both with the same discretization, at ε0 = 0 (blue) and U

2 (red), and bias voltage V = �. (b.2) Truncation error (sum of singular values squared
accumulated over several time steps) plotted for the RL-NESS MPDO with γ = δ (solid) and the NRG-tDMRG MPS (shaded) evolution.
(c) NESS current and (d) its derived differential conductance at finite bias, as calculated by RL-NESS for two gate voltages, corresponding to
the valley at ε0 = 0 (blue) and the peak at ε0 = U

2 (red). The low-bias behavior of the current exhibits a linear dependence for the peak, but
a cubic dependence for the valley, where the linear response conductance thus vanishes quadratically in V . For comparison, the equilibrium
spectral function of the I2LM is plugged into the Meir-Wingreen formula for the current and differential conductance (shaded). Note that it
quantitatively captures the small- and large-bias features, but qualitatively misses various physical features in the intermediate bias regime.

given by

H I2LM
dot = ε1n1 + ε2n2 + Un1n2, (22)

ε1,2 ≡ ε0 − 1
2U ∓ 1

2�.

Both levels are coupled symmetrically to the left and right
leads, so that the lead and coupling Hamiltonians are given
by Eqs. (4) and (5), with equal hybridization �αλ = �. For
simplicity, we take all the dot-lead couplings to be real and
with the same sign. Since our main goal is demonstrating the
method rather than studying the model, we do not explore the
full impurity parameter space, but concentrate on restricted
yet representative sets of parameter values. The level spac-
ing and the interaction are fixed to 5� = � = U

5 such that
� < � < U , thus having a separation of energy scales in a
strongly correlated regime, and the bias and gate voltages are
varied.

First, we explore the conductance in the small-bias linear
response regime. Due to the Fermi-liquid nature of the low-
energy fixed point, the T = 0 linear response conductance is
determined by the total phase shift, which in turn is set by the
Friedel sum rule [48,49], leading to the relation

G = G0 sin2 (πnd ), (23)

with G0 = e2

h the conductance quantum, and nd the total dot
occupation in equilibrium, which can be calculated by equilib-
rium NRG. We show our results for V = 0.01� � �,�,U in
Fig. 5(a) (circles) vs NRG (shaded). At gate voltage ε0 = 0 the
system is particle-hole symmetric, and the impurity is occu-
pied exactly by one electron, such that the linear conductance
vanishes. At ε0 ≈ ∓U

2 the dot population is close to 1 ± 1
2 ,

respectively, hence the linear conductance features Coulomb
blockade peaks with height G0 (red dot).

Next, the NESS current is calculated at finite bias for
two gate voltages ε0 = 0 and U

2 corresponding, respectively,
to the valley and the peak (in the zero-bias conductance).

The convergence to a steady state is now demonstrated for
the interacting case in Fig. 5(b.1). Note again the decay of
the oscillations and the saturation of the current, as opposed
to the MPS calculation without dissipation (γ = 0), which
eventually drifts off due to truncation error. This is clearly
demonstrated in Fig. 5(b.2), in which the truncation error
of the MPDO simulation saturates, while for the MPS sim-
ulation it continues to grow until the physical state is lost.
The current for the full bias range is shown in Fig. 5(c).
For ε0 = U

2 the low-bias behavior exhibits a linear depen-
dence (shaded red), as expected. For ε0 = 0, however, the
linear response term vanishes by symmetry, and as the cur-
rent is an odd function of the bias voltage, the next term is
expected to be cubic in the bias voltage, as is indeed ob-
served (shaded blue). In the limiting regime of very large
bias, i.e., V exceeding all other energy scales (except for
bandwidth D), the current saturates for both cases to the
maximal value of �, directly corresponding to the two con-
duction channels at coupling strength � each. The differential
conductance is shown in Fig. 5(d), with peaks corresponding
to conductance channels opening up. For ε0 = 0 we get very
clear peaks, with the first conductance channel opening at �

with sequential tunneling and thus fluctuations between the
two dot levels, and the second conductance channel opening
at U , corresponding to full charge fluctuations in the dot
occupation. For ε0 = U

2 , a single-particle level is midway
between the two chemical potentials, so there is already a
single channel fully open at zero bias, resulting in a dif-
ferential conductance of G0. The differential conductance
starts dropping close to V = � to about half its value. In
the vicinity of V = U there is a shoulder, beyond which the
differential conductance drops to zero since the current satu-
rates.

