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Multiloop functional renormalization group for general models
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We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point
vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously
introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018)] and provides the
necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in
the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical
algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of
the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.
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I. INTRODUCTION

Two of the most powerful generic methods in the study
of large or open many-body systems at intermediate coupling
strength are the parquet formalism [1,2] and the functional
renormalization group (fRG) [3,4]. As is commonly known,
these frameworks are intimately related. However, their equiv-
alence has only recently been established via multiloop fRG
(mfRG) flow equations, introduced in a case study of the x-ray-
edge singularity [5]. In this paper, we consolidate this equiva-
lence and formulate the mfRG flow for the general many-body
problem. For this, we generalize the multiloop vertex flow from
Ref. [5], and, to ensure full inclusion of the self-energy, we
present two multiloop corrections to the self-energy flow. Al-
together, the mfRG flow is shown to fully generate all parquet
diagrams for the vertex and self-energy; it is thus equivalent to
solving the (first-order) parquet equations in conjunction with
the Schwinger-Dyson equation (SDE) for the self-energy.

The parquet equations (together with the SDE) provide
exact, self-consistent equations for the four-point vertex and
self-energy, allowing one to describe one-particle and two-
particle correlations [1]. The only input is the totally irreducible
(four-point) vertex. Approximating it by the bare interaction
yields the first-order parquet equations [2] (or parquet
approximation [1]), a solution of which generates the so-called
parquet diagrams for the four-point vertex and self-energy.

The functional renormalization group provides an infinite
hierarchy of exact flow equations for vertex functions, depend-
ing on an RG scale parameter �. During the flow, high-energy
(� �) modes are successively integrated out, and the full
solution is obtained at � = 0, such that one is free in the
specific way the � dependence (regulator) is chosen [3,4]. If
one restricts the fRG flow equations to the four-point vertex
and self-energy, one is left with the six-point vertex as input.
In the typical approximation, the six-point vertex is neglected,
implying that all diagrams contributing to the flow are of the
parquet type [5,6]. However, due to this truncation, the flow
equations (for both self-energy and four-point vertex) no longer
form a total derivative of diagrams with respect to the flow
parameter�. This limits the predictive power of fRG and yields
results that actually depend on the choice of regulator.

The mfRG corrections to the fRG flow simulate the effect
of six-point vertex contributions on parquet diagrams, by
means of an iterative multiloop construction. They complete
the derivative of diagrams in the flow equations of both
self-energy and four-point vertex, which are otherwise only
partially contained. As it achieves a full resummation of all
parquet diagrams in a numerically efficient way, the mfRG flow
allows for significant improvement of fRG computations and
overcomes weaknesses of the formalism experienced hitherto.

The paper is organized as follows. In Sec. II, we give the
setup with all notations, before we recall the basics of the
parquet formalism in Sec. III. In Sec. IV, we present the mfRG
flow equations for the four-point vertex and self-energy. We
show that they fully generate all parquet diagrams to arbitrary
order in the interaction and comment on computational and
general properties of the flow equations. Finally, we present
our conclusions in Sec. V.

II. SETUP

We consider a general theory of interacting fermions,
defined by the action

S = −
∑
x ′,x

c̄x ′
[
(G0)−1]

x ′,xcx − 1

4

∑
x ′,x,y ′,y

�0
x ′,y ′;x,y c̄x ′ c̄y ′cycx,

(1)

with a bare propagator G0 and a bare four-point vertex �0,
which is antisymmetric in its first and last two arguments. The
index x denotes all quantum numbers of the Grassmann field
cx . If we choose, e.g., Matsubara frequency, momentum, and
spin, with x = (iω,k,σ ) = (k,σ ), and consider a translation-
ally invariant system with interaction U|k|, the bare quantities
read

G0
x ′,x

e.g.= G0
k,σ δk′,k δσ ′,σ , (2a)

−�0
x ′

1,x
′
2;x1,x2

e.g.= (
U|k′

1−k1|δσ ′
1,σ1

δσ ′
2,σ2

−U|k′
1−k2|δσ ′

1,σ2
δσ ′

2,σ1

)
δk′

1+k′
2,k1+k2

. (2b)

Correlation functions of fields, corresponding to time-
ordered expectation values of operators, are given by the path
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FIG. 1. (a) Dyson’s equation relating the full propagator Gx,x′

(black, thick line) to the bare propagator G0 (gray, thin line) and
the self-energy � (circle). (b) First-order diagram for the self-energy
using the bare vertex �0 (solid dot).

integral
〈
cx1 · · · c̄xn

〉 = 1

Z

∫
D[c̄]D[c] cx1 · · · c̄xn

e−S, (3)

where Z ensures normalization, such that 〈1〉 = 1. Two-point
correlation functions are represented by the full propagator
G. Via Dyson’s equation, G is expressed in terms of the
bare propagator G0 and the self-energy � [cf. Fig. 1(a)],
according to

Gx,x ′ = −〈cxc̄x ′ 〉, G = G0 + G0 · � · G, (4)

using the matrix product (A · B)x,x ′ = ∑
y Ax,yBy,x ′ .

In a diagrammatic expansion, the lowest-order contribution
to the self-energy is given by the diagram in Fig. 1(b), making
use of the bare objects G0, �0. For later purposes, we define a
self-energy loop (L) as

L(�,G)x ′,x = −
∑
y ′,y

�x ′,y ′;x,yGy,y ′ . (5)

With this, we can write the first-order contribution from
Fig. 1(b) generally and in the above example as

�1st
x ′,x = L(�0,G0)x ′,x (6a)

e.g.=
(

U0

∑
k̃,σ̃

G0
k̃,σ̃

−
∑

k̃

U|k−k̃|G
0
k̃,σ

)
δk′,kδσ ′,σ . (6b)

Four-point correlation functions can be expressed via the
full (one-particle-irreducible) four-point vertex �:〈

cx1
cx2

c̄x ′
2
c̄x ′

1

〉 = Gx1x
′
1
Gx2x

′
2
− Gx1x

′
2
Gx2x

′
1

+ Gx1y
′
1
Gx2y

′
2
�y ′

1,y
′
2;y1,y2

Gy1x
′
1
Gy2x

′
2
. (7)

Note that we omit the superscript compared to the usual
notation (�(4)) [3–6] and often refer to the four-point vertex
simply as the vertex. Our definition of � [7] agrees with that of
Ref. [4] and therefore contains a relative minus sign compared
to Ref. [3].

