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We study finite-temperature properties of metals close to an Ising-nematic quantum critical point in two spatial
dimensions. In particular we show that at any finite temperature there is a regime where order parameter
fluctuations are characterized by a dynamical critical exponent z = 2, in contrast to z = 3 found at zero
temperature. Our results are based on a simple Eliashberg-type approach, which gives rise to a boson self-energy
proportional to �/γ (T ) at small momenta, where γ (T ) is the temperature dependent fermion scattering rate.
These findings might shed some light on recent Monte Carlo simulations at finite temperature, where results
consistent with z = 2 were found.

DOI: 10.1103/PhysRevB.94.195113

I. INTRODUCTION

Metallic phases that cannot be described within Landau’s
Fermi liquid framework have been observed in various strongly
correlated electron materials, such as cuprate and pnictide
superconductors above Tc, or heavy fermion compounds
[1–3]. One widely discussed theoretical approach leading to
non-Fermi liquid behavior is to couple electrons to gapless
fluctuations of an order parameter close to a quantum critical
point (QCP) [4].

In this work we focus on the experimentally relevant
example of the so-called Ising-nematic QCP in two spatial
dimensions [5]. Here electrons on a square lattice are coupled
to an Ising order parameter, which describes a Pomeranchuk
transition where the fourfold rotational symmetry of the
Fermi surface is broken down to twofold rotations. Nematic
correlations have been observed in various correlated electron
systems, such as underdoped cuprates [6–9], and iron-based
compounds [10–13]. Properties of metals close to a nematic
QCP, as well as closely related problems such as electrons
coupled to a U (1) gauge field, have been extensively discussed
in the theory literature [14–31].

Our main quantity of interest is the nematic susceptibility
(i.e., the retarded propagator of order parameter fluctuations) at
small but finite temperatures. Within the Hertz-Millis approach
it takes the well known form [21,29,32,33]

DR(k,�)−1 = m2(T ) + Ak2 − iB cos2(2ϕk)
�

vF |k| , (1)

which holds for isotropic systems in the regime � � vF |
k| � εF , where k and � are momentum and frequency, vF

(εF ) is the Fermi velocity (energy), m(T ) is the temperature
(T ) dependent boson mass (or inverse correlation length), and
A,B are temperature independent constants. The characteristic
Landau damping term ∼�/|k| arises from the coupling to
particle-hole excitations at the Fermi surface. Note that it
comes with an angular dependence ∼ cos2 2ϕk, where ϕk is
the polar angle of k = k(cos ϕk, sin ϕk), because the coupling
between electrons and order parameter fluctuations vanishes
by symmetry along the nodal directions kx = ±ky . At the QCP
where m(0) vanishes, the susceptibility obeys scaling with a

dynamical critical exponent z = 3, i.e., it is invariant under
rescaling k′ = bk and �′ = bz�.

At zero temperature Eq. (1) also holds beyond the random
phase approximation (RPA) in higher order perturbation
theory, as well as within a self-consistent Eliashberg-type
approximation, where bare propagators are replaced with full
propagators [34]. More recent works focusing on the critical
properties at zero temperature realized that the Hertz-Millis
RPA approach has conceptual problems, however. While it
was previously believed that the RPA can be justified in a large
NF limit [15,16], where NF is the number of fermion flavors,
it has been realized that such large NF expansions break down
due to intricate quasi-one-dimensional scattering processes in
certain subsets of Feynman diagrams [23,24]. Subsequently
several approximation schemes have been developed where
controlled expansions in a small parameter can be performed,
such as a combination of small ε = z − 2 and 1/NF with
NF (z − 2) fixed [35], an expansion in a large number of boson
flavors NB [36], or performing an epsilon expansion in the
codimension of the Fermi surface [37].

