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In this work, we benchmark the well-controlled and numerically accurate exponential thermal tensor renor-
malization group (XTRG) in the simulation of interacting spin models in two dimensions. Finite temperature
introduces a finite thermal correlation length ξ , such that for system sizes L � ξ finite-size calculations actually
simulate the thermodynamic limit. In this paper, we focus on the square lattice Heisenberg antiferromagnet
(SLH) and quantum Ising models (QIM) on open and cylindrical geometries up to width W = 10. We
explore various one-dimensional mapping paths in the matrix product operator (MPO) representation, whose
performance is clearly shown to be geometry dependent. We benchmark against quantum Monte Carlo (QMC)
data, yet also the series-expansion thermal tensor network results. Thermal properties including the internal
energy, specific heat, and spin structure factors, etc. are computed with high precision, obtaining excellent
agreement with QMC results. XTRG also allows us to reach remarkably low temperatures. For SLH, we obtain
an energy per site u∗

g � −0.6694(4) and a spontaneous magnetization m∗
S � 0.30(1) already consistent with

the ground-state properties, which is obtained from extrapolated low-T thermal data on W � 8 cylinders and
W � 10 open strips, respectively. We extract an exponential divergence versus T of the structure factor S(M ),
as well as the correlation length ξ , at the ordering wave vector M = (π, π ), which represents the renormalized
classical behavior and can be observed over a narrow but appreciable temperature window, by analyzing the
finite-size data by XTRG simulations. For the QIM with a finite-temperature phase transition, we employ several
thermal quantities, including the specific heat, Binder ratio, as well as the MPO entanglement to determine the
critical temperature Tc.
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I. INTRODUCTION

Two-dimensional (2D) lattice models play an important
role in our understanding of correlated quantum materials
[1–5]. Their efficient simulation, however, constitutes a major
challenge in contemporary condensed matter physics and
beyond. Renormalization group (RG) methods, including the
density matrix renormalization group (DMRG) [6] and other
tensor-network based RG algorithms [7,8] have been estab-
lished as powerful tools solving 2D many body problems at
T = 0. They have achieved success in searching for quantum
spin liquids (QSLs) in 2D frustrated magnets, e.g., kagome-
[9,10] and triangular-lattice [11–14] Heisenberg models, etc.

Finite-temperature properties can also be simulated by
RG-type algorithms, e.g., the transfer-matrix renormaliza-
tion group (TMRG) [15–17]. TMRG finds the dominating
eigenstate as well as corresponding eigenvalue of the transfer
matrix by using the DMRG algorithm, and thus obtains ther-
mal properties directly in the thermodynamic limit. Besides,
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for a finite-size system, the finite-T DMRG scheme [18]
using imaginary-time evolution and an algorithm based on
the minimally entangled typical thermal states [19,20] have
been proposed. Although the above thermal RG methods
are very successful in one dimension (1D), their efficient
generalization to 2D constitutes a very challenging task.

Among others, the linearized tensor renormalization group
approach contracts the thermal tensor network (TTN) linearly
in the “imaginary time,” i.e., inverse temperature β [21],
typically in a Trotterized scheme, and can be employed to
simulate infinite- and finite-size 1D systems [22]. By express-
ing corresponding thermal states as tensor product operators
(TPO), one can also simulate 2D lattice models directly in the
thermodynamic limit [23–29]. However, due to the approx-
imations as well as large computational costs in the tensor
optimization scheme, precise and highly controllable TPO
methods for challenging problems like the frustrated magnets
are still under exploration.

On the other hand, TTN methods for finite-size 2D systems
have been put forward only recently, using matrix product
operator (MPO) representations of the density matrix [30–32].
These MPO-based approaches, in particular, series-expansion
TTN (SETTN) [31] and exponential tensor renormalization
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FIG. 1. Various MPO paths utilized in XTRG simulations that
map the 2D lattices into quasi-1D system with long-range inter-
actions, including (a) the snakelike, (b) zigzag, (c) diagonal, and
(d) slash paths. The line width visualizes the low-temperature bond
entanglement SE along the MPO obtained on the OS6×6 and
OS6×12 lattices (at T � 0.06), where we used a width of w =
(4SE − 11) pts, yet enforcing w � 1 for visibility.

group (XTRG) [32], are controlled, quasiexact methods that
are highly competitive when tackling even very challenging
problems in 2D [33].

In this work, we explore the square lattice Heisenberg
(SLH) and the quantum Ising model (QIM) under transverse
fields, with the above-mentioned MPO thermal RG methods,
aiming to benchmark the accuracy. The obtained thermal data
are compared to quantum Monte Carlo (QMC) results, where
excellent agreement is observed. We perform a thorough
(truncation) error and finite-size analysis which allows us to
extract low-energy down to ground-state properties including
ground-state energy and spontaneous magnetization. Simi-
larly, we analyze the critical temperature of thermal phase
transition, etc. and compare all of these to well established
QMC results.

The rest of the paper is organized as follows. Section II
introduces the spin lattice models and the TTN methods, as
well as thermal quantities concerned in the present work. In
Sec. III, we compare four different MPO mapping paths (see
Fig. 1 below) and find the snakelike path, usually employed in
ground state computations, also to be the overall most efficient
one in our thermal simulations. Our main results for the SLH
and QIM are discussed in Secs. IV and V. The last section is
devoted to a summary.

II. MODELS AND METHODS

A. Quantum spin models on the square lattice

A paradigmatic model in quantum magnetism is the square
lattice Heisenberg (SLH) antiferromagnet whose Hamiltonian
reads

H = J
∑
〈i, j〉

Si · S j, (1)

where J is the coupling strength of isotropic spin interactions
between nearest-neighbors (NN), as denoted by 〈. . . 〉. The
SLH is a simple yet fundamental quantum lattice model of
interacting spins, and hence of great interest on its own. It
can be derived as the large U limit of the Hubbard model at
half-filling [34].

There exists true long-range Néel order in the ground
state of SLH [35–38] which, nevertheless, according to the
renowned Mermin-Wagner theorem [39], “melts” immedi-
ately when thermal fluctuations are introduced. However,
incipient order formed by correlated large-size clusters is still
present at low temperatures, i.e., in the so-called renormalized
classical (RC) regime, where the sizes of ordered clusters, i.e.,
the correlation length ξ , increase exponentially as temperature
is lowered [1,40].

Besides SLH, we also apply our thermal RG methods to
study the quantum Ising model (QIM),

H = −J
∑
〈i, j〉

Sz
i Sz

j + h
∑

i

Sx
i , (2)

again with NN coupling J , Sx(z) is the x(z) component of the
spin operator, and h is the transverse field. At T = 0, a quan-
tum phase transition (QPT) takes place at hc � 1.52219(1)
[41]: for h < hc, the system is ferromagnetically (FM) or-
dered, while for h > hc it is in a quantum paramagnetic
phase. In the former case, thermal fluctuations drive a phase
transition at T = Tc, above which the system enters a classical
paramagnetic phase. The determination of critical temperature
Tc constitutes another interesting benchmark for XTRG.

In our simulations below, we mainly consider two different
square-lattice geometries. These are the open strip (OS) W ×
L geometries for system with width W and length L, and
cylindrical lattice (YC) W × L systems wrapped along the
width W in the vertical y direction with respect to the MPO
paths shown in Fig. 1. Throughout this paper we use J = 1
as the unit of energy, lattice spacing a = 1, and Boltzmann
constant kB = 1.

B. Thermal tensor renormalization group methods

We employ thermal tensor renormalization group (TRG)
methods, including XTRG and SETTN, to simulate the spin
lattice models. In both approaches, the unnormalized density
matrix ρ(β ) ≡ e−βH of a finite-size 2D system is represented
in terms of MPO in a quasi-1D setup. In XTRG, ρ(τ ) at
small inverse temperature τ is initialized through a Taylor
expansion, i.e.,

ρ(τ ) �
Nc∑

k=0

(−τ )k

k!
Hk, (3)
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FIG. 2. Relative errors of free energy f vs 1/D∗, D∗ the number
of multiplets kept, for the YC4×4 SLH at T � 0.06, and the ED data
are taken as the exact reference. Four mapping paths are compared,
including the snakelike, slash, diagonal, and zigzag. The inset shows
the maximum of SE over all MPO bonds vs T . One can observe that
SE values coincide in the essentially equivalent snakelike and zigzag
paths, and are significantly smaller compared to the diagonal and
slash paths.

with Nc the cutoff order. The RG techniques required to
construct efficient TTN representations of the initial ρ(τ ) have
been developed in the SETTN algorithms [31].