The diagrammatic expansion of � up to second order in
the interaction is shown in Fig. 2. In such diagrams, the
position of the external legs will always be fixed and labeled
in correspondence to the four arguments of a vertex. Let us
define bubble functions (B), distinguished between the three
two-particle channels r ∈ {a,p,t}, as

Ba(�,�′)x ′
1,x

′
2;x1,x2

=
∑

y ′
1,y1,y

′
2,y2

�x ′
1,y

′
2;y1,x2

Gy1,y
′
1
Gy2,y

′
2
�′

y ′
1,x

′
2;x1,y2

, (8a)

Bp(�,�′)x ′
1,x

′
2;x1,x2

= 1

2

∑
y ′

1,y1,y
′
2,y2

�x ′
1,x

′
2;y1,y2

Gy1,y
′
1
Gy2,y

′
2
�′

y ′
1,y

′
2;x1,x2

, (8b)

2

1
′

2
′

1

= + + 1
2 − + · · ·

FIG. 2. Diagrammatic expansion of the four-point vertex �

(square) up to second order in the interaction (i.e., these diagrams
define �2nd). The positions of the external (amputated) legs refer to
the arguments of �x′

1,x′
2;x1,x2

.

Bt (�,�′)x ′
1,x

′
2;x1,x2

= −
∑

y ′
1,y1,y

′
2,y2

�y ′
1,x

′
2;y1,x2

Gy2,y
′
1
Gy1,y

′
2
�′

x ′
1,y

′
2;x1,y2

. (8c)

The translation of Fig. 2 is then simply given by

�2nd = �0 + ∑
r Br (�0,�0). (9)

Following the conventions of Bickers [1], the factor of 1/2
in Eq. (8b) (Fig. 2) makes sure that, when summing over all
internal indices, one does not overcount the effect of the two
indistinguishable (parallel) lines. The minus sign in Eq. (8c)
(Fig. 2) stems from the fact that the antiparallel bubbles (8a) and
(8c) are related by exchange of fermionic legs. Indeed, using
the antisymmetry of � and �′ in their arguments (crossing
symmetry), we find that

Ba(�,�′)x ′
1,x

′
2;x1,x2

= −Bt (�,�′)x ′
2,x

′
1;x1,x2

. (10)

The channel label r ∈ {a,p,t} refers to the fact that the
individual diagrams are reducible—i.e., they fall apart into
disconnected diagrams—by cutting two antiparallel lines, two
parallel lines, or two transverse (antiparallel) lines, respec-
tively. (The term transverse itself refers to a horizontal space-
time axis.) In using the terms antiparallel and parallel, we adopt
the nomenclature used in the seminal application of the parquet
equations to the x-ray-edge singularity by Roulet et al. [2].
Equivalently, a common notation [8,9] for the channels a,p,t

is ph,pp,ph, referring to the (longitudinal) particle-hole, the
particle-particle, and the transverse (or vertical) particle-hole
channel, respectively. One also finds the labels x,p,d in the
literature [10], referring to the so-called exchange, pairing, and
direct channel, respectively.

In the context of fRG (cf. Sec. IV), functions such as
G, �, � develop a scale (�) dependence (which will be
suppressed in the notation). If we write the bubble functions
also symbolically as

Br (�,�′) = [� ◦ G ◦ G ◦ �′]r , (11)

we can immediately define bubbles with differentiated propa-
gators (but undifferentiated vertices) according to

Ḃr (�,�′) = [� ◦ (∂�(G ◦ G)) ◦ �′]r . (12)

In the fRG flow equations, we will further need the (so-called)
single-scale propagator, defined by (1x,y = δx,y)

S = ∂�G|�=const. = (1 + G · �) · (∂�G0) · (� · G + 1).
(13)

Before moving on to the mfRG flow, let us next review the
basics of the parquet formalism.
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(a) (b)

=− − 1
2

FIG. 3. (a) Vertex diagram irreducible in all two-particle channels
(i.e., it belongs to R) and thus not part of � in the parquet approxima-
tion. (b) Schwinger-Dyson equation, relating the self-energy to the
four-point vertex self-consistently.

III. PARQUET FORMALISM

The parquet formalism [1,2] provides exact, self-consistent
equations for both four-point vertex and self-energy. Focusing
on the vertex first, the central parquet equation represents a
classification of diagrams distinguished by reducibility in the
three two-particle channels:

� = R +
∑

r

γr , Ir = R +
∑
r ′ �=r

γr ′ . (14)

Diagrams of � are either reducible in one of the three channels
(i.e., part of γr for r ∈ {a,p,t}; cf. Fig. 2), or they belong to
the class of totally irreducible diagrams R [cf. Fig. 3(a)]. (The
notation again refers to Ref. [2].) As a diagram cannot simulta-
neously be reducible in more than one channel [2], one collects
diagrams that are not reducible in r lines into the irreducible
vertex Ir of that channel. Reducible and irreducible vertices are
further related by the self-consistent Bethe-Salpeter equations
(BSEs)

γr = Br (Ir ,�), (15)

the graphical representations of which are given in Fig. 4.
The BSEs (15) are computed with full propagators G. Thus,

they require knowledge of the self-energy, which itself can
be determined by the self-consistent SDE depending on the
four-point vertex [cf. Fig. 3(b)]:

� = L(�0,G) + L
[
Bp(�0,�),G

]

= L(�0,G) + 1

2
L

[
Ba(�0,�),G

]
. (16)

The only input required for solving the parquet equations
is the totally irreducible vertex R. All remaining contributions
to the vertex and self-energy are determined self-consistently.
The simplest way to solve the parquet equations is to approx-
imate R by the bare vertex �0. This is called the first-order
parquet solution [2], or parquet approximation [1], and corre-
sponds to a summation of the leading logarithmic diagrams in
logarithmically divergent perturbation theories.

The diagrams generated by the first-order parquet solution
are called parquet diagrams. For �, these can be obtained by
successively replacing bare vertices by one of the three bubbles
from Eq. (8) (connected by full lines), starting from the bare
vertex. For �, the parquet diagrams are obtained by inserting
the parquet vertex into the SDE. They can also be characterized
by the property that one needs to cut at most one bare line to
obtain a parquet vertex with possible dressing at the external
legs. By this, we mean that, instead of an ingoing or outgoing
amputated leg, the external line is of the type 1 + � · G or
1 + G · �, respectively, using again a parquet self-energy.

γa = Ia

γp = 1
2 Ip

γt =−
It

FIG. 4. Bethe-Salpeter equations in the three two-particle chan-
nels, relating the reducible (γr ) and irreducible (Ir ) vertices self-
consistently in the parquet formalism.

IV. MULTILOOP FRG FLOW

The functional renormalization group [3,4] provides a hier-
archy of exact flow equations for vertex functions, depending
on an RG parameter �, serving as infrared cutoff in the
bare propagator. A typical choice for the � dependence, in
order to flow from the trivially uncorrelated to the full theory,
is characterized by the boundary conditions G�i

= 0 and
G�f

= G, implying ��i
= �0. Restring the flow to � and

�, the six-point vertex remains as input and is neglected in the
standard approximation.