Despite these problems, the structure of Eq. (1) is com-
patible with renormalization group results where bosons and
fermions are treated on equal footing. The dynamical critical
exponent z = 3 remains unchanged up to three loops [24], even
though more recent four-loop results indicate that anomalous
scaling appears at higher loop order [38]. It is important to
note that these RG approaches typically deal with the zero
temperature problem. Finite temperature results are usually
inferred by assuming ω/T scaling in the vicinity of the QCP.
This assumption can be potentially dangerous, however. For
example, it has been shown that the electron scattering rate at
the Fermi surface is dominated by contributions from classical
fluctuations at low temperatures, which do not obey ω/T

scaling [21].
Substantial progress towards a numerical solution was made

by Schattner et al. [39], who realized that the Ising-nematic
problem is amenable to unbiased Monte Carlo simulations
avoiding the infamous fermion sign problem. Surprisingly, the
finite-temperature form of the nematic susceptibility found
in this work is consistent with a dynamical critical exponent
z = 2, rather than z = 3 obtained in previous field theoretical
approaches at T = 0. It remains to be seen if the temperatures
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in the numerical simulations are low enough to probe the
scaling regime of the QCP, or if something is missing in the
field theoretical approaches.

Here we investigate finite-temperature properties of the
nematic susceptibility in the quantum critical regime above the
QCP. We focus on the important interplay between bosonic and
fermonic excitations at finite temperature using an Eliashberg-
type approach, where the boson and fermion self-energies
are computed in a self-consistent one-loop approximation. At
finite temperature the Eliashberg approach is shown to give
qualitatively different results compared to RPA, in contrast
to the zero temperature case. In particular, the nematic
susceptibility takes the form

DR(k,�)−1 = m2(T ) + Ak2 − iB
�

γ (T )
(2)

for vF |k| � γ (T ), where γ (T ) ∼ √
T/| log T | is the temper-

ature dependent electron scattering rate and vF is the Fermi
velocity. This result suggests that at any finite temperature
there is always an energy window where the order parameter
fluctuations are characterized by a dynamical critical exponent
z = 2, rather than z = 3 at zero temperature [40]. In the zero
temperature limit where γ (T ) vanishes we recover Eq. (1).

A potential shortcoming of the result in Eq. (2) is that the
frequency dependent term doesn’t vanish in the limit k → 0.
This is a particularly severe problem for the closely related
problem of electrons at a ferromagnetic QCP, where the order
parameter is conserved. Indeed, the Eliashberg approach is
an uncontrolled approximation where potentially important
vertex corrections are neglected, which can lead to violations
of Ward identities. However, in the important limit � � vF |k|
the boson velocity is small compared to the Fermi velocity and
standard arguments in analogy to Migdal’s theorem should
apply, which ensures the smallness of vertex corrections, at
least in the zero temperature limit [15,16,19,34].

At finite temperature the situation is different, because
classical (frequency independent) fluctuations—which are not
present at zero temperature—dominate the vertex correction.
Consequently, our problem is seemingly similar to the disor-
dered electron gas, where vertex corrections are large and the
vertex develops a diffuson pole. It is important to emphasize,
however, that in the quantum critical regime both classical
and quantum fluctuations are equally important. In fact, we
argue that the vertex does not develop a diffuson pole if
quantum fluctuations are taken into account and the results
of the Eliashberg approximation remain qualitatively valid.

The remainder of this paper is outlined as follows. In
Sec. II we introduce the model of electrons coupled to an
Ising nematic order parameter and introduce the Eliashberg
approach used subsequently. Section III contains analytical
results for the electron and boson self-energies, whereas
numerical results are presented in Sec. IV. Finally, vertex
corrections at finite temperature are discussed in Sec. V.
Conclusions are presented in Sec. VI.

II. MODEL AND METHODS

We start from a model of spin-1/2 electrons on the square
lattice coupled to an Ising nematic order parameter described

by the Euclidean action (spin index suppressed)

S =
∑
k,ωn

c̄k,ωn
(−iωn + ξk)ck,ωn

+ 1

2

∑
k,�n

χ−1
k φk,�n

φ−k,−�n

+ λ√
βV

∑
k,ωn

q,�n

dq φk,�n
c̄q+k/2,ωn+�n

cq−k/2,ωn
. (3)

Here the fermionic fields ck,ωn
describe electrons with mo-

mentum k and Matsubara frequency ωn, where ξk = εk − μ is
the electron dispersion measured from the chemical potential,
and the scalar field φk,�n

represents the Ising-nematic order
parameter. The static nematic susceptibility χk = 1/[m2 +
2A(2 − cos kx − cos ky)], i.e., the bare propagator of the φk

field, is chosen to be maximal at k = 0 and consistent with
square lattice symmetry and λ parametrizes the coupling
strength. β = 1/T is the inverse temperature, V the volume
(we use natural units � = kB = 1 and set the lattice constant
to unity throughout), and

dq = cos qx − cos qy (4)

is the nematic d-wave form factor. Together with the Ising
symmetry φ → −φ the action (3) is symmetric under 90◦
rotations. The characteristic d-wave form factor dq in the
interaction term leads to a breaking of the fourfold rotation
symmetry in the ordered phase with 〈φ0〉 
= 0.

