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PACS 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.)

PACS 73.43.-f – Quantum Hall effects
PACS 72.15.Nj – Collective modes (e.g., in one-dimensional conductors)

Abstract – We study the edge transport in two-dimensional topological insulators which is carried
by interacting helical fermions. This transport is ballistic when it is protected by time-reversal
symmetry. Recently it was pointed out (Altshuler B. L. et al., Phys. Rev. Lett., 111 (2013)
086401) that coupling of non-interacting helical electrons to an array of randomly anisotropic
magnetic (Kondo) impurities can lead to a spontaneous breaking of the symmetry and, thus, can
remove this protection. By using a combination of the functional and the Abelian bosonization
approaches, we show that the suppression of the ballistic transport turns out to be robust in a
broad range of the interaction strength. We have evaluated the renormalization of the localization
length and have found that, for strong interaction, it is substantial. We have identified various
regimes of the dc transport and discussed its temperature and sample size dependences in each of
the regimes.

Copyright c© EPLA, 2015

Introduction. – Electron transport in time-reversal
invariant topological insulators (TI) has become a hot
topic of research during several past years, see refs. [1–4]
for reviews. The bulk electron states in the TIs are gapped,
nevertheless, dc transport is possible since it is provided
by low-dimensional helical edge modes. Helicity means the
lock-in relation between electron spin and momentum: he-
lical electrons propagating in opposite directions have op-
posite spins [5,6]. An elastic backscattering of a helical
electron must be accompanied by a spin-flip. Therefore,
the helical electrons are immune to effects of potential dis-
order such as localization.

Recent experimental studies of the charge transport
through 1D channels at the helical edges of 2D TIs [7–10]
made of quantum wells [11,12] demonstrated that the
transport is indeed close to be ballistic as long as the sam-
ples are small [7,13]. However, longer edges exhibit lower
conductance [7,8,14] which is evidence for backscattering.
Moreover, the absence of clear temperature dependence
of the sub-ballistic conductance in a broad temperature

interval [15] suggests that this backscattering is probably
elastic.

Robustness of the ballistic transport in the TIs was dis-
cussed in several theoretical papers. Spin-flips needed for
the backscattering could be, for example, due to spin-(1/2)
Kondo impurities. However, the Kondo screening of the
spin would recover the ballistic transport at low temper-
atures [16,17]. The inelastic processes caused by inter-
actions in the presence of disorder are predicted to result
in temperature-dependent contributions to the dc conduc-
tance and conductance fluctuations [18–22]. Such correc-
tions are also frozen out at cooling due to the lack of the
phase space. Thus, the explanation of the dc transport in
the TIs, which i) is non-ballistic at low temperatures, and
ii) can be temperature independent, remains a theoretical
challenge.

The first step toward the understanding of the non-
ballistic temperature-independent transport through 1D
helical edges was taken in ref. [23] where the idea of spon-
taneous breaking of time-reversal symmetry was proposed.
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It was demonstrated that helical 1D electrons, which do
not interact with each other, are localized at zero temper-
ature if they are coupled to an array of the Kondo impu-
rities. This coupling can be described by the Hamiltonian

Ĥb =
∫

dxρsJ⊥
[
(S+ + ε S−)e2ikF xψ†

−ψ+ + h.c.
]
. (1)

Here ψ+ (ψ−) describes spin-up right-moving (spin-
down left-moving) in the x-direction helical fermions
ψR,↑ (ψL,↓); kF is the Fermi momentum; ρs is the impurity
density; J⊥ ≡ (Jx+Jy)/2 is the coupling constant between
the Kondo and the fermion spins; ε ≡ (Jx − Jy)/J⊥ is the
parameter of the anisotropy in the XY-plane (plane of TI);
S± are the Kondo spin operators.

For isotropic couplings, ε = 0, the indirect interac-
tion between spins induces a slowly varying in space and
time spin polarization. Homogeneous time-independent
polarization would create a gap, Δ0 = sρsJ⊥, in the
spectrum of fermions (s = 1/2 is the impurity spin).
Fluctuations of the polarization result in heavy but gap-
less “polaronic” complexes of helical electrons dressed by
slow spinons. These complexes are charged and can sup-
port ballistic transport with a strongly reduced Drude
weight. A random anisotropy, ε(x) �= 0, quenches the
local spin polarization and causes spontaneous symmetry
breaking. The polaronic complexes lose their protection
from the backscattering and undergo the Anderson local-
ization with localization length L(0)

loc.
In this letter, we explore the charge localization and

transport in the system of interacting helical electrons,
helical Luttinger liquid (HLL), coupled to the array of
the Kondo impurities. Motivated by recent experiments,
we study the dc transport in finite samples in different
temperature regimes; this topic has not been addressed in
ref. [23]. In particular, we identify those regimes where the
conductance could be below its ballistic value remaining
(almost) temperature independent, cf. ref. [15].

