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We extend White’s minimally entangled typically thermal states approach (METTS) to allow Abelian and
non-Ablian symmetries to be exploited when computing finite-temperature response functions in one-dimensional
(1D) quantum systems. Our approach, called SYMETTS, starts from a METTS sample of states that are not
symmetry eigenstates, and generates from each a symmetry eigenstate. These symmetry states are then used to
calculate dynamic response functions. SYMETTS is ideally suited to determine the low-temperature spectra of
1D quantum systems with high resolution. We employ this method to study a generalized diamond chain model
for the natural mineral azurite Cu3(CO3)2(OH)2, which features a plateau at 1

3 in the magnetization curve at
low temperatures. Our calculations provide new insight into the effects of temperature on magnetization and
excitation spectra in the plateau phase, which can be fully understood in terms of the microscopic model.
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I. INTRODUCTION

The simulation of dynamical quantities in one-dimensional
(1D) quantum many-body systems still poses a major chal-
lenge for theoretical condensed matter physics, particularly
at finite temperature. From an experimentalist’s perspective,
there is high demand for such calculations for a variety of
reasons: (i) Experimental measurements hardly allow to study
solely ground-state physics as thermal fluctuations cannot
be eliminated altogether. Thus, for a direct comparison with
experimental data, it is essential to include temperature in the
theoretical modeling. (ii) Technical advances have nowadays
drastically enhanced the precision of neutron scattering and
electron resonance spectroscopy, which for example allows
the measurement of dynamic observables such as momentum-
resolved excitation spectra in effective 1D materials with very
high resolution [1–6]. (iii) Thermal fluctuations can cause
new phenomena, which are not captured by the ground-state
physics of the system. Two examples are the sudden emergence
of a single spinon dispersion (“Villain mode”) in XXZ-like
spin-chain materials [7–9] or the existence of quantum critical
phases in various strongly correlated materials [10].

Which numerical tools can be employed to simulate
such dynamic observables in a 1D quantum system? At
zero temperature, the density matrix renormalization group
(DMRG) is the most successful exact numerical method for
describing quantum many-body systems regarding their static
and dynamic ground-state properties [11,12]. DMRG-based
algorithms have also been successfully extended to treat
systems at finite temperature, yet the computational efficiency
of such approaches is still limited. Exact diagonalization
(ED) or quantum Monte Carlo (QMC) [13–15] can only be
considered as complementary approaches rather than proper
alternatives to DMRG since the applicability of ED is restricted
by small system sizes, and that of QMC by the need for
performing an ill-defined analytic continuation, and often also
by the occurrence of a sign problem. Thus, the simulation of
experimentally relevant quantities such as dynamic response
functions represents a highly demanding and difficult task for
finite-temperature numerics.

Whereas early DMRG approaches for computing finite-
temperature response functions for a 1D quantum system

have been based on the transfer matrix renormalization group
(TMRG) [16–19], today the most popular method builds on the
purification of the density matrix in the matrix-product-state
(MPS) formalism [20]. The response functions can then be
calculated with high precision by using tDMRG in the real-
time realm, and a subsequent Fourier transform also allows
the computation of spectral functions [21–27]. Purification
can also be combined with a Chebyshev expansion technique
to determine finite-temperature spectral functions directly in
frequency space [28,29]. Although these methods have been
successfully applied to a number of experimental setups, the
accessible time scale (or maximal Chebyshev expansion order)
and hence the spectral resolution is limited, as the propagation
of excitations during the dynamic evolution yields a linear
growth of entanglement, leading to an exponential increase in
the required numerical resources. In addition, the encoding of
mixed states inevitably requires doubling the size of the Hilbert
space and introduces additional entanglement between the
physical state and its environment, which limits the efficiency
of purification simulations towards low temperatures.

An alternative way to compute finite-temperature quantities
was recently presented by White in Ref. [30]. Instead of
purifying the density matrix, an ensemble of pure states is
introduced that are constructed to resemble the typical state
of a quantum system at finite temperature. It has been shown
that these so-called minimally entangled typical thermal states
(METTS) excellently represent the thermal properties of the
system of interest. At the same time, they can efficiently be
represented in the MPS formalism as their entanglement is very
low [30,31]. The METTS approach was originally only used to
compute static quantities of spin chains [30,31] and fermions
[32]. In the meantime, it has also been applied to simulate
finite-temperature quenches [33] and response functions [34].