After the initialization, we double the inverse temperature
β = 2n · τ of the density matrix ρn in each iteration n and thus
cool down the system exponentially fast, i.e.,

ρn+1 = ρn ∗ ρn, (4)

where ∗ indicates MPO multiplication. XTRG turns out to
be very efficient and accurate (compared to linearly decreas-
ing the temperature, it yields smaller accumulated trunca-
tion errors due to significantly less truncation steps). It can
be parallelized via a z shift of the initial τ , i.e., τ → 2zτ

with z ∈ [0, 1), to obtain fine-grained temperature resolution
[32]. Overall, our approach is equivalent to the purification
framework [18,21,22,42,43], and Tmin ≡ 1/βmax constitutes
the lowest temperature reached.

Apart from providing a good initialization for small τ ,
SETTN also provides an alternative way to determine ρ(β )
for simulations down to low temperatures, also operating on
a logarithmic β grid. Namely, we choose the same β → 2β

step, and insert a number of (interleaved) temperature points
in between to make measurements of thermodynamic quanti-
ties, which overall then constitutes exactly the same temper-
ature points as in the interleaved XTRG runs. A pointwise
Taylor expansion version of SETTN, proposed in Ref. [32],
is adopted in this work. It expands the thermal state

ρ(β ) =
Nc∑

k=0

(−β + βn)k

k!
Hkρ(βn), (5)

around a series of temperature points βn → 2βn starting at
β0 = τ , such that β ∈ {2τ, 4τ, . . . , 2nτ ≡ βmax/2} for XTRG,
as well as smaller β steps in case of SETTN. Since truncation
errors accumulate as k increases in each Hkρ(βn) term of the
series, this modified SETTN reduces the order Nc required
for the expansion thus improves the accuracy. Besides, the

SETTN approach also benefits in efficiency from the log-
arithmic scales in temperature series {βn}, since it reduces
significantly the computational overhead in expansions.

C. Thermal quantities and entanglement measurements

In this work, we are interested in various quantities, in-
cluding the free energy f , internal energy u, specific heat
cV , and static magnetic structure factor S(q), as well as MPO
entanglement SE in the thermal states.

The free energy per site can be directly computed from the
partition function,

f (β ) = − 1

βN
lnZ (β ), (6)

where Z (β ) = Tr[ρ( β

2 )† ρ( β

2 )] is the partition function and
N is the total number of sites. The internal energy u per site
can be evaluated, in practice, in two different yet theoretically
equivalent ways. A simple way is to compute the expectation
value u(β ) directly by tracing the total Hamiltonian H with
density operators ρ (referred to as scheme a),

u(β ) = 1

N
Tr

[
ρ

(
β

2

)†

Hρ

(
β

2

)]
. (7a)

Since the MPO representations of the density matrices ρ and
Hamiltonian H are available in XTRG and SETTN simu-
lations, Eq. (7a) can be calculated conveniently via tensor
contractions. Alternatively, one can also compute the internal
energy u by taking derivatives of free energy f (referred to as
scheme b),

u(β ) = 1

N

∂ ( f β )

∂β
= 1

Nβ

∂ ( f β )

∂ ln β
, (7b)

where the last derivative is a natural choice when β is chosen
on a logarithmic grid. The specific heat cV is given by the
derivative of the internal energy,

cV = ∂u

∂T
= −β

∂u

∂ ln β
, (8)

again with preference to taking the derivative with respect to
the logarithmic temperature scale, as shown in the last term.

In order to understand the spin structure at finite T , e.g.,
to probe the incipient order and estimate the spontaneous
magnetization in the SLH model, we compute the static spin
structure factor S(q) at finite temperature, defined as

S(q) =
∑

j

e−iq·ri j 〈Si · S j〉T , (9)

where ri j ≡ r j − ri refers to the distance between lattice site i
and j. Dealing with finite system sizes, we fix i in the center
of the system, whereas j runs over the entire lattice.

By choosing q in the vicinity of the ordering wave
vector q0 = M ≡ (π, π ) [cf. Fig. 6(e)], one has S(q) =
S(q0)/[1 + ξ 2(q − q0)2] (Ornstein-Zernike form), and thus
ξ 2 ∼= −1

2S(q)
∂2S(q)
∂q2 |q=q0

, from which it follows [44]:

ξ 2(T ) = c2
q0

2S(q0)

∑
j

r2
i j e−iq0·ri j 〈Si · S j〉T , (10)
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where the constant c2
q0

≡ 〈cos2 αi j〉 = 1/2 accounts for an
angular average, with αi j the angle in between q0 and ri j .

We also investigate the MPO entanglement, which offers
direct information on the numerical efficiency of our thermal
RG simulations. In XTRG, the MPO density matrix can be
regarded as a purified superstate |	̃β/2〉=̂ρ(β/2), which is
unnormalized, hence the tilde. By definition then, the partition
function can be calculated as Z (β ) = 〈	̃β/2|	̃β/2〉. This ther-
mofield double purification employs identical ancillary and
physical state spaces. It is then useful to introduce a formal
entanglement measure SE for the MPO. For this, we divide the
normalized supervector |	β/2〉 (hence no tilde)—represented
now as an effective matrix product state (MPS) with twice
as many, paired up local degrees of freedom—into two blocks
with respect to some specified bond, and compute the standard
MPS block-entanglement (von Neumann) entropy SE [32,45].
The latter is a measure of both quantum entanglement and
classical correlations. As such, SE is a quantity of practical
importance in our thermal RG simulations, since the bond
dimension D ∼ eSE quantifies the required computational re-
source for an accurate description of the thermal states.

In conformal quantum critical chains, the MPO entangle-
ment SE scales logarithmically versus β, as derived from con-
formal field theory [46] and confirmed in large-scale numer-
ics [32,47,48]. The temperature dependence of SE strongly
depends on the underlying physics. In the following, it will
be analyzed in detail in this regard for the SLH, which has
low-energy gapless modes due to the spontaneous SU(2)
symmetry breaking, as well as in the QIM, which undergoes a
finite-T phase transition.

In our XTRG simulations of the SLH, finally, we also
fully exploit the global SU(2) symmetry in the MPO based
on the QSpace tensor library [49]. In these SU(2) symmetric
calculations, a state-based description of any state space or
index is replaced in favor of a description in terms of mul-
tiplets. Specifically, D states on the geometric MPO bonds
are equivalently reduced to D∗ � D/4 multiplets, with D∗ the
tuning parameter. Given the numerical cost for XTRG being
O(D4) [32], the implementation of non-Abelian symmetry
in XTRG therefore greatly improves its computational effi-
ciency. Conversely, this allows us to reach lower temperatures.

III. VARIOUS MPO PATHS IN THERMAL
RENORMALIZATION GROUP SIMULATIONS

Since our MPO-based RG methods map the 2D lattice
models into a quasi-1D setup, the sites of the lattice must be
brought into a serial order. This introduces a “mapping path”
throughout the lattice, the specific choice of which clearly
includes some arbitrariness. This has already been discussed
before in a similar context in DMRG simulations [50]. There
the authors considered ordering the sites along the diagonal
direction [cf. Fig. 1(c)], made some comparisons to the con-
ventional snakelike path [cf. Fig. 1(a)], and arrived at a con-
clusion that the diagonal path gets better, i.e., lower variational
energy, when the same number of bond states is retained. Here
we perform a similar analysis for our thermal simulations. For
comparison, we include a few more conventional paths in our
thermal RG simulations, with the expectation to recover the

FIG. 3. The free energy f of SLH on the (a) OS6×6 and
(b) OS6×12 lattices at T � 0.06, obtained for the four different
MPO paths in Fig. 1 by retaining D∗ = 100 to 500 multiplets in all
cases. (c)–(f) show comparisons of the free energy f vs T for all
paths using D∗ = 500 for OS [(c) and (d)] and YC [(e) and (f)]. Here
fmin(T ) represents the minimal value amongst all four paths at any
given T .

observations made in previous DMRG study mentioned above
for the same geometry.