Interactions in the HLL are characterized by the Lut-
tinger parameter K = (1 + g)−1/2 (g is the dimension-
less interaction strength). We prove that the moderate
attraction, 1 < K < 2, and (almost) arbitrary repul-
sion, K < 1, do not change the qualitative picture of
the non-interacting system: the effective theory, which
describes localization in the HLL coupled to the Kondo
array, remains valid, though the gap, Δ, and the localiza-
tion radius, Lloc, are substantially renormalized:

Δ
Δ0

∼ K

(
EB

K2Δ0

) 1−K
2−K

;
Lloc

L
(0)
loc

∼
(

Δ0

KΔ

) 4
3

. (2)

Here EB is the UV energy cutoff which is of the order of
the bulk gap in the TI.

The energy scales which govern different temperature
regimes of the dc transport are sketched in fig. 1. They
are the temperature of the many-body localization tran-
sition [24], TMBL, and the depinning energy, Epin, defined

Fig. 1: (Color online) Sketch of the temperature dependence
of the dc conductivity in different regimes, see explanations in
the section “DC transport”.

below, see eq. (16). We will assume that TMBL � Epin �
Δ (see footnote 1); see the discussion after eq. (16).

If T < TMBL all excitations are localized and ballistic
transport is suppressed. If TMBL < T < Epin, the dc
conductivity is finite albeit low and is of a quantum nature.
The transport becomes thermally activated as T → Epin
and turns into a semiclassical one in the interval Epin <
T < Δ. Power-law dependences of σdc at T � TMBL
result from the interaction-dependent renormalization of
J⊥, see eqs. (17), (18).

Model and calculations. – The Hamiltonian of the
HLL coupled to the array of the Kondo impurities is Ĥ =
Ĥ0 + Ĥint+ Ĥb, where the first two terms describe the free
fermions and the interaction between them, respectively:

Ĥ0 = −ivF

∫
dx

∑
η=±

η ψ†
η(x)∂xψη(x), (3)

Ĥint =
g

2ν

∫
dx (ρ+ + ρ−)2, ρ± ≡ ψ†

±ψ±; (4)

here vF is the Fermi velocity and ν is the density of states
in the HLL. The backscattering term Ĥb (caused by the
coupling of the electrons to the Kondo impurities) is de-
fined in eq. (1). We neglect the forward-scattering term
∼ JzSz since a unitary transformation of the Hamilto-
nian allows one to map the model with the parameters
{K, Jz �= 0} to its counterpart with the effective Luttinger
parameter K̃ = K(1−Jzν/2K)2 and J̃z = 0 [25,26]. Thus,
Ĥint takes into account both the direct electron-electron
interaction and the interaction mediated by the z-coupling
to the Kondo impurities.

The tendency to the spin ordering [23] allows us to de-
velop a path integral formulation of the problem using
the parametrization of each spin by its azimuthal angle,
α, and projection on the z-axis, |nz| ≤ 1: S±(x, τ) =
seiα(x,τ)

√
1 − n2

z(x, τ); τ denotes the imaginary time. It

1This hierarchy of energies allows us to neglect the influence of
phonons on many-body localization transition: Estimating Δ ∼ 1K,
we conclude that TMBL belongs to the sub-kelvin range where the
number of phonons is negligible.
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is convenient to use the spins rotation: S±(x, τ)e2ikF x →
S±(x, τ) which leads to the redefinition of the anisotropy
parameter: εe2ikF x → εe4ikF x. For a high density of the
Kondo array with a weak irregularity in positions of the
spin impurities, the model can be simplified by treating ρs

and εe4ikF x as random variables: real ρs(x) and complex
ε(x). Fluctuations of ρs do not affect the dc transport
in the HLL, cf. ref. [23], thus, one can use the averaged
density. On the contrary, randomness of ε(x) plays the
crucial role. Without loss of generality, ε(x) can be treated
as a Gaussian random function with zero mean value and
short-range correlations