The numerical effort for constructing a single METTS is
comparable to ground-state DMRG since METTS avoids the
explicit computation of the density matrix. Since METTS
calculations are also easily parallelized, it has originally
been considered to be a more efficient finite-temperature
formulation than purification. More recently, Ref. [34] showed
in a detailed study that this claim cannot generally be supported
because the additional statistical error source introduced by
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the sampling increases computational costs, especially at high
temperatures. Nevertheless, METTS still offers much potential
towards the simulations of low-temperature properties of
complex models, as long as one does not insist on reducing
the statistical error to be as small as the truncation error.

To bring out the full potential of METTS for the calculation
of dynamic quantities, this work addresses a severe constraint
of the current formulation of the algorithm: the ensemble states
cannot be chosen such that they respect inherent symmetries
of the system and at the same time minimize autocorrelation
effects. This drastically increases the numerical resources nec-
essary for computing the real-time evolution of the ensemble
states, as the MPS have not been decomposed into symmetry
blocks by means of the symmetry-induced selection rules
[35–38]. To remedy this problem, we introduce an intuitive
and easily implementable extension of White’s approach:
starting from a METTS sample of states that are not symmetry
eigenstates, we generate a sample of symmetry eigenstates,
called SYMETTS. These states allow both simple Abelian
and more complex non-Abelian symmetries to be exploited in
the computation of dynamic quantities.

As an experimentally relevant application of SYMETTS,
we study temperature effects on the 1

3 magnetization plateau
of a generalized diamond chain model, which has been
derived as a microscopic model for the natural mineral azurite
Cu3(CO3)2(OH)2 [39,40]. This material has attracted much
attention due to the discovery of a plateau at 1

3 in the
magnetization curve at low temperatures [4,5,39–49]. Via
real-time evolution of SYMETTS ensembles, it is possible
to obtain highly resolved excitation spectra in the 1

3 plateau
phase for various temperatures. We observe a crossing of
monomer and dimer branches with increasing magnetic field,
which intuitively explains the effects of finite temperature on
the magnetization in the plateau phase.

The paper is organized as follows. In Sec. II, we briefly
review the original METTS algorithm and the necessity of
choosing a symmetry-breaking collapse routine to generate the
ensemble. Section III introduces a METTS formulation based
on symmetry eigenstates for models with both Abelian and
non-Abelian symmetries. Section IV summarizes benchmark
calculations for static and dynamic observables for the spin- 1

2
XXZ chain. In Sec. V, SYMETTS is employed to study an
experimentally relevant microscopic model for the natural
mineral azurite. A technical discussion on the combination
of SYMETTS with a Chebyshev expansion to directly cal-
culate dynamic correlators in frequency space is relegated to
Appendix A. The computational efficiency of SYMETTS in
the context azurite is assessed in Appendix B.

II. MINIMALLY ENTANGLED TYPICAL
THERMAL STATES

A. METTS calculations thermal quantities

First of all, we review the construction of a METTS
sample to approximate a thermal expectation value 〈Â〉β for
a general chain model with N sites. To this end, the trace
of a thermal expectation value 〈Â〉β = Tr[ρβÂ] is expanded
in terms of an orthonormal basis {|σ 〉} of classical product
states (CPS) of the form |σ 〉 = |σ 1〉|σ 2〉 . . . |σN 〉. Each such

state has an entanglement entropy of exactly zero. Thus,
these states represent a natural choice for a basis at infinite
temperature, where the system should behave classically. In
addition, their entanglement growth under imaginary-time
evolution remains comparatively low, hence, the designation
“minimally entangled” states. The expectation value of Â can
be written as

〈Â〉β = 1

Zβ

∑
σ

〈σ |e−βĤ/2Âe−βĤ/2|σ 〉

= 1

Zβ

∑
σ

Pσ 〈φσ |Â|φσ 〉, (1)

with the partition function Zβ = Tr[e−βĤ ] = ∑
σ Pσ . The

normalized states |φσ 〉 represent a set of METTS with
corresponding probabilities Pσ , defined as

|φσ 〉 = 1√
Pσ

e−βĤ/2|σ 〉, Pσ = 〈σ |e−βĤ |σ 〉. (2)

By sampling the METTS |φσ 〉 according to the probability
distribution Pσ /Zβ , the calculation of a thermal expectation
value can be reformulated into taking the plain average of
〈φσ |Â|φσ 〉.

