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Two-temperature scales in the triangular-lattice Heisenberg antiferromagnet
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The anomalous thermodynamic properties of the paradigmatic frustrated spin-1/2 triangular-lattice Heisen-
berg antiferromagnet (TLH) has remained an open topic of research over decades, both experimentally
and theoretically. Here, we further the theoretical understanding based on the recently developed, powerful
exponential tensor renormalization group method on cylinders and stripes in a quasi-one-dimensional (1D)
setup, as well as a tensor product operator approach directly in 2D. The observed thermal properties of the
TLH are in excellent agreement with two recent experimental measurements on the virtually ideal TLH material
Ba8CoNb6O24. Remarkably, our numerical simulations reveal two crossover temperature scales, at Tl/J ∼ 0.20
and Th/J ∼ 0.55, with J the Heisenberg exchange coupling, which are also confirmed by a more careful
inspection of the experimental data. We propose that in the intermediate regime between the low-temperature
scale Tl and the higher one Th, the “rotonlike” excitations are activated with a strong chiral component and a
large contribution to thermal entropies. Bearing remarkable resemblance to the renowned roton thermodynamics
in liquid helium, these gapped excitations suppress the incipient 120◦ order that emerges for temperatures
below Tl .
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Introduction. The triangular-lattice Heisenberg (TLH)
model is arguably the most simple prototype of a frustrated
quantum spin system. It has attracted wide attention since An-
derson’s famous proposal of a resonating valence bond (RVB)
spin liquid state [1]. The competition between RVB liquid ver-
sus semiclassical Néel solid states raised great interest. After
decades of research, it is now widely accepted that the TLH
has noncollinear 120◦ order at T = 0, with a spontaneous
magnetization [2], m � 0.205 [3,4]. Nevertheless, the TLH
has long been noticed to possess anomalous thermodynamic
properties [5], in the sense that thermal states down to rather
low-temperature regimes behave more as a system with no
indication of an ordered ground state [6,7].

Bipartite-lattice Heisenberg antiferromagnets (AFs) such
as the square-lattice Heisenberg (SLH) model, develop a
semiclassical magnetic order at T = 0 which is “melted” at
any finite temperature according to the Mermin-Wagner the-
orem [8]. Nevertheless, the ground-state Néel order strongly
influences low-temperature thermodynamics in the so-called
renormalized classical (RC) regime [9,10], where the spin-
spin correlation length ξ increases exponentially as T de-
creases [11–14].

In contrast, the thermodynamics of the TLH strikingly
differs in many respects from that of SLH. Based on
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high-temperature series expansion (HTSE) results, both mod-
els show cV peaks at similar temperatures, Th � 0.55 (TLH)
and Ts � 0.6 (SLH). The SLH enters the RC regime for
T � Ts [11,12], whereas the TLH shows no signature for
incipient order and possesses anomalously large entropies at
temperatures below Th [6].

The classical SLH and TLH models have a similar spin
stiffness ρs, and thus a similar constant, Cξ ∼ ρs, in the
correlation length, ξ ∼ exp (Cξ

T ), as well as in the static struc-

ture factor at the ordering wave vector, S(K ) ∼ exp ( 2Cξ

T ),
with Cξ = 2πρs = 1.571 (SLH) [15] and Cξ = 4πρs = 1.748
(TLH) [5,16,17] in units of spin coupling J . However, the
constant Cξ is significantly renormalized by quantum fluc-
tuations. For the SLH, the constant is reduced by about
30% to Cξ ∼ 1.13, while in the TLH it is reduced by an
order of magnitude down to Cξ ∼ 0.1 [5,6]. The energy scale
ERC ≡ 2Cξ naturally represents the onset of RC behavior and
thus incipient order. Recent sign-blessing bold diagrammatic
Monte Carlo (BDMC) simulations still show that the thermal
states down to the lowest accessible temperatures T = 0.375
“extrapolate” to a disordered ground state via a quantum-to-
classical correspondence [7].

Here, we exploit two renormalization group (RG) tech-
niques based on thermal tensor network states (TNSs)
[18–20]: the exponential tensor RG (XTRG) which we re-
cently introduced based on one-dimensional (1D) matrix
product operators (MPOs) [20], and a tensor product operator
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FIG. 1. Uniform TLH with nearest-neighbor (NN) coupling J =
1 (which thus sets the unit of energy) and lattice spacing a = 1,
with three schematically depicted distinct regimes, separated by two
crossover temperature scales, Tl and Th: an incipient 120◦ ordered
regime for T < Tl (left), a paramagnetic regime for T > Th (right), an
intermediate regime (center), which is explored in detail in this Rapid
Communication. The thick black line indicates the 1D snake order
adopted in the MPO-based XTRG. When the system is wrapped
into a cylinder along the tilted left arrow, this is referred to as
YC geometry. The clockwise oriented circles in the center of the
system indicate chiral operators, χ ≡ 23 · Sa · (Sb × Sc ), acting on
the enclosing triangle of sites (a, b, c) in the order of the arrows,
as used for the calculation of chiral correlations between the triangle
pair A-B.

(TPO) approach [18]. XTRG is employed to simulate the TLH
down to temperatures T < 0.1 on YC W (×L) geometries
(see Fig. 1) up to width W = 6 with default L = 2W , and
open strips [OSW (×L)] with fully open boundary conditions
(OBCs) and default L = W [21].

TLH thermodynamics. In Fig. 2 we present our thermo-
dynamical results from XTRG on cylinder (YC) and open
geometries (OS), as defined earlier. In Fig. 2(a), we ob-
serve from YC5, OS6, and YC6 data that, besides a high-
temperature round peak at Th ∼ 0.55, our YC data exhibit
another peak (shoulder for OS6) at Tl ∼ 0.2. On YCs, the
peak position Tl stays nearly the same when increasing W
from 5 to 6, also consistent with the shoulder in OS6 as
well as in the experimental data. At the same time, the low-
temperature peak becomes slightly weakened, yet towards
the experimental data. When compared to the two virtually
coinciding experimental data sets, YC6, TPO, earlier HTSE
[5], and latest Padé [6,6] data [36] all agree well for T � Th

and reproduce the round peak of cV at Th.
The remarkable agreement of finite-size XTRG with exper-

imental measurements can be ascribed to a short correlation
length ξ � 1 lattice spacing for T � 0.4 [21]. Deviations from
experiments only take place below Tl , suggesting significant
finite-size effects due to larger ξ in that regime. Moreover, we
have checked the dependence of Tl on the cylinder length L
for YC6, and find that the lower peak even gets slightly en-
hanced as L increases. In addition to YC and OS geometries,
simulations on X cylinders also lead to the same scenario [21].

In Fig. 2(b), we present our data on thermal entropy, again
directly juxtaposed with experimental as well as previous
theoretical results. Whereas the YC5 data deviate at T � 0.3
due to finite-size effects, we observe good agreement between
the two experimental data sets with our TPO results down to
Tl , and with W = 6 data (OS6 and YC6) down to the lowest
temperatures in the measurements. Notably, the thermal en-
tropy per site S is about 1/3 of the high-T limit, S∞ = ln 2,

FIG. 2. Simulated thermodynamics in comparison to experimen-
tal measurements, Cui et al. (2018) [37] and Rawl et al. (2017) [36],
as well as earlier numerical results. The YC and OS data are obtained
via XTRG by retaining up to D∗ = 1000 multiplets [D ∼ 4000 U(1)
states], and by a TPO method [21] on infinite lattices, keeping up
to 40 bond states. (a) Specific heat, cV , results benchmarked against
HTSE [5,36] and experimental curves. (b) The thermal entropy S
vs T , together with the reconstructed Schwinger boson mean field
(RSBMF) [38], and “roton” contributions [16]. (c) Uniform magnetic
susceptibility Tχ0 vs T , shown with BDMC data [7]. The left
top inset compares χ0 to Curie-Weiss (CW) χ0 = C/(T + θ ) in a
wide temperature range, where C = 1/4 and θ = 2.06. In the right
bottom inset we further compare various Tχ0 values at T = 0.5.
The magnetic moment per Co is assumed �2μB, with Landé factor
g � 4.13 [37].

at temperatures as low as T � 0.2 where, for comparison,
for SLH S is almost zero at the same temperature [6]. We
emphasize that Fig. 2(b) is a direct comparison without any fit-
ting, since the only parameter J has also been determined and
thus fixed as 1.66 K in the experiments [36,37]. Nevertheless,
since the experimental data of S are determined by integrating
cV /T , starting from the lowest accessible temperature Tx,
systematic vertical shifts for the curves from Refs. [36,37] are
necessary to reach the known large-T limits. This results in the
residual entropies of S(Tx ) = 0.045 and 0.06 at temperatures
Tx = 0.06 and 0.08 K, for Refs. [36,37], respectively. Note
that the large entropy due to quantum frustration at low T
is not properly described in previous theories, e.g., RSBMF
[38,39] as shown in Fig. 2(b).

