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The numerical renormalization group (NRG) is tailored to describe interacting impurity models in
equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias
voltage. We show that these limitations can be overcome by describing the thermal leads using a
thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium
dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix
renormalization group. This yields quantitatively reliable results for the current (with errors ≲3%) down to
the exponentially small energy scales characteristic of impurity models. We present results of benchmark
quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-
impurity Anderson model.

DOI: 10.1103/PhysRevLett.121.137702

Introduction.—A major open problem in the theoretical
study of nanostructures, such as quantum dots or nanowires,
is the reliable computation of the nonlinear conductance
under the conditions of nonequilibrium steady-state (NESS)
transport. These are open quantum systems featuring strong
local interactions, typically described by quantum impurity
models such as the interacting resonant levelmodel (IRLM),
the Kondo model (KM), or the single-impurity Anderson
model (SIAM).Muchwork has been devoted to studying the
NESS properties of such models using a variety of methods
[1–15], leading to a fairly good qualitative understanding of
their behavior. The interplay of strong correlations, NESS
driving, and dissipative effects leads to a rich and complex
phenomenology. In particular, for the KM and SIAM, the
nonlinear conductance exhibits a striking zero-bias peak, the
so-calledKondo peak, characterized by a small energy scale,
the Kondo temperature TK , that weakens with increasing
temperature and splits with increasing magnetic field, in
qualitative agreementwith experiments [16–22].However, a
full, quantitative description of the NESS behavior of such
models under generic conditions has so far been unfeasible:
none of the currently available approaches meet the three-
fold challenge of (i) treating interactions essentially exactly,
(ii) resolvingvery small energy scales, and (iii) incorporating
NESS conditions.
This Letter presents an approach that does meet this

challenge. (i) To deal with interactions, we use numerical
matrix product state (MPS) methods. (ii) We use the
numerical renormalization group (NRG) [23,24] to integrate
out high-energy modes, leading to a renormalized impurity

problem [25] whose reduced effective bandwidth,D�, is set
by a transport window defined by the voltage bias (V) and
the temperature (T). This considerably enlarges the window
of accessible time scales, which scale as 1=D�, and thus it
enables us to treat arbitrary voltages. (iii) We then study the
transport properties of the renormalized problem using a
quench protocol where we abruptly switch on the impurity-
lead coupling and compute the subsequent time evolution of
the current, JðtÞ, using the time-dependent density-matrix
renormalization group (TDMRG) [26–29]. Whereas similar

(a)  (b)

FIG. 1. (a) The discretization combines a log-sector for high
energy excitations with a lin-sector for the TW. (b) The log-sector
is treated using NRG. Here, “holes” and “particles” are recom-
bined. The effective low-energy basis of NRG is used as the local
state space of one MPS chain element. For the lin-sector, holes
(empty at t ¼ 0) and particles (filled at t ¼ 0) are treated
separately. On the chain including the RI, we do a TDMRG
calculation based on a Trotter decomposition in “odd” and “even”
bonds [37].
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protocols [5,15,30,31] typically work at T ¼ 0, we consider
nonequilibrium thermal leads for arbitrary T, using the
thermofield approach [32–36] to describe them with a pure
product state in an enlarged Hilbert space.
We benchmark our approach using the IRLM, finding

excellent agreement with exact Bethe-ansatz predictions for
the NESS current. We then turn to the SIAM. For the linear
conductance, we reproduce equilibrium NRG results. For
the nonlinear conductance, we study the evolution of the
zero-bias peak with T and magnetic field.
Setup.—We consider impurities coupled to two thermal

leads, labeled α ∈ fL;Rg and characterized by Fermi
functions fαðωÞ¼ðeðω−μαÞ=Tþ1Þ−1, where μL=R ¼ �V=2.
(We set e ¼ ℏ ¼ kB ¼ 1.) We study two different models,
the spinless IRLM with a three-site impurity and Coulomb
repulsion U between neighboring sites, and the SIAM
with Coulomb repulsion U between different spins and a
Zeeman splitting due to a magnetic field B. The impurities
of these models are described by

HðIÞ
imp ¼ εdn̂C þ Uðn̂L þ n̂R − 1Þn̂C

þ ðt0d†CdL þ t0d†CdR þ H:c:Þ ð1Þ

HðSÞ
imp ¼ εdðn̂d↑ þ n̂d↓Þ þUn̂d↑n̂d↓ −

B
2
ðn̂d↑ − n̂d↓Þ; ð2Þ

where n̂i ¼ d†i di, for i ∈ fL; R;C; d↑; d↓g. In this Letter,
we focus on the particle-hole symmetric case (εd ¼ 0 for
the IRLM and εd ¼ −ðU=2Þ for the SIAM). The leads are
assumed to be noninteracting,

HðI=SÞ
lead ¼

X
αðσÞk

εkc
†
αðσÞkcαðσÞk ≡

X
q

εqc
†
qcq; ð3Þ

with spin index σ ∈ f↑;↓g for the SIAM, q≡ fα; ðσÞ; kg a
composite index, and k a label for the energy levels. The
impurity-leads hybridization is given by

HðI=SÞ
hyb ¼

X
q

ðvqd†α=σcq þ H:c:Þ; ð4Þ

where in the IRLM the left (right) impurity site dL (dR)
couples to the modes cLk (cRk), respectively, while in the
SIAM the two spin states dσ couple to the lead modes cασk
spin-independently, vq ¼ vαk. The couplings vq induce an
impurity-lead hybridization ΓαðωÞ ¼ π

P
kσjvqj2δðω − εqÞ,

chosen such that they represent a box distribution ΓαðωÞ ¼
ΓαΘðD − jωjÞ in the continuum limit with half-bandwidth
D ≔ 1 set as the unit of energy, unless specified otherwise.
For the IRLM, we set ΓL ¼ ΓR ¼ 0.5D corresponding to
the hopping element of a tight-binding chain with half-
bandwidth D, and for the SIAM, we likewise choose
ΓL ¼ ΓR and define the total hybridization Γ ¼ ΓL þ ΓR.

Strategy.—We describe the thermal leads decoupled
from the impurity using the thermofield approach
[32–35]. The impurity-lead coupling induces nonequili-
brium processes, which occur on energy scales correspond-
ing to the transport window (TW), defined as the energy
range in which fLðωÞ ≉ fRðωÞ. Energy scales far outside
of this TW are effectively in equilibrium, and we therefore
integrate them out using NRG, whereas we describe
the nonequilibrium physics within the TW using
TDMRG quench. We implement both the NRG and
TDMRG using MPS techniques. We use a logarithmically
discretized sector (log-sector), representing the energy range
of the leads outside of the TW, and a linearly discretized
sector (lin-sector) within the TW, as depicted in Fig. 1(a).
The transition from the logarithmic to the linear discretiza-
tion can be smoothed [37]. To simplify theMPS calculation,
we map the leads onto a chain, with on-site and nearest-
neighbor terms only, by tridiagonalizing the Hamiltonian.
Integrating out the log-sector using NRG we get a renor-
malized impurity (RI) [25] and a reduced effective band-
width, 2D�, of order of the size of the TW. This enables us to
treat transport on energy scales much smaller than D. In
particular, we can study arbitrary ratios of V=TK in the
SIAM, even if TK ≪ D. We then turn on the coupling
between the log-sector and lin-sector by performing a
TDMRG quench, starting from an initial state jΨinii ¼
jϕinii ⊗ jΩlini, where jϕinii describes the initial state of
the RI, and jΩlini is a pure product state describing the lin-
sector of the thermal leads in the thermofield approach. To
describe steady-state properties, we time-evolve jΨinii until
expectation values are stationary up to oscillations around
their mean value. Since the effective bandwidth relevant for
this TDMRG calculation is given by D�, not D, exponen-
tially large time scales of order 1=D� ≫ 1=D are accessible.
Thermofield description of decoupled leads.—In the

context of MPS methods, the thermofield description
[32–35] of the decoupled leads has two advantages: finite
temperature states are represented as pure states, and
thermal leads are described by a simple product state.
Akin to purification [29], we double our Hilbert space by

introducing one auxiliary mode cq2 (not coupled to the
system) for each lead mode cq1 ¼ cq. In this enlarged
Hilbert space, we define a pure state jΩi such that the
thermal expectation value of an operator A acting on the
original physical lead is given by hAi ¼ hΩjAjΩi. This state
can be written as [37]

jΩi ¼
Y
q

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
j0; 1iq þ

ffiffiffiffiffi
fq

p
j1; 0iq

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡j0̃;1̃iq

; ð5Þ

with fq ¼ fαðεqÞ, where j0; 1iq and j1; 0iq are defined by

cq1j0;1iq ¼ c†q2j0;1iq ¼ c†q1j1;0iq ¼ cq2j1;0iq¼ 0 for all q.
We map jΩi to a pure product state using the rotation
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�
c̃q1
c̃q2