To obtain a METTS sample {|φσ 〉} with the correct proba-
bility distribution, a Markov chain of CPS |σ 〉 is generated.
This is done in a way that obeys detailed balance, which
guarantees reproducing the probability distribution Pσ /Zβ .
The sampling algorithm can be set up sequentially. To this
end, one starts from an arbitrary CPS |σ 〉 and conducts what
is called a thermal step:

(i) A single METTS |φσ 〉 is generated by evolving the CPS
in imaginary time and normalizing it.

(ii) A measurement of all local degrees of freedom is
performed by projecting (or collapsing) |φσ 〉 into a new
CPS |σ ′〉 with probability pσ ′σ = |〈σ ′|φσ 〉|2. The transition
probabilities obey detailed balance pσ ′σPσ = pσσ ′Pσ ′ by
construction.

The thermal step is then repeated with the newly generated
CPS to generate a METTS (see Fig. 1 for illustration). By
construction, the correct distribution is recovered as a fixed
point of this procedure. To eliminate any artificial bias caused
by the choice of the initial random CPS, the first few thermal
steps are neglected in the calculation of any static observable
〈φσ |Â|φσ 〉 or dynamic response function 〈B̂(t)Ĉ〉β .

By making good choices for the local measurements (see
Sec. II B), the sample size M can be chosen surprisingly small
to obtain accurate results [M ∼ O(102–103)].

FIG. 1. (Color online) Schematic illustration of the METTS al-
gorithm. For details on how to explicitly evaluate response functions
of the type 〈B̂(t)Ĉ〉β , see Sec. IV B.
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At this point, a comment on accuracy is in order. It
was recently pointed out by Ref. [34] that the purification
approach drastically outperforms METTS because for fixed
total computation time it reaches more accurate results,
where the accuracy was judged by comparing to quasiexact
calculations. However, this should not be a surprise since the
METTS sampling introduces an additional statistical error
source, which generally scales as β−1/

√
M − 1. Obviously,

this prevents a perfect convergence of METTS results towards
exact data and limits the efficiency at very high temperatures
in comparison to a nonstatistical method. Nevertheless, we
believe that METTS offers much potential towards the simu-
lations of low-temperature properties of complex models, as
long as one does not insist on pushing the statistical error
towards the order of the truncation error.

B. Ergodicity and efficient sampling

Generating a new CPS |σ 〉 by collapsing a METTS
represents the most crucial step of the sampling algorithms,
as a bad choice of measurement basis leads to a drastically
increased autocorrelation time [31].

Let us assume that the local Hilbert space of each site j in
our chain model is represented by an orthonormal basis |σj 〉 of
size d, σj ∈ {1,2, . . . ,d}. The projective measurement |φσ 〉 →
|σ ′〉 can be efficiently carried out site by site by making
use of the well-defined orthogonality relations for a MPS,
typically starting at one end of the chain (in our case site 1). To
this end, the d transition probabilities p(σ1) = 〈φσ |P̂ (σ1)|φσ 〉
are calculated by introducing the projectors P̂ (σ1) = |σ1〉〈σ1|.
Then, one of the d states is chosen with probability p(σ1) by
rolling a dice. The state is collapsed by the application of the
projector P̂ (σ1), and the orthonormal center of the MPS is
shifted to the next site, where the collapse process is repeated.

In principle, the orthonormal basis |σj 〉 on each site j can
be chosen arbitrarily. Nevertheless, there are good and bad
choices with respect to the sampling efficiency. We illustrate
this for the example of the spin- 1

2 XXZ Heisenberg chain

Ĥ = J

N∑
j

[
Ŝx

j Ŝx
j+1 + Ŝ

y

j Ŝ
y

j+1 + �Ŝz
j Ŝ

z
j+1

] + h

N∑
j

Ŝz
j (3)

for the isotropic case J = 1, � = 1, and h = 0. This model
features a non-Abelian SU(2)spin symmetry, which can be
reduced to an Abelian U(1) symmetry, e.g., by considering
the total magnetization Sz

tot as a good quantum number. At first
sight, the eigenstates of the spin operator Ŝz

j resemble a natural
choice for the orthonormal basis set |σj 〉 since this choice
allows the encoding of the projectors in the form of diagonal
operators. Moreover, all resulting CPS are eigenstates of Ŝz

tot =∑N
j Ŝz

j . Therefore, it is possible to directly implement the
Abelian U(1) symmetry in the MPS representation resulting
in a massive reduction of computational effort.