〈ε(x)〉dis = 0; 〈ε(x)ε∗(x′)〉dis = (w/ρs)δ(x− x′). (5)

As a result, the Lagrangian density for the HLL coupled
to the Kondo array can be presented as

L = ψ̂†
[
∂+ J
J ∗ ∂−

]
ψ̂ +

g

2
(ψ̂†ψ̂)2 − isρsnz∂τα; (6)

here J ≡ Δ0
√

1 − n2
z (e−iα + εeiα); ∂± = ∂τ ∓ ivF∂x

are the chiral derivatives; ψ̂† ≡ {ψ̄+, ψ̄−} is the fermionic
spinor field. Further calculations are based on the scale
separation: the fermionic variables are much faster than
the spin ones. Therefore, as will be verified below,

ξ∂xα � 1, Δ−1∂τα � 1; ξ ≡ vF /Δ. (7)

To describe the composite fermion-spinon excitations,
we perform a gauge transformation of the fermionic fields
ψηe

−iηα/2 → ψη; the Lagrangian acquires the form

L̃[ψ, α] � L|J →J eiα + v (∂xα)2 /(8πK), (8)

where v = vF /K is the renormalized velocity, and sub-
leading terms ρη∂ηα are neglected in L due to eq. (7).

We start the analysis of the electron interaction effects
with the zero anisotropy case, ε = 0. The classical configu-
ration of the spin variables is n(cl)

z = 0, α(cl) = const. Our
goal is to derive an effective theory describing fluctuations
around the classical solution. For g = 0, this is achieved
by integrating out all massive modes: firstly, the fermions
with the gap Δ0, and, secondly, the variable nz (in the
quadratic approximation). The interaction can be taken
into account with the help of the functional bosonization,
which involves the Hubbard-Stratonovich decoupling of
the interaction term and the gauge transformation of the
fermionic fields [27,28]. Following these standard steps,
one can show that the main non-perturbative effect of the
weak interaction is the renormalization of the backscatter-
ing amplitude, which acquires an effective energy depen-
dence, J⊥(E). Similarly to the bare relation Δ0 ∝ J⊥, we
introduce the renormalized gap at each step of the renor-
malization procedure:

Δ(E) = sρsJ⊥(E) = Δ0 × (EB/E)1−K
. (9)

Equation (9) has been obtained after neglecting small
and slow spatial fluctuations in ρs(x) and nz(x) and it
is valid only provided that T < Δ(E) ≤ E � EB. The
renormalization stops when E becomes smaller than Δ
since the fermions become massive. Accordingly, the ef-
fective fermionic gap Δf can be determined from the self-
consistency equation: Δf = Δ(E = Δf), which leads to the
result given in eq. (2) for attractive, 1 < K < 2, or weakly
repulsive, 0 < 1 − K � 1 interactions. However, this
straightforward way of calculations needs justification be-
cause multiparticle scatterings are generated. It is difficult
to analyze their relevance within the functional bosoniza-
tion approach. To justify the self-consistent derivation of
Δf and to analyze the case of stronger repulsion, we use
an alternative approach realized by bosonizing fermions:

L̃[φ̃, α] � LSG + v (∂xα)2 /(8πK) − isρsnz∂τα, (10)

where at ε = 0

LSG = LLL(φ̃,K, v) + (Δ0/2πa)
√

1 − n2
z cos(2φ̃). (11)

Here LLL(φ̃,K, v) ≡ [(∂τ φ̃)2 + (v∂xφ̃)2]/(2πKv);
a ∼ vF /EB is the smallest spatial scale; φ̃ is a compos-
ite phase: φ̃ ≡ φ − α/2, with φ being the usual bosonic
phase, its gradient is related to the fermionic density:
∂xφ = −π(ρ+ + ρ−) [29].