To be specific, in Fig. 1, we compare four simple choices
of paths: the snakelike (blue color), slash (orange), diagonal
(green), and zigzag (purple). We perform XTRG calcula-
tions down to low temperatures for these MPO paths on
systems including 4 × 4 (YC), 6 × 6, and 6 × 12 (both OS
and YC) geometries. Throughout this section (as well as in
Appendix B), the same color code is adopted in all related
plots, e.g., Figs. 1–3 as well as Fig. 15.

Firstly, we benchmark the SLH on a small YC4×4 lattice
also accessible by exact diagonalization (ED), by checking
the relative error of the free energy f at a low temperature
(T � 0.06) in Fig. 2. Clearly, δ f / f improves continuously
with increasing D∗, down to ∼10−5 for D∗ = 500 retained
bond multiplets. Overall, we conclude from Fig. 2, that the
snakelike and the zigzag paths turn out to be optimal amongst
all four choices.

However, the conclusion reached depends on the system
size, specifically so for smaller ones. In Figs. 3(a) and 3(b), we
compare four MPO paths on the larger OS6×6 and OS6×12
systems, where f is compared at T � 0.06. Although ED data
are no longer available to compare to, the XTRG results for f
are variational. Therefore a lower value of f still unambigu-
ously serves as a useful criterion for accuracy. In Figs. 3(a)
and 3(c), for the OS6×6 system, we find the diagonal, as
well as the slash path, leads to a lower, thus better, f , by
a relative difference �0.1%. This is in agreement with the
observation in Ref. [50], where they also find that the diagonal
path produces energetically better results.

However, the situation quickly reverses again for larger
systems, and in particular also for the cylindrical geometries.
On the longer OS6×12 lattice [Figs. 3(b) and 3(d)], the
snakelike path produces lower results for f , closely followed
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by the zigzag, while the diagonal one now leads to highest
f amongst all four choices, still with relative differences
�0.2%. For the YC geometries, as shown in Figs. 3(e) and
3(f), the snakelike path is again found to be the optimal choice,
and the diagnal path the least favorable one, with f now a
few percent larger at our lowest temperatures. Conversely, the
snakelike and the zigzag paths show strong consistency within
10−4 relative difference.

To shed some light on understanding the performance of
various mapping paths, we show the landscape of thermal
entanglement SE versus MPO bond indices in Fig. 1, where
the bond thickness represents the “strength” of entanglement.
From Fig. 1, as well as Fig. 15, one can see that the snakelike
and the zigzag paths have a comparatively small entanglement
throughout their paths. To be specific, for the snakelike and
zigzag paths, the bond entanglement distribution is rather
uniform (except for few bonds near both ends). By contrast,
for the slash and diagonal paths, there exist numerous thick
lines in the bulk, leading to overall larger truncation errors
(see Appendix B for detailed data) and thus higher free energy
results.

One can understand the entanglement “strength,” as well
as required bond dimensions, on a given MPO bond in a
somewhat intuitive way: since we divide the system into two
halves by cutting only one MPO bond, it is natural to associate
the required bond dimension to the smallest possible number
of coupling bonds (lattice links) intersected by that specific
cutting line (see, e.g., dashed lines in Fig. 1). For OS6×6
(left column of Fig. 1), in the snakelike and zigzag paths,
the typical bipartition line cuts six interaction links, while
for the diagonal and slash cases, this number is ten. Note
also that when the dashed cutting line has a corner, it can
introduce some additional constant contribution to the MPO
entanglement, which helps understand the specific location of
“thick” bonds in various paths in Fig. 1. While for OS6×6 one
may argue, that entanglement only concentrates on the narrow
(anti)diagonal and hence may be beneficial, for more general
geometries, say, long OS6×12, shown in the right column of
Fig. 1 (as well as in cylindrical geometries, not shown), the
snakelike or zigzag path clearly constitutes a better choice.

To summarize, except for OS6×6 where the diagonal path
has a slightly better performance, indeed, in agreement with
previous DMRG results [50], for larger systems the snakelike
or zigzag paths are generally expected to lead to lower free
energy. Overall, we observe that from a computational and
accuracy point of view, zigzag and snakelike paths are essen-
tially equivalent and, in certain ways, so are slash to diagonal
paths. As expected and shown explicitly in Fig. 3, the accuracy
for all paths increases with increasing D∗. Nevertheless, this
barely changes the preference on a given path. Based on these
observations and arguments, the snakelike path is adopted in
our practical simulations throughout the rest part of the paper.

IV. SQUARE-LATTICE HEISENBERG MODEL

In this and the next sections, we present our main thermo-
dynamic results for the SLH and the QIM, respectively. We
benchmark them against QMC data generated by the looper
algorithm from ALPS [51].

A. Internal energy and specific heat

In Fig. 4, we present the results for the internal energy u as
well as specific heat cV , where we have employed both XTRG
and SETTN to simulate the SLH on two lattices, OS6×6
and YC6×12. We have also compared the two schemes for
computing u and their derived cV in Fig. 4: (a) as expectation
values by tracing the Hamiltonian [cf. Eq. (7a)] and (b) by
taking the derivative of free energy [cf. Eq. (7b)].

The internal energy results u obtained from both schemes
agree very well with the QMC data, as shown in Figs. 4(a)
and 4(c). By strongly zooming in into the low-T regime,
nevertheless, it turns out that scheme b results in slightly
better accuracy, in both XTRG and SETTN simulations. Still
given the same bond dimension, within scheme a, XTRG
data demonstrate better accuracy than those of SETTN. This
observation is consistent with the general observation that
XTRG produces more accurate results due to the much
smaller number of evolution and thus truncation steps [32] for
the density matrix ρ(β/2).

The slight difference between the two schemes a and b is
arguably due to truncation: truncation is biased to keep the
strongest weights in ρ, such that Z (β ) = Tr[ρ(β/2)†ρ(β/2)]
is optimally represented, hence also f ∼ − 1

β
lnZ , and thus

also its derivative u, i.e., as in scheme b. Conversely, by
computing u directly as in scheme a via the expection value
Tr(ρ†Hρ), this is not necessarily guaranteed to be optimally
represented in the presence of truncation. This heuristically
explains the slightly better performance of scheme b.

We also compare the specific heat cV derived from the
respective internal energy data obtained from both XTRG and
SETTN simulations in schemes a and b. The results are shown
in Figs. 4(b) and 4(d), with the same conclusion as for the
internal energy u: scheme b leads to a slightly better numerical
performance for both RG methods. The peak position for cV

allows us to read off a characteristic crossover temperature Ts

for the SLH, separating the low-temperature regime showing
incipient long-range order from a high-temperature regime
without such order (as discussed in more details below).