The electron propagator and the nematic fluctuation propa-
gator are given by

G(k,iωn) = 1

iωn − ξk − �(k,iωn)
, (5)

D(k,i�n) = 1

χ−1
k − (k,i�n)

. (6)

In the following we compute the fermionic and bosonic
self-energies �(k) and (k) using a self-consistent one-loop
approximation, neglecting vertex corrections. The coupled
Eliashberg equations for the self-energies take the form

�(k) = λ2

βV

∑
q

G(k − q)D(q) d2
k−q/2, (7)

(k) = −2
λ2

βV

∑
q

G(k + q)G(q) d2
q+k/2, (8)

where we use the shorthand notation k = (iωn,k), etc., and
the factor of 2 is for spin. After analytic continuation iωn →
ω + i0+ to real frequencies the equations for the imaginary
parts of the retarded self-energies take the form

Im�R(k,ω) = λ2
∫

q

∫
dz

π
[nB(z) + nF (z − ω)] d2

k−q/2

× ImGR(k − q,ω − z) ImDR(q,z), (9)

ImR(k,�) = 2λ2
∫

q

∫
dz

π
[nF (z) − nF (z + �)] d2

q+k/2

× ImGR(k + q,� + z) ImGR(q,z), (10)

195113-2



FINITE-TEMPERATURE SCALING CLOSE TO ISING- . . . PHYSICAL REVIEW B 94, 195113 (2016)

where nB(z) and nF (z) are the Bose-Einstein and Fermi-Dirac
distribution functions and

∫
q ≡ ∫

BZ
d2q

4π2 denotes a momentum
integral over the first Brillouin zone.

III. ANALYTICAL RESULTS

We start by deriving analytic results for the simpler case
of a circular Fermi surface, ξq = (q2 − k2

F )/2me, with kF the
Fermi momentum and me the electron mass. Our aim is to
show that at nonzero temperatures electron excitations have
a finite lifetime due to the interaction with thermally excited
bosons, which in turn changes the momentum dependence of
the boson self-energy drastically compared to T = 0.

The inverse electron lifetime, i.e., the imaginary part of the
electron self-energy at the Fermi energy γkF

≡ −Im�R(kF ,0),
follows from Eq. (9). Observing that the integral is dominated
by contributions from small frequencies at low temperatures,
we expand in small z and obtain

γkF
� −λ2

∫
q

∫
dz

π

1

βz

ImR(q,z)

(m2 + Aq2)2 + Im2
R(q,z)

× ImGR(kF − q,0) d2
kF −q/2. (11)

Note that we neglect the real parts of all self-energies in
analytic computations for simplicity. Quite generically, the
imaginary part of the boson self-energy at small frequencies
takes the form

ImR(q,|z| � 1) = zP(q), (12)

with an as yet unknown function P(q), which has the
well known Landau damping form P(q) ∼ 1/|q| at zero
temperature. Using (12) we can perform the frequency integral
in (11) straightforwardly and obtain

γkF
� λ2

β

∫
q

1

m2 + Aq2

γkF −q

ξ 2
kF −q + γ 2

kF −q

d2
kF −q/2. (13)

Note that P(q) drops out of this expression for γkF
, i.e., the

momentum dependence of the boson self-energy doesn’t play
any role for the electron lifetime. At low enough temperatures,
where γkF

is much smaller than the Fermi energy, the dominant
contribution to the integral above comes from momenta
close to the Fermi surface, i.e., from small q, and can be
approximated as

γkF
� λ2

4π2β

∫ ∞

0
dq

∫ 2π

0
dθ

q

m2 + Aq2

γkF
d2

kF

(vF q cos θ )2 + γ 2
kF

,

(14)

where we’ve expanded in small momenta q and vF = kF /me

is the Fermi velocity. Evaluating the integrals we finally obtain

γkF
� λ2

4vF A1/2

T

m(T )
d2

kF
for

λ2T

v2
F m2(T )

� 1. (15)

This reproduces earlier results by Dell’Anna and Metzner
[21]. Note that γkF

has a momentum dependence along the
Fermi surface due to the d-wave form factor dkF

. In particular
γkF

= 0 in the nodal directions kx = ±ky , since electrons
do not interact along these momenta. In the quantum crit-
ical regime the temperature dependence of the boson mass
is expected to take the form m(T ) ∼ √

T | log T | [29,33].