�
¼

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p − ffiffiffiffiffi
fq

p
ffiffiffiffiffi
fq

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
1
A�

cq1
cq2

�
: ð6Þ

Having c̃q1jΩi ¼ c̃†q2jΩi ¼ 0, the modes c̃q1 (c̃q2) can be
interpreted as holes (particles)which are empty (filled) in the
thermal state, respectively. Since in Eq. (5) we constructed
jΩi to be an eigenstate of the particle number operator, it
remains so in the rotated basis. The physical and auxiliary
modes are decoupled in the unrotated basis; hence we are
free to choose an arbitrary Hamiltonian (and hence time
evolution) for the auxiliary modes [47]. We choose their
single-particle energies equal to those of the physicalmodes,
εq2 ¼ εq, in order to ensure that the resulting total lead
Hamiltonian is diagonal in j in both the original and the
rotated basis:

Hlead ≡Hlead þHaux ¼
X
qj

εqc
†
qjcqj ¼

X
qj

εqc̃
†
qjc̃qj: ð7Þ

Equation (4) is rotated intoHðI=SÞ
hyb ¼P

qjðṽqjd†α=σ c̃qjþH:c:Þ,
whose couplings, ṽq1 ¼ vq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
and ṽq2 ¼ vq

ffiffiffiffiffi
fq

p
,

now explicitly depend on the Fermi function and encode
all relevant information about temperature and voltage.
For the SIAM, we use a specific linear combination of

c̃Lkσi and c̃Rkσi modes, C̃kσi ∝
P

αṽαkσic̃αkσi, because the
modes orthogonal to these [37] decouple. Mixing left and
right lead modes is possible despite the nonequilibrium
situation, because the difference in chemical potentials is
accounted for by the V-dependent couplings ṽq. In the
IRLM, this reduction of modes is not possible because left
and right lead couple to different impurity sites.
NRG renormalization of the impurity.—As is standard

for NRG, we map the leads (in the thermofield representa-
tion) from the original “star geometry” to a chain geometry.
To ensure that jΩi remains a product state, we perform the
corresponding unitary transformation for holes and par-
ticles independently. This results in a chain consisting of
two channels i ∈ f1; 2g for the SIAM, and four for the
IRLM due to the additional lead index α ∈ fL;Rg. The first
part of the chain corresponds to the log-sector, the later part
to the lin-sector. The hoppings within the log-sector decay
as Λ−n, because for each lead level q within the log-sector
of the original star geometry, either c̃q1 or c̃q2 decouples
from the RI due to fq ∈ f0; 1g. For NRG calculations, it is
unfavorable to describe holes and particles in separate
chains, because then particle-hole excitations involve
opposite levels of different chains. For that reason, we
recombine the holes and particles of the log-sector into one
chain using a further tridiagonalization. In the IRLM, this is
done for each lead α independently. After that, the log-
sector resembles a standard Wilson chain with hoppings
that scale as Λ−n=2, reflecting the fact that the log-sector is

effectively in equilibrium. A sketch of the different geom-
etries can be found in Fig. S2 of Ref. [37].
Using NRG, we find an effective low-energy many-body

basis for the log-sector, which we interpret as the local state
space of a RI, and we treat it as one chain element of our
MPS chain. Coupled to this RI, we have the lin-sector of the
leads, represented as two separate chains for holes and
particles, as shown in the upper part of Fig. 1(b).
TDMRG quench.—We choose the initial state for the

quench as the product state jΨinii ¼ jϕinii ⊗ jΩlini. This
implies that for the lin-sector, we start with the state in
which all holes (particles) are empty (filled). As the initial
state of the RI, jϕinii, we choose a ground state of the
NRG basis (in principle, one can choose any of the low-
energy basis states whose excitation energy is well within
the TW). We then switch on the coupling between the
RI and the leads, smoothly over a short time window.
The system time-evolves under the Hamiltonian Ĥ ¼
Himp þHhyb þHlead þHaux, jΨðtÞi ¼ e−iĤtjΨinii. We per-
form the time evolution using TDMRG based on a second
order Trotter decomposition, as depicted in Fig. 1(b), with a
Trotter time step of order 1=D�. (Technical details can be
found in Sec. S-3.C of Ref. [37].) The fact that this initial
lead state is entanglement-free is advantageous for reaching
comparatively long times. We extract NESS information
from hAðtÞi ¼ hΨðtÞjAjΨðtÞi within a window of inter-
mediate times, large enough for post-quench transients to
no longer dominate, but well below the recurrence time,
where finite-size effects set in. We compute the current
through the impurity site (SIAM) or the central impurity
site (IRLM), respectively, using J ¼ 1

2
ðJL − JRÞ, where

JL (JR) is the current that flows into the site from the
left (right), respectively [37]. We are able to track
the time evolution up to times of order 1=D�. Since
D� ∼maxðV; TÞ, this suffices to describe particle transport
for any choice of V or T. However, processes on much
smaller energy scales cannot necessarily be resolved (see
Sec. S-4.C of [37] for details).
Interacting resonant level model.—We benchmark our

method for the IRLM, for which Ref. [15] computed the
steady-state current at T ¼ 0 both numerically, using
DMRG quenches, and analytically, using the exact Bethe
ansatz. A universal scaling of the current-voltage character-
istics was found at the self-dual point of the model, with the
corresponding energy scale TB scaling as ðt0Þ3=4. (These
results were very recently confirmed by Ref. [48].) Figure 2
presents a comparison of our data with the analytical
expression for the universal scaling curve given in [15],
for the current as function of voltage at T ¼ 0 at the self-
dual point U ≈D and εd ¼ 0. The agreement is excellent
for a large range of t0 values. For each value of t0, TB was
used as a fit parameter; the resulting TB values, shown in the
inset, agree nicely with the scaling predicted in [15]. Using
the fitted values of TB, all data points deviate by less than
2% from the Bethe results. Our use of NRG to renormalize
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the impurity enables us to study values of t0 up to a hundred
times smaller than the values used in [15], giving us access
to much smaller values of TB and larger V=TB ratios.
Single-impurity Anderson model.—For the SIAM, a

natural first check is the noninteracting case, U ¼ 0, which
is exactly solvable, but its treatment in MPS numerics does
not differ from the case U ≠ 0. The inset of Fig. 3(a)
displays the current over voltage for two different temper-
atures, showing good agreement between our MPS
numerics and exact predictions, thus providing direct
evidence for the validity of our approach. For U ≠ 0,
our method yields quantitative agreement with previous
numerical results obtained in the regime V ≳ Γ [6,7], see
Sec. S-6 of Ref. [37] for details. Furthermore, we find good
agreement with the auxiliary master equation approach for
arbitrary voltages, see Ref. [49] for details.

The main panel of Fig. 3(a) focuses on the differential
conductance gðT;VÞ¼ ð∂JðT;VÞ=∂VÞ=ð2e2=hÞ for strong
interactions. As a consistency check, we compare our
results for gðT; 0Þ with the linear conductance computed
using FDM-NRG [51]. We find excellent agreement over a
large range of temperatures. From this data, we define the
Kondo temperature TK via the condition gðTK; 0Þ≡ 1

2
.

We also show gð0; VÞ over a wide voltage range in
Fig. 3(a). In agreement with experiment [22] and other
theoretical work [8], this curve lies above gðT; 0Þ. The
difference can be quantified by the value of gð0; TKÞ, a
universal number characterizing NESS transport for the
SIAM, whose precise value is not yet known with quanti-
tative certainty. Our method, which we trust to be quanti-
tatively reliable, yields gð0; TKÞ ≈ 0.60� 0.02 in the
Kondo limit of U=Γ ≫ 1, where the estimated error bar
of about 3% is likely conservative (cf. [37]). For compari-
son, (nonexact) analytical calculations for the Kondo model
yielded gð0; TKÞ ≈ 2=3 [8,9].
Figures 3(b)–3(d) show our quantitative description of the

T- and B-dependence of the zero-bias peak in the Kondo
limit (U=Γ¼12). With increasing T at B ¼ 0, the zero-bias
peak decreases [Fig. 3(b)], as observed in numerous experi-
ments [17–22]. For finiteB, the zero-bias peak splits into two
sub-peaks atV ≈�B [Fig. 3(c)]. Amore detailed analysis of
the value of B, at which the peak begins to split [52,53], is
given in Sec. S-7 of Ref. [37]. In Fig. 3(d), the peak position
with respect to B is resolved in more detail, with the voltage
given in units of B. While for B ≈ 2TK the peak position is
roughly at V=B ≈ 0.83, it quickly tends towards V=B ¼ 1
for larger magnetic fields. Our study thus quantitatively
confirms that the large-field peak-to-peak splitting for the
nonlinear conductance is ≈2B, as observed in several
experiments [16,17,20]. This is also found in independent
calculations [49] using the approach of Ref. [13].
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FIG. 3. Numerical results for the SIAM with Γ ¼ 10−3. For U ¼ 12Γ, used in (b)–(d), we find TK ¼ 2.61 × 10−5. [This implies