To scale the results to the thermodynamic limit, we show
the internal energy u of SLH on OSL×L lattices with L = 4
to 9 in Fig. 5(a). We collect the energy values calculated by
scheme b [Eq. (7b)] at our lowest reliable temperature T �
0.1, which already provides a very good estimate of ground-
state energy [53]. With the u data well converged versus T
on the finite-size clusters, we extrapolate the energy results to
1/D∗ → 0 as shown in the inset of Fig. 5(a). Three slightly
different ways of extrapolating the ground-state energy to-
wards the thermodynamic limit 1/L2 → 0 are presented in
Fig. 5(b): total (blue circles) is obtained by dividing the total
energy by the number of sites N = L2, torus (green squares)
to be defined below, and center (maroon asterisks). The latter
is obtained from a smooth average emphasizing center sites,
computed as ucenter ≡ 1∑

i wi

∑
i wiui, where ui is the energy

per site which equals half the plain sum of nearest-neighbor
bond energies around the site i, and the weighting factors
are taken as wi≡(ix,iy ) = sin2( ix−1

L−1 π ) sin2( iy−1
L−1 π ), with ix, iy ∈

[1, L]. They are maximal in the center and smoothly diminish
towards the open boundary where they vanish quadratically,
hence suppressing the influence of the open boundary. These
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FIG. 4. Internal energy u and specific heat cV for [(a) and (b)] OS6×6, and [(c) and (d)] YC6×12 SLH systems. The insets zoom into the
low-T data, where the SETTN and XTRG data for various D∗ are shown to agree excellently with QMC. In the legends, ua and ub refer to the
two schemes in Eqs. (7a) and (7b), respectively. The specific heat cV in the lower panels is obtained from u using Eq. (8). The vertical dashed
line represents the temperature scale TS ∼ 0.6 in SLH.

center data converge fast versus 1/L. For L = 6, it already
equals −0.6695 in excellent agreement with the QMC result
ug � −0.6694 (see, e.g., Ref. [52]). However, for our largest
system sizes, L � 7, the bond energy distribution starts getting
weakly affected by our limited bond dimension D∗, e.g., see

extrapolation in 1/D∗ in the inset of Fig. 5(a). Thus ucenter

starts to drift away from the plateau approximately reached for
L ∼ 6 due to an increased error in the extrapolation 1/D∗ →
0, where the shown “error bars” were estimated by twice
the difference between D∗ = 1000 result and the extrapolated

FIG. 5. (a) Internal energy u on the OSL×L lattices up to L = 9 calculated by XTRG keeping up to D∗ = 1000 multiplets. The data are
obtained in three different ways (total, center, and “torus”) as described in the main text, with total shown in (a), and finite size scaling of the
extrapolated data vs 1/L2 shown in (b). In order to reduce the finite D∗ effects, we extrapolate the internal energy u to 1/D∗ = 0, as seen in the
inset of (a). In (b), we collect the low-temperature (T � 0.1) data extrapolated in (a) 1/D∗ → 0 and analyze it here vs 1/L2 → 0. For center,
the error bars are estimated from 1/D → 0 extrapolations (see text), while for “torus,” we extrapolate the four largest system sizes (i.e., data
in gray shaded area were excluded), to the thermodynamic limit, via a second-order polynomial fitting vs 1/L2. The horizontal dashed line
represents the ground-state energy ug � −0.6694 from QMC [52]. For comparison, (c)–(h) analyses the internal energy u of SLH on YCW ×L
cylinders of widths W = 6, 8 and lengths L = 8, 10, 12. Exemplary extrapolations of ucenter vs 1/D∗ → 0 are shown in (c) and (f) for T � 0.11
and 0.06, respectively, where ucenter is evaluated via a weighted average around the center as illustrated in the inset of (f) (see main text for
more details). The results at 1/D∗ → 0 are collected vs 1/W L in (d), (e), (g), and (h) (green stars). There they are also compared to similarly
extrapolated data for utot (black squares), as well as to usubtr (blue horizontal line) obtained by subtracting the length L = 8 from the L′ = 12
cylinder. With utot also extrapolated to 1/W L → 0, we find good agreement across our data towards the thermodynamic limit.
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1/D∗ = 0 value, to give a flavor of the finite-D influence. A
similar behavior is likely also observed for the total data for
the largest system sizes.

To further confirm the energy extrapolation, a fictitious
torus (green squares) is introduced, which also incorporates
a weighted average utorus = 1

N

∑
i w

′
iui. Here the weights w′

i,
defined as

w′
i =

⎧⎨
⎩

1, i ∈ bulk
4/3, i ∈ edge
2, i ∈ corner

,

reflect the fact that boundary sites have missing bonds with
respect to a fictitious torus, i.e., a corner site has two bonds
missing (so we multiply the site energy by a factor of w′

i = 2)
and an edge site one bond (thus w′

i = 4/3). In a sense, we
are estimating the energy values on a “torus,” by adding
the missing bonds of a given boundary site whose energies
replicate existing nearest-neighbor bonds. This somewhat
overestimates the energies of the boundary sites, such that
the ground-state energy converges from below now, as seen
in Fig. 5(b). We extrapolate these data for the torus only
including the data points of L � 6) to the thermodynamic limit
via a polynomial fitting. From this, we obtain u∗

g � −0.6629,
which is slightly above the QMC result.

For comparison, we also simulate YC geometries of widths
W = 6 and 8 at two temperatures T � 0.11 and 0.06, with
their internal energy u analyzed in Figs. 5(c)–5(h). As seen
in Figs. 5(c) and 5(f) similar to the inset in Fig. 5(a), the
convergence of ucenter exhibits a nearly linear behavior ver-
sus 1/D∗ and can thus be well extrapolated to 1/D∗ = 0.
The extrapolation over 1/D∗ may also be replaced by an
extrapolation of the truncation error, i.e., the discarded weight
δρ → 0. We show in Appendix C for the case of YC6 and
YC8 at T � 0.06 that both extrapolations agree well at low
temperatures.

Similar to Fig. 5(b) we compare the internal energy in three
different ways in Figs. 5(d), 5(e) 5(g), and 5(h) (again all
extrapolated to 1/D∗ → 0), except that the earlier fictitious
torus is replaced by a subtracted data set for usubtr (horizontal
lines) which is obtained from the difference in utot between
L = 8 and L′ = 12 cylinders, divided by (L′ − L)W sites.
Also for the case of cylinders, ucenter is the energy per site
weighted by a factor sin2( ix−1

L−1 π ) that is uniform around the
cylinder, i.e., independent of iy, with ix ∈ [1, L] indexing
columns along the cylinder. The weights are illustrated in the
inset of Fig. 5(f), where the intensity gradually decreases from
the center to both ends. Besides this “smooth” average, we
have also tried the computation of utot sharply restricted within
the 1 ∼ 2 central columns of the cylinder, yielding slightly
less systematic results. Overall, the results of all three schemes
are in good agreement with each other, as well as with the
QMC data ug � −0.6694 [52]. For example, in the case
of YC8 at T � 0.06, utot = −0.6695, usubtr = −0.6698, and
ucenter = −0.6690, leading to an accurate estimate of ground-
state energy u∗

g = −0.6694(4). These data agree very well
with the infinite quasi-1D entanglement perturbation theory
(iqEPT) results on infinitely long cylinders [54]. For exam-
ple, our YC6 results utot = −0.6728 and usubtr = −0.6729
(both at T � 0.06) show excellent agreement with the iqEPT
ground-state energy result −0.67279 on cylinder of the same

FIG. 6. (a) SLH specific heat cV on the OSL×L lattices on
a log-log scale to emphasize the algebraic behavior at high and
low temperature, obtaining, cV ∼ T −2 and ∼T 2, respectively (see
dashed lines as guide to the eye). The inset zooms into the peak at
intermediate temperatures around TS ∼ 0.6. (b)–(e) show the static
spin structure factors S(q) on OS9×9 at T � 0.20, 0.55, 2.21, and
10.51, respectively. The grid lines demarcate the Brillouin zone,
where the white dots in (e) indicate specific high-symmetry points
therein.

circumference, and our YC8 data are within a relative error of
∼2‰ to the iqEPT result −0.67078 [54].

The derivative of the internal energy yields the specific heat
cV [cf. Eq. (8)], shown for the SLH in Fig. 6(a) on OSL×L
lattices up to L = 9. We observe a well-pronounced single
peak located at TS ∼ 0.6. Given that is largely independent of
system size (see inset), these data already reflect the thermo-
dynamic limit (even though simulating finite system sizes!).
This observation is consistent with the scenario that there is
no phase transition in SLH at finite T and, consequently, that
TS represents a crossover scale of thermodynamic behavior.