Figure 2(c) presents our results for the average mag-
netic susceptibility. Both data sets, YC5 and YC6, agree
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quantitatively with the experimental results, as well as HTSE
data [5], from high temperatures down to T � 0.1, well
beyond state-of-the-art BDMC results that reach down to T =
0.375 [7]. In the left top inset of Fig. 2(c), we also include
a Curie-Weiss (CW) fit for T � 1, resulting in the positive
Weiss constant θ ≈ 2J . In the right bottom inset, we compare
the Tχ0 value at T = 0.5, and find the various numerical and
experimental results all agree, up to three significant digits.

Two-temperature scales. As schematically depicted in
Fig. 1, we uncover a two-temperature-scale scenario in the
TLH. This confirms that the 120◦ order plus magnon ex-
citations is not sufficient to describe TLH thermodynamics.
References [40,41] argued that the TLH also has an additional
type of excitations which are gapped, with the minimum of
their quadratic dispersion at finite momentum, and referred
to these as “rotonlike excitations” (RLEs), since their disper-
sions are reminiscent of that known for vortexlike excitations
in He4 [42]. Excitations with this type of dispersion have
recently also been observed in neutron scattering experiments
of TLH materials [43,44]. RLEs evidently play an important
role in the intermediate-temperature regime in Fig. 1, but their
precise nature has not yet been fully elucidated.

RLEs, although missed in the linear spin-wave theory, can
be well captured by including 1/S corrections in calculating
the magnon dispersions [41,45,46] and dynamical correlations
[47,48]. Other proposals have also been put forward to under-
stand RLEs, including the vortex-antivortex excitation [49]
with signatures already in the classical TLH phase diagram
versus finite temperature [50–53], (nearly deconfined) spinon-
antispinon pair [16,40,54], and magnon-interaction-stabilized
excitations [47,55,56].

First, the RLE quadratic band with a finite gap � ∼ 0.55 J
contributes to a very prominent peak in the density of states
around � [16]. This coincides with the high-temperature
scale Th ∼ � here. Therefore a possible connection of RLEs
to the thermodynamic anomaly in TLH has been suggested
earlier [16,46]. Second, the RLEs themselves only start to
significantly contribute to the entropy above Tl [“Roton” entry
in Fig. 2(b), with data taken from Ref. [16]]. This suggests
that the RLEs are activated in the intermediate temperature
regime, i.e., Tl � T � Th. Consequently, the onset of incipient
magnetic order is postponed to a clearly lower tempera-
ture Tl ∼ 0.2, which is remarkably close to previous HTSE
studies, where ERC ∼ 0.2J sets the energy scale of classical
correlation [5] as discussed earlier.

Spin structure factors. In order to shed light into the
spin configurations across the intermediate regime, we turn
to the temperature-dependent static structure factor, S(q) ≡∑

j e−iq·r0 j 〈S0 · S j〉T , where r0 j ≡ r j − r0 with r j the lattice
location of site j, and S(q) ∈ R due to lattice inversion sym-
metry. There are two further high-symmetry points of interest,
q = K and M, as marked in Fig. 3(a). Up to symmetric
reflections, K ≡ ( 2π

3 , 2π√
3

) relates to 120◦ noncollinear order,

whereas M ≡ (0, 2π√
3

) relates to nearest-neighbor (stripe) AF
correlations. The latter have also been related to RLEs which
feature band minima at the M points [40,41,57].

In Figs. 3(a)–3(d) we show the overall landscape of S(q).
With decreasing temperature, S(q) changes from rather fea-
tureless in Fig. 3(a), to showing bright regions in the vicinity

FIG. 3. (a)–(d) Structure factor on YC6 × 12 lattice, i.e., with qy

pointing along the direction of the cylinder, at temperatures T = 5,
0.54, 0.2, and 0.1, respectively, [vertical gray lines in (e)]. (e) S(q)
vs T at momenta q = K and M where the legend holds for both data
sets. (f) SE vs T , where the tilted dashed lines indicate the logarithmic
scaling SE = a ln(β ) + b, where the slopes a seen for the TLH are
similar to that for the SLH (SC6 data). The vertical dashed line labels
the low-temperature scale Tl ∼ 0.2 for TLH and the only temperature
scale Ts ∼ 0.6 for SLH. SC6 × 12 stands for a W = 6, L = 12 square
cylinder, and SE scaling in the Heisenberg chain (length L = 200) is
also plotted as a comparison.

of the six equivalent K points as well as enhanced intensity
at the M points at T ∼ Th in Fig. 3(b). Even at T ∼ Tl in
Fig. 3(c), one can still recognize an enhanced intensity S(M ),
which fades out eventually when T is decreased below Tl in
Fig. 3(d). A quantitative comparison is given in Fig. 3(e).

From Fig. 3(e), we observe that S(K ) increases
monotonously as T decreases. It is featureless around Th,
and eventually saturates at the lowest T due to finite system
size. For T > Tl , S(K ) increases only slowly with decreasing
temperature, and is independent of length L. It therefore
shows no signature of incipient order there. For T < Tl , S(K )
rapidly increases, which eventually saturates with decreasing
T in an L-dependent manner, due to finite-size effects.

Furthermore, we observe from Fig. 3(e) that S(M ) develops
a well-pronounced maximum around Th. The maximum is
already stable with system size, hence can be considered a
feature in the thermodynamic limit. This is consistent with a
picture that RLEs are activated near the M points.

MPO entanglement. The two-energy-scale scenario also
leaves a characteristic trace in the entanglement entropy SE ,
computed at a bond (near the center) of the MPO [20,58,59].
Gapless low-energy excitations in 1+1D conformal field
theory (CFT) can give rise to a logarithmic increase of the

140404-3



LEI CHEN et al. PHYSICAL REVIEW B 99, 140404(R) (2019)

FIG. 4. Chiral correlations on cylinders, YC5 and YC6 (for YC4,
see Ref. [21]). The inset represents the eigenstates 	 (and 	∗)
of the chiral operator χ (Fig. 1) with nonzero eigenvalues ±√

12.
They have total spin S = 1/2, and hence are superpositions of
configurations with two-site singlet dimers (thick lines) whose signs
are fixed in clockwise order (arrow). Having α = exp(2π i/3), this
demonstrates the chiral nature.

entanglement, SE ∝ − c
3 ln T with c the conformal central

charge [20,60,61]. One can also observe logarithmic SE be-
havior in the 2D SLH model, related to the spontaneous
SU(2) symmetry breaking (at T = 0) [20], as also added for
reference (“SC6” data) in Fig. 3(f).

We find similar behavior of the SE profiles of the TLH
on YC5 and YC6 geometries in Fig. 3(f) down to T =
0.04, with bond dimension D∗ � 1000 multiplets (D ∼ 4D∗
states). Interestingly, the lower-energy scale Tl ∼ 0.2 (vertical
dashed line) signals the onset of logarithmic entanglement
scaling versus T , which, in agreement with Fig. 2(a), already
coincides for W = 5 and 6. For YC5, the window with
logarithmic entanglement is rather narrow, below of which
SE saturates as we already approach the ground state. For
YC6, the entanglement continues to increase down to our
lowest temperature T = 0.03. We associate the logarithmic
SE behavior with the onset of incipient order, which is closely
related to SU(2) symmetry breaking at T = 0 that gives rise,
e.g., to a 1/(N = LW ) level spacing in the low-energy tower
of states [2]. Concomitantly, we also observe a qualitative
change of behaviors in the entanglement spectra at Tl [21].