Similarly to eq. (8), sub-leading gradients of α are
neglected in eq. (10). This can be justified since LSG cor-
responds to the quantum sine-Gordon model where the
relevant vertex ∼ Δ0 cos(2φ̃) generates the bosonic mass
at K < 2 resulting in the scale separation between bosonic
and spin degrees of freedom. If K > 2, this vertex be-
comes irrelevant because a strong attraction of the helical
fermions leads to superconducting correlations which sup-
press the backscattering by the Kondo impurities. The ef-
fective gap Δ in the spectrum of bosons can be determined
by using the Feynman variational method [29]. After ne-
glecting fluctuations of nz, the gap equation reads

(Δ/EB)2 = (Δ0/EB) × (KΔ/EB)K
. (12)

Equation (12) is valid at T < Δ for K < 2, i.e., for
arbitrary strong repulsion and for weak and moderate
attraction2. The multiparticle backscattering, which is de-
scribed by (less relevant) higher vertices ∼ D(n) cos [2nφ̃]
in LSG, n ≥ 2, can be included into the gap equation.
Such vertices yield corrections to the RHS of eq. (12)
of order O(n2(D(n)/EB)(KΔ/EB)n2K). We assume that
D(n),Δ � EB . To ensure that all higher vertices gen-
erate only sub-leading corrections to the gap equation,
we request (KΔ/EB)K � 1 and solve this inequality at
K � 1, where (with logarithmic accuracy) KK ∼ 1 and
Δ ∼ √

Δ0EB , see eq. (12). This results in the condition
K � 1/ log(EB/Δ0) which allows us to neglect the mul-
tiparticle backscattering.

2We note that we do not consider interaction processes, which
are sensitive to the phase space restriction and are similar to those
discussed, for example, in refs. [20,21].
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For weak and moderate interactions,K ∼ 1, the bosonic
gap Δ and the fermionic one Δf coincide. This equivalence
can be extended to the case of the strong repulsion where
sub-leading terms in eq. (9) become important3. After jus-
tifying the self-consistent derivation of the gap we insert
into eq. (8) renormalized quantities (the effective gap Δ,
the effective velocity v, and the factor v/8πK in the gradi-
ent term) instead of their bare values. Simultaneously, we
neglect g in the first term of L and restore the anisotropy.
We use the gap Δ in further calculations since it allows us
to describe the strong repulsion.

Integrating out the massive variables, we obtain

Lα = LLL(α,Kα, vα) − D (
εe2iα + c.c.

)
, (13)

vα/v = Kα/(4K) � 2
√
aD/πEBK � 1, (14)

where D ≡ (Δ2/4πaEB) log(EB/Δ) � Δ/a. At K = 1,
eqs. (13), (14) are equivalent to the results of ref. [23].
The fermion-spinon excitations (see Introduction) are slow
in the absence of the interactions, vα(K = 1) � vF .
As K decreases, the ratio vα/v increases remaining small
as long as K > 1/ log(EB/Δ0). Inequality v � vα reflects
the scale separation between the interacting (fast) helical
fermions and the (slow) composite quasiparticles. Equa-
tion (13) is valid at K < 2, therefore Kα ∼ √

aDK/EB is
small with and without interactions.

DC transport. – A regular anisotropy, ε(x) = const,
would pin the phase, α � arg(ε). The pining is similar
to the effect of a magnetic field applied in the XY-plane:
it breaks time-reversal symmetry and opens a global gap
in the spectrum of the composite quasiparticles trivially
blocking the ballistic dc transport.

Random fluctuations of arg(ε), eq. (5), prevent the
opening of the global gap but are able to localize the
composite quasiparticles at T → 0. Indeed, eq. (13) de-
scribes a disordered Sine-Gordon model where quasipar-
ticles are localized [30]. Since Kα � 1, the localization

3The equivalence of the fermionic and the bosonic gaps can be
seen from the following qualitative reasoning: plasmons are collec-
tive excitations above the ground state which is the filled Fermi sea
of Dirac fermions. The bosonization procedure requires the normal
ordering of the Hamiltonian. Therefore, the free energy of the system
must vanish at low temperatures: F(T → 0) = 0. Technically, it is
achieved after subtracting the free energy of the Dirac fermions (the
ground-state energy) from the free energy of the bosonized system:
F = Fbos − Fferm. The path integral formulation governs the sim-
ple expression for the partition function of the quadratic bosonic
theory Zbos =