B. Static structure factor

Next, we explore the spin structure factor S(q) at various
temperatures. We select four temperatures corresponding to
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FIG. 7. The static spin structure factors S(q) on the OS9×9 lat-
tice at (a) T � 12.5 and (c) �0.2, calculated by XTRG. Fittings using
the antiferromagnetic Ising (AFI) model and independent dimer
approximation (IDA) (see main text) are presented at the right half
of each panel [(b) and (d)], which enjoy excellent agreement with
XTRG data on the left half of each panel [(a) and (c), respectively].

different regimes in the specific heat [see markers (b)–(e)
in Fig. 6(a)], and show their S(q) data in Figs. 6(b)–6(e),
respectively. High-symmetry points in the Brillouin zone (BZ)
including the central point � = (0, 0) and M = (±π,±π ) are
indicated explicitly in Fig. 6(e). At low temperature T � TS ,
there exists a clearly established incipient order, which gives
rise to the sharp bright spots at the M points. As T increases,
the system passes the cross-over scale T ∼ TS , at which
stage the incipient order has already become significantly
weakened, as shown in Fig. 6(c). As the temperature increases
further, the originally bright spot at the M points becomes
ever weaker [Figs. 6(d) and 6(e), note also the altered color
bar scale], until it is completely blurred out for temperatures
T > 10 [Fig. 6(e)].

Besides the bright M points, the S(q) contour shows non-
trivial patterns near the crossover scale. We illustrate this on
the example of an OS9×9 SLH system in Fig. 7. It zooms in
the low-intensity part of S(q), showing salient patterns in stark
difference between the high- and low-temperature regimes. At
high temperature T � 12.5 [Figs. 7(a) and 7(b)], there exists
a clear-edged “diamond” shape surrounding the M points. On
the other hand, in the low-temperature regime, e.g., T � 0.2
[Figs. 7(c) and 7(d)], the diamonds have significantly shrunk
and rotated by 45◦.

In order to get a better intuitive understanding, we employ
two simple models, the independent dimer approximation
(IDA) and the antiferromagnetic Ising (AFI) model. In IDA,
we assume that a given site is in a singlet configuration with
either one of its nearest-neighbor sites with probability 1/4
for each, and no further longer-range correlations. This yields
the spin structure factor

SD(qx, qy) = 3
8 (2 − cos qx − cos qy), (11)

which describes short-range correlations (typically at high T ).
On the other hand, the AFI spin structure factor SI is evaluated
from spin correlations of classically ordered antiferromagnet
configurations on an OS5×5 lattice, to capture the essential
feature in the spin-spin correlation at low temperatures.

Indeed, at high temperature, we find that a fit of the form
S(q) = aSD + c based on IDA with parameters a = 0.08 and
c = 0.69 [as shown in Fig. 7(b)] provides a good description
of the XTRG data in Fig. 7(a). From this, we conclude that at

high temperatures T � TS , IDA can reproduce the diamond
pattern and capture very well the residual magnetic correla-
tions in the system. Note that, by definition, the q-independent
term in S(q) must be equal to S2 = 3/4, hence 3

4 a + c � 0.75
[cf. Eq. (11)] with a � 1 at large T .

At low temperatures, we employ the AFI correlation in-
troduced above to describe the developed incipient order,
together with the dimer correlations taking care of the short-
range fluctuations, again under IDA assumption. The structure
factor is therefore then fitted using the combination S(q) =
aSD + bSI + c, where we find that a = 4.5, b = 25, and c =
−2.7 well resembles the XTRG S(q) data (larger values of a
and b suggest longer-range correlations as expected, indeed),
including even the very subtle details of the four-leaf shape.

For pure long-range AFI correlations, the qx and qy com-
ponents decouple in the structure factor into a product of
independent terms, such that S(q) develops square-like peaks
around the M points that are aligned with the BZ. At high tem-
peratures, instead, the lines are aligned with the smaller mag-
netic BZ boundary, given that the real-space lattice unit cell is
enlarged. This explains why the diamond pattern in Figs. 7(a)
and 7(b) rotates into aligned square like peaks in Figs. 7(c)
and 7(d). In this sense, the inclusion of SD, i.e., short-range
correlations, is important to allow four little “leaves” to appear
(which may disappear in the thermodynamic limit, though).
We believe, however, that the dominant features seen in the
S(q) contours in Fig. 7, indeed, encode important information
on the spin structures in the system. Apart from the different
brightness of S(M ), this feature constitutes another relevant
distinction in S(q) between the high- and low-temperature
regimes. We expect that these salient patterns in S(q) may find
their experimental realizations in quantum simulators using
cold atoms [55].

C. Spontaneous magnetization and incipient order at T > 0

From the spin structure factor S(q) at the ordering point
q0 ≡ M, we can estimate the spontaneous magnetization
mS . To be specific, we employ the low-temperature finite-
size spontaneous magnetization m(L) =

√
S(M )/L2 on the

OSL×L as an estimate, which is shown as a function of T in
Fig. 8. We find for all systems explored, including our largest
system at L = 10, that m(L) has essentially saturated at low
temperatures T � 0.1. We then collect the converged values
of m(L), plot m2(L) versus 1/L [56] in the inset of Fig. 8.
A quadratic fit in 1/L then yields the estimate m∗

S � 0.30(1).
This XTRG result is in good agreement with the QMC value
mS � 0.3070(2) [56].

D. Renormalized classical behaviors

At low temperatures, T � TS , the SLH enters the universal
RC regime [1,57]. As observed in large-scale QMC simu-
lations [58,59], as well as in neutron scattering experiments
[57], the incipient order and RC scalings have been quan-
titatively confirmed. To be specific, the correlation length ξ

diverges exponentially with decreasing T as

ξ (T ) = Aξ eCξ /T [1 + O(T )], (12)
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FIG. 8. The finite-size analysis of spontaneous magnetization
m(L) ≡ √

S(M )/L2 of the SLH on the OSL×L lattices up to L = 10.
In the inset, we collect m2(L) data at T = 0.1 where convergence
vs T is reached, and extrapolate it to the thermodynamic limit
1/L → 0 using a parabolic fit. The data in the gray shaded area
were excluded from this fit. From this, we estimate the value for
the thermodynamic limit m∗

S � 0.30(1), in good agreement with the
literature, mS � 0.3070(2) [56].

and the structure factor S(q) also diverges at the ordering point
as

S(M ) = AS T 2e2Cξ /T [1 + O(T )], (13)

where Aξ , AS , and Cξ = 2πρs are constants, with ρs the spin
stiffness [60].

The universal RC scalings in Eqs. (12) and (13) are strictly
valid only in the thermodynamic limit L → ∞. In our OSL×L
XTRG simulations, we only have finite-size thermal data up
to L = 10, such that below (some) low temperature our finite-
size XTRG data necessarily will deviate from the exponential
scalings. This occurs once the thermal correlation length
reaches system size. It coincides with the temperature where
the structure factor S(M ) starts to saturate which was already
clearly observed in Fig. 8 [replotted in Fig. 9(a) directly as
S(M ) itself].

We may also use this as a criterion to define the (max-
imal) thermal correlation length that fits into a given finite
system. Based on this then, we may analyze the onset of RC
behavior from our finite-size data. We start by estimating a
temperature Tf below which the finite (f) size effects become
prominent. We define it as the temperature at which the
derivative dS(M )/dT shows a maximum, as indicated by
the vertical dashed lines in Fig. 9(b). Being due to finite
size effects, a polynomial fitting versus 1/L, as shown in
the inset of Fig. 9(b), shows that Tf → 0 for 1/L → 0, as
expected. Next we collect S(M ) evaluated at Tf (denoted as
S f ) from various OSL×L systems. A semilog plot, shown in
the inset of Fig. 9(a), shows that this approximately supports
an exponentially diverging behavior, indeed. This notably
differs from the data for S(M )T simply plotted versus 1/T
for the largest system size, also shown for comparison (blue
line). While for large temperatures (smaller 1/T ) the slope
on the log-plot approximately coincides with the earlier S f

analysis, it shows clear deviations due to finite size at lower
temperatures (larger 1/T ). This is in contrast to the analysis
versus 1/Tf which was designed to largely eliminate finite

FIG. 9. (a) Static structure factor S(M ) vs T (same data as in
Fig. 8). Its derivative in (b) has a maximum which defines a specific
temperature Tf at which finite size effects become significant. The
inset in (a) then analyzes Sf /T 2

f vs 1/Tf . The inset in (b) shows
that Tf extrapolates to 0 in the thermodynamic limit, via a cubic
fit as shown based on the data with L � 4. (c) Correlation length
ξ vs T . The results for S(M ) and ξ evaluated at Tf , are marked by
black circles in (a) and (c), respectively. The data are collected and
analyzed in the respective insets vs 1/Tf which, overall, shows good
agreement with RC predictions (dashed line). For comparison, the
insets in (a) and (c) also plot the data for S(M ) and ξ vs 1/T for the
largest system size.

size effects. We have compared the S f versus Tf curve to the
standard RC formula Eq. (13) with Cξ = 2πρs � 1.13 [60], as
indicated by the dashed lines in both the main panel and the
inset of Fig. 9(a). The remarkable agreement strongly suggests
that the RC behavior can be uncovered in the finite-size data
via a careful analysis.