Consequently, the electron scattering rate scales as γ (T ) ∼√
T/| log T | at low temperatures.
It is important to realize that we only considered the pole

contribution of the Bose distribution in evaluating the electron
scattering rate in Eq. (11). This amounts to taking only the
interaction of electrons with classical (frequency independent)
fluctuations of the boson mode into account. The interaction
with quantum fluctuations gives rise to a subleading ∼T 2/3

dependence, which we omit in the following.
We now move on to the boson self-energy. For small exter-

nal frequencies and momenta � � vF |k| � εF we expand the
integrand in (10) and at low enough temperatures we obtain

ImR(k,�) � 2λ2�

∫
q
δ(ξq)

γq d2
q

(q · k/me)2 + γ 2
q

, (16)

where we assumed that γq � εF is small enough to replace
one Lorentzian with a delta function, which pins the abso-
lute value of q to the Fermi momentum kF . Making the
angular dependence of γqF

explicit by writing γqF
= γ d2

qF

and using the simplified d-wave form factor dqF
= cos 2θ ,

where θ is the polar angle of qF = kF (cos θ, sin θ ), we arrive
at

ImR(k,�) � λ2me

π

�

γ (T )
̃

(
vF |k|
γ (T )

,ϕk

)
, (17)

where ϕk is the polar angle of k and the scaling function ̃

takes the form

̃(x,ϕ) =
∫ 2π

0

dθ

2π

cos4 2θ

x2 cos2(θ − ϕ) + cos4 2θ
. (18)

It has the limiting forms

̃(x → 0,ϕ) = 1, (19)

̃(x � 1,ϕ) = cos2 2ϕ

x
. (20)

At zero temperature, where γ vanishes, we thus recover the
standard Landau damping form.

Our main result in Eq. (17) indicates that in the momentum
regime γ (T )/vF � |k| � m(T )/A1/2 the bosonic excitations
at finite temperature are characterized by a dynamical critical
exponent z = 2. Using m2(T ) ∼ T | log T | it’s easy to see
from Eq. (14) that this regime only appears at interme-
diate temperatures T � εF exp(−λ2/2πv2

F ). Note that for
large enough couplings λ this intermediate z = 2 regime
can be found at arbitrary low temperatures. Interestingly,
the fact that this regime doesn’t extend asymptotically to
T = 0 relies crucially on the log correction to the boson
mass m(T ). Indeed, for m2(T ) ∼ T the momentum regime
with z = 2 scaling would extend asymptotically to zero
temperature.

IV. NUMERICS

In order to support our analytical considerations, we present
results from a full numerical solution of the Eliashberg
equations (9) and (10) in the following. We use the same
strategy as in Ref. [41] and solve the equations on a discretized
grid of 49 × 49 × 101 points in momentum and frequency
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FIG. 1. Left: −Im�R(k,0) at the Fermi energy as a function of
momenta in one quadrant of the Brillouin zone. Right: imaginary time
Green’s function 2G(k,τ = β/2). Both results were obtained from a
numerical solution of Eqs. (9) and (10) at a temperature T/t = 0.1;
the remaining parameters are specified in the main text.

space, with a nonlinear discretization in frequency space to
obtain a better resolution at small frequencies. We choose a
nearest neighbor tight binding dispersion ξq = −2t(cos qx +
cos qy) − μ, measure energies in units of t = 1, and set the
renormalized chemical potential μ − Re�R(knode

F ,0) = −0.5
and the coupling constant to λ = 0.7. Furthermore we do not
compute the boson mass m(T ) self-consistently, but fix the
renormalized gap m̃2 = m2 − ReR(0,0) at m̃2 = 0.01, 0.02,
and 0.025 for inverse temperatures β = 50, 10, and 5, for
which data is shown here.