Here, we view fRG as a tool to resum diagrams which does
not necessarily rely on the original fRG hierarchy deduced
from the flow of the (quantum) effective action. In previous
works [5,6], we have used the x-ray-edge singularity as an
example to show that the standard truncation of fRG restricts
the flow to parquet diagrams of the vertex, and that the
derivatives of those diagrams are only partially contained.
Using the same model, we have introduced multiloop fRG
flow equations for the vertex which complete the derivative of
parquet diagrams in an iterative manner, as organized by the
number of loops connecting full vertices, and thus do achieve
a full summation of all parquet diagrams [5]. The x-ray-edge
singularity facilitates diagrammatic arguments as it allows one
to consider only two two-particle channels and to neglect
self-energies. Here, we give the details of how the mfRG flow of
the vertex is generalized to all three two-particle channels with
indistinguishable particles (as already indicated in Ref. [5])
and formulate the mfRG corrections to the self-energy flow
(not discussed in Ref. [5]).

We first pose the mfRG flow equations and motivate them
by showing examples of diagrams, which are otherwise only
partially contained. Then, we justify the extensions of the
truncated fRG flow by arguing that all diagrams are of the
appropriate type without any overcounting. Subsequently, we
give a recipe for counting the number of diagrams generated by
the parquet and mfRG flow equations. This allows one to check
that the mfRG flow fully captures all parquet diagrams order
for order in the interaction. Finally, we discuss computational
and general properties of the flow equations.

A. Flow equations for the vertex

The mfRG flow of the vertex proposed in Ref. [5] makes use
of the channel classification known from the parquet equations
and is organized by the loop order 
. We write

∂��=
∑

r

∂�γr, ∂�γr =
∑

�1

γ̇ (
)
r , γ̇

(
)
r̄ =

∑
r ′ �=r

γ̇
(
)
r ′ , (17)
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(a)

(b)

(c)

γ̇(1)
a = +

γ̇(1)
p = 1

2
+ 1

2

γ̇
(1)
t = − −

γ̇(2)
a = γ̇

(1)
ā + γ̇

(1)
ā

γ̇(2)
p = 1

2
γ̇

(1)
p̄ + 1

2
γ̇

(1)
p̄

γ̇
(2)
t = −

γ̇
(1)
t̄

−
γ̇

(1)
t̄

γ̇(�+2)
a = γ̇

(�+1)
ā + γ̇

(�)
ā + γ̇

(�+1)
ā

γ̇(�+2)
p = 1

2
γ̇
(�+1)
p̄ + 1

4
γ̇

(�)
p̄ + 1

2
γ̇
(�+1)
p̄

γ̇
(�+2)
t =−

γ̇
(�+1)
t̄

+ γ̇
(�)
t̄ −

γ̇
(�+1)
t̄

FIG. 5. Multiloop flow equations for the four-point vertex in a general fermionic model. (a) Standard truncated, one-loop flow, where a line
with double dashes denotes ∂�G. (b) Two-loop correction (upon inserting the one-loop contributions, one obtains two loops connecting full
vertices). (c) Higher-loop corrections starting from 
 + 2 = 3, which contain the additional contribution (center part) where vertices from the
complementary channels are connected by two bubbles.

where γ̇ (
)
r contains differentiated diagrams reducible in chan-

nel r with 
 loops connecting full vertices and will be con-
structed iteratively; r̄ represents the complementary channels
to channel r . Using the bubble functions (8) and the channel
decomposition, the multiloop flow for � is compactly stated
as (
 � 1)

γ̇ (1)
r = Ḃr (�,�), (18a)

γ̇ (2)
r = Br

(
γ̇

(1)
r̄ ,�

) + Br

(
�,γ̇

(1)
r̄

)
, (18b)

γ̇ (
+2)
r = Br

(
γ̇

(
+1)
r̄ ,�

) + γ̇
(
+2)
r,C + Br

(
�,γ̇

(
+1)
r̄

)
, (18c)

γ̇
(
+2)
r,C = Br

[
�,Br

(
γ̇

(
)
r̄ ,�

)] = Br

[
Br

(
�,γ̇

(
)
r̄

)
,�

]
(18d)

and illustrated in Fig. 5.
The standard truncated, one-loop flow of � is simply given

by Eq. (18a) [Fig. 5(a)]. A simplified version of this equation,
in which one uses the single-scale propagator S (13) instead
of ∂�G in the differentiated bubble (12), corresponds to the
result obtained from the exact flow equation upon neglecting
the six-point vertex [11]. The form given here, with ∂�G

instead of S (also known as Katanin substitution [3,12]),
already includes corrections to this originating from vertex
diagrams containing differentiated self-energy contributions.
In the exact flow equation, these contributions are contained in
the six-point vertex �(6) and excluded in S; omitting �(6), they
are incorporated again by ∂�G = S + G · (∂��) · G.

Comparing Eqs. (9), (11), (12) with Eq. (18a) [or Fig. 2
with Fig. 5(a)], it is clear that the one-loop flow is correct
up to second order, for which only bare vertices are involved.
Indeed, all differentiated diagrams of �2nd, which are obtained
by summing all copies of diagrams in which one G0 line
is replaced by ∂�G0, are contained in

∑
r γ̇ (1)

r . However,

starting at third order, the one-loop flow (18a) does not fully
generate all (parquet) diagrams, since, in the exact flow, the
six-point vertex starts contributing. In mfRG, the two-loop flow
[Eq. (18b), Fig. 5(b)] completes the derivative of third-order
diagrams of � (i.e., it contains all diagrams needed to ensure
that γ̇ (1)

r + γ̇ (2)
r fully represent ∂�γ 3rd

r ). An example is given
in Fig. 6(a), which shows a parquet diagram reducible in
channel a. The differentiated diagram in Fig. 6(d), as part of
the derivative of Fig. 6(a), is not included in the one-loop flow.
The reason is that γ̇ (1)

a only contains vertices connected by
antiparallel G0-∂�G0 lines, and not parallel ones, as would
be necessary for this differentiated diagram. It is, however,
included in the two-loop correction to the flow, as can be seen
by inserting the lowest-order contributions for all vertices into
the first summand on the right-hand side of γ̇ (2)

a (using γ̇ (1)
p ) in

Fig. 5(b).
At all higher loop orders (
 + 2 � 3) [Eq. (18c), Fig. 5(c)],

we iterate this scheme and further add the center part (18d)
of the vertex flow. This connects the 
-loop flow from the
complementary (r̄) channels by r bubbles on both sides, and is
needed to complete the derivative of parquet diagrams starting
at fourth order. Since γ̇

(
+2)
r,C raises the loop order by two, it

was still absent in the two-loop flow. The three summands
in γ̇ (
+2)

r , including γ̇
(
+2)
r,C , exhaust all possibilities to obtain

differentiated vertex diagrams in channel r at loop order 
 + 2
in an iterative one-loop procedure. The mfRG vertex flow up
to loop order 
 therefore fully captures all parquet diagrams up
to order n = 
 + 1 in the interaction (cf. Sec. IV D).