Similar to the analysis of the structure factor S f at the M
point, one can compute the (maximal) correlation length ξ f ≡
ξ (Tf ) as shown in Fig. 9(c). The resulting RC behavior of ξ f

versus 1/Tf is shown in the inset. In the present case, it is
well-fitted by Eq. (12), thus again supporting RC scaling.
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FIG. 10. MPO entanglement entropy SE on (a) cylinders
YC4×8, YC6×12, and YC8×12, and (b) OSL×L with L = 4 to 8.
The tilted dashed lines in both (a) and (b) represent SE ∝ a ln β +
const., with slope a � 0.4 (see dashed guides on top of the curves).
The vertical dotted line represents the temperature scale TS ∼ 0.6
[e.g., see Fig. 6(a)].

E. Entanglement scaling

Low-temperature logarithmic scalings in the entanglement
entropy SE have been observed in a number of quantum
systems with gapless excitations. Near the conformal critical
points in 1D quantum systems, the entanglement entropy
scales like SE = a ln β + const., with a proportional to the
conformal central charge [32,33,46–48,61]. For 2D quantum
systems with gapless Goldstone modes, e.g., the triangu-
lar lattice Heisenberg antiferromagnet [33], logarithmic en-
tanglement also appears and can be related to a tower of
states due to the ground-state SU(2) symmetry breaking
[62–67]. On intuitive grounds, one may expect a slowdown
of the entanglement entropy at low temperatures, bearing
in mind that the classical AF ground state is a product
state.

In Fig. 10, we plot the thermal entanglement entropy
SE versus T , for YC and OS geometries. In Fig. 10(a),
despite a rapid (algebraic) decrease at high temperatures,
SE “crosses over” into a logarithmic behavior in the low-
temperature regime around T < TS , with an estimated slope
of a � 0.4 approximately independent of the system width
(note that, in contrast, the temperature independent offset
in SE is roughly proportional to the system width). The
transition temperature is consistent with the crossover scale
TS ∼ 0.6 that had been identified from the peak position in
the specific heat, e.g., see Fig. 4 or 6(a). Hence, from Fig. 10,
we find that the incipient AF order for TS ∼ 0.6 is directly
linked to a weak logarithmic scaling of the entanglement
entropy versus T . For the OS systems in Fig. 10(b) we find
stronger finite-size effects with an onset of saturation at our
smallest temperatures, qualitatively similar to what is already

FIG. 11. Specific heat of QIM for fixed hx = 2
3 hc on YCW ×L of

width up to W = 8 and length L = 2W (W = 7 curve not shown in
the main panel for better readability). The XTRG results retaining up
to D = 240 states coincide with the QMC reference data. In the inset,
we collect the peak position T ∗

c of cV curves calculated by QMC
and XTRG, which also coincide, and extrapolate towards the exact
critical temperature in the thermodynamic limit x ≡ 1/W 2 → 0 by
a second order polynomial fit, having T ∗

c (x) � −14.5 x2 + 2.8 x +
T ∗

c (0), with an extrapolated value of T ∗
c (0) � 0.4184 (a polynomial

fit in 1/W leads to a similar value).

also visible for our smallest OS4×4. Still also for the OS
systems, we find approximately the same logarithmic scaling
of SE with the same slope as for the cylinders in Fig. 10(a)
for T < TS .

V. MAGNETIC PHASE TRANSITION IN
THE QUANTUM ISING MODEL

In this section, we study the QIM as an exemplary min-
imal model system that exhibits a finite temperature phase
transition. It thus constitutes a very meaningful benchmark
for XTRG. While not explicitly analyzed here, at T = 0, the
square-lattice QIM also possesses a QPT at a critical field
hc = 1.52219(1), between the paramagnetic and ferromag-
netic phases [41,68,69]. Finite-temperature properties of the
QIM have also been explored by TPO simulations [24,25] in
the thermodynamic limit.

We show XTRG results for the QIM [Eq. (2)] in Figs. 11–
13 for YC geometries up to width W = 8 with a fixed aspect
ratio L/W = 2, as well as OSL×L with L up to 10. Due to the
transverse field, the system only possesses Z2 symmetry. We
focus on the fixed value hx = 2

3 hc and the more challenging
case hx = 1.25 (i.e., hx � 0.82 hc), of the transverse fields
where the model exhibits thermal transitions at the critical
temperature Tc � 0.4239 [25] and Tc � 0.3184(2) [70], re-
spectively. A detailed comparison to QMC is performed for
hx = 2

3 hc case, there we analyze various thermal quantities of
interest, including the specific heat cV , Binder ratio U4, and
the MPO entanglement SE , while the 0.82 hc case is studied
exclusively via Binder ratio analysis. We exploit the ther-
modynamic quantities to study the finite-temperature phase
transitions, e.g., determining the critical temperatures.
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A. Specific heat

The specific heat cV from XTRG is compared to standard
QMC data on YC geometries up to W = 8 in Fig. 11 with
excellent overall agreement. Note that for XTRG we only
retained a moderate number of at least D = 200 bond states
to reach convergence. Due to the thermal phase transition, the
specific heat for finite-size systems shows a single peak, the
height of which becomes more and more pronounced as W
increases. We track the position T ∗

c of this peak, and analyze
it in the inset versus 1/W 2 → 0. The data for T ∗

c from both
methods virtually coincide, thus supporting the quality of
the data. For the thermodynamic limit 1/W 2 → 0, we obtain
T ∗

c (0) � 0.4184 which differs by about 1.3% from the value
Tc � 0.4239 obtained in Ref. [25].

B. Binder ratio and phase transition temperature

However, extracting the thermal transition temperature
from plain thermal quantities such as peak position int the
specific heat in the previous section, gives rise to larger finite-
size errors. According to the finite-size scaling (FSS) theory,
higher moments, such as Binder cumulants, offer a more
accurate means for determining Tc(0). One widely adopted
Binder cumulant in QMC simulations is

U4 =
〈(

Sz
tot

)2〉2
〈(

Sz
tot

)4〉 , (14)

where Sz
tot = ∑

i Sz
i is the total spin. The Binder ratio U4

has significantly smaller finite-size corrections, namely, ∼L−2

[71,72]. To be specific, according to Ginzburg-Landau theory,
the total magnetization of block spins, i.e., Mz = ∑

i〈Sz
i 〉β ,

obeys the Gaussian distribution. In the infinite T limit, it is
easy to verify, via Gaussian integration, that U4 = 1/3, while
for the T → 0 limit, it trivially tends to U4 = 1. Right at Tc,
according to the FSS theory, U4 flows to a nontrivial fixed
value, i.e., it stays as a constant as the system size N increases
(given N large). Therefore U4 curves for different system sizes
cross at T ∗

c , providing a very accurate determination of the
critical temperature Tc.

With MPO techniques, the two expectation values and their
ratio U4 in Eq. (14) can be obtained very conveniently. The
total moment operator Sz

tot has a simple MPO representation
of bond dimension D = 2, from which one can construct an
exact representation of (Sz

tot )
2 (with D = 3) and (Sz

tot )
4 (D =

5) at ease.
In Fig. 12(a), we show the calculated Binder ratio (for

hx = 2
3 hc) by XTRG and QMC, which again show excellent

agreement in both the main panel and insets. The left (bottom)
inset zooms in the region in the vicinity of the cross point.
Taking the crossing temperature T ∗

c (W ) of two curves W − 1
and W as an estimate of the critical temperature, two T ∗

c
data sets are extracted from QMC and XTRG, and plotted
vs 1/W 2 in the right inset. Again XTRG and QMC data are
virtually on top of each other. The estimate from our largest
system size results in T ∗

c (W = 7) � 0.4297. A second-order
polynomial extrapolation 1/W 2 → 0 yields T ∗

c � 0.4212,
which agrees with the thermodynamic limit in Ref. [25] to
within 0.6%.