Scalar chiral correlations. Chiral correlations in the TLH
have raised great interest since the proposal of a Kalmeyer-
Laughlin chiral spin liquid [62]. Intriguingly, recent T = 0
studies on the fermionic triangular-lattice Hubbard model
proposed a chiral intermediate phase versus Coulomb repul-
sion which thus breaks time reversal symmetry [63]. While
debated [64], we take this as a strong motivation to also study
traces of chiral correlations in the TLH at finite T .

In Fig. 4, we present the chiral correlation 〈χiχ j〉 between
two nearest-triangles i, j in the system center, as defined

with Fig. 1. This shows that chiral correlations are weak
in both high- and low-temperature limit, while they become
strong [63] in the intermediate-temperature regime, with a
peak around Tl . Below Tl , the chiral correlations drop strongly,
giving way to the buildup of coplanar incipient order.

Discussion. Our study suggests a tight connection between
RLEs and chiral correlations in the intermediate regime Tl �
T � Th (cf. Fig. 4). In this sense, we speculate that RLEs acti-
vated in the intermediate-temperature regime indicate phase-
coherent rotating dimers, as schematically sketched with
Fig. 4. Given that the complex phase of the dimers “rotates”
by 2π , this suggests a possible link to a topological, vortexlike
nature of the RLEs. Moreover, it resembles Feynman’s notion
of rotons in terms of quantized vortices in He4 [42] via
an exact mapping of TLH to a system of hardcore bosons.
The latter further underlines the striking analogy between the
anomalous thermodynamics of the TLH and the renowned
roton thermodynamics in He4 [65,66].

The low-energy scale Tl can be tuned by deforming the
Hamiltonian, e.g., by altering the level of frustration by adding
a next-nearest J2 coupling to the TLH. We see that increasing
J2 reduces Tl , as well as the height of the corresponding
peak in the specific heat, suggesting that the RLE gap is
decreasing and the influence can thus spread down to even
lower-temperature/energy scales, in consistency with dynam-
ical studies of the J1-J2 TLH [67,68]. In addition, TLH can be
continuously deformed into the SLH, where Tl increases and
eventually merges with Th once sufficiently close to the SLH.
We refer more details to the Supplemental Material [21].

Outlook. A detailed study of the microscopic nature of
RLEs, e.g., via dynamical correlations at finite temperature, is
beyond the scope of the present Rapid Communication, and
is thus left for future research. Further stimulating insights
and possible superfluid analogies are also expected from
an analysis of the interplay of external magnetic fields and
thermal fluctuations in TLH [69,70] with clear experimental
relevance [37].
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I. FINITE-TEMPERATURE RENORMALIZATION GROUP APPROACHES

In this section, we recapitulate the two thermal tensor network approaches employed in the present study, i.e, the exponen-
tial tensor renormalization group (XTRG) based on matrix product operators (MPOs) and the tensor product operator (TPO)
approach. The former is highly controllable while restricted to finite-size systems; the latter can be applied directly in the ther-
modynamic limit, but is constrained by finite bond dimensions as well as an approximate optimization scheme. Nevertheless,
we exploit a combination of 1D/2D tensor network RG approaches to study the triangular lattice Heisenberg (TLH) model, and
find the results of the two methods consistent.

A. Exponential Tensor Renormalization Group: A matrix product operator approach

(a)

(b)
ln β2τ0τ0 4τ0 8τ0 16 τ0

ln β2ττ 3τ 4τ

ρ  n

ρ  n

ρ
  n+1

FIG. S1. (Color online) (a) Exponential vs. linear thermal evolution of the unnormalized density operator, ρ ≡ e−βH . (b) The procedure of
MPO doubling in XTRG, i.e. ρn+1 = ρn ∗ ρn corresponding to βn+1 = 2βn = 2nτ0.

We start from the MPO-based XTRG approach, which was proposed in Ref. [1]. There the (unnormalized) thermal mixed
state ρ(β) ≡ e−βH of the system is represented as 1D MPO, as depicted in Fig. S1(b). In the purification framework, ρ(β)
represents a thermo-double field, where the trace with its conjugate results in the partition function at 2β, i.e.,

Z(2β) = Tr[ρ(β) · ρ†(β)]. (S1)
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Similarly, one can compute thermodynamic quantities. While equivalent to the concept of purification, we emphasize, however,
that here we always describe the density matrix as an MPO and thus as an operator. The added benefit of using ρρ† as in Eq. (S1)
is that it always yields a positive and, thus, a physical thermal density operator at inverse temperature 2β.

The evolution of ρ(β) always starts from infinite temperature in thermal RG approaches, where the density operator is just a
trivial identity, i.e. ρ(0) = I. Conventional linear RG approaches evolve the density matrix linearly in β, i.e.,

ρ(nτ) = ρ(τ) · ρ(τ) · ... · ρ(τ)︸ ︷︷ ︸
n

· I , (S2)

where τ is a small imaginary time (inverse temperature) step size that applies to all βn+1 = βn + τ . We refer to such a scheme,
schematically depicted in the upper row of Fig. S1(a), as a linear thermal RG, see Ref. [2].

A recent insight from the logarithmic entanglement scaling in conformal field theory proves that the block-entanglement
growth in a thermal MPO is upper bounded by SE ≤ a lnβ + b with some constants a and b [3, 4]. This shows that the
entanglement entropy SE of the MPO actually changes significantly only when β changes by a factor. In light of this, the linear
evolution is realized to be a very slow cooling procedure, while a more efficient way is to follow the logarithmic temperature
scale. A particularly simple and convenient choice is β → 2β, i.e.,

ρn+1 = ρn ∗ ρn, (S3)

with ρn ≡ ρ(2nτ0), and τ0 an arbitrarily small initial starting point. The asterisk here is a reminder to emphasize the underlying
MPO product structure. This exponential procedure is illustrated in lower row of Fig. S1(a), as well as in Fig. S1(b), which
reveal manifestly the efficiency of XTRG, i.e., the system reaches the lowest temperature exponentially fast. Similarly, by its
very construction, XTRG can also start from an arbitrarily small τ0, which thus allows one to resort to a very simple but accurate
initialization of ρ0, e.g. using series expansion,

ρ0 ≡ ρ(τ0) =

nc∑
n=0

(−τ0)n

n!
Hn, (S4)

even using a cutoff as small as nc = 1 where the MPO for ρ0 is given – up to a very minor adaptation – by the MPO of H itself
with the same bond dimension. For comparison, nc = 2 only includes one further doubling of the MPO of H with itself, an
elementary MPO procedure in XTRG in any case. Overall, the techniques required to perform the expansion in Eq. (S4) have
been developed in Ref. [5], dubbed as series-expansion thermal tensor network (SETTN) method.

Naively, one might expect that the numerical cost for the step in Eq. (S3) scales like O(D6) with D the bond dimension
of MPO, and thus represents a (prohibitively) expensive calculation. The numerical cost, however, can be strongly reduced to
O(D4) by resorting to a variational procedure (see [5] for details), thus allowing larger D in the calculation. In addition, thanks
to the versatile QSpace framework [6], we have fully implemented non-Abelian symmetries in our XTRG simulations which
effectively reduces the bond dimension by switching from D states to D∗ multiplets. Conversely, for the case of SU(2) in the
present study, we can therefore keep up to D . 4×D∗ individual U(1) states.

Finally, we would like to emphasize that XTRG is not only superior to conventional linear RG in efficiency, but also in terms
of accuracy. Since the lowest temperature can be reached in an extremely speedy fashion, this results in a significantly smaller
number of numerical iterations. Hence also the truncation error accumulation is greatly reduced. A detailed comparison of
accuracies and efficiencies between XTRG and LTRG, as well as SETTN, also can be found in Ref. [1].

B. Tensor Product Operator Approach

As an alternative approach in our simulations, we also utilize the tensor product operator (TPO) approach, whose results gen-
erally are in agreement with XTRG. Here we provide details of our TPO algorithm together with more benchmark calculations.
For practical and historical reasons, we still use a numerical code that is based on a linearized scheme in the imaginary time
evolution based on Trotter decomposition in our TPO algorithm, and also does not yet exploit any symmetries. Its concepts,
nevertheless, can equally well be generalized in the spirit of doubling of the density matrix as in XTRG.