B. Flow equation for the self-energy

The self-energy has an exact fRG flow equation, which
simply connects the four-point vertex with the single-scale
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(a)

1
2

(b)

−1
2

(c)

1
2

(d)

1
2

(e)

−1
2

(f)

1
2

FIG. 6. (a)–(c) Some diagrams that are included in the parquet
approximation and only partially contained in one-loop fRG. (d)–(f)
One particular differentiated diagram for each of the diagrams (a)–(c)
[the (gray, thin) line with a dash stands for ∂�G0] that is not part of
the standard truncated flow, but included in mfRG.

propagator (cf. Fig. 7). However, if a vertex obtained from the
truncated vertex flow is inserted into this standard self-energy
flow equation, it generates diagrams that are only partially
differentiated. In fact, even after correcting the vertex flow via
mfRG to obtain all parquet diagrams of �, �̇std does not yet
form a total derivative. Although �̇std is in principle exact [as
is the SDE (16)], using the parquet vertex in this flow gives a
less accurate result than inserting it into the SDE: All diagrams
obtained from �̇std are of the parquet type, but their derivatives
are not fully generated by the standard flow equation.

This problem can be remedied by adding multiloop correc-
tions to the self-energy flow, which complete the derivative of
all involved diagrams. The corrections consist of two additions
that build on the center parts (18d) of the vertex flow in the a

and p channels,

γ̇t̄ ,C =
∑

�1

(
γ̇

(
)
a,C + γ̇

(
)
p,C

)
. (19)

Using the self-energy loop (5), the mfRG flow equation for �

is then given by (cf. Fig. 7)

∂�� = �̇std + �̇t̄ + �̇t , �̇std = L(�,S), (20a)

�̇t̄ = L(γ̇t̄ ,C,G), �̇t = L(�,G · �̇t̄ · G). (20b)

Note that self-energy diagrams in �̇t and �̇t̄ are reducible and
irreducible in the t channel, respectively. However, here, this
property is not exclusive; �̇std, too, contains diagrams that are
reducible and irreducible in the t channel, as is directly seen
by inserting the second-order vertex from Fig. 2 into the first
summand of Fig. 7.

To motivate the addition of �̇t̄ and �̇t , let us consider the first
examples where multiloop corrections are needed to complete
the derivative of diagrams, which occur at fourth and fifth order,
respectively. The diagram in Fig. 6(b) is obtained by inserting
the γa diagram from Fig. 6(a) (and the symmetry-related γt

diagram) into the SDE [Fig. 3(b)]. The differentiated diagram
in Fig. 6(e) is part of the derivative of Fig. 6(b), but not
contained in the standard flow. In fact, the vertex needed for this
diagram to be part of �̇std [i.e., the vertex obtained by cutting
the differentiated line in Fig. 6(e)] is a so-called envelope
vertex, the lowest-order realization of a nonparquet vertex
[cf. Fig. 3(b)] [13]. The diagram from Fig. 6(e) is, however,
included in the first correction �̇t̄ , as can be seen by inserting
the lowest-order contributions of all vertices in the center part
of γ̇ (3)

a (using again γ̇ (1)
p ) in Fig. 5(c) and connecting the top

lines.

=

︸ ︷︷ ︸

Σ̇std

−

︸ ︷︷ ︸

Σ̇t̄

− γ̇t̄,C

︸ ︷︷ ︸

Σ̇t

−
Σ̇t̄

FIG. 7. Multiloop flow equation for the self-energy, adding two
corrections (�̇t̄ , �̇t ) to the standard fRG flow, �̇std. The (black, thick)
line with a dash denotes the single-scale propagator S.

Inserting the self-energy diagram from Fig. 6(b) into the full
propagator of the first summand in the SDE [Fig. 3(b)] yields
the diagram in Fig. 6(c). Similar to the previous discussion,
one finds that the differentiated diagram in Fig. 6(f), needed
for the full derivative of Fig. 6(c), is neither contained in �̇std

nor �̇t̄ . It is, however, included in the second mfRG correction,
�̇t , as one of the lowest-order realizations of the last summand
in Fig. 7.

The two extra terms of the mfRG self-energy flow, �̇t̄ and
�̇t , incorporate the whole multiloop hierarchy of differentiated
vertex diagrams via γ̇t̄ ,C [Eq. (19)]. As is discussed in the
following subsections, they suffice to generate all parquet
diagrams of � and, therefore, provide the full dressing of the
parquet vertex in return.

C. Justification

We will now justify our claim that the mfRG flow fully
generates all parquet diagrams for � and �. We will first show
that all differentiated diagrams in mfRG are of the parquet type
and that there is no overcounting of diagrams. Concerning the
vertex, this has already been done for the two-channel case of
the x-ray-edge singularity [5]. The arguments for the general
case are in fact completely analogous and repeated here for the
sake of completeness. The self-energy is discussed thereafter.

The only totally irreducible contribution to the four-point
vertex in the mfRG flow is the bare interaction stemming
from the initial condition of the vertex, ��i

= �0. All further
diagrams on the right-hand side of the flow equations are
obtained by iteratively combining two vertices by one of
the three bubbles from Eq. (8). Hence, they correspond to
differentiated parquet diagrams in the respective channel.

The fact that there is no overcounting in mfRG, i.e., that
each diagram occurs at most once, can be seen by employing
arguments of diagrammatic reducibility and the unique posi-
tion of the differentiated line in the diagrams. To be specific,
let us consider here the a channel; the arguments for the other
channels are completely analogous.

First, we note that diagrams in the one-loop term always
differ from higher-loop ones. The reason is that in higher-loop
terms, the differentiated line appears in the vertex coming
from ∂�γā . This can never contain two vertices connected
by an a G-∂�G bubble, since such terms only originate upon
differentiating γa , the vertex reducible in a lines.

Second, diagrams in the left, center, or right part [first,
second, and third summand in Fig. 5(c), respectively] of an

-loop contribution always differ. This is because the vertex
γ

(
)
ā is irreducible in a lines. The left part is then reducible in a

lines only after the differentiated line appeared, the right part
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γ̇t̄,C ⊃ ∂Λγt ⊃ −
It

∂Λ ⊃ −
Ia

∂Λ

FIG. 8. Special diagrams contributing to �̇t̄ . In the last two diagrams, we consider a scenario where the differentiated line is contained in
one of the dashed contributions.

only before, and the center part is reducible in this channel
before and after ∂�G.

Third, the same parts (say, the left parts) of different-order
loop contributions (
 �= 
′) are always different. Assume they
agreed: As the a bubble induces the first reducibility in this
channel, already γ

(
)
ā and γ

(
′)
ā would have to agree. For

these, only the same parts can agree, as mentioned before.
The argument then proceeds iteratively until one compares
the one-loop part to a higher-loop (|
 − 
′| + 1) one. These
are, however, distinct according to the first point.