TK ¼ 1.04TðχÞ
K , where TðχÞ

K ¼ ð1=4χsÞ ¼ ðUΓ=2Þ12eπ½ðΓ=2UÞ−ðU=8ΓÞ� is an alternative definition of the Kondo temperature based on the
Bethe-ansatz result [50] for the static spin susceptibility χs, at B ¼ T ¼ 0]. (a) Conductance vs V and T: squares show quench results in
linear response as function of T, gðT; 0Þ, in good agreement with the NRG results (solid line). Dots and triangles show quench results for
the nonlinear conductance vs V at T ¼ 0 for two different values of U. Inset: current vs V for U ¼ 0 on a log-log scale, for two different
temperatures, showing excellent agreement with analytical results. (b) Disappearance of the Kondo resonance in gðT; VÞwith increasing
T at B ¼ 0, with gðT;−VÞ ¼ gðT; VÞ, by symmetry. (c) Splitting of the resonance in gð0; VÞ for finite B. Two subpeaks emerge at
V ≈�B, as marked by the dashed lines. (d) Similar data as in (c) but plotted vs V=B and on a linear scale. For B ¼ 2TK, the peak
position in the conductance gð0; VÞ is still slightly below B, but for a higher magnetic field, the peak clearly moves towards V=B ≈ 1. In
(b)–(d), the squares indicate the NRG result for V ¼ 0.
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Summary and outlook.—We have combined the thermo-
field approach with a hybrid NRG-TDMRG quench strat-
egy to reach a longstanding goal: a versatile, flexible, and
quantitatively reliable method for studying quantum impu-
rity models in steady-state nonequilibrium. Because of
these features, our scheme has the potential of developing
into the method of choice for such settings, in the same way
as NRG is the method of choice for equilibrium impurity
models. Indeed, various quantitative benchmark tests have
confirmed the accuracy of our scheme, and it can easily be
applied to other models and setups. For example, a
generalization to a finite temperature difference between
the left and right lead would be straightforward. It would
also be interesting to use our setup for quantitative studies of
the nonequilibrium two-channel Kondo physics measured
in [54], or to study impurity models with superconducting
leads, since the hybrid NRG-TDMRG approach is ideally
suited for dealing with the bulk gap.
Methodologically, our setup can straightforwardly be

extended to study NESS physics, without resorting to a
quench strategy, by including Lindblad driving terms in the
Liouville equation, which are local on the MPS chain [55].
Although the direct time-evolution of such Lindblad
equations based on tensor networks seems feasible [56],
one could try to avoid the real-time evolution altogether,
and target the steady-state directly, by looking for the
density matrix that fulfills _ρ ¼ 0 [57,58].
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This supplementary material goes into the details of
the numerical calculations. In section S-1 we describe
the thermofield in more detail. In section S-2 we describe
the discretization we use for the leads. In section S-3 we
give some technical details for the MPS implementation.
Section S-4 discusses how to determine expectation val-
ues, and section S-5 uses an example to illustrate the
accuracy of our approach. Section S-6 compares our re-
sults for the SIAM at high voltages to previous results,
and section S-7 addresses the question of determining the
magnetic field at which the Kondo resonance begins to
split.

S-1. THE THERMOFIELD APPROACH

The thermofield approach [32–35] used in the main text
is a convenient way to represent a thermal state as a
pure quantum state in an enlarged Hilbert space with the
useful property that this pure state can be expressed as
a simple product state. Here, we summarize the analytic
details of this approach. For a schematic depiction of its
main steps, see Fig. S1.

The density matrix of a thermal state is given by

ρ = 1
Z(β)e

−βH =
∑
n

e−βEn

Z(β)︸ ︷︷ ︸
≡ρn

|n〉 〈n| (S1)

with β = 1/T , Z(β) = tr
(
e−βH

)
, and H |n〉 = En |n〉.

Akin to purification [29], one can represent this ther-
mal state as pure state |Ω〉 in an enlarged Hilbert space:
one doubles the Hilbert space by introducing the auxil-
iary state space {|n2〉}, which is a copy of the original
Hilbert space {|n〉} ≡ {|n1〉} and defines,

|Ω〉 =
∑
n1,n2

fn1,n2(β) |n1〉 ⊗ |n2〉 (S2)

such that the density matrix ρ can be recovered as

ρ =Traux (|Ω〉 〈Ω|) =
∑
n2

〈n2|Ω〉 〈Ω|n2〉

=
∑
m1,n1

∑
n2

f∗m1n2
(β)fn1n2

(β)︸ ︷︷ ︸
≡ρn1,m1

|n1〉 〈m1| . (S3)

Thermal equilibrium requires

ρn1,m1 = e−βEn1

Z(β) δm1n1
. (S4)

Eq. (S3) implies that the thermal expectation value of
any operator A is given by

〈A〉β = 〈Ω|A|Ω〉 . (S5)

For noninteracting systems we can look at each
single fermionic mode q separately with Hamiltonian
Hq = εqc

†
qcq. The orthonormal basis of our enlarged

Hilbert space with modes cq1 = cq and cq2 is given by:{
|0, 0〉q , |0, 1〉q , |1, 0〉q , |1, 1〉q

}
. (S6)

It follows from Eq. (S4) that the cumulative weight of
the first two states (where the physical mode is empty)
is (1− fq) with fq = (1 + eβ(εq−µα))−1, while the weight
of the other two (where the mode is filled) is fq.

Within the space of the four states in (S6) one can
perform a rotation such that one of the new basis states
carries the full weight in the thermal state, while the
other three do not contribute. This can be exploited
to represent |Ω〉 as a simple product state. By choos-

ing f
(q)
00 = f

(q)
11 = 0 (implying f

(q)
01 (β) =

√
1− fq and

f
(q)
10 (β) =

√
fq) and rotating such that |Ω〉 =

∏
q |0̃, 1̃〉q,

we can ensure that this rotation preserves particle num-
ber conservation.

The rotated modes are of the form(
c̃q1
c̃q2

)
=

(
cos θq − sin θq
sin θq cos θq

)(
cq1
cq2

)
(S7)

where the angle θq is defined by

sin θq = f
(q)
10 =

√
fq ,

cos θq = f
(q)
01 =

√
1− fq .

(S8)

By construction, we then have

|Ω〉 =
∏
q

(√
1− fq |0, 1〉q +

√
fq |1, 0〉q

)
︸ ︷︷ ︸

=: |0̃,1̃〉q

(S9)
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and therefore

c̃q1 |Ω〉 = c̃†q2 |Ω〉 = 0 . (S10)

Let us conclude with a few further remarks: In the
literature [34, 35], one typically transforms to a basis in
which |Ω〉 is the vacuum of the enlarged Hilbert space.

(a)                                      (c)

(b) (i)                 (ii)                                       (iii)

(d)

Figure S1. (a) Schematic MPS representation of the expecta-
tion value 〈A〉 = tr(ρA) rewritten in the form 〈Ω|A|Ω〉, where
the state |Ω〉 with its physical and auxiliary local modes is
indicated by the dashed box. (b) Starting from (i) a ther-
mal level occupied with probability fq we represent the state
(ii) as a linear combination |Ω〉 of states in which the phys-
ical mode is empty or filled, weighting the two contributions
corresponding to the Fermi function. We choose the auxil-
iary mode to be filled (empty) when the physical mode is
empty (filled) [see Eq. (S9)]. (iii) The rotation Rq in Eq. (S7),
combining the physical mode cq1 and the auxiliary mode cq2,
yields modes that are empty or filled with probability one,
but their coupling to the impurity ṽqi depends on fq. (c)
Schematic depiction of the thermofield basis transformation
for a single fermionic level q. Operators Ã act on the state
|Ω〉 represented in the new rotated basis consisting of “holes”

and “particles” in terms of the tensors X̃q. (d) Both purifica-
tion and local level rotation are set up in the star geometry,
where each “free” lead mode couples to the impurity only.
We then go over to the chain geometry by tridiagonalizing
the modes c̃qi such that the resulting Hamiltonian consists of
nearest-neighbor terms only. We do this for the holes c̃q1 and
the particles c̃q2 separately. Since both channels are product
states of either completely filled or completely empty levels, a
unitary one-particle basis transformation, as provided by the
tridiagonalization performed separately within each channel
only, necessarily preserves this structure.