As an interesting comparison, consider an approximate
form of the Meir-Wingreen formula for the steady-state cur-
rent [50]. The exact version of this formula reads as for the
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I2LM

I = i

4π

∫ V
2

− V
2

dω tr{�(ω)[GR(ω) − GA(ω)]}, (24)

where GR,A(ω) are the exact retarded and advanced impu-
rity nonequilibrium Green’s functions (2 × 2 matrices for the
two impurity modes), and �(ω) = �

(1 1
1 1

)
, corresponding to

symmetric and equal hybridization of both modes to the two
leads (for details see Appendix B). There is of course no
known expression for the nonequilibrium Green’s functions.
However, one could calculate the equilibrium (V = 0) spectral
function, e.g., by fdm-NRG [51], and plug it into Eq. (24).
This approximation is valid in the linear response regime,
and is expected to also produce quantitatively good results
for large bias (with respect to all impurity energy scales), but
in the intermediate regime is uncontrolled. Figure 5 therefore
also shows the steady-state current (c) and differential con-
ductance (d) obtained in this manner (shaded).

We see that the equilibrium spectral function results agree
quantitatively with our nonequilibrium results in the low- and
large-bias limits. Note that this agreement holds not only for
the leading-order term (as one could prove), but also to the
next order, e.g., the ε0 = 0 cubic dependence. Interestingly,
for ε0 = 0 they also capture the charge-fluctuation peak at
V = U in the intermediate region, but only hint at the level
fluctuation peak at V = �. On the other hand, for ε0 = U

2 ,
they completely miss the shoulder in the drop of the dif-
ferential conductance. Thus, we conclude that the RL-NESS
method successfully reproduces the current and differential
conductance in the known limits, but also gives physically
accurate results in the intermediate regime.

V. DISCUSSION

To conclude, in this work we have introduced RL-NESS,
a numerically exact algorithm for finding the steady state of
general impurities far from equilibrium. It builds on the power
of equilibrium NRG in addressing equilibrium quantum impu-
rities with widely separated bare and emergent energy scales,
and brings it into the nonequilibrium realm. The method is
based on coherently coupling the impurity to appropriately
log-linearly discretized leads, which in turn are subject to
weak Lindblad driving representing incoherent reservoirs.
This model setup corresponds to the physical picture of, e.g., a
quantum dot coherently coupled to quantum wires, which are
in turn coupled to a classical voltage bias source. The resulting
system is numerically simulated by a combination of NRG
reduction of the high-energy degrees of freedom, followed
by tDMRG-based MPDO Lindblad evolution. We benchmark
our approach by presenting results for both noninteracting and
interacting models. The accuracy of these demonstrate the
power of our method, accompanied with a detailed analysis
of all error sources and their treatment.

One can envision different ways to try to improve the
algorithm. Having shown that an efficient representation of
the steady state as a tensor network exists, it would be useful
to search for more compact representations. One candidate for
such a representation is the locally purified tensor-network
ansatz [40,44], which enforces physical constraints on the

density operator such as positivity, and as such resides in
a smaller manifold. However, it is not guaranteed that such
an ansatz will efficiently capture the entanglement structure
of the steady state [52], as preliminary investigation seems
to suggest for the case at hand. So-called disentanglement
schemes for the ancilla index [53] might improve the situation,
but require further investigation. Recent works [54,55] claim
that the entanglement structure of the chain geometry is not
optimal, suggesting that applying time evolution in the star
geometry might result in a slower growth of entanglement
entropy, thus requiring a smaller bond dimension. Testing this
idea together with RL-NESS is left for future work. Another
direction which might be worth investigating is directly solv-
ing the Lindblad equation Lρ = 0 for the steady state [56,57],
instead of obtaining it by real-time evolution.