Concerning the self-energy, all diagrams of the flow be-
long to the parquet type, since they are constructed from
(differentiated) parquet vertices by closing loops of external
legs in an iterative one-loop procedure. By cutting one G0 or
the ∂�G0 line in such a self-energy diagram, one can always
obtain a (differentiated) parquet vertex with possibly dressed
amputated legs.

First, there is no overcounting between �̇std and �̇t̄ because
cutting the differentiated line in �̇std generates a parquet
vertex (with possibly dressed amputated legs coming from
the single-scale propagator; cf. Fig. 7), whereas this is not the
case for �̇t̄ . To illustrate this statement, we consider in Fig. 8
a typical case of a �̇t̄ correction, where we take the a part
of γ̇t̄ ,C [cf. Eq. (19)] with ∂�γt in the center. We can insert
the BSE γt = Bt (It ,�) (Fig. 4) and consider simultaneously
all scenarios where the differentiated line, originating from
∂�γt , is contained in any of the dashed parts. To be even
more specific, we take a specific part of It = R + γa + γp,
namely γa = Ba(Ia,�) (Fig. 4), and consider the cases where
the differentiated line, if contained in It , is contained in the
corresponding bubble. If one now cuts any of the dashed lines,
as candidates for the differentiated line, one finds that the
remaining vertex is not of the parquet type, as it is not reducible
in any of the two-particle channels. The same irreducibility in
three lines, when starting to cut the differentiated line in γ̇t̄ ,C,
occurs in all diagrammatic realizations of �̇t̄ .

Since the standard flow �̇std with the full instead of the
parquet vertex is exact, it follows that the �̇t̄ part can be written
similarly as �̇std, but using a nonparquet (np) vertex [Fig. 9(a)].
As a consequence, �̇t , obtained by connecting �̇t̄ and � by a
t bubble, can similarly be written with a nonparquet vertex
[Fig. 9(b)]. Thus, there cannot be any overcounting between
�̇std and �̇t , either. Finally, there is likewise no overcounting
between �̇t̄ and �̇t : After removing the differentiated line
in �̇t̄ , the remaining nonparquet vertex �np is in particular
irreducible in the t channel (as was discussed above). However,
removing the differentiated line in �̇t after expressing �̇t̄ via
�np [cf. Fig. 9(b)], the remaining vertex �′

np is by construction
reducible in t lines (although not a parquet vertex).

In summary, all diagrams of the four-point vertex and
self-energy generated by the mfRG flow belong to the parquet
class and are included at most once. To show that the mfRG
flow generates all differentiated parquet diagrams, we will
demonstrate next that, at any given order in the interaction,
their number is equal to the number of diagrams generated by
the mfRG flow.

D. Counting of diagrams

In order to count the number of diagrams in all involved
functions, we make use of either exact, self-consistent equa-
tions or the mfRG flow equations. As a first example, we count
the number of diagrams in the full propagator G at order n

in the interaction, NG(n), given the number of diagrams in
the self-energy, N�(n). Concerning the bare propagator and
self-energy, we know NG0 (n) = δn,0 and N�(0) = 0. From
Dyson’s equation (4), we then get

NG(n) = δn,0 +
n∑

m=1

N�(m)NG(n − m). (21)

Defining a convolution of sequences, according to

N1 =N2 ∗ N3 ⇔ N1(n)=
n∑

m=0

N2(m)N3(n−m) ∀n, (22)

we can write Eq. (21) in direct analogy to the original equation
(4) as

NG = NG0 + NG0 ∗ N� ∗ NG. (23)

Similar relations for the self-energy and vertex can be
obtained from the SDE (16), the parquet equation (14), and
the BSEs (15). The number of diagrams in the bare vertex is
N�0 = δn,1 (one can also take any N�0 ∝ δn,1). From the SDE

(a)

Σ̇t̄ =− Γnp

(b)

Σ̇t =

Γnp

=− Γ′
np

FIG. 9. Rewriting of the corrections to the self-energy flow:
(a) �̇t̄ can be expressed by a nonparquet vertex �np contracted with the
single-scale propagator S. (b) �̇t , obtained by connecting �̇t̄ and � by
a t bubble, then involves a bubble connecting a nonparquet and parquet
vertex, which yields another nonparquet vertex �′

np, contracted with
S.
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TABLE I. Number of (bare) parquet diagrams, differentiated
parquet diagrams, and diagrams generated by mfRG up to interaction
order 6 and loop order 5. Fractional parts originate from multiple
factors of 1/2, used to avoid double counting of the antisymmetric
vertex [1]. As we use N�0 = δn,1, we count Hugenholtz diagrams
[15] [where, e.g., N�(1) = 1, cf. Fig. 1]. The choice N�0 = 2δn,1 [cf.
Eq. (2b)] would give an extra factor 2n for all numbers of diagrams
at order n, resulting in the (integer) numbers of Feynman diagrams
[where, e.g., N�(1) = 2].

n 1 2 3 4 5 6

N� 1 2 1
2 15 1

4 108 1
8 832 1

16 6753 21
32

N� 1 1 1
2 5 1

4 25 7
8 156 1

16 1073 3
32

N�̇ 0 5 61 648 3
4 6656 1

2 67536 9
16

N�̇(1
) 0 5 45 373 3
4 3117 1

2 26519 1
16

N�̇(2
) 0 0 16 216 2264 21972

N�̇(3
) 0 0 0 59 1062 13481 1
2

N�̇(4
) 0 0 0 0 213 4792 1
2

N�̇(5
) 0 0 0 0 0 771 1
2

N�̇ 1 4 1
2 26 1

4 181 1
8 1404 9

16 11804 1
32

N�̇std 1 4 1
2 26 1

4 177 1
8 1311 9

16 10348 1
32

N�̇t̄
0 0 0 4 89 1349

N�̇t
0 0 0 0 4 107

(16), we get for the self-energy

N� = N�0 ∗ NG + 1
2 N�0 ∗ NG ∗ NG ∗ NG ∗ N� . (24)

Note that, when counting diagrams, we can ignore the extra
minus signs but must keep track of prefactors of magnitude
not equal to unity. These prefactors avoid double counting of
the antisymmetric vertex [1] and originate from the way the
diagrams are constructed [14].

Concerning the full vertex, we can use that the symmetry
relation between the a and t bubble given in Eq. (10) holds for
the full reducible vertices γa and γt [1], such thatNγa

= Nγt
. In

the parquet approximation R = �0, and the parquet equation
(14) and the BSEs (15) yield

N� = NR + 2Nγa
+ Nγp

, (25a)

Nγa
= (N� − Nγa

) ∗ NG ∗ NG ∗ N�, (25b)

Nγp
= 1

2 (N� − Nγp
) ∗ NG ∗ NG ∗ N�. (25c)

Since N�0 (0) = 0, these equations, just like the original
equations, can be solved iteratively. Knowing the number of
diagrams in all quantities up to order n − 1 allows one to
calculate them at order n. This can also be done numerically.
Table I (first two lines) shows the number of parquet diagrams
up to order 6. For large interaction order n, we find that the
number of diagrams in the parquet vertex and self-energy
grows exponentially in n [cf. Fig. 10(a)].