This corresponds to the approach presented here, but

with the role of c̃q2 and c̃†q2 interchanged. In this case,

the rotation in Eq. (S7) takes the standard form of a Bo-
goliubov transformation. Using this basis, it would not
be necessary to keep the rotated modes in separate chan-
nels when going over to an MPS chain. However, the
mapping onto a single chain (i) does not eliminate any
degrees of freedom, and (ii) comes at the price of loosing
particle number conservation. Therefore, for the sake of
numerical efficiency, we preferred to keep the two chan-
nels separate. The only drawback of the latter approach
appears to be that particle and hole excitations are lo-
cally separated along the chain geometry which, eventu-
ally, may make the accurate description of the long-time
behavior more challenging.

The thermofield approach is closely related to the pu-
rification approach often used in MPS studies of finite-
temperature systems. In particular, both approaches in-
volve doubling the degrees of freedom, introducing an
auxiliary mode for each physical mode. But while the
latter typically describes interacting systems, the ther-
mofield approach corresponds to its application to non-
interacting thermal leads. In many applications of pu-
rification, the formulation is chosen such that auxiliary
and physical modes are in the same state for the max-
imally entangled state at infinite temperature. For the
thermal state of noninteracting leads at finite tempera-

ture, this would correspond to a choice of diagonal f
(q)
mn

in our statement below Eq. (S6), such that

|Ψ̃〉 =
√
ρ0|0, 0〉+

√
ρ1|1, 1〉 (S11a)

for each single-particle lead level. In comparison to that,
we exploit the freedom of unitary transformations in the
auxiliary state space and use a number eigenstate in-
stead,

|Ψ〉 =
√
ρ0|0, 1〉+

√
ρ1|1, 0〉 . (S11b)

Evidently, Eq. (S11b) can be mapped onto Eq. (S11a) by
a particle-hole transformation for the auxiliary degrees
of freedom. (In an MPS diagram such as Fig. S1(c), this
would amount to flipping the direction of the arrow of
all lines [40] representing auxiliary degrees of freedom.)
Since such a particle-hole transformation would map our
Haux onto −Haux, the scheme used here is reminiscent of
the purification scheme employed in [47], who used op-
posite signs for the physical and auxiliary mode Hamil-
tonians in order to improve numerical efficiency.

Note also that in the present work we purify the ther-
mal leads and do not have an auxiliary degree of freedom
for the impurity itself. The reason for this is simple: in
the initial state we want to enforce a specific thermal dis-
tribution on the occupation statistics of the leads. This
carries over to a specific connection between the auxil-
iary and the physical degrees of freedom in the leads. In
contrast, the impurity can be in any state at the begin-
ning of our quench. In particular, one can choose the
initial state of the impurity such that the auxiliary mode
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for the impurity simply decouples. Also the Hamiltonian
dynamics does not connect the auxiliary mode to the rest
of the system, so we do not need to describe the auxiliary
degree of freedom for the impurity at any time.

Finally, we note that the present scheme of simulating
a thermal yet closed system can be extended to open sys-
tems. In a previous work [55] we had also introduced a
lead representation in terms of “holes” and “particles”,
yet formulated a description of nonequilibrium steady-
state transport through a localized level using Lindblad-
driven discretized leads. There we demonstrated, that
such a Lindblad driving in effect broadens the discrete
levels of discretized leads in such a way that they faith-
fully mimic the properties of continuous leads. In the ba-
sis of “holes” and “particles” this Lindblad driving takes
a remarkably simple form and, in particular, it is local on
the chain underlying the MPS. By adding such a Lind-
blad driving to the time evolution, it should be possible
to describe even longer time scales. However, the price
one would have to pay, is a time evolution that is not
described by Hamiltonian dynamics but by a Lindblad
equation.

S-2. LOG-LINEAR DISCRETIZATION

We want to coarse-grain, i.e. discretize the full band of
bandwidth [−D,D] into N energy intervals [En, En+1] in
such a way that the width of the energy intervals scales
linearly within the transport window (TW) [−D∗, D∗]
and logarithmically for energies outside, with a suffi-
ciently smooth transition between the linear sector (lin-
sector) and the logarithmic sector (log-sector). Related
ideas have been considered in [25, 45]. The three rele-
vant parameters for our discretization are: (i) the level-
spacing δ within the lin-sector; (ii) the parameter Λ > 1
defining the logarithmic discretization in the log-sector
(typically Λ & 2; see below); and (iii) the energy scale
D∗ at which the transition between the lin-sector and the
log-sector takes place. To construct such a log-linear dis-
cretization we define a continuous function E(x) which
is evaluated at the points xn = n + z with n ∈ Z and
z ∈ [0, 1) to obtain the energies En = E(xn). This
function E(x) has to fulfill E(x + 1) − E(x) = δ for

|E(x + 1)| < D∗ and E(x+1)
E(x) = Λ

( E(x)
E(x+1) = Λ

)
for

E(x) � D∗ (E(x) � −D∗), respectively. Furthermore,
we demand the function and its first derivative to be con-
tinuous. We construct such a function by inserting a lin-
ear section into the logarithmic discretization described
by the sinh() function,

E(x) =

{
δ · x if |x| ≤ x∗

δ ·
( sinh[(x∓x∗) log Λ]

log(Λ) ± x∗
)

if x ≷ ±x∗ (S12)

with x∗ = D∗/δ. Fixing the three parameters δ, Λ and
D∗ fully fixes the form of the function E(x). The only free
parameter left is the parameter z ∈ [0, 1), whose role is
fully analogous to the z-shift in NRG calculations [38, 39].

The outermost intervals are limited by the bandwidth
E1 = −D, EN+1 = D. If one of these outermost intervals
gets narrow compared to the adjoining interval, one can
simply join these two intervals into one for the sake of
energy scale separation within NRG.

The discretization is therefore determined by four pa-
rameters: Λ, D∗, δ, and z. The parameter Λ charac-
terizes the logarithmic discretization for the log-sector.
It has to be small enough to capture the relevant high-
energy physics, but large enough to ensure energy scale
separation in the NRG calculation. For our calculations,
we typically choose 2 . Λ . 3. D∗ is the energy scale
that defines the size of the TW. If T . V , it is approx-
imately set by the chemical potential V/2. If T & V ,
temperature will define the size of the TW and the edges
of the window will be smeared out. We chose D∗ as the
energy at which the Fermi function of the channel with
positive chemical potential (µ = V/2) has decreased to a
value of 10−3, implyingD∗ = V/2 for T = 0 andD∗ ≈ 7T
for V � T . The level spacing δ in the lin-sector sets the
time-scale accessible by the quench calculations before fi-
nite size effects get visible. Typically, we set δ = D∗/20,
such that we have approximately forty energy intervals
within the TW. In all our calculations, we used z = 0.

To each of the intervals [En, En+1] we assign an en-
ergy εn representing the energy of the interval. In the
context of NRG, different methods have been developed
to optimize this energy [38, 39]. Motivated by Eq. (44)
in Ref. [38], we choose a simplified version, namely

εn =

{
En+1−En

ln(En+1/En) , if |En| , |En+1| > D∗

1
2 (En + En+1) , else.

(S13)

When |En| approaches |D∗| from above, our log-linear
discretization approaches a linear discretization, with
En+1 − En = δ. In this case,

εn = δ
ln(1+ δ

En
)

δ�En≈ En + δ
2 ≈

1
2 (En + En+1) , (S14)

which matches the definition of εn for |En|, |En+1| < D∗

in Eq. (S13). In this sense the smooth behavior of the
energies En defining the discretization intervals leads to
a reasonably smooth transition from the log-sector to the
lin-sector also in the energies εn.

S-3. DETAILS ON THE MPS CALCULATION

All our MPS calculations were built on top of the QS-
pace tensor library that can exploit abelian as well as
non-abelian symmetries on a generic footing [40]. For
the SIAM, standard particle-hole symmetry is defined

by the spinor ψ̂† ≡ (c†↑, sc↓), which interchanges holes

and particles (up to a sign s) while simultaneously also
reverting spin σ ∈ {↑, ↓} [40]. This symmetry acts in-
dependently of the SU(2) spin symmetry, and hence is
preserved even if B 6= 0. In our simulations, however, we
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only exploit U(1) spin and U(1) particle-hole symmetry,
since (i) we are also interested in finite magnetic field B,
which breaks spin SU(2) symmetry, and (ii) finite bias
voltage V breaks particle-hole symmetry in the leads.

A. The MPS geometry

The starting point is the star geometry with the two
leads, α ∈ {L,R}, discretized in energy with lead lev-
els q = {α, (σ), k}, as depicted in Fig. S2(a). Note that
we do not include the chemical potential into the ener-
gies εq. Together with left/right symmetry for the leads,
this implies εα(σ)k = εk. In the thermofield approach
the lead levels q are doubled and rotated to “holes” and
“particles”, represented by the operators c̃qi, as depicted
in Fig. S2(b).

a. Decoupling modes: For the positive (negative)
high energies in the log-sector the “particle” modes c̃q2
(the “hole” modes c̃q1) are already decoupled due to
fq = 0 (fq = 1) without any further rotation. Hence
the doubling of levels is not required there.