However, a collapse routine based on measurements along
the z axis only (“z collapse”) leads to a serious problem
with ergodicity, as already extensively discussed in Ref. [31].
Subsequently generated CPS are strongly correlated and thus
the autocorrelation times are very long, so that the bias arising
from the initial random CPS cannot be removed in a few
thermal steps. Additionally, CPS generated from subsequent
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FIG. 2. (Color online) Energy of the spin- 1
2 Heisenberg chain

with N = 100 spins for β = 4,8,20. Details on the setup of the
imaginary-time evolution can be found in Sec. IV. Starting from
an ensemble of 100 randomly generated CPS, we conduct 10 thermal
steps with each state and measure the ensemble average of the total
energy in each step. The different basis choices for the CPS collapse
become apparent in the autocorrelation times. Whereas measuring
along the z axis only (squares) leads to strong autocorrelations
that prevent the energy to converge towards the exact value (black
lines), randomly chosen measurement bases (circles) result in short
autocorrelation times of a few thermal steps [31].

thermal steps always have the same total magnetization Sz
tot

since the z collapse conserves this quantity. It is therefore
impossible to cover different Sz

tot sectors with the sampling
algorithm described above, as one is always stuck in the
symmetry sector of the initially chosen CPS.

This issue can be resolved by randomly choosing a different
local basis for each site of the chain (“random collapse”).
Alternatively, it has been shown that alternating in subsequent
thermal steps between two basis sets that are maximally mixed
relative to each other, e.g., the eigenstates of Ŝz and Ŝx , also
restores ergodicity and covers multiple symmetry sectors of
the sample (“maximally mixed collapse”).

We illustrate the failure of the z collapse routine by starting
from an ensemble of randomly generated CPS and then
conducting 10 thermal steps with each state of the ensemble
for three different values of β. After each step, we measure
the ensemble average of the total energy, which is displayed
in Fig. 2. For comparison, we also calculate the same quantity
using the random collapse routine. When choosing a random
basis for each CPS collapse (circles), the total energy of the
ensemble is already well converged towards the exact value
after a few thermal steps because autocorrelations between
subsequent CPS are practically absent.

In contrast, when measuring along the z axis only (squares),
the total energy is nowhere near its exact value, even after 10
thermal steps. We have discussed the causes of this behavior
above: first of all, one can identify strong correlations between
subsequent CPS during the application of the z collapse
resulting in an increase of autocorrelation time. In addition,
each CPS remains in its initial symmetry sector. If the different
symmetry sectors are not distributed according to the correct
probability distribution at a specific value β (which is very
unlikely starting from a random set), the ensemble cannot
capture the correct behavior of the system, as the sample is

115105-3



BRUOGNOLO, VON DELFT, AND WEICHSELBAUM PHYSICAL REVIEW B 92, 115105 (2015)

biased towards specific sectors. This explains why the average
energy is not only converging slowly towards the exact value,
but rather seems to saturate at a significantly higher value.
Thus, a symmetry-conserving collapse routine that is based on
measurements in a fixed local basis is clearly impracticable.

If we want to retain the ergodicity of the METTS sample, we
are left to choose between the random or the maximally mixed
collapse routine. This comes at a price, as the ensemble states
cannot be chosen such that they conserve inherent symmetries
of the system because both collapse routines clearly require
symmetry-breaking measurements. However, the efficient
treatment of symmetries is often essential for calculating
especially dynamic properties of complex models, such as 1D
systems and 2D lattice models with experimental relevance.
Since the current METTS setup does not allow Abelian or
non-Abelian symmetries to be exploited, it is not suitable for
accessing dynamic observables of such complex systems.

In the following, we show how to resolve this fundamental
issue by a simple extension of the sampling algorithm that will
enable us to systematically build a METTS ensemble based
on symmetry eigenstates.