To prove our claim that the mfRG flow generates all parquet
diagrams, we must count the number of diagrams, N�̇(n) and
Nγ̇r

(n), obtained by differentiating the set of all corresponding
parquet graphs. Then, we check that these numbers are exactly
reproduced by the number of diagrams contained on the right-
hand side of the mfRG flow equations. A diagram of the full
propagator at order n has 2n + 1 internal lines, a self-energy

5 20n
100

1020

N X (a)
X =Γ
X =Σ

3 11n
0.5

1

N Ẋ
/N

m
fR

G
Ẋ

1� 2�
3�

4�
5�std

t̄

(b)

300 900n

10.47

10.53

ra
ti

o

FIG. 10. Logarithmic plots for the number of diagrams at inter-
action order n for both vertex and self-energy. (a) N� , N� grow
exponentially for large n (inset: the ratio of subsequent elements
approaches a constant). (b) The cumulative low-loop vertex flows (1


up to 5
) and the self-energy flows �̇std (labeled std) and �̇std + �̇t̄

(labeled t̄) miss differentiated parquet diagrams. However, the full
multiloop flow for vertex and self-energy generates all differentiated
parquet diagrams to arbitrary order in the interaction.

diagram 2n − 1, and vertex diagram 2n − 2. According to the
product rule, the number of differentiated diagrams is thus

NĠ(n) = NG(n)(2n + 1), (26a)

N�̇(n) = N�(n)(2n − 1), (26b)

Nγ̇r
(n) = Nγr

(n)(2n − 2). (26c)

From the mfRG flow of the vertex [Eq. (18)], we deduce

Nγ̇
(1)
a

= 2N� ∗ NĠ ∗ NG ∗ N�, (27a)

Nγ̇
(1)
p

= N� ∗ NĠ ∗ NG ∗ N�, (27b)

Nγ̇
(2)
a

= 2
(
Nγ̇

(1)
a

+ Nγ̇
(1)
p

) ∗ N� ∗ N�, (27c)

Nγ̇
(2)
p

= 2Nγ̇
(1)
a

∗ N� ∗ N�, (27d)

where N� = NG ∗ NG denotes the number of diagrams in a
bubble. For 
 + 2 � 3, we have

N
γ̇

(
+2)
a

= 2
(
N

γ̇
(
+1)
a

+ N
γ̇

(
+1)
p

) ∗ N� ∗ N�

+N� ∗ N� ∗ (
N

γ̇
(
)
a

+ N
γ̇

(
)
p

) ∗ N� ∗ N�, (28a)

N
γ̇

(
+2)
p

= 2N
γ̇

(
+1)
a

∗ N� ∗ N�

+ 1
2 N� ∗ N� ∗ N

γ̇
(
)
a

∗ N� ∗ N�. (28b)

Summing all loop contributions yields

NmfRG
γ̇a

= ∑

�1 Nγ̇

(
)
a

, NmfRG
γ̇p

= ∑

�1 Nγ̇

(
)
p

. (29)

For the flow of the self-energy (20), we need the center part
of the vertex flow in the a and p channel, for which the number
of diagrams sums up to

Nγ̇t̄ ,C = N� ∗ N� ∗ (
3
2 N

mfRG
γ̇a

+ NmfRG
γ̇p

) ∗ N� ∗ N�. (30)

The number of diagrams in the single-scale propagator S (13)
can be obtained from two equivalent relations

NS = NĠ − NG ∗ N�̇ ∗ NG (31a)

= (N1 + NG ∗ N�) ∗ NĠ0 ∗ (N1 + N� ∗ NG), (31b)
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with NĠ0 (n) = δn,0 = N1(n). From Eq. (20), we then get

NmfRG
�̇

= N�̇std
+ N�̇t̄

+ N�̇t
, N�̇std

= N� ∗ NS,

N�̇t̄
= Nγ̇t̄ ,C ∗ NG, N�̇t

= N� ∗ N� ∗ N�̇t̄
.

(32)

Numerically, one can check order for order in the interaction
[cf. Table I and Fig. 10(b)] that, indeed, the mfRG flow
generates exactly the same number of diagrams as obtained
by differentiating all parquet diagrams, i.e.,

Nγ̇r
(n) = NmfRG

γ̇r
(n), N

�̇
(n) = NmfRG

�̇
(n) ∀n. (33)

This demonstrates the equivalence between solving the multi-
loop fRG flow and solving the (first-order) parquet equations
for a general model.

E. Computational aspects

All contributions to the mfRG flow—for the vertex as well
as for the self-energy—are of an iterative one-loop structure
and hence well suited for numerical algorithms. In fact, by
keeping track of the left (L) and right (R) summands in the
higher-loop vertex flow (18c)

γ̇
(
+2)
r,L = Br

(
γ

(
+1)
r̄ ,�

)
, γ̇

(
+2)
r,R = Br

(
�,γ

(
+1)
r̄

)
, (34)

the center part (18d) can be efficiently computed as

γ̇
(
+2)
r,C = Br

(
�,γ

(
+1)
r,L

) = B
(
γ

(
+1)
r,R ,�

)
. (35)

Consequently, the numerical effort in the multiloop corrections
of the vertex flow scales linearly in 
. The self-energy flow (20)
is already stated with one integration only.

The (standard) fRG hierarchy of flow equations constitutes
a (first-order) ordinary differential equation. Neglecting the
six-point vertex, it can be written as

∂�� = f std
� (�,�,�), ∂�� = f std

� (�,�,�), (36)

where, here and henceforth,f denotes the part of the right-hand
side of the flow equation corresponding to its indices. Improv-
ing this approximation by adding differentiated self-energy
contributions in the vertex flow (as is also done in mfRG),
f std

� is replaced by another function f̃ std
� (�,�,�,∂��), which

further depends on the � derivative of the self-energy. Such
a differential equation is still feasible for many algorithms as
one can simply compute ∂�� first and use it in the calculation
of ∂��. However, the full mfRG flow for the vertex and
self-energy has the form

∂�� = f�(�,�,�,∂��), ∂�� = f�(�,�,�,∂��),

(37)

in which derivatives occur on all parts of the right-hand side,
yielding an algebraic (as opposed to ordinary) differential
equation.