Furthermore, in the SIAM, we can combine the “holes”
and “particles” separately from the left lead with those
from the right lead into new modes,

C̃kσi = 1
N

∑
α

ṽαkσic̃αkσi ,
(
N 2 ≡

∑
α′

|vα′kσi|2
)

(S15a)

yielding the geometry in Fig. S2(c). The modes orthog-
onal to these,

C̃
(⊥)
kσi = 1

N (ṽ∗Lkσic̃Rkσi − ṽ∗Rkσic̃Lkσi) , (S15b)

decouple from the impurity. In matrix notation, tem-
porarily suppressing the global index set kσi for read-
ability, this can be written as(

C̃

C̃(⊥)

)
= 1
N

(
ṽL ṽR
−ṽ∗R ṽ∗L

)(
c̃L
c̃R

)
(S16a)

with inverse relations,(
c̃L
c̃R

)
= 1
N

(
ṽ∗L −ṽR
ṽ∗R ṽL

)(
C̃

C̃(⊥)

)
(S16b)

The decoupling of the orthogonal modes is in complete
analogy to standard equilibrium calculations in the SIAM
[24]. In our setup it carries over to the nonequilibrium
situation, because the difference in the chemical potential
of the two physical leads is shifted into the couplings
ṽqi. In the IRLM, this combination of left and right lead
modes is not possible, because the two leads couple to
two different impurity sites, in full analogy to standard
equilibrium calculations.

The above analysis leads to the remarkable conclusion
that the numerical effort for the description of the spin-
less IRLM is comparable to that of the spinful SIAM.

Figure S2. Sketch of the different discrete site geometries.
(a) We start with two channels α ∈ {L,R} in the star geom-
etry, with the two colors representing the log-sector and the
lin-sector. (b) Within the thermofield approach each level is
exactly represented by one “hole” and one “particle”. How-
ever, for the positive (negative) energies in the log-sector the
“particles” (“holes”) decouple from the impurity due to fq = 0
(1− fq = 0), respectively. (c) For the SIAM, only specific lin-
ear combinations of left and right lead modes couple to the
impurity, while the corresponding orthogonal modes decou-
ple see Eqs. (S15) (d) Tridiagonalizing “holes” and “parti-
cles” into separate channels, we get two channels in the chain
geometry for the SIAM (upper part) and four in the IRLM
(lower part), for which we still distinguish between left and
right leads. The couplings in the log-sector for each channel
decay as Λ−n (e) Recombination of holes and particles within
log-sector into one channel using another tridiagonalization
since for NRG it is unfavorable to have “holes” and “par-
ticles” in separate channels. The couplings in this altered
channel setup decay as Λ−n/2, which resembles equilibrium
NRG. However, the first site of the lin-sector in the chain ge-
ometry now couples to a range of sites of towards the end of
the log-sector. Nevertheless, energy scale separation ensures
that this nonlocality is restricted to only a few sites.

The additional cost involved for the SIAM for treating
two states is compensated by the simplification that left
and right lead modes can be combined because they cou-
ple to the same impurity site.

b. Tridiagonalization: When going over to a chain
geometry, the corresponding tridiagonalization is per-
formed for “holes” and “particles” independently (treat-
ing them as different “channels”), in order to maintain
the property that the thermal state |Ω〉 is a simple prod-
uct state while also preserving charge conservation: if for
the state |Ω〉 a channel is completely empty (filled) in the
star geometry, it will remain a completely empty (filled)
channel also in the chain geometry. For the IRLM, since
the left and right leads have to be represented as separate
channels, we tridiagonalize the modes c̃qi into the four
channels {αi} with α ∈ {L,R} and i ∈ {1, 2} labeling
“holes” and “particles”, see lower part of Fig. S2(d). For
the SIAM, in contrast, left and right leads are combined
in the sense of equation (S15a), so we separately tridiag-

onalize the “holes” (C̃q,i=1) and the “particles” (C̃q,i=2),
see upper part of Fig. S2(d).

Due to energy scale separation, the first part of the
chain corresponds to the energy scales of the log-sector,
while the later part of the chain represents the lin-sector.
Instead of counting the exact number of sites in the chain
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geometry, we identify the log-sector by looking at the be-
havior of the hoppings which decay exponentially in the
log-sector and are all of the same order in the lin-sector.
Due to the smoothened transition from the linear to the
logarithmic discretization also the hopping matrix ele-
ments show a smooth crossover from exponential decay
to approaching a constant. We define the log-sector on
the chain as the part for which (i) the hoppings decay
strongly enough (the details of this condition slightly de-
pend on the number of many-particle states kept in the
NRG iterations) and (ii) the hoppings are larger than
the energy scale D∗ on which transport takes place. By
construction the two conditions are roughly equivalent.
Note that for the “holes” (“particles”) in the log-sector
of the star geometry only the positive (negative) ener-
gies contribute to the hybridization. This translates into
a decay of the hoppings and on-site energies scaling as
Λ−n for the log-sector on the chain.

c. Re-combining “holes” and “particles” in the log-
sector: For the NRG calculation it is disadvantageous
to describe “holes” and “particles” in separate channels
since particle-hole excitations are sharply separated in
terms of the particle and the hole content along the
chain geometry. Consequently, we apply a further tridi-
agonalization that remixes “holes” and “particles” of
the log-sector into one channel, e.g. see upper part of
Fig. S2(e). This then defines the renormalized impurity
(RI). For the IRLM, this subsequent tridiagonalization is
done for the left and right lead separately, see lower part
of Fig. S2(e). After this recombination the hoppings in
the channel(s) will decay as Λ−n/2. The numerical com-
plexity of the NRG calculation, therefore, is comparable
to that of a standard equilibrium calculation in the sense
that we obtain the same number of numerical channels
(one spinful for the SIAM, two spinless for the IRLM) and
the same exponential decay in the energy scales. Note
that the tridiagonalization combining “holes” and “par-
ticles” for the log-sector comes with the caveat that it
introduces a nonlocality in the Hamiltonian: after this
further tridiagonalization, the first site in the lin-sector
does not only couple to the last site of the log-sector but
rather to the last few sites, see Fig. S2(e). The corre-
sponding hopping term is therefore subject to truncation
within the NRG iterations. However, energy-scale sep-
aration ensures that this nonlocality stretches only over
a few sites, so the error introduced by the truncation of
this hopping is considered minor.

d. Remaining lin-sector: For the DMRG calculation
we order the channels such that the “holes” are on one
side of the RI and the “particles” on the other side, see
Fig. 1. The local dimension of each chain element is given
by 22 = 4: in the SIAM this is due to the spin degree
of freedom σ, in the IRLM it represents the remaining
degree of freedom in the physical leads α.

In case of the IRLM, where left and right lead are
kept separate, there is one further point worth noting:
at T = 0, also in the lin-sector either the “hole” or the
“particle” decouples from the impurity for each lead level

q. This implies that parts of the remaining chains rep-
resenting “holes” and “particles” in the log-sector of the
chain geometry decouple. This fact can be applied to fur-
ther reduce the numerical cost, even though we have not
done so here. It stems from the fact that no purification
procedure is needed for T = 0, and therefore does not
carry over to T > 0.

B. Renormalized Impurity

The log-sector traces out the high-energy degrees of
freedom at energies E � T, V . Therefore the renormal-
ized impurity represents the low-energy many body basis
that still spans energies up to and beyond the transport
window (TW) set by max(T, V ). Typically we keep ap-
proximately 500 to 700 states to describe this basis. In
the quench protocol, we can pick an arbitrary pure state
|φini〉 in this effective low-energy space as the initial state
for the RI. In order to avoid excess energy in the initial
state, we choose the ground state of the log-sector.

If the ground state space is degenerate by symmetry,
picking a single individual state may artificially break
that symmetry. Therefore proper averaging over degen-
erate state spaces is required, either by actually running
separate simulations for each degenerate ground state, or
by simply exploiting the known effect of the symmetry
on the numerical result. (This also applies to the case
of quasi-degenerate ground states, e.g. when a symmetry
present in the Hamiltonian is only weakly broken.) Over-
all, note that degeneracy within the log-sector is rather
generic, since we choose to keep particle and hole chan-
nels symmetric. Therefore we combine the same num-
ber of “hole” and “particle” sites into the log-sector such
that, including the impurity site, it always contains an
odd number of sites [see Fig. S2].

For example, for the IRLM at particle-hole symme-
try, the log-sector has a single zero-energy level, εc = 0,
causing the ground state sector to be two-fold degener-
ate. Since our NRG code exploits abelian particle num-
ber conservation, we obtain two ground states for the
log-sector that are particle-number eigenstates globally
within the RI, say |G1〉 and |G2〉. We can initialize our
quench calculations by taking |φini〉 equal to either |G1〉
or |G2〉.