1. TPO Representation of the Density Matrix

From a numerical efficiency point of view, it is favorable to describe the thermal states of TLH via an effective hexagonal
lattice TN, as shown in Fig. S2. Furthermore, given that the TLH carries a 120◦ magnetic order at zero temperature, this naturally
divides the sites on the TLH into three sublattices, which is also required for a Trotter decomposition in any case. Therefore we
introduce three types of T tensors, Ta, Tb, and Tc on the A-, B-, and C-sites (orange, green and blue solid triangles in Fig. S2,
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FIG. S2. (Color online) The triangular lattice (dashed lines) represented in the TPO ansatz (thick lines with symbols for tensors). Since we use
Trotter decomposition within our TPO simulations, we need to differentiate sets of three tensors. There are three kinds of rank-5 tensors, i.e.
tensors with five external indices, namely Ta, Tb and Tc (orange, green, and blue triangles, respectively) located on the sites of the TLH, where
the two physical indices for bra and ket, i.e. σ and σ′, are omitted for simplicity. There are also three kinds of rank-3 intermediate tensors
Sa, Sb and Sc (orange, green, and blue circles, respectively), without physical indices, residing in the center of the face of the up-triangles
in the TLH. The geometrical bonds can be grouped by their orientation, labelled x, y and z. The two horizontal dashed blue lines denote the
XC boundary condition, where the system is wrapped up vertically (having W = 4 in the plot above). The two vertical lines indicate the
transfer matrix Tm along the cylinder where, by definition of a transfer matrix, all ‘internal’ indices, including the physical indices as well as
intermediate geometric indices, should be traced, with the only open indices the thick lines crossing the vertical dashed lines.

respectively). All of them are rank-5 tensors with 2 physical indices and 3 geometric ones. The T tensors are interconnected
to form the hexagonal tensor network (TN) in Fig. S2 along the x-, y-, z-bonds via three types of rank-3 S tensors, Sa, Sb
and Sc (orange, green and blue solid circles, respectively) with no physical indices of their own. The S tensors reside on three
distinct up-triangles, dubbed as a-, b-, and c-triangles, corresponding to the three sublattices A, B, and C, respectively. They
contain disconnected subsets of nearest-neighbor terms on the TLH which can be readily utilized for a Trotter decomposition
[cf. Eq. (S6)]. In Fig. S2 we also indicate how to wrap up the TPO on an XC, i.e., by imposing periodic boundary condition
(BC) along the vertical direction.

Throughout, we assume that the (starting) configuration of the S tensors is in the canonical form,∑
i,j

(Sα)∗ijk(Sα)ijk′ = (λαk )2δkk′ . (S5)

where the α ∈ a, b, c labels different S tensors, and the bond indices (i, j, k) denotes cyclic permutations of (x, y, z). This form
can be achieved by higher-order singular-value decomposition (HOSVD), with a residual unitary out of the S tensors absorbed
into the T tensors, and the singular values λαk ≥ 0 reabsorbed into the S tensor. The contraction in Eq. (S5) thus regenerates a
diagonal matrix with entries (λαk )2. For a more detailed discussion of HOSVD, we refer the reader to Refs. [7, 8]

2. Imaginary-time Evolution and Simple Update Scheme of TPO

We utilize the Bethe-lattice approximation, also referred to as simple update [9, 10], in the imaginary-time evolution to opti-
mize the TPO density matrix of the system from high to low temperatures. To be concrete, via a Trotter-Suzuki decomposition,
the density matrix can be expressed as

ρ = e−βH ≈
(
e−τH

A

e−τH
B

e−τH
C)N ≡ (PAPBPC)N with PΛ ≡

∏
i∈Λ

e−τhi , (S6)

where HΛ ≡
∑
i∈Λ hi, with hi the ‘triangular plaquette’ Hamiltonian on the up-triangle i in sublattice Λ ∈ A,B,C, and τ the

Trotter step (chosen as 0.01 ∼ 0.02 in practice). By construction, [hi, hi′ ] = 0 for i 6= i′ within the same sublattice i, i′ ∈ Λ.
All of the hi have identical form for the isotropic Heisenberg model considered here. We initialize with an infinite-temperature
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FIG. S3. (Color online) Procedure of a single projection step: (a) Absorptions of λmatrices, where the suggestive arrow with the λ’s indicates
the (approximate) orthonormalization of the entire Bethe TNS. (b) QR decomposition, while also splitting off the upper physical indices. (c)
Applying the triangular imaginary time step e−τh to the base tensor. (d) HOSVD of the base tensor. (e) truncate and update Sa as well as
three T tensors.

density matrix (direct product of identities), and apply the triangular operators PΛ sequentially for Λ ∈ A,B,C. This is repeated
iteratively to cool down the TPO density matrix.

To be specific, we now describe in detail the application of PA, where the tensor Sa is surrounded by the tensors Ta, Tb and
Tc (see Fig. S2 and also Fig. S3).

(i) We firstly (re)generate the diagonal λα matrices as in Eq. (S5) out of the Sα tensors surrounding the T tensors,
i.e. α ∈ {b, c}.

(ii) Next we absorb the λ’s into the T ’s to construct the tensors M [Fig. S3(a)]

(Ma)
σ′
aσa
xyz = (Ta)

σ′
aσa
xyz λbyλ

c
z, (S7a)

(Mb)
σ′
bσb
xyz = (Tb)

σ′
bσb
xyz λ

b
xλ

c
y, (S7b)

(Mc)
σ′
cσc
xyz = (Tc)

σ′
cσc
xyz λ

b
zλ
c
x (S7c)

(note that we explicitly indicate summation, i.e. there is no implicit summation here over double indices since the λ
matrices are diagonal).

(iii) Perform QR decompositions of Ma, Mb and Mc [Fig. S3(b)]

(Ma)
σ′
aσa

x′yz =
∑
x

(Qa)
σ′
a
xyz(Ra)σa

xx′ , (S8a)

(Mb)
σ′
bσb

xyz′ =
∑
z

(Qb)
σ′
b
xyz(Rb)

σb

zz′ , (S8b)

(Mc)
σ′
cσc

xy′z =
∑
y

(Qc)
σ′
c
xyz(Rc)

σc

yy′ . (S8c)

Here we have also split off the upper physical indices into the tensors Ra, Rb and Rc which significantly reduces the
computational cost in the projection-truncation procedure in the next step.

(iv) Construct the base tensor B by contracting Ra, Rb, Rc with Sa tensor

Bσaσbσc
xyz =

∑
x′,y′,z′

(Ra)σa

xx′(Rb)
σb

zz′(Rc)
σc

yy′(Sa)x′y′z′ , (S9a)

and apply the 3-site imaginary-time step P = e−τh onto the base tensor [Fig. S3(c)]

B̃σaσbσc
xyz =

∑
σ′
a,σ

′
b,σ

′
c

Pσaσbσc

σ′
aσ

′
bσ

′
c
·Bσ

′
aσ

′
bσ

′
c

xyz . (S9b)
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(v) Take HOSVD of the modified base tensor B̃ by performing independent SVD w.r.t. the index pairs (σa, x), (σb, z),
and (σc, y), providing the isometries R̃a to R̃c, respectively [Fig. S3(d)]. Then by projecting the original tensor B̃ with
P̃α ≡ R̃αR̃†α on all three indices α ∈ {a, b, c}, one obtains the updated tensor S̃,

(S̃a)xyz =
∑

σaσbσc

x′y′z′

(R̃∗a)σa

x′x(R̃∗b)
σb

z′z(R̃
∗
c)
σc

y′yB̃
σaσbσc

x′y′z′ , (S10a)

or equivalently,

B̃σaσbσc
xyz =

∑
x′,y′,z′

(R̃a)σa

xx′(R̃b)
σb

zz′(R̃c)
σc

yy′(S̃a)x′y′z′ . (S10b)

In exact numerics, the bond dimensions of S̃a would be generally enlarged by the local Hilbert space dimension d, and
thus needs to be truncated. This is achieved by discarding the smallest singular values in λ, such that P̃α becomes a
true projector, namely to the sector of dominant singular values. The kept singular values are the ones that also occur in
Eq. (S5). Without symmetry breaking, the three directions x, y, z are equivalent, and hence the S and T tensors may be
chosen symmetric under cyclic permutation of these indices, throughout. This simplifies the TPO step above in that only
a single SVD already suffices to obtain R̃ ≡ R̃a = R̃b = R̃c. In practice, the results were equivalent whether or not this
lattice symmetry was enforced.