Techniques to solve algebraic differential equations exist,
but a discussion of them exceeds the scope of this paper.
Let us merely suggest an approximate solution strategy that
reduces the mfRG flow to an ordinary differential equation,
has no computational overhead, and deviates from the exact

flow starting at sixth order in the interaction, summarized as
follows:

�̇std = f�̇std
(�,�,�), (38a)

∂�� ≈ �̇approx = f�(�,�,�,∂�� = �̇std), (38b)

∂�� ≈ �̇std + f�̇t̄
(�,�,∂�� = �̇approx)

+ f�̇t
(�,�,∂�� = �̇approx). (38c)

According to this scheme, one computes first the stan-
dard flow of the self-energy, which deviates from the full
� flow at interaction order U 4. Inserting this into the vertex
flow yields an approximate vertex derivative, �̇approx, where
deviations from the full flow, induced by the approximate
form of ∂��, start at order U 6. The center part of the vertex
flow involves at least four vertices, such that deviations,
induced by the self-energy, start at order U 8. The resulting,
approximate γ̇t̄ ,C can then be used to complete ∂��, adding
the terms �̇t̄ and �̇t , such that the self-energy flow is correctly
computed up to errors of order U 8. Evidently, this scheme can
also be iterated [using Eqs. (38b) and (38c)], increasing the
accuracy by four orders with each step. We have attached a
pseudocode for such a solution strategy of the mfRG flow in
Appendix A.

F. General aspects

Since the standard fRG flow for the self-energy and four-
point vertex—including the six-point vertex—is exact, all
mfRG corrections can be understood as fully simulating the
effect of the six-point vertex on parquet diagrams of � and
�. For instance, the two-loop corrections to the vertex flow
and the Katanin substitution in the improved one-loop flow
equation contain all third-order contributions of the six-point
vertex [6,12,16]. Nevertheless, in the standard fRG hierarchy of
flow equations, the parquet graphs comprise n-point vertices of
arbitrary order (n) [6], such that a non-diagrammatic derivation
of mfRG based on this hierarchy appears rather difficult.
Conversely, the derivation of the mfRG flow does not rely
on the fRG hierarchy or properties of the (quantum) effective
action; it can thus be understood independently and without
prior knowledge of fRG.

The mfRG flow at the two- or higher-loop level is exact
up to third order in the interaction and therefore naturally
fulfills Ward identities with accuracy O(�4), compared to
O(�3) in the case of one-loop fRG [12]. Yet, since the parquet
self-energy is exact up to fourth order but the parquet vertex
only up to third order, such identities are typically violated
starting at fourth order. One can think of schemes to extend
mfRG beyond the parquet approximation. However, we find
those rather impracticable and only briefly mention them in
Appendix B.

Furthermore, the mfRG flow is applicable for any initial
condition of the vertex functions. Whereas the choice G�i

= 0
used here leads to a summation of all parquet diagrams,
starting the mfRG flow from the local quantities of dynamical
mean-field theory (DMFT) [17,18] allows one to add nonlocal
correlations, similarly to solving the parquet equations in the
dynamical vertex approximation (D�A) [19–21]. However,
contrary to D�A, the mfRG flow is built on the full vertex
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�
(4)
DMFT and does not require the diagrammatic decomposition

of the nonperturbative vertex [22] �
(4)
DMFT = R + ∑

r γr that
leads to diverging results close to a quantum phase transition
[29–31].

Inspecting the one-loop flow equations of the vertex once
more, we observe that diagrams on the right-hand side contain
the differentiated propagator only in the two-particle lines
that induce the reducibility. Propagators which appear in
two-particle lines which do not induce the reducibility are
not differentiated. Therefore, only those diagrams that are
reducible in all positions of two-particle lines—the so-called
ladder diagrams—are fully included. It follows that the stan-
dard truncated, one-loop fRG flow is biased towards ladder
constructions of the four-point vertex.

For a constant interaction U and a transfer energy-
momentum �, ladder diagrams of a certain channel can easily
be summed to �ladder

� = U (1 − U��)−1, where �� is the cor-
responding bubble. Ladder diagrams are therefore particularly
prone to divergences with increasing U or increasing values
of �� (as can occur upon lowering the cutoff scale �) and
can thus be responsible for premature vertex divergences in
fRG. Indeed, so far, fRG computations have often suffered
from such vertex divergences, and the flow had be stopped
at finite RG scale �c [3,32]. In this context, the two-loop
corrections have already been found to significantly reduce the
critical scale of vertex divergences �c [16,33]. This suggests
that it would be worthwhile to study the effect of higher-
loop mfRG corrections—we expect that they reduce �c even
further.

Throughout this paper, we have taken a perspective that
views fRG as a tool to resum diagrams (say, physical diagrams)
by integrating a collection of differentiated (and thus �-
dependent) diagrams. In this regard, the mfRG corrections
do not add new physical diagrams to the flow, they only
add differentiated diagrams to complete those derivatives of
physical diagrams that are only partially contained by one-loop
fRG. In other words, for any physical diagram to which a
differentiated diagram of mfRG contributes, there also exists
a differentiated diagram in one-loop fRG. The differentiated
diagrams of the higher-loop corrections and the one-loop flow
all contribute the same set of physical diagrams—the parquet
diagrams.

Whereas the one-loop flow of the vertex contains differ-
entiated propagators at the two-particle-reducible positions,
the multiloop flow iteratively adds those parts for which the
differentiated line is increasingly nested. Such nonladder con-
tributions are crucial to suppress vertex divergences originating
from the summation of ladder diagrams [5]. Similarly, the
standard self-energy flow does not form a total derivative any
more if one has only the parquet vertex at one’s disposal.
All diagrams of the standard flow are of the parquet type,
but differentiated lines in heavily nested positions are omitted
(cf. Fig. 6). The mfRG corrections incorporate all remaining
contributions by two additions that build up on the multiloop
vertex flow. Altogether, the mfRG flow achieves a full sum-
mation of all parquet diagrams of the vertex and self-energy.
Consequently, mfRG solutions are no longer dependent on the
specific way the � dependence (regulator) was introduced
[5] and thus fully implement the meaning of the original
fRG idea.

V. CONCLUSION

We have presented multiloop fRG flow equations for the
four-point vertex and self-energy, formulated for the general
fermionic many-body problem. The mfRG corrections fully
simulate the effect of the six-point vertex on parquet diagrams,
completing the derivatives of diagrams that are only partially
contained in the standard truncated fRG flow. Whereas one-
loop fRG contains differentiated propagators only at the two-
particle-reducible positions and the standard self-energy flow
does not suffice to form a total derivative when having only the
parquet vertex at one’s disposal, the multiloop iteration adds
all remaining parts, where the differentiated line appears at
increasingly nested positions. We have motivated the multiloop
corrections at low orders and ruled out any overcounting of
diagrams. Moreover, we have put forward a simple recipe to
count diagrams and numerically check that the mfRG flow
generates all differentiated parquet diagrams for the vertex and
self-energy, order for order in the interaction.