Now, for a particle-hole-symmetric model involving a
zero-energy level coupled to an infinite bath, the local
(e.g. thermal) occupancy is nC = 1/2. However, the
initial local occupancies for the two number eigenstates
above, say nC,i = 〈Gi|n̂C |Gi〉 (for i = 1, 2), are not neces-
sarily equal. In general, nC,1 +nC,2 = 1, yet nC,1 6= nC,2
due to finite-size effects (the log-sector involves only a
finite number of bath levels). Correspondingly, during
the post-quench time evolution, only the average of the
local occupancies, 〈nC〉(t) ≡ 1

2 (nC,1 + nC,2)(t) = 1/2,
throughout, whereas the local occupancies for the two
individual states, nC,i(t), reach the value 1/2 only in the
asymptotic limit t → ∞ due to their hybridization with
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the lin-sector. In practice, by knowing the underlying
symmetry which enforces nC,2(t) = 1−nC,1(t), the inial-
ization of the quench may only include e.g. |G1〉, bearing
in mind that the data must be symmetrized w.r.t. occu-
pation.

Alternatively, one could construct linear combinations
of |G1,2〉, say |G±〉, which are eigenstates of a particle-
hole transformation with eigenvalues ±1, and which yield
local occupancies, nC,± = 〈G±|n̂C |G±〉, that by con-
struction satisfy nc,± = 1/2. If we would initialize the
quench by taking |φini〉 equal to either |G+〉 or |G−〉, then
we would find nC,±(t) = 1/2 throughout the post-quench
time evolution. However, since the post-quench time
evolution conserves particle number within each particle-
number eigensector, this strategy would be equivalent to
averaging the result of two separate quenches, initialized
with |φini〉 equal to |G1〉 or |G2〉, respectively.

C. Trotter time evolution

The initial state is evolved in time, |Ψ(t)〉 =
e−iHt |Ψ(t = 0)〉, using tDMRG [27–29] with a standard
second-order Trotter decomposition for a time step τ :

e−iHτ =e−iHoτ/2e−iHeτe−iHoτ/2 +O(τ3) , (S17)

where He (Ho) includes all “even” (“odd”) bonds. The
individual terms in Eq. (S17) w.r.t. He (Ho) will be re-
ferred to as even (odd) Trotter steps or even (odd) itera-
tions, respectively. The tensorial operations that are per-
formed in practice within the MPS setup, are sketched in
Fig. S3. The RI is described within a fixed effective low-
energy basis. The main idea is to use this fixed basis as
the local state space of an MPS site in the center when
performing the Trotter time evolution. However, when
constructing the time evolution operator that contains
the coupling between the NRG sites and the first of the
remaining sites, one has to be careful with the exponenti-
ation of the coupling term. For this purpose, we need to
consider two subsequent NRG iterations, e.g. at Wilson
chain lengths N and N + 1, where site N + 1 will be re-
ferred to as flexible site. These will be treated differently
in the even compared to the odd Trotter steps (depend-
ing on the exact chain length, the notion of “even” and
“odd” may need to be interchanged). For the time steps
which we call “even” in panel (a), we exponentiate the
full Hamiltonian of N NRG sites plus the flexible site
(HNRG

N+1 ), yet excluding the coupling to the rest of the
chain. Therefore we fully associate the “local” Hamil-
tonian of the RI with even iterations which is allowed
within the Trotter setup. Assuming that the Wilson
chain length N + 1 is still within the realm of energy
scale separation, it can be dealt with in standard NRG
manner. In particular, it can be exactly diagonalized in
the expanded state space, including the state space of
the flexible site, followed by simple exponentiation. The
couplings between the flexible site and the subsequent
sites, i.e. sites N + 1 and N + 2, both left and right, we

reshape the tensors as depicted in Fig. S3(b). Note that
this requires fermionic swap gates [41] to account for the
correct treatment of fermionic signs. After this reshaping
the performance of the “odd” time steps is standard, as
sketched in Fig. S3(c).

At time t = 0, the RI is in its ground state, while
the leads are thermal. Since we are interested in the
nonequilibrium steady-state properties, we do not switch
on the coupling between RI and thermal leads abruptly in
our quench protocol, as this would introduce undesirable
high-energy excitations into the system. Instead, with
adiabaticity in mind, we turn on the coupling between
RI and thermal leads smoothly over a short time interval.
The detailed form of this procedure should not matter.
In our calculation, we ramp up the coupling η between
the RI and the thermal leads in a linear fashion: we use a
time window of tramp = 2/D∗ to 4/D∗ and divide it into
N = 10 to 20 equally spaced time intervals with stepwise
constant couplings, η(tn) = η nN where n = 1, . . . , N .

The size of the actual Trotter time step τ in equa-
tion (S17) should scale with E−1

trunc, with Etrunc being
the highest eigenenergy of the truncated NRG basis (or,
if no NRG is required, the many-body energy bandwidth,
i.e. since all energy scales are only moderately smaller as
compared to the bandwidth of the leads). In practice, a
prefactor of in the range 0.5 to 1 worked quite well. In
our calculation this energy Etrunc typically is of the order
5D∗ to 20D∗.

When applying the Trotter gates, we keep all singular
values larger than some threshold ε(SVD). Within our

calculation this threshold varies between ε = 2 · 10−4

and ε = 10−3. We time-evolve the system until a
time tmax at which a maximal bond dimension Dmax

is reached in our MPS due to an increase in entangle-
ment entropy following the quench. We used Dmax up
to 450 in our calculations. The above parameters im-
plied typical accessible times in the post-ramp window
up to tmax − tramp > 8/D∗. In case of V � T this is
equivalent to tmax > 16/V . Compared to an oscillation
period of 4πV −1 in the current (see below) this range
might seem rather small. However, typically these oscil-
lations are (a) strongly reduced in amplitude due to the
quasi-adiabatic quench protocol as described above, and
(b) in cases where the oscillations are nevertheless still
strong, i.e. at large voltages, the accessible time window
typically can be extended over many periods.

S-4. EXPECTATION VALUES AND
CONVERGENCE

A. Current

For the IRLM, the current through the central site of
the impurity can be defined by looking at the change of
the corresponding occupation number, d

dt 〈nC〉. In the
steady state this derivative should be zero, of course, but
we can identify the contribution, Jα, of the current flow-
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(a)                                        (b)                      (c)

Figure S3. Sketch to illustrate how NRG and DMRG are
combined in the Trotter time evolution. (a) For the perfor-
mance of the “even” time steps we exponentiate the Hamil-
tonian of all NRG sites plus one additional site in the sense
of standard NRG. For the “odd” time steps we rearrange the
tensors as depicted in (b) including fermionic swap gates to
bring the MPS into a form with local Trotter gates. (c) The
time evolution on the “odd” bonds is then a standard tDMRG
step. The boxes at the bottom in both, (a) and (c), indicate
the Trotter gates to be applied.

ing from lead α into the dot from the formula

0 = d
dte 〈n̂C〉 =

∑
α

2e
~ Im

(
t′ 〈d†Cdα〉

)︸ ︷︷ ︸
≡Jα

. (S18)

In the SIAM we combine the modes of the left and
right channels as given in Eqs. (S15). Still, it is possi-
ble to deduce the current from the change of occupation
d
dt 〈n̂dσ〉 at the central site:

Jασ = 2e
~

∑
k

Im
(
vq 〈d†σcq〉

)
= 2e

~

∑
ki

Im
(
ṽqi 〈d†σ c̃qi〉

)
= 2e

~

∑
ki

|ṽqi|2√∑
α′ ṽ

2
α′kσi

Im
(
〈d†σC̃kσi〉

)
. (S19)

where we used Eq. (S16b), c̃αkσi =
ṽ∗αkσi
N C̃kσi + ...C̃

(⊥)
kσi ,

together with the fact that the mode C̃
(⊥)
kσi decouples from

the impurity and therefore 〈d†σC̃
(⊥)
kσi 〉 = 0. The chain

operators underlying the MPS fnσ(i) are related to the

modes C̃kσi by a unitary transformation, which includes
the mapping of “holes” and “particles” onto a chain and
the re-combination of channels within the RI. The ex-
pectation values 〈d†σC̃kσi〉 can therefore be determined

by calculating the expectation values 〈d†fnσ(i)〉 for all
chain sites n. For the SIAM, the current can further be
divided into different spin contributions Jασ.