∫ D{φ̃} exp(−1/2[φ̃G−1φ̃]) = det(G) with the free
energy Fbos = −T log(Zbos); here G is the boson propagator. After
inserting the mass term φ̃Δ2φ̃/2πvK into the Lagrangian LLL, we
obtain the following expression in the frequency-momentum repre-
sentation: G = πvK/(Ω2 + (vq)2 + Δ2). If Δ = 0, one can eas-
ily check that Fferm exactly compensates Fbos at T → 0, such
that F(Δ = 0, T → 0) = 0. If Δ �= 0, Fbos is changed because
of a nonphysical (fake) contribution of the bosons below the gap.
This change is cancelled out if the same gap Δ is opened in the
spectrum of the Dirac fermions. Thus, the fundamental property
F(T → 0) = 0 requires the equivalence of the bosonic and the
fermionic gaps. More details of this thermodynamic consideration
will be published elsewhere.

length can be evaluated by the usual optimization proce-
dure [29]: Lloc is defined as a spatial scale on which the
typical energy governed by the last term in eq. (13) (i.e.,
the potential energy of the disorder) becomes equal to the
energy governed by the term ∝ (∂xα)2 in LLL (i.e., Epin).
This yields

Lloc ∼ a
(
EB

/[
aDw1/2K2

])2/3
. (15)

Let us discuss different temperature regimes of the dc
transport. The localization strongly affects the dc trans-
port in not too short samples, L ≥ Lloc, at T < TMBL:
the conductance is resistive (finite but smaller than the
ballistic one) and temperature-independent in transient
samples with L ∼ Lloc, and the conductance vanishes in
long samples, L � Lloc.

Sizable dc transport in long samples (L � Lloc) ap-
pears only at higher temperatures: if TMBL < T < Epin,
the fermions are still gapped but many-body states be-
come delocalized and are able to support weak dc quan-
tum transport similar to transport in glassy systems. As
T → Epin, the transport becomes classical. The straight-
forward estimate yields [29]

Epin ∼ vα/(KαLloc) ∼ (wEB)1/3 (aD/K)2/3
. (16)

The classical depinning energy is supposed to exceed the
quantum energy scale, TMBL � Epin (see footnote 4).
Semiclassical contribution of the composite quasiparti-
cles to the conductivity is estimated as σcq ∝ vαKατ

(cq)
eff

(see footnote 5), where τ (cq)
eff is a temperature-dependent

effective transport time. The value of τ (cq)
eff can be es-

timated as follows: if T � Epin, semiclassical τ (cq)
eff is

∝ Lloc/vα ∼ 1/KαEpin. This is the scale on which
terms ∝ (∂τα)2 and ∝ (vα∂xα)2 in LLL, eq. (13), be-
come equal. If T ≥ Epin, the dc conductivity of a dis-
ordered Luttinger liquid and, correspondingly, τ (cq)

eff have
the temperature dependence ∝ T 2(1−Kα), see sect. 9.2 in
the book [29]. Hence, τ (cq)

eff ∝ T 2 at Kα � 1. The tem-
perature must be scaled by Epin to reproduce the value
of τ (cq)

eff at T � Epin. Combining all together and using
eq. (14), we find τ (cq)

eff ∼ (T/Epin)2(KαEpin)−1 and

σcq ∝ vαKατ
(cq)
eff ∼ vF

KαEpin

(
Kα

K

)2 (
T

Epin

)2

. (17)

Equation (17) is valid provided that Epin < T � Δ.
The factor (Kα/K)2 � 1 reflects the suppressed Drude
weight. Its smallness results in the following important
property: the small but finite conductance of the tran-
sient samples, L ∼ Lloc � vα/Epin, is almost tempera-
ture independent in the interval TMBL < T < Epin. To

4A rigorous theory for TMBL at Kα � 1 is missing.
5The conductivity of a clean Luttinger liquid with the Lagrangian

LLL reads as σ(ω) ∝ ivK/ω [29]. The estimate for σcq,f is obtained
from σ(ω) after substituting vαKα (respectively, vF ) for vK and
ω + i/τ

(cq,f)
eff for ω at ω � 1/τ

(cq,f)
eff .
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show this, let us estimate the temperature-dependent cor-
rection to the conductance governed by the semiclassi-
cal conductivity: gcq = σcq/L. Using eqs. (15), (16),
we obtain gcq ∼ Kα � 1 for L ∼ Lloc and T ∼ Epin.
Thus, the temperature-dependent contribution gcq is neg-
ligibly small and does not change the total conductance
at T ≤ Epin.