FIG. 12. Binder ratio curves of QIM for the (a) hx = 2
3 hc and

(b) hx � 0.82 hc for YCW ×L systems with a fixed aspect ratio
L/W = 2. The data in (a) is compared to the QMC data on the
same lattice, and in (b) the D = 200 and 300 Binder ratio curves
lie on top of each other, showing the convergence of results vs bond
dimension D in both cases. The left inset in (a) and the upper inset
in (b) zoom in the region near the crossing points T ∗

c , and the rest
insets show subsequent second-order polynomial extrapolations of
T ∗

c to 1/W 2 → 0. In (a), the W = 7 data, not shown in the main
panel for better readability, are included for the right inset, and
a second-order polynomial fitting as shown yields an extrapolated
T ∗

c (0) � 0.4212, which is in excellent agreement with Tc � 0.4239
in the thermodynamic limit [25]. In (b), we obtain an extrapolated
T ∗

c (0) � 0.3216, again in good agreement with the QMC [70] and
iPEPS results [28,29].

For the case hx � 0.82 hc, which is closer to the critical
field hc and thus significantly more challenging, we show the
Binder ratio data in Fig. 12(b). Taking the even/odd effects
into consideration (which are rather weak in the 2/3hc case
while found to be relevant in the hx � 0.82 hc case), we stick
to the crossing temperature T ∗

c (W ) of two curves W − 2 and
W . Again using a second-order polynomial fit, with data that
have been extrapolated to 1/D → 0, we obtain T ∗

c = 0.3216,
also in good agreement with various previous results, e.g., the
infinite projected entangled pair state (iPEPS) [28,29] and the
QMC results Tc = 0.3184(2) [70].

We have moved even closer to the critical field, exploring
the case hx = 1.45 (i.e., hx � 0.95 hc), where some prelim-
inary calculations (along the same line as above, data not
shown) led to an estimate T ∗

c � 0.16. Considering that the
systems suffer from much larger finite-size effects at 0.95 hc,
we find that the obtained T ∗

c already constitutes a reasonable
first estimate with an accuracy ∼5% when compared to iPEPS
[28,29] and QMC result Tc = 0.1521(2) [70].
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FIG. 13. (a) Entanglement landscape of QIM thermal states on
the OS10×10 lattice, for the same hx = 2

3 hc, vs bond indices and
temperature. (b) Top view, showing that the peak temperatures at
central bonds (away from boundaries) locate right at the critical
temperature Tc (horizontal dashed line). (c) SE vs T on various
OSL×L lattices, cut at a central bond [indicated by the black arrow in
(b)] with maximal SE . The blue vertical dashed lines in both the main
panel and right inset indicate Tc � 0.4239 in the thermodynamic
limit [25]. The left inset shows the peak temperature T S

c vs inverse
system size 1/L2, which approach the true critical temperature Tc.
D = 240 bond states are kept in the calculations. The right inset
shows the entanglement difference vs T between consecutive system
sizes i.e., OSL×L and OSL′×L′ with L′ = L + 2 bearing in mind
even-odd effects. The gray vertical dashed line corresponds to the
first-order extrapolated value at 1/L2 → 0 in the left inset.

C. Thermal entanglement

In the QIM case with a thermal phase transition towards
a gapped low-temperature phase, the entanglement entropy
features a maximum around the transition temperature. Here
we also examine the scaling of MPO entanglement SE ver-
sus T for different bonds at which the system is cut when
computing SE . The resulting “entanglement landscape” is
shown in Fig. 13(a) where we observe a clear ridge line along
T � Tc, i.e., the surmised peak in SE at T S

c � Tc. The shape
and location of this peak appears stationary in the center of
the system (modulo width of the system), yet varies slightly
towards to open boundaries [Fig. 13(b)]. This suggests that the
peak position T S

c in the bulk can be taken as a good estimate
of critical temperature Tc of the thermal phase transition.

In Fig. 13(c), therefore we show slices of the entangle-
ment landscape for the bond in the center of the system
that maximizes SE . Now as we increase L the peak becomes
more and more pronounced, and the finite-size estimate of
critical temperature T S

c approaches the critical temperature Tc.
However, as seen from the inset of Fig. 13(c), while the finite-
size T S

c appears well-suited for extrapolation in 1/L2 → 0 in
principle, when doing so, the resulting value based on the

present data would actually significantly overshoot the true
critical temperature, as T S

c � 0.4648. A similar behavior is
also seen on YC geometries (not shown). Hence, so far SE

does not lend itself to an simple extrapolation to obtain an
accurate critical thermal transition temperature.

In order to gain some insight into the systematic overshoot-
ing in the extrapolation of T S

c , we plot in the right inset of
Fig. 13(c) the entanglement difference δSE (L, L′) = SE (L′) −
SE (L) between OSL′×L′ and OSL×L lattices, with L′ and
L both even or odd (to avoid even-odd oscillation). There
are a number of features important for analyzing SE . The
lines in the inset lie on top of each other for T > 1, meaning
dS/dW ∼ const there in agreement with an area law for the
entanglement entropy. Moreover, given that the difference δSE

for the smallest system sizes in our data upper bounds δSE for
larger systems, SE/W does not diverge at Tc, but stays finite,
which is in stark contrast, e.g., to the specific heat data.

Moreover, from the analysis in the inset, the peak position
in the δSE data appears to remain above Tc in the thermo-
dynamic limit, already consistent with the extrapolated T S

c
for 1/L2 → 0 in the left inset of Fig. 13(c). Much of this
behavior appears related to the strong asymmetry in SE due to
a gapped low-temperature phase. Therefore, for the accurate
determination of Tc from SE , it appears one needs to come
up with a different procedure other than just extrapolating
the temperature for the maximum in SE . Nevertheless, it is
an interesting observation that from an entanglement point of
view, the maximum in SE can systematically occur above Tc

even in the thermodynamic limit. The precise location may
depend on the geometry, i.e., boundary conditions and aspect
ratio of the system, and as such deserves further studies.

VI. SUMMARY

In this work, we have employed two TTN algorithms, the
SETTN and XTRG approaches, to investigate two prototyp-
ical quantum spin models, the square-lattice Heisenberg and
transverse-field Ising models. We explore four conventional
MPO paths, finding that the snakelike path constitutes an
overall favorable choice, due to its smaller entanglement and
thus less truncation errors on long cylinders and stripes.

Throughout, we found excellent agreement of SETTN and
XTRG data with QMC results of both models. Based on these
accurate finite-size thermal data of SLH, we are able to ex-
trapolate to the ground-state energy u∗

g � −0.6694(4) (from
YC8 results), as well as the spontaneous magnetization m∗

S �
0.30(1), all of which are in good agreement with large-scale
QMC results. We extract the well-established renormalized
classical behaviors, i.e., the exponential divergence at low T ,
of the structure factor S(q) and correlation length ξ versus T ,
at the ordering momentum M.

We have also explored the thermal entanglement SE in the
MPO representations of the equilibrium density matrices. SE

exhibits a logarithmic scaling in the SLH, which is likely
related to gapless excitations in the model. For QIM with
a finite-T phase transition, SE shows a pronounced peak at
T S

c , where the thermal phase transition takes place. Besides,
T ∗

c from the crosspoint of Binder ratio curves provides very
accurate estimate of the critical temperature Tc, i.e., with
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relative errors of about 1% for both the hx = 2
3 hc and 0.82 hc

cases.
Our benchmark calculations reveal that TTN methods,

such as XTRG, are highly efficient and accurate in solving
quantum many-body problems at finite T . Besides the unfrus-
trated SLH and QIM systems explored in detail here, XTRG
can be applied to more challenging frustrated quantum mag-
nets [32,33]. There it may play an essential role in bridging the
gap between experimental thermal data of currently numerous
spin liquid candidate materials and their microscopic spin
models.
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APPENDIX A: EXPONENTIAL TENSOR
RENORMALIZATION GROUP VERSUS

TROTTER AND SWAP GATES

In thermal tensor network simulations, we start from infi-
nite temperature, β = 0, where ρ(0) has a trivial representa-
tion as direct product of identity matrices, to various lower-
temperature mixed states. The most straightforward way is to
perform such a linear imaginary-time evolution using Trotter
gates, which has been widely used [21–27]. When applied
to 2D systems, given an MPO representation of the density
matrix, additional auxiliary swap gates have to be introduced,
as adopted in 2D thermal RG methods based on minimally
entangled typical thermal states [30].