Interestingly, in most cases the symmetrized current

J(σ) = 1
2

(
JL(σ) − JR(σ)

)
. (S20)

converges much faster than JL(σ) and JR(σ) separately
[see discussion of Fig. S4(h) below for details]. For the
SIAM, a similar statement holds when averaging over
spin instead of averaging over channels. In practice, we
take the mean over both by defining

J = (J↑ + J↓) = 1
2 (JL↑ − JR↑ + JL↓ − JR↓) (S21)

We define the value of the steady-state current J(V )
by taking the mean over the last part of JV (t), where
the current is converged to its steady-state value. If the
oscillations are pronounced, we take the mean over a time
window, which equals an integer number of periods, in
many cases simply the last period. The conductance is
obtained from

g(V ∗) =
J(V1)− J(V2)

V1 − V2

(
2e2

h

)−1

(S22)

with V ∗ = 1
2 (V1 + V2), and V1 and V2 close to each other,

where we average JV1
(t) and JV2

(t) over similar time win-
dows.

B. Dot Occupation

The occupation of the impurity in the SIAM, as well
as the occupation of the central site of the impurity for
the IRLM are of physical relevance. Their time evolution
is related to that of the current via

d
dte 〈nC/d(t)〉 = JL(t) + JR(t) (S23)

In the present work, we focus on the particle-hole sym-
metric point. Because of this symmetry we expect the
steady-state value of nC/d to be independent of voltage

and given by nC = 1
2 in the IRLM and nd = nd↑+nd↓ = 1

in the SIAM. The magnetization M = 1
2 (nd↑ − nd↓),

however, is a nontrivial function of voltage and magnetic
field.

C. Long-time convergence after the quench

By definition, in the nonequilibriuim steady state
(NESS) all expectation values are converged in the sense
that they do not change with time. However, we are lim-
ited to a finite time window and cannot fully reach this
point. In this section, we discuss this aspect in more de-
tail based on the behavior of the symmetrized current J ,
the currents from the left and right leads Jα(σ), and the
(spin-resolved) dot occupation nC or nd(σ).

As explained above, our initial state breaks certain
symmetries. However, as we assume the steady state to
be unambiguous, we expect it to obey the symmetries of
the Hamiltonian.

For the IRLM we have done our calculations at the
particle-hole symmetric point. We therefore expect nC =
1/2 in the steady state. And, if the dot occupation is con-
verged, one finds JL = −JR because of Eq. (S23). This is,
indeed, what we find for low voltages, see Fig. S4(b). For
higher voltages, however, we do not see full convergence
in nC , see Fig. S4(d). Consequently, also the currents
are not converged, so we do not find JL = −JR. How-
ever, the symmetrized current J is converged, except for
oscillations around a well-defined mean value. These os-
cillations do have the expected period of 4π

V [42], and
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Figure S4. Upper panels: convergence in the IRLM — Panel (a) replots the data set for t′ = 10−2D in Fig. 2 of the main
text. Panels (b-d) show the time dependence of the currents JL, −JR and J = (JL − JR)/2 and the dot occupation nC , for
the three different voltage values marked by circles in panel (a), respectively. For the lowest voltage which is still in the linear
response regime, we find nice convergence in the dot occupation and the current (panel b). With increasing voltage, all three
currents develop increasingly strong oscillations, with a period of 4π/V , as expected (panels c,d). For the largest voltage we
do not find convergence in nC (panel d). This reflects in the fact that also JL and JR are not yet converged. However, the
symmetrized current J (blue line) does oscillate around a well-defined mean value. Lower panels: convergence in the SIAM
— Panel (e) replots the data for U = 12Γ and T = 0 in Fig. 3 (a) of the main text. Panels (f-h) show the behavior of JL↑
and JR↑, J , and ndσ (at T = B = 0) for the voltage values marked in circles in panel (e), respectively. The current for the
down-spin is not shown, since JL↓ ≈ −JR↑ and JR↓ ≈ −JL↑. The total dot occupation nd is equal to 1 in the beginning and
remains so throughout. However, for large voltages the numerically accessible time window is too short to find convergence for
the spin-resolved occupations nd↑ and nd↓. In panel (h), the left and right components of the current (red and green lines) show
seemingly irregular oscillations; these arising from a combination of large voltage and the finite level spacing in the lin-sector.
The level-spacing effect cancels out, however, for the symmetrized current, J = (JL − JR)/2 (blue line), which shows regular
oscillations with the expected period of 4π/V .

the amplitudes decay rapidly. The initial state breaks
particle-hole symmetry as explained above. This symme-
try breaking is more pronounced for shorter NRG Wil-
son chains. This is the reason why for small voltages (for
which the TW is small so that the NRG Wilson chain is
long) we already start with ndσ(t = 0) ≈ 1

2 while for high
voltages (for which the TW is large and the NRG Wilson
chain is short) the symmetry breaking in the beginning
is very strong.

Analogous considerations apply for the SIAM. We nu-
merically observe the behaviour

JLσ(z) ≈ −JR,−σ(t) (S24)

and nd(t) = nd↑(t) + nd↓(t) ≈ 1 for all times t, reflect-
ing particle-hole and left-right symmetry (here −σ stands
for reverted spin σ). However, by choosing a specific ini-
tial pre-quench state out of a degenerate ground state
multiplet, this breaks the spin symmetry, and hence we
find nd↑(t) 6= nd↓(t), even for B = 0. The effect of this
symmetry breaking is largest for high voltages. Whereas
for small voltages we do find convergence in the dot oc-
cupation [e.g. see Fig. S4(f)], for high voltages our nu-
merically accessible time window is too small to see con-
vergence [Fig. S4(h)]. Moreover, for large voltages the

spin-resolved currents JLσ and JRσ show seemingly ir-
regular oscillations, as seen in Fig. S4(h). A Fourier-
transform analysis (not shown) reveals that the oscilla-
tions in Jασ(t) have several characteristic frequencies, one
being V

4π (as expected from [43]), the others being the
energies representing the intervals in the log-sector clos-
est to D∗, which was chosen D∗ = V/2 here. Thus, at
large voltages the post-quench dynamics become sensi-
tive to the rather crude discretization in the log-sector,
causing the seemingly irregular oscillations in the spin-
resolved currents at large voltages. This suggests that
the strength of these discretization-related oscillations
could be reduced, if desired, by using a slower ramp
for the quench (i.e. a larger ramping time tramp), or by
reducing the size of the log-sector (i.e. increasing D∗,
while keeping the level spacing δ for the lin-sector fixed).
In practice, though, we found this to be unnecessary,
since the discretization-related oscillations cancel in the
left-right symmetrized current: J = (JL − JR)/2 shows
only regular oscillations around a well-defined mean value
[Fig. S4(h)] with the expected time-period of 4π

V [43],
similar to those found for the IRLM. We suspect that
this cancellation of discretization-related oscillations oc-
curs because our treatment of the leads respects left-
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Figure S5. Illustration of the numerical accuracy using the example of V = TK with the parameters as in Fig. 3(a), with
U/Γ = 12. In each of the panels the red curve corresponds to the parameters typically used for our calculations and the “error
bars” indicate a relative range of ±2% around the mean. Panel (a) shows J(t) where the coupling between RI and leads is
turned on quasi-adiabatically over time windows of four different widths. All curves approach the same steady-state value. In
(b) and (c) the discretization parameters Λ and δ are varied. In (d) different thresholds, εSVD, are used for the SVD truncation
in the tDMRG quench. In (e) the number of sites treated with NRG is changed (and therefore the number of sites treated with
tDMRG is changed accordingly). And finally in (f) we use different numbers of kept states in the effective NRG basis for the
renormalized impurity.

right symmetry, both regarding their discretization [see
Fig. S2(d,e)] and when turning on the coupling between
the log- and lin-sectors during the quench.

In the case of finite magnetic field in the SIAM, we do
not have spin symmetry. In particular, we expect nd↑ 6=
nd↓, even in the steady state. The exact NESS values
of ndσ are nontrivial and depend on voltage. However
for large values of V , we are not able to see convergence
in these occupations, analogously to Fig. S4(h). Still, it
is in principle possible to predict the NESS occupation
by extrapolating the data available within the accessible
time window, e.g. using linear prediction [44].

S-5. NUMERICAL ACCURACY

Our approach treats the many-particle aspect of impu-
rity models nonperturpatively. However, of course, the
numerics contains approximations such as the discretiza-
tion of the lead into a finite number of energy intervals,
the truncation of states within the NRG, and the trun-
cation of the MPS within the tDMRG time evolution. A
further error arises from the fact that we have to take
the mean over a curve J(t) that often still oscillates over
a well-converged mean value. Therefore it is difficult to
give a precise value for our error. However, we can pro-
vide an estimate for the error bar. For the case of the
current, it is approximately ±3%, throughout, which at
times may be considered conservative.