It would be interesting to apply RL-NESS to more com-
plicated models, such as the single-impurity Anderson model
[2], the interacting resonant level model [58], and the I2LM
with nonsymmetric coupling [59,60], all of which are ex-
pected to demonstrate Kondo-type physics. These models
effectively have more lead channels, and thus require a larger
RI low-energy subspace, i.e., larger R, which in turn re-
quires an improvement of the algorithm or its numerical
implementation. RL-NESS already incorporates a tempera-
ture for each lead, and so can immediately be employed for
finite-temperature calculations, as well as calculating ther-
mal conductance, by assigning a different temperature to
each lead. We also plan to leverage the success of RL-
NESS in obtaining a stable steady-state solution, in order to
extract dynamical properties, i.e., time correlators and spec-
tral functions. In the longer run, we envision the treatment
of far-from-equilibrium higher-dimensional correlated quan-
tum systems, using, e.g., the dynamical mean field approach
[61–63].
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APPENDIX A: LINEAR-LOGARITHMIC
DISCRETIZATION

As specified in Sec. II B, the intervals In are chosen such
that in the range [−D∗,+D∗] they are of size δ and far from
this range they scale exponentially as ∼�n. This choice of
intervals is achieved by defining a function f (x) for positive
x, which is linear for x < D∗

δ
and has a smooth transition to
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exponential ∼�x for large |x|:
In�0 = [ f (n + z), f (n + 1 + z)],

f (x) =
{

δ
log �

sinh[(x − D∗
δ

) log �
] + D∗, x > D∗

δ

δx, x < D∗
δ

(A1)

with n running on all integers such that the full band is cov-
ered up to the cutoff D. The edge of the last interval is then
manually fixed to be D. The parameter z ∈ [0, 1) is referred
to as the z-shift parameter (in the NRG jargon), and can be
used to shift the lead energy levels. Since different z shifts
result in different yet equivalent discretizations, it is common
practice to average simulations using different z shifts in order
to reduce numerical artifacts due to the discretization [64],
especially when calculating spectral functions. In this work,
however, it was sufficient to use z = 0. The intervals for
negative energies are taken as a mirror image of the positive
intervals. This guarantees particle-hole symmetry for any z,
at the cost of the interval closest to 0 not necessarily being
of size δ. In each interval a representative energy level is
selected, with its energy εn chosen as the arithmetic mean
of the interval boundaries in the linear sector (below D∗) and
the geometric mean in the logarithmic sector (above D∗). The
coupling Hamiltonian is then integrated over each interval in
order to derive the appropriate coupling vαnλ of the new lead
level with the impurity λ level:

εn =
{ f (|n|+1+z)− f (|n| + z)

log [ f (|n|+1+z)/ f (|n|+z)] , |εn| > D∗

f (|n|+1+z)+ f (|n| + z)
2 , |εn| � D∗

(A2)

vαnλ =
√

�αλ

2πD [ f (|n| + 1 + z) − f (|n| + z)]. (A3)

APPENDIX B: EXACT SOLUTION OF THE CONTINUOUS
NONINTERACTING CASE

The exact solution for a quadratic continuous system can
be calculated in the Keldysh formalism. For noninteracting
leads, all the effects of the couplings to the leads on the
impurity are encoded in the hybridization function, defined
between the λth and νth impurity levels (λ, ν ∈ {1, . . . , m})
for lead α ∈ {L, R} as

�λν
α (ω) = π

∑
n

v∗
αnλvαnν δ(εn − ω), (B1)

where vαnλ are the coupling constants between the λth im-
purity level and the nth energy level of lead α (in the star
geometry). In the case of continuous leads, the sum over dense
levels εn is understood as an integral over the energies. The
total hybridization function is then defined as a sum on the
hybridization functions of all leads:

�λν (ω) =
∑

α

�λν
α (ω). (B2)

For a quadratic dot Hamiltonian H , the retarded and advanced
Green’s functions of the dressed impurity are then given by