Equation (12) is valid at T < Δ. Nevertheless, we
can draw some qualitative conclusions for T ∼ Δ � EB ,
where the dc conductivity is dominated by thermally ac-
tivated fermions and is estimated as (see footnote 5)

σf ∝ vKτ
(f)
eff ∼ vF τ0 (T/EB)2(1−K); (18)

here τ0 is governed by the disorder of the Kondo lattice,
i.e., by the randomness in ρs. The theory for τ0 is beyond
the scope of the present letter. If Δ � T � EB, the gap
becomes temperature dependent and shrinks. As a result,
our theory looses its validity and the dc transport should
reflect different physics.

Validity. – Our consideration is based on several as-
sumptions: The Kondo array is dense, the bare coupling
constant is small and the XY-anisotropy is weak,

ρsa ∼ 1, νJ⊥ � 1, |ε|, w � 1. (19)

Combining eqs. (2), (19), one can check the inequality
Δ � EB and justify eq. (7).

We have neglected the Kondo effect which is permis-
sible only provided that Δ exceeds the Kondo temper-
ature of a single Kondo impurity embedded into the
HLL, TK . Standard estimates reveal two regimes: T (0)

K ∼
EB exp(−1/νJ⊥) is exponentially small at K → 1 but
becomes larger due to the renormalization of J⊥ in the
interacting case, T (int)

K ∼ EB(νJ⊥/(1 − K))1/(1−K) at
1 − K � νJ⊥ [16]. Comparing TK with Δ from eq. (2),
we find that TK is the smallest scale. Thus, for a dense
Kondo array, the Kondo screening can be neglected.

Taking into account restrictions on K discussed after
eq. (12), we determine the condition

1/ log (EB/Δ0) < K < 2, (20)

which shows that the presented theory is valid in the broad
range of interaction strength.

Conclusions and open questions. – We have
demonstrated that the localization of the 1D helical elec-
trons coupled to the random array of the Kondo im-
purities is a robust phenomenon which takes place in
the broad range of the electron interaction strengths,
eq. (20). This confirms a qualitative conjecture of ref. [23].
We have found and quantitatively described strong (non-
perturbative) renormalizations of physical parameters,
eq. (2).

The second part of the paper addresses possible mani-
festations of localization in the dc transport at low tem-
peratures T � Δ (Δ is the gap in the electron spectrum
caused by local spin ordering). Analysis of this important

question may shed light on puzzling experimental results.
The current at the low temperature is carried by slow com-
posite spinon-fermion excitations. A random anisotropy
of the electron-spin coupling pins spin ordering and local-
izes low-energy excitations. The localization length Lloc
is given by eq. (15). The resulting insulating state per-
sists in a finite temperature interval T < TMBL, where
TMBL is the temperature of a many-body localization tran-
sition [24]. TMBL is expected to be small compared to the
classical depinning energy Epin � Δ, eq. (16). This physi-
cal picture leads to the following predictions: If L � Lloc,
the deviation of the conductance from the universal bal-
listic value should be small as L/Lloc. Transport in the
samples with L ∼ Lloc is characterized by the resistive
temperature-independent conductance at T < TMBL and
by temperature-dependent corrections to the conductance
which are expected to be much smaller than e2/h in the en-
tire interval TMBL < T < Epin, see analysis after eq. (17).
Hence, the conductance of the intermediate samples can
remain suppressed and almost temperature independent
up to T = Epin. Longer samples, L � Lloc, are almost
perfect insulators as long as T < TMBL. More rigorous
theory for a temperature interval TMBL < T < Epin is
yet to be developed for both long and short samples. At
higher temperatures, Epin < T � Δ, the dc transport
becomes semiclassical with σ ∼ T 2, eq. (17), and reduced
Drude weight (Kα/K)2 � 1, see eq. (14) (and eq. (3) in
ref. [23]).

To develop the analytical theory, we had to restrict our
choice of parameters to those given in eq. (19). In par-
ticular, we have assumed a small anisotropy. This choice
results in low TMBL and large Lloc. However, a strong
XY-anisotropy looks more natural for the edge transport
and it could yield stronger localization with larger TMBL
and smaller Lloc. Therefore, we believe that the con-
sidered mechanism of suppressing the ballistic transport
can be relevant for realistic samples. In particular, the
temperature-independent transport observed in ref. [15]
might be associated with the described above resistive
regime of relatively short samples at T < Epin. Such a
scenario deserves a further study.
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