To illustrate this statement we go into more detail for
the curve J(t) for the parameters used in Fig. 3(a) with

U/Γ = 12 at V ≈ TK : Fig. S5 shows the behavior of
J(t) when varying various different numerical parame-
ters, such as discretization and truncation parameters.
In each of the panels the red curve was obtained from the
parameter choices typically used in our numerics. This
curve is identical in each of the panels. The black hori-
zontal line shows the mean value obtained for times after
the vertical dashed black marker. The “error bars”, for
convenience, indicate a range of ±2% around the mean
value. The essential message from all these plots is that
even though our results do show slight dependence on
the various numerical parameters that were varied here,
this dependence is small, and within the stated error bars
of . 2 to 3%. Depending on the precise parameters the
curves in some cases wiggle more strongly, or for higher
voltages show stronger oscillations. In this cases, the
error is closer to the upper end of the estimated error
range. Looking at the comparison of U = 0 with exact
results and the comparison of g(T, 0) with NRG values
in Fig. 3(a), confirms this estimate for our error bar.

S-6. COMPARISON TO OTHER METHODS

In Ref. [6] previous tDMRG quench results on the
high-voltage regime of the SIAM are compared to re-
sults obtained via the functional renormalization group
(FRG) and real-time quantum Monte Carlo (rt-QMC),
see Refs. [6, 7] for details on the different methods.
Fig. S6 shows the data of Fig. 2 in Ref. [6] together with
further rt-QMC results taken from Ref. [7]. For compar-
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Figure S6. Current in the SIAM as a function of voltage in the
high-voltage regime, V & Γ, for different values of U/Γ: we
compare results obtained with our method (NRG-tDMRG)
to results from rt-QMC, previous tDMRG calculations, and
FRG (see Refs. [6, 7] for details). For a range of U/Γ values
our results nicely agree with previous results.

ison, we here also include results obtained in our NRG-
tDMRG quench setup. For all parameters our data nicely
agree with the rt-QMC data. For U/Γ = 8, tDMRG and
FRG slightly differ from the rt-QMC results (and thus
also from our results). This has already been discussed
in Ref. [6]. Note, however, that the parameter regimes of
these reference systems stayed far away from low-energy
Kondo scales since for the larger values of U/Γ the de-
scribed regime corresponds to V � TK , while the small
values of U/Γ do not describe the Kondo limit.

We also compare our results for the nonlinear con-
ductance to those obtained by Pletyukhov and Schoeller
for the Kondo model using the real-time renormalization
group (RTRG) in Ref. [8]. They found that the tempera-
ture and voltage scales at which the conductance reaches
1
2 , defined via

gV=0(T = TK) = 1
2 , gT=0(V = VK) = 1

2 , (S25)

differ, with VK/TK ≈ 1.8. (They use the notation
T ∗K = TK and T ∗∗K = VK .) Their result for the nonlinear
conductance can be fit well using the trial function

gT=0
RTRG(V ) ≈

{
1 + [V/T ′K(x)]

2
}−s

, x = V/VK ,

T ′K(x) = T ∗∗K

(
1− b+ bxs

′

2
1
s − 1

) 1
2

, (S26)
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Figure S7. (a) Comparison of gT=0(V ) vs. V/TK on a
logarithmic scale, computed at B = 0 in the Kondo limit.
The data points (circles) show the NRG-tDMRG result for
U/Γ = 12, replotting the corresponding curve from Fig. 3(a)
of the main text. The solid curve shows the RTRG results
of Pletyukhov and Schoeller [8] for the Kondo model, plotted
using Eqs. (S26). The small high-energy peak of the tDMRG-
NRG curve reflects charge fluctuations not captured by the
Kondo model. (b) Same data, but now plotted vs. V/VK .

using s = 0.32, b = 0.05 and s′ = 1.26. Assuming that
our data for U/Γ = 12 in Fig. 3 of the main text is deep
in the Kondo limit, we compare our data for gT=0(V ) vs.
V/TK to theirs in Fig. S7(a). Our curve for the nonlin-
ear conductance has a shape similar to theirs, but differs
quantitatively in that it bends downward somewhat more
quickly. Another way to quantify the difference is to com-
pare the predictions for the conductance at the voltage
V = TK . As mentioned in the main text, our calculations
yield g(V = TK) ≈ 0.6, whereas RTRG predicts a value
of approximately 2/3.

Despite this discrepency, we note that if both our and
the RTRG conductance curves are plotted versus V/VK ,
thus making the comparison independent of the finite-
temperature, equilibrium scale TK , the two curves al-
most coincide over a wide range of V/VK values, see
Fig. S7(b). This suggests that the reason for the dis-
crepancy in Fig. S7(a) is that the RTRG approach has
an inaccuracy of a few percent in its determination of the
ratio VK/TK .
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Figure S8. Conductance as a function of voltage at T = 0
for different magnetic fields B. We used the same physical
parameters as in Fig. 3(c) of the main text, but for more
values of the magnetic field B.

S-7. SPLITTING FIELD IN THE SIAM

With increasing magnetic field, the zero-bias peak in
the conductance of the SIAM splits into two subpeaks,
the position of which is approximately given by V ≈ ±B.
It has long been of interest to have a quantitatively re-
liable value for the “splitting field” at which the peak
splitting first becomes noticable. The splitting field can
be defined in two ways: (i) as the field B∗ at which the
number of local maxima changes from one to larger than
one; or (ii) as the field B∗∗ at which the maximum at
zero bias turns into a minimum. In principle, these two
fields need not coincide: if two side peaks emerge in the
flanks of the zero-bias peak before the central maximum
has turned into a minimum, B∗ would be smaller than
B∗∗. However, we would like to argue this does not occur
in the present case, for which the mechanism for the peak
splitting is well understood. The zero-bias conductance
peak is computed as the sum of two peaks, one for spin
up and one for spin down. These are pushed apart with
increasing field. Once their spacing becomes compara-
ble to their widths, their sum changes from showing a
single to a double maximum, with a local minimum in
between. This implies B∗ = B∗∗. Note, though, that
for fields just above B∗∗, the local minimum between the
two maxima will still be extremely weak and the curve
will look essentially flat there. The two maxima will be-
come discernable as unambiguous “peaks” only at fields
somewhat larger than B∗∗. Therefore, if one attempts to

estimate B∗ from (noisy) numerical data, by determining
the field, say Bsp

∗ , at which side peaks (sp) first become
clearly noticable, this will always yield values somewhat
larger than B∗ = B∗∗.

Fig. S8 shows our numerical results for the zero-
temperature conductance as a function of voltage for dif-
ferent magnetic fields around B ≈ TK , for U/Γ = 12,
as in Fig. 3(c-d) of the main text. While the curve for
B/TK = 1 exhibits a clear peak for non-zero voltage,
this is not the case for B/TK = 0.8TK , and the curve for
B/TK = 0.9 is a bit too noisy to unambigously identify a
side peak. We may therefore regard Bsp

∗ = TK as a con-
servative upper bound for the actual splitting field. On
the other hand, it is not possible to estimate B∗∗ from our

data. B∗∗ is the field at which −CV =
[
∂2

∂V 2 g(V )
]
V=0

,

the curvature of the conductance at zero bias, changes
from negative to positive. However, extracting this cur-
vature reliably from our data would require a level of
numerical noise on the order of 0.1%, all the more when
tuning B such that CV tends to zero.

Very recently, exact results for CV and hence B∗∗ have
become available. Filippone, Moca, von Delft and Mora
(FMDM) [52] have pointed out that CV can be extracted
from the magnetic field dependence of the local spin and
charge susceptibilities of the SIAM, which can be com-
puted using the Bethe Ansatz. However, the formula
which FMDM obtained for CV was incorrect due to a sign
error in their calculations. A correct formula for CV was
first published by Oguri and Hewson [53], who showed
that the Fermi-liquid relations discussed by FMDM could
also be derived using Ward identities and the analytic
and antisymmetry properties of the vertex function of
the SIAM. Very recently FMDM reported (see version 2
of [52]) that upon eliminating their sign mistake, their
corrected formula for CV coincides with that of Oguri
and Hewson. Moreover, NRG results by A. Weichsel-
baum, included in Appendix D of version 3 of [52], agree
with the corrected FL predictions for CV . Incidentally,
Figs. 8(c,d) of that analysis illustrates why extracting CV
from gT=0(V ) would require an accuracy of order 0.1%
for the numerical determination of the conductance as
function V .

In the Kondo limit U/Γ� 1, FMDM obtained a split-

ting field of B∗∗ = 0.75073T
(χ)
K , where T

(χ)
K = 1

4χs
is the

Kondo scale defined via the zero-field, zero-temperature
spin susceptibility. As stated in the caption of Fig. 3 of

the main text, T
(χ)
K is related to the Kondo temperature

used in this work, defined via g(T =TK , V =0) = 1
2 , by

T
(χ)
K = TK/1.04 for the parameters used in Figs. 3 and

S8. (For a detailed discussion of various different defini-
tions of TK , see Ref. [46].) Thus, the Fermi-liquid pre-
diction for the splitting field translates to B∗∗ = 0.72TK .
The fact that our upper bound estimate, Bsp

∗ = TK , is
somewhat but not much larger than this value implies
that our results are compatible with the slitting field pre-
dictions from Fermi liquid theory.
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