GR(ω) = [ω − H + i�(ω)]−1,

GA(ω) = [ω − H − i�(ω)]−1, (B3)

where H and � are understood here to be m × m matrices.
The NESS current can be obtained by the Meir-Wingreen for-
mula [50], which for equal hybridization functions �L(ω) =
�R(ω) = �(ω)/2 simplifies to

I = i

4π

∫
dω[ fL(ω) − fR(ω)]

× tr{�(ω)[GR(ω) − GA(ω)]}, (B4)

where fα (ω) is the lead specific Fermi-Dirac distribution. The
Keldysh Green’s function equals

GK (ω) = −2i
∑

α

[1 − 2 fα (ω)]GR(ω)�α (ω)GA(ω), (B5)

and the impurity single-particle density matrix can then be
obtained by integrating over it:

〈d†
λdν〉 = 1

2
(δλν − 〈[dν, d†

λ ]〉) (B6)

= 1

2

(
δλν − i

2π

∫
dω GK

νλ(ω)
)
.

Specifying a box hybridization function for the λth level with
half-bandwidth D:

�λλ(ω) = �λλ �(D − |ω|), (B7)

and taking coupling constants vαnλ = v which are lead, n and
λ independent [so that all the elements of �(ω) are equal], as
is indeed the case for both models under investigation in the
continuum limit, Eq. (B4) simplifies to

I = i

4π

∫ V
2

− V
2

dω tr{� × [GR(ω) − GA(ω)]}, (B8)

which can then be evaluated for any desired bias voltage. The
Keldysh Green’s function in Eq. (B5) also simplifies to

GK (ω) = −2i
(

1 −
∑

α

fα (ω)
)

GR(ω)�(ω)GA(ω)

=
⎧⎨
⎩

+2iGR(ω)� GA(ω) −D < ω < −V
2 ,

−2iGR(ω)� GA(ω) +V
2 < ω < +D,

0 else
(B9)

resulting in a simple integral for the single-particle density
matrix.

APPENDIX C: EXACT EVOLUTION OF THE DISCRETE
NONINTERACTING CASE: THE LYAPUNOV EQUATION

The single-particle single-time correlation matrix
Prs(t ) ≡ 〈cr (t )c†

s (t )〉 encodes all information regarding
single-time observables of interest in this paper, e.g., the
impurity current. Furthermore, for quadratic systems, this
matrix encodes all information about the state of the system,
so that finding P(t ) amounts to fully solving the system.
In the case of a quadratic Lindblad equation (both in the
Hamiltonian and the dissipative terms), the exact evolution,
as well as the steady-state solution, can be reduced to a
continuous Lyapunov equation for P. The key parts of this
reduction are derived in this Appendix, following Ref. [32].
We start from the most general Lindblad equation for
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RI

FIG. 6. (a) The time t1/2 (multiplied by V ) at which the current reaches half its final value, plotted for the RLM with ε0 = 0 over a wide
range of bias voltages. (b) The distribution in the complex plane of the eigenvalues of the matrix A = −iH − �(1) − �(2), defined in Eq. (C3),
for the RLM with several choices of driving rates γ . The imaginary parts, mostly corresponding to the Hamiltonian, are plotted in units of �,
while the real parts, which are related to the Lindblad driving, are rescaled by γ . The closely bunched points near Re(s) = −γ correspond
approximately to the single-particle energies of the Hamiltonian arising from the linear sector. (c) Example of the long-time limit steady-state
singular value spectrum of the MPDO bond connecting the RI to one of the linear sector leads (as indicated by the red line in the cartoon). The
spectrum was obtained for the RLM with V = �, δ = 0.025V, χ = 512, R = 32 and several values of γ . The singular values were rescaled
such that the largest singular value for each γ is 1, and fitted to a log-Gaussian (solid line). (d) NESS current and differential conductance of
the RLM as a function of bias voltage V and at different gate voltages ε0, as calculated with (pluses) and without (circles) Lindblad driving of
the sites enclosed in the RI, and compared with the continuum limit (shaded). The current with and without the driving at the RI is calculated
exactly for γ /δ = 2, 1 (with δ = 0.05V ) and � = 8, 6, and is then linearly extrapolated to γ → 0, � → 1.