(vi) The truncated R̃ tensors in Eq. (S10b) can now be contracted (absorbed) into the Q tensors in (iii). By also undoing step
(ii) by applying inverted λb and λc weights (note that in the above steps, only λaξ with ξ ∈ {x, y, z} was altered, but the
sets λbξ and λcξ remained the same), we obtain the updated T̃ tensors [Fig. S3(e)],

(T̃a)
σ′
aσa

x′yz =
∑
x

(Qa)
σ′
a
xyz(R̃a)σa

xx′/(λ
b
yλ

c
z), (S11a)

(T̃b)
σ′
bσb

xyz′ =
∑
z

(Qb)
σ′
b
xyz(R̃b)

σb

zz′/(λ
b
xλ

c
y), (S11b)

(T̃c)
σ′
cσc

xy′z =
∑
y

(Qc)
σ′
c
xyz(R̃c)

σc

yy′/(λ
b
zλ
c
x). (S11c)

3. Evaluation of thermal quantities

The S and T tensors from the simple update above are inserted into the 2D-TN of Fig. S2. One then needs to contract this TN
efficiently in the thermodynamic limit to obtain the partition function, and thus physical thermal properties such as free energy,
energy, magnetization, etc. This constitutes another essential challenge of the algorithm. For finite-size cylinders with a small
width W , e.g., XC4, we perform exact contractions; while for an infinite-size system, we use conventional boundary matrix
product state (MPS) technique adopted in infinite projected entanglement pair state (iPEPS) algorithms [11].

For both the XC4 and infinite-size systems, the dominating eigenvector as well as eigenvalue of the horizontal transfer matrix
Tm (i.e. with a cut in Y direction, see Fig. S2) can be obtained exactly (for the XC4) or approximately (for infinite systems) by
iteratively contracting a trial initial vector with Tm until convergence. For this, double-layer TPO, i.e. using ρ(β/2)†ρ(β/2)→
ρ(β) to enforce positivity, is orders of magnitude more expensive as compared to the relatively cheap single-layer formalism of
TPO. For the XC4 system, the single-layer TPO computations are affordable at a cost of O(D6), where D up to 60 is the bond
dimension of TPO. For the subsequent embedding into an infinite 2D TNS, the TPO cost scales as O(χ3D3), with χ the bond
dimension of the boundary MPS. In practice, we choose D up to 40 and χ ∼ 4D, which is affordable, yet also ensures data
convergence over the parameter χ.

II. TRIANGULAR LATTICE ANTIFERROMAGNET

A. Benchmark results on XC4 geometry

In contrast to YC geometries which correspond to a cylinder with straight ends, the XC geometry results in a cylinder with
zigzag ends [12]. Also note that the YC systems have a unique shortest distance path along the nearest-neighbor bonds of the
TLH around the circumference when starting from an arbitrary but fixed lattice site. This can favor 1D RVB stripe structures
around the circumference, in contrast to XC systems. Here therefore we apply both methods above to an XC4 geometry, i.e., of
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Th ~0.55
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XTRG
HTSE-2D

XC4

(a) XC4 (b)

T=0.03(c) XC4， (d) XC6, T=0.03

FIG. S4. (Color online) (a) XC geometry where the dark blue lines indicate the MPO path in the XTRG simulations. (b) Comparison of
specific heat cV between TPO and XTRG on XC4 and, for reference, also HTSE-2D, i.e., not constrained to the XC4 geometry. The high
temperature scale, Th ∼ 0.55, indicates the high temperature round peak, while the low temperature scale, T ∗l ∼ 0.28, is slightly higher than
Tl ∼ 0.20 for wider systems, e.g., YC6 in the main text as well as XC6 below. (c,d) illustrate the bond energy textures on XC4 (no vertical
stripes) and XC6 (vertical stripes) geometries, consistent with T = 0 DMRG simulations [12]. The explicit symmetry breaking in the vertical
direction by forming stripes, here in (d), at finite temperature is necessarily linked to the choice of the open boundary edges.

width W = 4, as shown in Fig. S4(a). For XTRG, we use our default aspect ratio L/W = 2, and map the 2D lattice into a 1D
structure along the snake line also shown in Fig. S4(a). For the TPO method, we optimise the tensors T and S directly in the
thermodynamic limit, and connect the local tensors on an infinitely long XC4 lattice.

In Fig. S4(b), the specific heat, cV , of XC4 obtained by XTRG by retaining D∗ = 400 multiplets, and by TPO with different
bond dimensions D up to 60, is presented in comparison with HTSE. The two temperature scales are apparent in both cases,
although the low temperature peak appears at T ∗l ∼ 0.28 somewhat above the value 0.20 obtained on wider YC geometries. This
is due to strong finite-site effects on XC4, which will be further analyzed shortly by calculating the static structure factor S(q).
Another distinct feature is that the lower-temperature peaks in TPO curves are significantly lower than for the XTRG results.
This may also hint a smaller finite-size effect in the TPO approach (due to its simple update scheme).

In Fig. S5(a-f), we visualize the static structure factors S(q) for XC4 in the first BZ at various temperatures, which are
marked by grey solid lines in Fig. S5(g) together with the corresponding panel reference [(a-d) from TPO, and (e,f) from XTRG
calculations]. When lowering the temperature, the triangular lattice symmetry is broken around Th due to the finite system
size, as manifested by the slightly different behavior of the data for the otherwise equivalent points M1 and M2 [indicated by
markers in Fig. S5(a)]. For temperatures below Th, one can observe that S(M1), which points perpendicular to the direction
of the cylinder, turns brighter whereas S(M2) and S(M3) start loosing weight. This indicates a tendency for enhanced AF, i.e.
Néel like correlations around the circumference of the cylinder. Note that for XC4 one has equivalent, i.e. non-symmetry broken
shortest zig-zag paths around the circumference of the cylinder [vertical direction in Fig. S4(c)].

In Fig. S5(g) we also directly compare S(q) vs. T at M1,2 and K from both methods, XTRG as well as TPO. At the K and
M2 points, the data from the two methods coincide, while for M1, the XTRG data reaches the low-T limit faster. This may be
attributed to a stronger (or cleaner) finite-size effect in XTRG, as compared to the TPO data which, despite being evaluated on a
cylinder, originates from an infinite-system simple update. A similar conclusion was already drawn from the data in Fig. S4(b)
regarding the higher cV peak for XTRG at T ∗l .

B. Specific heat, susceptibility, and structure factor for cylinders up to W = 6

We present our XTRG results on XC6 and YC6 systems for the specific heat and static susceptibility in Fig. S6, and for the
static structure factor in Fig. S7. Overall, we expect clearly reduced finite-size effects as compared to the width W = 4 systems.

The specific heat, cV , on XC6, shown in Fig. S6(a), agrees well with both YC6 and HTSE in the high temperature regime,
T & Th. The observed lower energy scale in this data is stable around Tl ∼ 0.2 also for this wider system. In Fig. S6(b),
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FIG. S5. (Color online) Static structure factor S(q) of XC4, i.e., with qx pointing along the cylinder, computed by TPO (a-d) and XTRG (e,f)
at various temperatures, T ' 2, 0.8, 0.3, 0.125, as also indicated by the vertical solid gray lines in (g). While only having W = 4 discrete
qy momenta due to periodic BC, we interpolate by adding further intermediate points qy in the Fourier transform in S(q) to obtain for overall
smoother results. The vertical dashed lines in (g) indicate Tl and Th. Overall, the TPO data in (c,d) shows good agreement with the XTRG data
in (e,f) at the same respective temperatures. (g) S(q) at q = K and two types of M points [cf. panel (a)] vs. T , again with good quantitative
agreement between TPO and XTRG.

we compare our XTRG data for the magnetic susceptibility, χ0 vs. T , on XC6 with other results including two experimental
measurements, XC4, YC5 and 6, HTSE, etc. A good agreement between XC6 data and experimental results can be observed,
although YC6 produces χ0 mostly close to experiments and constitutes the overall most suitable geometry.