Due to its iterative one-loop structure, the mfRG flow is well
suited for efficient numerical computations. We have given a
simple approximation, which renders the algebraic differential
equation accessible to standard solvers for ordinary differential
equations and exhibits only minor deviations from the full
mfRG flow. Given the general formulation, the benefits of
mfRG on physical problems can be exploited in a large number
of fRG applications. The full resummation of parquet diagrams
via mfRG eliminates the bias of fRG computations towards
divergent ladder constructions of the vertex and restores the
independence on the choice of regulator. We expect that
this will generically enhance the usefulness of the truncated
fRG framework and increase the robustness of the physical
conclusions drawn from fRG results.
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APPENDIX A: PSEUDOCODE IMPLEMENTATION

In this section, we present a pseudocode for the approximate
solution strategy of the mfRG flow explained in Sec. IV E. Gen-
erally, an ordinary differential equation (ODE) is of the form
∂�(�) = f (�,), and numerous numerical ODE solvers
are available. The only input required for such an ODE solver,
apart from stating the initial condition (�i) = i and the
extremal points �i , �f , is an implementation of the function
f (�,).

In the case of mfRG, —describing the state of the physical
system at a specified value of the flow parameter �—is a
vector that contains the self-energy (say, .�) and the vertex
(say, .�) for all configurations of quantum numbers (e.g.,
Matsubara frequency, momenta, and spin). In order to use an
ODE solver to compute the mfRG flow, we only need to specify
a way to compute f (�,). This is provided by Algorithm 1,
written in pseudocode.
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ALGORITHM 1. Pseudocode for computing the right-hand side
of the mfRG flow for a given state of the system  (containing .�

and .�) and a scale parameter �.

Function f (�,):

1: S = S(�,.�)
2: G = G(�,.�)
3: d�std = L(.�,S)
4: d.� = d�std

5: for it = 1 . . . itf do
6: dG = S + G · d.� · G

7: for r = a,p,t do
8: dγr = Ḃr (.�,.�,G,dG)
9: end for

/* jump to line 41 for one-loop fRG */
10: for r = a,p,t do
11: dγ L

r = Br

(∑
r ′ �=r dγr ′ ,.�,G

)
12: dγ R

r = Br

(
.�,

∑
r ′ �=r dγr ′ ,G

)
13: end for
14: for r = a,p,t do
15: dγ T

r = dγ L
r + dγ R

r

16: dγr ← dγr + dγ T
r

17: end for
/* jump to line 41 for two-loop fRG */

18: dγ C
t̄ = 0

19: for 
 = 3 . . . 
f do
20: for r = a,p,t do
21: dγ C

r = Br (.�,dγ L
r ,G)

22: dγ L
r = Br

( ∑
r ′ �=r dγ T

r ′ ,.�,G
)

23: dγ R
r = Br

(
.�,

∑
r ′ �=r dγ T

r ′ ,G
)

24: end for
25: for r = a,p,t do
26: dγ T

r = dγ L
r + dγ C

r + dγ R
r

27: dγr ← dγr + dγ T
r

28: end for
29: dγ C

t̄ ← dγ C
t̄ + dγ C

a + dγ C
p

30: if maxr{||dγ T
r ||/||dγr ||} < ε then

31: break
32: end if
33: end for

/* jump to line 41 for 
f -loop fRG without corrections to
the self-energy flow */

34: d�t̄ = L(dγ C
t̄ ,G)

35: d�t = L(.�,G · d�t̄ · G)
36: d.� = d�std + d�t̄ + d�t

37: if ||S + G · d.� · G − dG||/||dG|| < ε then
38: break
39: end if
40: end for
41: d.� = ∑

r dγr

42: return d

Algorithm 1 makes use of functions outlined in the main
text, for which we also include dependencies that have been
suppressed earlier. This applies to the single-scale propagator
S [Eq. (13)] in line 1, the Dyson equation for G [Eq. (4)]
in line 2, the differentiated bubble Ḃ [Eq. (12)] in line 8,
and the bubble B [Eq. (8)], which is used several times. For
a good numerical performance, an efficient implementation

of the bubble functions appearing in Algorithm 1 using
vertex symmetries and high-frequency asymptotics is crucial
[9,34].

The algorithm has a few external parameters: 
f

(line 19) denotes the maximal loop order, and itf (line 5)
the number of iterations that improve the accuracy of the
flow by four orders of the interaction with each step (cf.
Sec. IV E). These parameters can also be used dynamically via
the break conditions of the loops depending on the tolerance ε

(lines 30, 37). Note that typically, one also specifies a tolerance
for the numerical ODE solver, say εODE. If ε is chosen in
accordance with εODE and the number of loops (
f ) or iterations
(itf ) is not fixed a priori, this algorithm yields a solution of
the full mfRG flow and thus a full summation of all parquet
diagrams—to the specified numerical accuracy.

The straightforward implementation as given by the pseu-
docode in Algorithm 1 demonstrates the feasibility of the
mfRG flow for almost any fRG application.

APPENDIX B: MULTILOOP FLOW BEYOND
THE PARQUET APPROXIMATION

The mfRG flow as described so far achieves a full sum-
mation of all parquet diagrams of the vertex and self-energy.
The first deviations from the exact quantities, i.e., the first
nonparquet diagrams, occur at fourth order for the vertex—
these are the envelope vertices, such as the one shown in
Fig. 3(a)—and, as follows by use of the SDE (16), at fifth
order for the self-energy.

One can in principle add terms to the mfRG flow equations
that go beyond the parquet approximation. The flow equation
of � then also needs to generate differentiated diagrams of
envelope vertices. This is achieved by adding the differentiated
envelope vertices, i.e., all envelope diagrams of � with one
G line replaced by ∂�G at all possible positions, to the
flow equation. Subsequently, one performs the replacement
�0 → � to generate contributions at all interaction orders.
(Note that the mfRG corrections of the self-energy flow have
to be changed accordingly.) However, such contributions to the
vertex flow are—by the very fact that they are of nonparquet
type—not of an iterative one-loop structure anymore [i.e., their
evaluation requires the computation of two or more (nested)
integrals] and are thus computationally unfavorable.

Another possibility to obtain nonparquet diagrams from
mfRG is to keep the flow equations unchanged and modify the
initial condition. One can then add scale-independent envelope
vertices, i.e., envelope vertices computed in the final theory (at
�f ) with some approximation of the self-energy, to the initial
condition of the vertex: ��i

= �0 + �
envelope
�f

. (Hence, �envelope

must be computed only once.) This yields contributions to
the flow that are not actually differentiated diagrams at a
given scale �. Nevertheless, the initial vertex ��i

constitutes
a new totally irreducible building block in the mfRG flow.
After completion of the flow, one obtains a summation of all
“parquet” diagrams with the totally irreducible vertex R = ��i

instead of R = �0; i.e., one obtains vertex and self-energy
at one level beyond the parquet approximation [cf. Eq. (14)].
Such results deviate from the exact quantities starting at fifth
and sixth order for � and �, respectively. This scheme of
adding nonparquet contributions can also be iterated and used
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with expressions for R = ��i
of even higher order. However,

it appears rather tedious and is more in the spirit of an
iterative solution of the parquet equations than of an actual fRG
flow.
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