fermionic Lindblad operators {cq}:
∂ρ

∂t
= −i[H, ρ] +

∑
mn

�(1)
mn(2cnρc†

m − {c†
mcn, ρ})

+
∑
mn

�(2)
mn(2c†

mρcn − {cnc†
m, ρ}), (C1)

where �(1,2) encode the Lindblad-driving rates. The time
dependence of a general single-time observable 〈A(t )〉 ≡
tr(Aρ(t )) is then given by

d〈A〉
dt

= −i〈[A, H]〉 +
∑
mn

�(1)
mn〈2c†

mAcn − {c†
mcn, A}〉

+
∑
mn

�(2)
mn〈2cnAc†

m − {cnc†
m, A}〉. (C2)

Assuming a quadratic Hamiltonian H = ∑
mn Hmnc†

mcn, and
substituting 〈A〉 = Prs into Eq. (C2), results in a differential
continuous Lyapunov equation for P:

dP

dt
= AP + PA† + M,

A ≡ −iH − �(1) − �(2), M ≡ 2�(1). (C3)

The general solution of this equation, for some initial condi-
tion P0, is

P(t ) = eAt P0eA†t +
∫ t

0
eAt ′

MeA†t ′
dt ′. (C4)

By diagonalizing A (if possible) the integral can be explic-
itly calculated, resulting in a closed expression for P(t ). The
steady-state solution is given by PNESS satisfying dPNESS

dt = 0. It
can be obtained by solving the algebraic continuous Lyapunov
equation

APNESS + PNESSA† + M = 0. (C5)

By construction, A has only eigenvalues with a nonpositive
real part. If the sum of all pairs of eigenvalues of A and A† is

nonzero, the equation is guaranteed to have a unique solution
[65], i.e., a unique steady state, which can also be obtained by
taking the infinite-time limit of Eq. (C4):

PNESS = P(t → ∞) =
∫ ∞

0
eAt ′

MeA†t ′
dt ′. (C6)

APPENDIX D: EVOLUTION TIMESCALES

In this Appendix we analyze the timescales of the current
evolution for the RLM with ε0 = 0, after discretization in
the linear-logarithmic scheme, and with energy-independent
Lindblad driving γ , as discussed in Sec. II B. The timescale of
the initial rise in the current can be characterized by t1/2, the
time at which the current first reaches half of its final value.
This timescale appears to be inversely proportional to the bias
voltage V , as can be seen in Fig. 6(a) where t1/2V is of order
unity over the full range of explored bias.

The timescale of the decay toward the steady state can be
extracted for a quadratic model from the matrix A, defined in
Eq. (C3). The (negative) real parts of the eigenvalues of this
matrix dictate the decay rate of each mode. The ones with the
smallest magnitude set a bound on the total decay rate of the
system. For sufficiently small Lindblad driving, the imaginary
part of the eigenvalues depends mainly on the Hamiltonian,
while the real part will depend on the driving rates. Thus, for
the RLM in the discussed discretization scheme, the real part
of the eigenvalues naturally scales with γ , as can be seen in
Fig. 6(b) for several choices of γ . Hence, the decay rate is
proportional to γ , with the proportionality constant of order
1. Note that the fact that all eigenvalues have a finite (nonva-
nishing) negative real-part satisfies the criterion mentioned in
Appendix C for a unique steady state.

APPENDIX E: MPDO SINGULAR VALUE SPECTRUM

In this Appendix we discuss the dependence of the long-
time limit steady-state singular value spectrum of the MPDO
on the Lindblad-driving rate γ . As an example we plot in
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Fig. 6(c) the singular value spectrum, taken at the bond con-
necting the RI to one of the linear sector leads (as indicated
in the cartoon), for the RLM with parameters as given in the
caption. First note that while the normalization of the wave
function constrains the squared singular values of an MPS
to sum up to 1, the density operator normalization condition
does not impose any constraint on the MPDO singular values.
Thus, the global prefactor is arbitrary, and for clarity the
singular values are rescaled such that the largest singular value
for each γ is 1. As can be seen in the figure, the singular values
decay at a faster than power-law rate, implying an efficient
representation of the steady state as an MPDO with finite
bond dimension χ . Moreover, we observe that the decay rate
grows monotonically with increasing γ , implying that larger
γ requires a smaller bond dimension in order to efficiently
represent the state of the system.