From Figs. S6(a,b) we can conclude that although XC6 has many features in common with YC6, it suffers larger finite-size
effects and is less favorable in approximating the thermodynamic limit. This can be directly seen in the bond energy texture
on XC6 in Fig. S4(d). Although being measured at a finite temperature, it is consistent with previous DMRG studies of the
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FIG. S6. (Color online) (a) Specific heat cV on XC6 and YC6 lattices. (b) Static magnetic susceptibility χ0 vs. T . We also added HTSE-2D
data and other data from the literature for reference, as well as a simple Curie Weiss (CW) estimate (same as in Fig. 2 in the main paper). For
a discussion of numerical cost, i.e. the growth of the block entanglement SE with decreasing T , see, e.g., Fig. 3(f) in the main text.
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FIG. S7. (Color online) Comparison of structure factor between (a) XC6×12 and (b) YC6×12 geometries at T = 0.103. The direction along
the cylinder corresponds to qx and qy , respectively. XC6 shows a higher intensity around M1 which indicates a tendency to form stronger
bonds around the circumference of the cylinder, i.e., stripe order. Consequently, XC6 has a lower S(K) as compared to YC6, shown more
explicitly in (c).

ground state properties [12], where spontaneous zig-zag stripe formation around the circumference of the cylinder is found for
XC systems of width 2n+ 4, with n an integer.

The structure factor, S(q), is analyzed in Fig. S7, where XC6 [Fig. S7(a)] is compared to YC6 [Fig. S7(b)]. By reaching
temperatures as low as T ∼ 0.1 < Tl, we expect signatures of incipient 120◦ order to be present in both systems. For YC6
cases, there exist two M points (M1 and M3) which have strong intensity, while the remaining one, S(M2), is weak at low
temperatures, although all three M points have anomalous enhancement at T around Th, due to RLE activation. In XC6, there is
one strong S(M1) as compared to weaker M2 and M3 points, indicating a strong tendency for stripe order [see also Fig. S4(d)],
which is largely absent in YC6 case. Consequently, the strength of theK-point correlations in XC6 is impaired as well compared
to the YC6 case [see Fig. S7(c)]. The situation here is thus opposite to the width W = 4 case, where YC4 shows a stripe phase,
whereas XC4 does not.

C. Internal energy

In Fig. S8, we analyze the internal energy per site, u(T ) ≡ 1
N 〈H〉T with cV (T ) ≡ ∂u

∂T = −β ∂u
∂ ln β [1], versus temperature

and compare it to the ground state DMRG results on the same geometry. We show data for various geometries, including the
YC6×12, OS6×6, and small YC4×8 lattices. It can be observed that the energy data are well converged with bond dimension
D∗ = 1000 (for YC6 and OS6) and D∗ = 400 (YC4), which correspond to nearly D ∼ 4 × D∗ in terms of U(1) states (see
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FIG. S8. (a) Internal energy, u vs. T , on YC6 × 12, OS6 × 6, and YC4 × 8 lattices. The legend specifies the number of multiplets D∗

followed by the corresponding number of U(1) states. DMRG data ug (horizontal markers) represent ground state results where we kept up
to D∗ = 2000 SU(2) multiplets. (b) Same data as in (a) but relative to ug on a log-log plot, from which suggests algebraic convergence for
OS6 and YC6. The latter (YC6, blue), however, is not yet fully converged below T . 0.1 (dashed regime) since it still changes with D∗. In
contrast, YC4 already shows exponential convergence to the ground state energy for the lowest temperatures which may already be attributed
to the finite size energy gap, as indicated by the exponential fitting. The OS6 data (purple) exhibits a quasi-algebraic behavior below Tl. The
black dotted line line is a guide to the eye and indicates the expected ∝ T 3 at low T for large enough systems [e.g., cf. Fig. S13].

legend).
At low temperature, the u(T ) curves already closely approach the zero-temperature limits ug [horizontal markers Fig. S8(a)]

obtained by ground state density matrix renormalization group (DMRG) calculations. For a strong comparison, we replot
the same XTRG data in Fig. S8(b), but now relative to the DMRG ground state energy ug on a log-log plot. The data for
the intermediate to large temperature regime, T > Tl, scales similarly for all boundary conditions (with minor offsets due
boundaries). As T decreases below Tl, the YC4 data converges exponentially, in agreement with the stripe-phase scenario
revealed in Ref. [1]. In contrast, the OS6 and YC6 data collapse onto each other down to temperatures well below Tl (here the
upturn in the YC6 system (blue data) is attributed to finite-D accuracy). Note that from the OS6 data in Fig. S8(b), one may
estimate an approximate power-law behavior.

D. System size dependence of low-temperature scale Tl

In Fig. S9 we provide the scaling of the lower characteristic temperature Tl vs. length L for various YC6 lattices. As
L increases, the lower peak/shoulder structure only slightly shifts towards lower temperatures, while it also becomes more
pronounced, suggesting stronger 120◦ correlations in the system [in accordance with S(K) data in Fig. 3(e) in the main text].

In the inset of Fig. S9 we plot the estimated position for Tl vs. 1/L, and also indicate the position of shoulder-like structure in
experimental curves [13]. Note that there exists some arbitrariness in determining Tl from peak/shoulder structure, as reflected
in the error bars. Furthermore, in order to reduce the finite-length effect in YC6 data, we take the difference between YC6× 12
and YC6× 9 data (divided by the 6× 3 extra sites) as a YC6 “bulk” results, whose lower peak is even more pronounced and the
corresponding Tl well agrees with experiments, up to error bars.

E. Correlation length vs. temperatures

Assuming the Ornstein-Zernicke form of the static structure factor S(q) = S(q0)/[1 + ξ2(q − q0)2], in the close vicinity of
the ordering momentum q0, this defines the correlation length [14, 16] as

ξ2 ∼= 1
2S(q)

∂2S(q)
∂q2

∣∣∣
q=q0

=
c2q0

2S(q0)

∑
j

r2
0j e
−iq0·r0j 〈S0 · Sj〉 , (S12)

where r0j ≡ rj − r0 with rj the lattice location of site j, with j running over the whole lattice, and again r0 fixed in the center
of the system. The constant c2q0 ≡ 〈cos2 α0j〉 ∈ [0, 1] accounts for an angular average with α0j the angle in between q0 and r0j .
In the present context of the TLH, we chose q0 = K as the ordering momentum which leads to c20 = 1/2.
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FIG. S9. Specific heat on YC6 for three different lengths, also compared to experimental data. The ‘YC6 bulk’ is obtained by subtracting
YC6×9 from YC6×12 data, in order reduce the effects from the open boundary. The inset shows the lower characteristic temperature Tl
vs. 1/L with estimated error bars from the determination of Tl for the peak/shoulder structure. The data point at 1/L = 0 is taken from
‘YC6 bulk’ curve which, indeed, approximately represents an extrapolation in 1/L → 0, as suggested by the dotted line. In particular, to
determine Tl in experimental curves, we assume the shoulder is sitting on top of an approximately linear slope of the Th peak: take Tl as
the temperature where the curvature of cV (T ) is maximally negative (i.e., the local minimum of the curvature around the shoulder). Note the
sparse experimental data has been interpolated by 4th to 6th order polynomial fittings.

T

10 5, D*=800
D*=1000
12 6, D*=800
D*=1000
15 6, D*=600
D*=800
HTSE

Th~0.55T l~0.2
~T-1/2e0.1/T

FIG. S10. Correlation length, ξ, on various YC cylinders, together with HTSE-2D data [14] for comparison. For reference, we also added the
exponential increase ξ ∝ T−1/2eTl/2T predicted by field-theoretical arguments (red dotted line) [15].

From Fig. S10, one observes that the correlation length ξ remains very short, in that it is below one lattice spacing down to
temperatures even below Th ∼ 0.55 also for the wider systems, in agreement with HTSE-2D in the thermodynamic limit. At
lower temperatures, the correlation length gets enhanced with increasing widthW and length L. Given the very short correlation
length of just a very few lattice spacings for Tl < T < Th, incipient order can be ruled out in this intermediate regime. Instead,
we associate this regime with activated RLEs (with minima at M ), which suppresses the long-range order formation at K and
thus leads to a short ξ. As temperature is lowered further, the correlation length ξ is expected to increase exponentially. As for
our XTRG data, ξ keeps increasing down to T ∼ 0.1, where it saturates due to the finite system size.