In Fig. 1 we show the electron scattering rate at the
Fermi energy γk = −Im�(k,0) as function of momenta. Note
that γk is maximal along the Fermi surface and has the
characteristic angular dependence expected from Eq. (15).
The right panel shows two times the imaginary time electron
Green’s function at imaginary time τ = β/2, which reduces
to the electronic quasiparticle residue at zero temperature.
Indeed, 2G(k,τ = β/2) = ∫

dω A(k,ω)/ cosh(βω/2), where
A(k,ω) = −π ImGR(k,ω) is the electron spectral function.
This quantity can be compared directly to the Monte Carlo
results in Ref. [39] and agrees nicely.

Figure 2 shows the imaginary part of the electron self-
energy for one point on the Fermi surface as function

0
0

kx

ky

�50

�10

�3 �2 �1 1 2 3

0.005

0.010

0.015

0.020

0.025

0.030
�Im � �

FIG. 2. Imaginary part of the electron self-energy −Im�R(k,ω)
as function of frequency ω at momentum k = (kF ,0) on the
Fermi surface (indicated by the point in the inset), shown for two
temperatures T/t = 0.02 (β = 50) and T/t = 0.1 (β = 10) (other
parameters specified in the main text).

k��0,0�

k�� �24,0�

k�� �12,0�

k�� �8,0�

k�� �6,0�

0.00 0.05 0.10 0.15 0.20
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Im � ��P�k�

FIG. 3. Upper panel: imaginary part of the boson self-energy
ImR(k,ω) as a function of frequency ω for different momenta k
at temperature T/t = 0.2. Lower panel: same data scaled with the
scaling function in Eq. (18), with P (k) = ̃(k/0.25,0), showing data
collapse at small frequencies (other parameters specified in the main
text).

of frequency for two different temperatures. Note that at
zero temperature it should scale as Im�(kF ,ω) ∼ ω2/3 at
small frequencies. Indications of this scaling behavior can
be seen already at T/t = 0.02, but it is cut off by the
finite electron scattering rate at the Fermi energy ω = 0.
Lastly, we plot the imaginary part of the boson self-energy
ImR(k,�) at inverse temperature β = 5 as function of
frequency for various momenta in Fig. 3. The lower panel
displays the rescaled data using the scaling function from
Eq. (18) with γ /vF = 0.25, showing scaling collapse at small
frequencies.

V. VERTEX CORRECTIONS

In order to assess the validity of the Eliashberg approxima-
tion we compute the leading one loop vertex correction shown
in Fig. 4 at finite temperature, using the approximate form of
the propagators obtained in Sec. III, in particular

G−1(k,iωn) = iωn − ξk + iγkF
sgn(ωn), (21)

D−1(k,i�n) = m2 + Ak2 + B
|�n|
γ

. (22)
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k,
p,

q,

q+k,

q+p,

q+k+p,

z

FIG. 4. Diagrammatic representation of the leading one loop
vertex correction �(1)(k,�; q,ω).

The one loop vertex correction �(1)(k,i�n; q,iωn) takes the
form

�(1)(k; q) = λ3

βV

∑
p

D(p)G(q + p)G(q + p + k)

× dq+p/2dq+p+k/2dq+p/2+k, (23)

where we use the shorthand notation k = (i�n,k), q =
(iωn,q), etc. Since the important scattering processes involve
electrons in the vicinity of the Fermi surface with small
momentum transfer, we only consider the vertex at vanish-
ing external boson momentum k = 0 and external electron

momentum on the Fermi surface q = kF , as well as take the
limit of a vanishing incoming electron frequency ω → 0 in the
following. Furthermore, realizing that the momentum integral
in Eq. (23) is dominated by small momenta, we expand the
d-wave form factors in small p and only retain the leading
order term ∼d3

kF
.

For the following discussion it is convenient to split the
vertex correction into a classical and a quantum part � =
�cl + �qu. The classical part comes from the zero frequency
term in the Matsubara sum in Eq. (23), whereas the summands
with nonzero frequencies describe contributions from quantum
fluctuations of the boson mode and constitute the quantum part
of the vertex. While classical fluctuations don’t exist at zero
temperature (where the Matsubara sum becomes an integral
and the zero frequency term is a set of measure zero), they are
actually dominant at nonzero temperatures, as we’ll show in
the following.