A full characterization of the exact functional dependence
of the singular values λ j on the index j and the system param-
eters requires a more detailed analysis than carried out in this
work. We do note, however, that we can fit it to a log-Gaussian
behavior λ j ∝ e−(a log j+b)2

, with a and b the fitting parameters.
We suspect that this specific behavior for an MPDO steady
state is not coincidental since a similar behavior has been
argued to occur for an MPS ground state [66]. We further

observe that the fitting parameter a, which dictates the decay
rate, is monotonic in γ and goes to zero in the γ → 0 limit.
Thus, in this limit the required bond dimension χ diverges.
This is to be expected, as in this limit the steady state corre-
sponds to evolution to infinite time without dissipation, and
we get the well-known exponential growth in entanglement
entropy for unitary evolution.

APPENDIX F: DRIVING RI SITES

Figure 6(d) demonstrates that Lindblad driving of the RI
itself has a negligible effect on the resulting current and dif-
ferential conductance, with respect to an exact solution (which
is attainable for the RLM). As argued in Sec. III, this is
because the RI represents energy levels far above the voltage
or temperature bias scales. These levels are not expected to be
affected by the nonequilibrium conditions and thus only set
the (renormalized) stage for the low-energy dynamics. More-
over, the exact solution of the modified Lindblad equation
(without driving the RI) is still a valid approximation for the
continuous system in the limits � → 1, γ = δ → 0. This
justifies turning off the driving for the interacting case, thus
suppressing numerical artifacts arising due to the interplay
between NRG and the dissipative dynamics.
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[42] B. Buča and T. Prosen, A note on symmetry reductions of the
lindblad equation: Transport in constrained open spin chains,
New J. Phys. 14, 073007 (2012).

[43] V. V. Albert and L. Jiang, Symmetries and conserved quantities
in lindblad master equations, Phys. Rev. A 89, 022118 (2014).

[44] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J.
Eisert, and S. Montangero, Positive Tensor Network Approach
for Simulating Open Quantum Many-Body Systems, Phys. Rev.
Lett. 116, 237201 (2016).

[45] K. Kraus, General state changes in quantum theory, Ann. Phys.
64, 311 (1971).

[46] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2010).

[47] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Simulation of
strongly correlated fermions in two spatial dimensions with
fermionic projected entangled-pair states, Phys. Rev. B 81,
165104 (2010).

[48] M. Goldstein and R. Berkovits, Interference effects in interact-
ing quantum dots, New J. Phys. 9, 118 (2007).

[49] C. Karrasch, T. Hecht, A. Weichselbaum, J. von Delft, Y. Oreg,
and V. Meden, Phase lapses in transmission through interacting
two-level quantum dots, New J. Phys. 9, 123 (2007).

[50] Y. Meir and N. S. Wingreen, Landauer Formula for the Current
through an Interacting Electron Region, Phys. Rev. Lett. 68,
2512 (1992).

[51] A. Weichselbaum and J. von Delft, Sum-Rule Conserving Spec-
tral Functions from the Numerical Renormalization Group,
Phys. Rev. Lett. 99, 076402 (2007).

[52] G. D. las Cuevas, N. Schuch, D. Pérez-García, and J. I. Cirac,
Purifications of multipartite states: Limitations and constructive
methods, New J. Phys. 15, 123021 (2013).

[53] J. Hauschild, E. Leviatan, J. H. Bardarson, E. Altman, M. P.
Zaletel, and F. Pollmann, Finding purifications with minimal
entanglement, Phys. Rev. B 98, 235163 (2018).

[54] C. Krumnow, J. Eisert, and O. Legeza, Towards overcoming
the entanglement barrier when simulating long-time evolution,
arXiv:1904.11999.

[55] M. M. Rams and M. Zwolak, Breaking the Entanglement Bar-
rier: Tensor Network Simulation of Quantum Transport, Phys.
Rev. Lett. 124, 137701 (2020).