F. Entanglement spectra vs. temperatures

In Fig. S11, we analyze the “renormalization-group” flow of the MPO entanglement spectra of the thermal state, ρ(β) vs. the
logarithm of the energy scale T , for a vertical cut across the middle of a YC6×12 system, with focus on the two temperature
scales Tl and Th. This is significantly more detailed than the single number in terms of the MPO entanglement entropy SE , e.g.,
as analyzed in Fig. 3(f) in the main paper. The entanglement spectra are also derived from the normalized ‘purified’ thermal
state |ρ(β)〉 and its reduced density matrix R(β)I,I′ ≡

∑
J |ρI,J〉〈ρI′,J | [1], where I, J represent degrees of freedom in left
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FIG. S11. (Color online) (a) Entanglement spectrum, ES , across a vertical cut in the middle of a YC6×12 system versus temperature T ,
where the color differentiates the SU(2) spin symmetry sectors as indicated in the legend. Two temperature scales Tl ∼ 0.2 and Th ∼ 0.55 are
indicated with the grey dashed lines. (b) The same ES data, yet scaled by ln (1 + T/a) with a ∼ Tl. With this the high temperature spectra
in (a) with ES ∼ lnT [1] become horizontal lines. At low T < Tl, empirically, the chosen scale factor 1/ ln(1 + T

Tl
) ∼ 1/T still represents

a sensible scaling for the lowest levels, thus suggesting ES ∼ T there.

Tl

FIG. S12. (Color online) Entanglement spectrum (ES) of entanglement Hamiltonian HES with SU(2) spin quantum number S at (a)
T = 0.05, (b) T = 0.19 ' Tl, and (c) T = 0.53 ' Th. The dashed lines are guide for eyes, indicating the increasing slopes of the “towers”
with increasing temperatures. (c) Counting the number of states N (ES ≤ Er) for Er = 3, 4, 5, 10, at various temperatures. It is observed
that N increases as T decreases, and for a range of intermediate energies, say, Er = 4, 5, N scales approximately polynomially vs. T for
T < Tl, with ∼ T−0.44 (see text) shown as guid to the eye.

and right half of the system, respectively, and β is the inverse temperature. Then, the entanglement spectrum, ẼS , at a given
inverse temperature, β, is obtained by diagonalizing HES ≡ − lnR. These are analyzed relative to their ‘ground-state energy’,
i.e., ES ≡ ẼS − E0.

In the entanglement spectra ES in Fig. S11, the different symmetry sectors of the MPO virtual bond states are differentiated
by color as indicated in the legend. We show eigenstates for each spin symmetry sector, up to a largest ‘energy’ ES ≤ 25,
which corresponds to a weight in the density matrix as low as ≥ e−25 ∼ 10−11. From Fig. S11, we can see that, while in the
high temperature regime the levels in ES are rather far apart (i.e. the MPO is close to a product state), they become much more
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FIG. S13. (Color online) Low-temperature specific heat cV from the spin wave analysis, with and without 1/S corrections [17], where the gray
dashed line indicates the T 2 behaviors of cV at low T due to the linear spin wave dispersion Ek ∝ k for small k. Inset shows the difference
between the two approximations. The vertical markers indicate the two energy scales Tl and Th as specified.

dense with decreasing temperature. They show systematic qualitative changes, and in particular line-crossings in the ‘low-energy
sector’ around Tl and Th. For T < Tl, the entanglement spectra show a systematic (algebraic) approach towards the ‘ground
state’, with Fig. S11(b) roughly suggesting ES ∼ T for the lowest levels once T < Tl. These distinct behaviors of ES in
different temperature regimes are consistent with the existence of two temperature scales.

In Fig. S12(a-b), we study the spectroscopy of the entanglement Hamiltonian HES. The entanglement levels are plotted with
respect to different symmetry labels from S = 0 up to S = 4, at T = 0.19 and 0.05, respectively. As indicated by the gray
dashed lines, the lowest level in each symmetry sector decreases, roughly algebraically as we cool down the system, while also
the slope systematically decreases. As a consequence, the number of states with weights ES < Er, denoted by N (ES ≤ Er),
increases as T decreases. We plot N (ES ≤ Er) in Fig. S12(d) with Er = 3, 4, 5, 10. From this we observe that N (ES ≤ Er)
increases roughly polynomially when T ≤ Tl, indicated by the green dashed lines. If furthermore, we assume rather heuristically
that for intermediate Er, say, Er = 4 or 5, each level in the range ES ≤ Er contributes crudely equally to the thermal entropy
SE of the entanglement Hamiltonian HES system, this is consistent with an expected log-scaling of the entanglement entropy,
SE ∼ lnN ∝ aN lnβ + b. And, indeed, this hand-waving argument agrees with the scaling SE ∝ a lnβ + b for T ≤ Tl,
as observed and discussed with Fig. 3(f) in the main text, even with roughly consistent slope aN ≈ a = 0.44, also shown in
Fig. S12(d) as guide to the eye.

G. Spin wave analysis

Linear spin wave theory (LSWT) can very well capture the 120◦ order in the ground state of TLH [18–20]. It is thus also
believed that LSWT is able to describe thermodynamics at very low temperatures. Here we take the spin wave spectra with and
without 1/S corrections [Eq. (12) from [17]], compute the specific heat according to the conventional Bose-Einstein distribution
of magnon gas, and draw a comparison to our two-temperature-scale scenario.

In Fig. S13, we can see that the cV curve with 1/S corrections also exhibit a “shoulder-like” structure at around Tl, below
which it gradually changes into a T 2 scaling, coinciding there with pure LSWT results at low T .

The 1/S correction gives rise to the difference ∆cV which, as manifested in the inset of Fig. S13, strongly affects the
intermediate temperature regime in between Tl and Th. ∆cV starts to decrease rapidly below T ∼ Tl, and the influences of
RLEs as well as other renormalization effects in the spectrum due to 1/S corrections are largely absent below T = 0.1. This
is consistent with our spin structure factor as discussed with Fig. 3(c-e), where SM , representing the activation of RLEs, also
becomes clearly weakened below Tl.

The LSWT analysis of cV and its 1/S correction in Fig. S13 thus further confirms the existence of two temperature scales,
and, in particular, the lower one Tl. Overall, Fig. S13 provides useful complementary thermal data to our finite-size XTRG
results.
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FIG. S14. (Color online) (a) Chiral correlations compared to (b) specific heat cV in YC4 for various lengths L. In (a) we consider correlations
between nearest- (NN) and next-nearest neighboring (NNN) triangles in the system center [i.e., using i = A and j = B,C as shown in the
inset of (b) with the triangles taken in the system center [cf. Fig. 1]. The disappearance of the low-energy regime for 1/L → 0 is specific to
YC4 [1]. The inset shows finite size scaling of the peak position, Tp, in the chiral correlations 〈χiχj〉, as well as of the temperature scale, T ∗l ,
derived from the lower-temperature peak in cV from (b).

H. Chiral Correlations on YC4

This section complements the analysis of chiral correlations in Fig. 5 in the main paper, in that we focus on the case of YC4
which is special, in that T ∗l scales to zero as L → ∞ (hence the asterisk with Tl). From Fig. S14 we observe that short-ranged
(NN and NNN) chiral correlations build up and become strong at intermediate temperatures, T ∗l . T . Th. Clearly, the peak
at Tp in the chiral correlations [Fig. S14(a)] correlates with the low-energy scale T ∗l derived from cV [Fig. S14(b)]. Below
T ∗l , chiral correlations become negligibly small, which is also directly confirmed by DMRG simulations (not shown). While
YC4 also enters an anomalous liquid-like regime for T < Th, it becomes a stripe phase below a low-energy scale T ∗l which
diminishes to zero in the thermodynamic limit as demonstrated in the inset to Fig. S14(a) [1]. This is qualitatively different from
Tl ∼ 0.20 in wider cylinders and strips, where it becomes a stable temperature scale vs. various system sizes and boundary
conditions as shown and discussed with Fig. 2(a). Importantly, Fig. S14 demonstrates that the peak Tp in the chiral correlations
closely follows the low-energy scale Tl derived from the specific heat. In this sense we conclude that they can be ascribed to the
same crossover scale that separates the low-energy (here stripe) order from the intermediate regime and, moreover, that finite
chiral correlations constitute a characteristic property of the intermediate regime.

III. TUNE SPIN FRUSTRATION BY DEFORMING THE TRIANGULAR-LATTICE HEISENBERG MODEL

A. J1-J2 Triangular lattice Heisenberg model

To shed further light on the two-temperature-scale scenario, we deform the TLH by including a small but finite next-nearest
coupling J2,

H = J1

∑
〈i,j〉

~Si~Sj + J2

∑
〈〈i,j〉〉

~Si~Sj , (S13)

having J1 ≡ J = 1. A small AF coupling J2 > 0 adds frustration, and hence suppresses 120◦ ordering on a three-sublattice
configuration [21–24], while J2 < 0 reinforces the ferromagnetic correlations between two spins on the same 120◦ sublattice.