The computation of the classical part of the vertex correc-
tion is analogous to the problem of the disordered electron gas
and the largest contribution comes from the term where one
electron propagator is retarded and the other one is advanced.
Using the approximations mentioned above and performing
the analytic continuation iωn → ω + i0− and i(ωn + �n) →
ω + � + i0+, as well as taking the limit ω → 0, the classical
part of the vertex correction takes the form

�
(1)
cl (0,�; kF ,0) � λ3d3

kF

β

∫
d2p

4π2
D(p,0)GA(kF + p,0)GR(kF + p,�)

� λ3d3
kF

4π2β

∫ ∞

0
dp p

∫ 2π

0
dθ

1

m2 + ap2

1

v2
F p2 cos2 θ + γ 2

kF

(
1 + �

vF p cos θ − iγkF

+ · · ·
)

= λ dkF

(
1 + i�

γkF

+ · · ·
)

for
λ2T

v2
F m2

� 1, (24)

where the dots denote higher order terms in �. The classical
contribution to the leading vertex correction at zero external
frequency is temperature independent and equal to the bare
vertex λ dkF

. Consequently it is not negligible and vertex
corrections need to be resummed to all orders in perturbation
theory. Performing a ladder resummation of the classical vertex
correction and neglecting the quantum contribution, the vertex
would be given by

�ladder
cl (0,�; kF ,0) = λ dkF

1 − �
(1)
cl (0,�;kF ,0)

λdkF

= λ dkF

−i�/γkF

. (25)

Note that the classical vertex develops the well known diffuson
pole, familiar from the theory of the disordered electron gas.

The presence of a diffuson pole would invalidate the
Eliashberg approximation and change the scaling properties
of the boson self-energy drastically. It is important to realize,
however, that the problem of the Ising-nematic quantum
critical metal at finite temperature differs from the disordered
electron gas in one crucial aspect: in the quantum critical
regime at finite temperature both classical and quantum
fluctuations are equally important and it is not permissible
to neglect the contribution from quantum fluctuations, even

though the classical fluctuations dominate. In order to estimate
the quantum correction to the vertex, we simply compute the
one loop diagram in Fig. 4 at zero temperature using the
approximate zero temperature form of the propagators [i.e.,
set γkF

= 0, m = 0, and use |�|/vF |k| instead of |�|/γ in
Eq. (22)]. At vanishing external frequencies we obtain

�(1)
qu ≡ �(1)

qu (0,0,kF ,0)

� λ3d3
kF

∫
d2p

4π2

∫
dz

2π
G2(kF + p,iz)D(p,iz)

= − λ3d3
kF

vF

√
AB

0.0674 . . . . (26)

Note that the quantum correction comes with a negative
sign. Again performing a ladder resummation of the vertex
correction taking into account both classical and quantum
contributions, the vertex now takes the form

�ladder(0,�; kF ,0) � λ dkF

−�
(1)
qu (0,0; kF ,0) − i�

γkF

. (27)

The crucial difference to Eq. (25) is that the quantum
correction gaps out the diffuson pole of the classical vertex.
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More importantly, using this form of the vertex to compute
the boson self-energy beyond the Eliashberg approximation
doesn’t alter the scaling properties of the imaginary part
derived in Sec. III as long as �/γkF

is small compared to
the quantum vertex correction. Consequently we expect that
the Eliashberg approximation gives qualitatively valid results
at finite temperature and small frequencies.

VI. CONCLUSIONS

In this work we considered two-dimensional metals in
the vicinity of an Ising-nematic quantum critical point and
discussed properties of the nematic susceptibility at finite
temperature based on an Elisahberg-type approach. Our results
have some similarities to the Monte Carlo results by Schattner
et al. [39], who find a nematic susceptibility consistent with
z = 2 scaling in the quantum critical regime and no angular
dependence on momentum. However, in order for our results
to be consistent with their data, the electron scattering rate has

to be of order εF even at the lowest temperatures; otherwise,
the crossover to �/|q| behavior should be visible in the Monte
Carlo data at large momenta ∼kF . In our numerical solution
of the Eliashberg equations shown in Fig. 3 the scattering
rate is always substantially smaller than εF , even at relatively
high temperatures, and the crossover to the standard Landau
damping form is always visible. It thus remains to be seen if
the phenomenology discussed here is indeed responsible for
the behavior observed in the Monte Carlo data.
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