[56] J. Cui, J. I. Cirac, and M. C. Bañuls, Variational Matrix Product
Operators for the Steady State of Dissipative Quantum Systems,
Phys. Rev. Lett. 114, 220601 (2015).

[57] E. Mascarenhas, H. Flayac, and V. Savona, Matrix-product-
operator approach to the nonequilibrium steady state of driven-
dissipative quantum arrays, Phys. Rev. A 92, 022116 (2015).

[58] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-
tion and Sstrongly Correlated Systems (Cambridge University
Press, Cambridge, 2004).

[59] C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft,
and V. Meden, Mesoscopic to Universal Crossover of the Trans-
mission Phase of Multilevel Quantum dots, Phys. Rev. Lett. 98,
186802 (2007).

043052-16

https://doi.org/10.1103/PhysRevB.92.125145
https://doi.org/10.1103/PhysRevX.10.031040
https://doi.org/10.1103/PhysRevA.101.050301
https://doi.org/10.1021/acs.jpca.5b12212
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1016/j.cplett.2004.07.036
https://doi.org/10.1088/1367-2630/10/11/115005
https://doi.org/10.1103/PhysRevLett.112.146802
https://doi.org/10.1103/PhysRevLett.101.066804
https://doi.org/10.1103/PhysRevLett.121.137702
https://doi.org/10.1103/PhysRevB.94.155142
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1103/PhysRevB.86.245124
https://doi.org/10.1103/PhysRevB.87.115115
https://doi.org/10.1038/srep24514
https://doi.org/10.1063/1.5000747
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevLett.116.237201
https://doi.org/10.1016/0003-4916(71)90108-4
https://doi.org/10.1103/PhysRevB.81.165104
https://doi.org/10.1088/1367-2630/9/5/118
https://doi.org/10.1088/1367-2630/9/5/123
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.99.076402
https://doi.org/10.1088/1367-2630/15/12/123021
https://doi.org/10.1103/PhysRevB.98.235163
http://arxiv.org/abs/arXiv:1904.11999
https://doi.org/10.1103/PhysRevLett.124.137701
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevLett.98.186802


RENORMALIZED LINDBLAD DRIVING: A … PHYSICAL REVIEW RESEARCH 2, 043052 (2020)

[60] M. Goldstein, R. Berkovits, and Y. Gefen, Population Switching
and Charge Sensing in Quantum Dots: A Case for a Quantum
Phase Transition, Phys. Rev. Lett. 104, 226805 (2010).

[61] O. Sakai and Y. Kuramoto, Application of the numerical renor-
malization group method to the hubbard model in infinite
dimensions, Solid State Commun. 89, 307 (1994).

[62] R. Bulla, A. C. Hewson, and T. Pruschke, Numerical renormal-
ization group calculations for the self-energy of the impurity
anderson model, J. Phys.: Condens. Matter 10, 8365 (1998).

[63] K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar,
and A. Weichselbaum, Dynamical Mean-Field Theory Plus

Numerical Renormalization-Group Study of Spin-Orbital Sep-
aration in a Three-Band Hund Metal, Phys. Rev. Lett. 115,
136401 (2015).

[64] W. C. Oliveira and L. N. Oliveira, Generalized numerical
renormalization-group method to calculate the thermodynam-
ical properties of impurities in metals, Phys. Rev. B 49, 11986
(1994).

[65] R. H. Bartels and G. W. Stewart, Solution of the matrix equation
AX + XB = C [F4], Commun. ACM 15, 820 (1972).

[66] P. Calabrese and A. Lefevre, Entanglement spectrum in one-
dimensional systems, Phys. Rev. A 78, 032329 (2008).

043052-17

https://doi.org/10.1103/PhysRevLett.104.226805
https://doi.org/10.1016/0038-1098(94)90589-4
https://doi.org/10.1088/0953-8984/10/37/021
https://doi.org/10.1103/PhysRevLett.115.136401
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1145/361573.361582
https://doi.org/10.1103/PhysRevA.78.032329