In Fig. S15 we compare the specific heat cV of YC6 × 9, for J2 = 0 with J2 = ±0.05. From the temperature dependence
in Fig. S15(a) we can see that as we change J2 from −0.05 to 0.05, the Tl peak systematically shifts to lower temperatures,
while at the same time, it weakens. In contrast, the broad peak at Th keeps its position while varying J2. The overall downward
shift for temperatures T & 0.2 and upward shift for very small temperatures suggests that with increasing J2, more entropy is
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FIG. S15. (Color online) (a) Specific heat, as well as thermal entropy (inset), of J1-J2 TLH, with J2 = −0.05, 0, and 0.05, on YC6 × 9
geometry. (b,c,d) show the structure factors at T ' 0.53 near the high temperature scale Th.

transferred to lower temperatures. Indeed, as shown in the inset of Fig. S15(a), compared to J2 = 0 case, thermal entropy S at
T = 0.1 is increased (decreased) by ∼ 15%, when J2 = 0.05 (−0.05) is introduced.

The sensitivity of the structure factor on J2 is analyzed in Figs. S15(b-d). As expected, increasing J2 significantly reduces the
weight S(K), but enhances the weight S(M). This is consistent with dynamical calculations of the J1-J2 TLH [25], as well as
that includes spin XXZ anisotropy [26], which show that RLEs are renormalized downward by increasing J2 > 0, giving rise to
an extended dispersive continuum above the “roton” minimum.

B. Frustrated square-lattice antiferromagnet

Besides adding J2 in to TLH, we can also deform the Hamiltonian towards the square lattice Heisenberg (SLH) model via
a tuning parameter Jt where Jt = 1 corresponds to the TLH, and Jt = 0 to the SLH. The corresponding Hamiltonian of the
frustrated SLH is given by,

H = J
∑
〈i,j〉

~Si · ~Sj + Jt
∑
〈〈i,j〉〉

~Si · ~Sj , (S14)

where 〈., .〉 denotes nearest-neighbor, and 〈〈., .〉〉 next-nearest neighboring pairs of sites along one of the diagonals only [e.g., as
depicted in the inset to Fig. S16(c)]. Their respective coupling strengths are given by J and Jt, where again J = 1 sets the unit
of energy, unless specified otherwise. The system features square lattice Néel order at T = 0 for Jt = 0, leading to low-T RC
behavior [27]. Finite Jt > 0 introduces frustration in the system, which leads to an abrupt onset of an incommensurate spiral
wave at some critical Jct ∼ 0.79 [12]. For the isotropic TLH at Jt = 1 this turns commensurate and yields the familiar 120◦

order. Our results for the SLH on a 6× 12 cylinder (i.e. L = 2W = 12) are summarized in Fig. S16, where we vary Jt from 0
to 1 (see legend), with D∗ = 500 multiplets kept.

The specific heat cV is shown in Fig. S16(a). The tracked lowest temperature scale, i.e., global peak position for Jt ≤ 0.8 and
the position of the lower shoulder for Jt > 0.8, is plotted as ‘Tl’ in the inset. This scale starts from about Tl = Th ∼ 0.6 for
Jt = 0 (i.e., the pure SLH case). While Tl decreases gradually with increasing Jt, at the same time a shoulder emerges at the
original peak position Th which only marginally moves to smaller values. At around Jt ' 0.8, the single peak in the specific
heat for small Jt is about to fully split into two peaks. There Tl has already nearly also reached its final value of 0.2 for Jt = 1,
i.e., the isotropic TLH. Interestingly, the critical value for which ground state calculations observe the onset of incommensurate
correlations, Jct ∼ 0.79 [12], roughly coincides with the Jt for which a well separated two-peak structure has developed at finite
T (for the finite size systems here even with a minimum in between), where Tl is already also close to its final value of 0.2 for
the TLH.

To understand the physical meaning of the temperature scales and their behaviors under various Jt, we look at the static
structure factors, S(C) and S(M), in Fig. S16(b). The points C and M in reciprocal space are pointed out in the inset. We
observe that, for Jt . Jct , the AF magnetic order [at C = (π, π), i.e., Néel order] melts most rapidly at the characteristic
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FIG. S16. (Color online (a) Specific heat data for the frustrated SLH on a 6× 12 cylinder with Jt varied from 0 to 1, keeping up to D∗ = 500
multiplets [1790-2010 U(1) states]. The inset traces the low-temperature peak (or shoulder) in the cV curves. (b) Static structure factor S(q)
at C = (π, π) (lines with markers) andM = (0, π) (solid lines). The constant offset towards large T is a trivial finite size effect: it is the same
for S(M) and S(C) (note the significantly different vertical scales for S(C) [left axis] and S(M) [right axis]) and comes from the rj = r0
contribution in the definition of the structure factor, which gives a constant 〈S2〉T = 3

4
. (c) Thermal entropy S decreases from ln 2 as T is

lowered. The thermal entropy moves to larger values as the frustration is turned on via Jt.

temperature Tl. The magnetization per site may also be estimated in the present case by m ≈
√
S(C)/N (note the slightly

different normalization due to angular average as compared to the TLH). For Jt = 0, this yields m ∼ 0.39 which overestimates
the thermodynamic limit m ∼ 0.31 [28] due to finite-size effects.

The stable large energy scale at Th relates to different physics, here argued to be RLEs. This argument can be solidified by
analyzing the structure factor at the point M = (0, π) which, indeed, shows anomalous enhancement at intermediate tempera-
tures for finite Jt. Note that the position of the maximum in S(M) changes from ∼ 1.5 for Jt = 0.6 to the value of Th ∼ 0.55
itself for Jt = 1.

In Fig. S16(c), finally, we still present data for the thermal entropy S for various Jt values. From this we can see an anomalous
enhancement of the entropy as Jt & Jct ∼ 0.8. It is remarkable to find the zero temperature commensurate-incommensurate
transition also reflected here as a (residual) entropy enhancement in our thermal calculations at our lowest temperatures.

In summary, the specific heat as well as the static structure factor data in Fig. S16 provide further strong support for the
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emergence of a two-temperature-scale scenario at sufficiently large frustration Jt, including the Jt = 1 TLH.

[1] B.-B. Chen, L. Chen, Z. Chen, W. Li, and A. Weichselbaum, “Exponential thermal tensor network approach for quantum lattice models,”
Phys. Rev. X 8, 031082 (2018).

[2] W. Li, S.-J. Ran, S.-S. Gong, Y. Zhao, B. Xi, F. Ye, and G. Su, “Linearized tensor renormalization group algorithm for the calculation of
thermodynamic properties of quantum lattice models,” Phys. Rev. Lett. 106, 127202 (2011).

[3] T. Barthel, “One-dimensional quantum systems at finite temperatures can be simulated efficiently on classical computers,”
arXiv:1708.09349.

[4] J. Dubail, “Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics
in 1 + 1D,” J. Phys. A: Math. Theor. 50, 234001 (2017).

[5] B.-B. Chen, Y.-J. Liu, Z. Chen, and W. Li, “Series-expansion thermal tensor network approach for quantum lattice models,” Phys. Rev.
B 95, 161104 (2017).

[6] A. Weichselbaum, “Non-abelian symmetries in tensor networks: A quantum symmetry space approach,” Ann. Phys. 327, 2972 (2012).
[7] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM Journal on Matrix Analysis and

Applications 21, 1253 (2000).
[8] Z. Y. Xie, J. Chen, J. F. Yu, X. Kong, B. Normand, and T. Xiang, “Tensor renormalization of quantum many-body systems using projected

entangled simplex states,” Phys. Rev. X 4, 011025 (2014).
[9] H. C. Jiang, Z. Y. Weng, and T. Xiang, “Accurate determination of tensor network state of quantum lattice models in two dimensions,”

Phys. Rev. Lett. 101, 090603 (2008).
[10] W. Li, J. von Delft, and T. Xiang, “Efficient simulation of infinite tree tensor network states on the Bethe lattice,” Phys. Rev. B 86,

195137 (2012).
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