On the other hand, a very efficient scheme, XTRG, was
proposed in Ref. [32], where we cooled down the system
exponentially following Eq. (4). In Fig. 14, we compare
XTRG to the linear evolution with Trotter and swap gates
on the SLH model [Eq. (1)] on an OS4×4 geometry. In

Fig. 14, we choose τ = 0.01 in the Trotter decomposition,
which constitutes a good compromise in terms of Trotter error
relative to truncation error and overall runtime.

As shown in Fig. 14(a), XTRG is found to be more accurate
compared to the Trotter scheme, given the same bond dimen-
sion. For example, Fig. 14(a) shows that the Trotter data with
D∗ = 400 (D � 1600) yield similar accuracy as XTRG with
D∗ = 200 (D � 800). In addition, the (relative) CPU hours
are plotted in Fig. 14(b), showing that the Trotter scheme
is slower than XTRG by roughly one order of magnitude.
As seen on the log-log scale, however, the relative Trotter
performance improves with increasing D roughly as 1/D, in
agreement with the fact that the Trotter approach scales like
O(D3) and whereas XTRG as O(D4). In order to exploit the
reduced truncation error with increasing D, though, Trotter
would also have to reduce the Trotter error by decreasing the
Trotter time step, which likely offsets some of the apparent
gain with increasing D (note that XTRG is free of the Trotter
error). Specifically, also note that there is a sign change in
δ f for Trotter, as seen by the downward kink in the log |δ f |
plot in Fig. 14(a), which moves towards lower temperatures
with increasing D. Having δ f change its sign is an indication
that the Trotter error is dominant down to lower temperatures,
before truncation error sets in.

We explicitly also analyzed truncation and swap gate errors
in the 2D Trotter approach in Fig. 14(c). The truncation error
due to swap gates (which help bring together two spins with
“long-range” interactions after 1D mapping) are about two
orders of magnitude greater than those produced directly in
the imaginary-time evolution. Therefore, from Fig. 14(c), we
observe that the Trotter approach in 2D accumulates signifi-
cant swap-gate truncation error, and thus it is not competitive
in both efficiency and accuracy.

APPENDIX B: ENTANGLEMENT ENTROPY AND
TRUNCATION ERRORS IN VARIOUS MPO PATHS

Here we provide more detailed information on the entan-
glement and truncation errors on each MPO bond. In Fig. 15,
we show them on four lattices including the OS6×(6, 12) and
YC6×(6, 12), where the same SE data was also used in Fig. 1

FIG. 14. (a) Comparison of XTRG and Trotter linear evolution (with swap gates) schemes in the benchmark calculations of an SLH model
on OS4×4. (b) Computational runtime of the Trotter approach relative to XTRG, which scales roughly as 1/D (with the dashed line a guide to
the eye). (c) The truncation error analysis in the linear Trotter calculations: the swap gates contribute significantly larger (over two orders of
magnitude) truncation errors than those of imaginary-time evolution gates.
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FIG. 15. Truncation error (solid lines; left axis set) and entanglement entropy SE (dashed lines; right axis set) at a low temperature (T �
0.06). The data are obtained by retaining D∗ = 500 multiplets. We compared the four different mapping paths in Fig. 1, namely, the snakelike,
zigzag, diagonal, and slash, on (a) OS6×6, (b) OS6×12, (c) YC6×6, and (d) YC6×12. The entanglement entropy is precisely also the data
that was used for the width of the lines in Fig. 1 in a graphically more organized way.

to visually demonstrated the entanglement along the various
mapping paths. The present discussion therefore extends the
analysis of the mapping paths in Sec. III.

Quite generally, in Fig. 15, the truncation error δρ is largest
where the block entanglement SE is largest, such that peaks
coincide (particularly for the slash and diagonal paths). On
the OS6×6 and YC6×6 lattices, the slash and diagonal paths
show peaks in the central part while the zigzag and snakelike
lines peak near both ends [indicated by arrows in Fig. 15(a)].
Note, however, the YC6×6 case is already seen to be dif-
ferent from that on the OS6×6. In Fig. 15(c), the slash and
diagonal lines have larger entanglement as well as truncation
errors, than those in the zigzag and snakelike paths, not only
in the very center but also extended to regions near both
ends.

For lattices with larger length L, the entanglement and
truncation peaks appear periodically in the bulk for all map-
pings. As illustrated in Figs. 15(b) and 15(d), the zigzag and
snakelike paths show peaks still near the open boundary and
behave rather uniformly in the bulk. This is in contrast to the
slash and diagonal paths which have higher SE overall, and
thus perform (considerably) worse.

APPENDIX C: DATA EXTRAPOLATION VERSUS
TRUNCATION ERROR δρ

In XTRG simulations, we can only retain a finite number
of multiplets D∗. This introduces a truncation error δρ in the
MPO representation of the many-body density matrix. We
showed in Figs. 5(c) and 5(f) that the low-temperature results
for our largest cylinders (say, YC6 or 8) are no longer fully
converged, in that for example the internal energy u still varies
by about 1% when extrapolating 1/D∗ → 0

Nevertheless, to get a flavor on how reliable the extrapo-
lation versus 1/D∗ → 0 is, we do a similar analysis here, but
versus δρ → 0, which represents the truncation error across
the geometric bond in the middle of the MPO. In Fig. 16,
we show u versus δρ for the YC6 and YC8 lattice of various
lengths, at fixed temperature T/J � 0.06.

Having sufficiently large D∗ (sufficiently small δρ), similar
to the 1/D∗ extrapolation in the main paper, we find an
approximate linear relationship between u and δρ which can
be extrapolated to δρ → 0, equivalent to the infinite D∗ limit.
The results are compared to the extrapolated data in 1/D∗ in
Figs. 5(c) and 15(f) of the main text, where a good agreement
can be seen, for either YC6 or YC8 cases.

FIG. 16. The energy per site u vs truncation error δρ on (a) YC6
and (b) YC8 geometries at T � 0.06 [same as in Fig. 5(f) of the
main text]. A clear linear u vs δρ relation is observed and employed
to perform the extrapolation. The thus extrapolated u values are in a
very good consistency to 1/D∗→0 analysis (asterisks), with relative
error ∼0.1%. Insets in (a) and (b) show δρ vs 1/D∗ on a log-log
scale, showing polynomial scaling.
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The linear relation δu ∝ δρ can be understood as fol-
lows. The truncation error δρ in density matrix ρ( β

2 ) directly
translates into an error of the partition function Z (β ) =
Tr[ρ†( β

2 ) ρ( β

2 )], since the latter precisely resembles the cost
function itself for optimizing ρ( β

2 ). This argument is hand-
wavy, of course, since to be specific, we choose for δρ

the truncation error after a two-site variational optimiza-
tion of MPO in the center of the system. This is a good
estimate for the accuracy, but does not necessarily rep-
resent the precise full error in the calculation of Z (β ).

Following thermodynamic relations, finally, δρ also reflects
linearly in the errors of free energy and energy values,
i.e., we can argue that also δ f , and therefore δu ∝ δρ for
small δρ.

In practice, for more challenging cases, due to the reason
that δρ only serves as an approximate estimate of truncation
not fully representing the errors in the variational optimiza-
tion, we find the analysis of u versus 1/D∗ numerically more
stable and accurate, which is therefore adopted in Fig. 5 of the
main text.
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