III. SYMMETRIC METTS

A. Symmetries

The matrix-product-state framework allows for a straight-
forward incorporation of symmetries of the model Hamiltonian
[35–38]. Generally speaking, the symmetry-induced selection
rules cause a large number of matrix elements to be exactly
zero, thus bringing the Hamiltonian into a block-diagonal
structure and subdividing tensors into well-defined symmetry
sectors. Keeping only the nonzero elements, we can achieve
tremendous improvement in speed and accuracy in numerical
simulations by the inclusion of symmetries. In the context
of non-Abelian symmetries, the nonzero data blocks are not
independent of each other and can be further compressed using
the Clebsch-Gordan algebra for multiplet spaces. Here, we
refrain from discussing this topic at length and refer to Ref. [36]
for a detailed review on the treatment of symmetries in tensor
network applications.

Following the notation of Ref. [36], we label the state
space in terms of the symmetry eigenbasis |qn; qz〉, where
the quantum labels q denote the irreducible representation of
the symmetry group S of the Hamiltonian Ĥ . Every symmetry
generator Ŝα satisfies [Ĥ ,Ŝα] = 0. Hence, all states in a given
Hilbert space corresponding to a certain q label are combined
into a symmetry block q. The label n identifies a particular
multiplet within the specific symmetry block q. The internal
multiplet label qz resolves the internal structure of the corre-
sponding multiplet. In the context of Abelian symmetries, the
Clebsch-Gordan structure becomes trivial, hence, the qz labels
take the role of q labels. Note that this notation can be easily
generalized to the treatment of multiple symmetries [36].

To further clarify the notation, we consider the example
of the isotropic Heisenberg chain in Eq. (3), which features
an SU(2)spin symmetry S = SU(2)spin. We make the usual
choice of basis in which the z component of the spin
operator Ŝz is diagonal and label a general spin multiplet
by |q,qz〉 ≡ |S,Sz〉. The spin multiplet label can take the

values q = 0, 1
2 ,1, 3

2 , . . ., while the internal multiplet label,
corresponding to the z component of the spin, is restricted
to qz ∈ {−q, − q + 1, . . . , + q}.

Now, consider a typical MPS scenario, where the wave
function |ψ〉 in the local picture of site j can be represented as

|ψ〉 =
∑
Lσj R

A
[σj ]
LR |L〉|σj 〉|R〉. (4)

In the presence of symmetries, the physical state space at site
j as well as the left and right orthonormal basis states can be
written as |L〉 ≡ |ql; qz〉, |σj 〉 ≡ |q ′m; q ′

z〉, |R〉 ≡ |q ′′n; q ′′
z 〉.

Hence, symmetry labels can be introduced naturally in the
MPS representation. In particular, every leg or bond in the
usual diagrammatic depiction of a MPS can be assigned a
multiplet label, here q,q ′ and q ′′, e.g.,

A
[q′]
qq′′ = ,

(5)

B. METTS with symmetry eigenstates

In order to work with a symmetry-conserving METTS
ensemble, we reformulate Eqs. (1) and (2) in terms of
symmetry eigenstates before introducing an efficient sampling
routine (see Sec. III C). In place of the CPS, we introduce
a set of symmetry product states (SPS) |q〉, that can be
considered as symmetrized counterparts of the CPS. A SPS
is a MPS with (multiplet) bond dimension one, where each
bond represents a single, unique symmetry block qj , and
that block contains just a single multiplet (nj = 1). Thus, the
SPS can be fully characterized by a set of N quantum labels
q = {q1,q2,q3, . . . ,qN }, one label qj per site/bond j labeling
the corresponding symmetry sector. The overall symmetry
sector of each SPS |q〉 is fully determined by the q label
of the last bond qN .

The simplest example of a SPS for the SU(2) symmetric
Heisenberg chain is to combine pairs of neighboring spins to
singlets

|q〉SU(2) = (|↑1〉|↓2〉 − |↑2〉|↓1〉)(|↑3〉|↓4〉 − |↑3〉|↓4〉)
. . . (|↑N−1〉|↓N 〉 − |↑N−1〉|↓N 〉). (6)

For spin- 1
2 systems, the quantum labels q correspond to a

sequence of qj = 1
2 ,0 for odd and even bonds, respectively,

with a total spin qN ≡ Stot = 0, as illustrated in Fig. 3(a).
Although the (multiplet) dimension on each bond remains one
for a non-Abelian SPS, it is no longer a pure product state

FIG. 3. Schematic illustration of the SPS (a) in Eq. (6) and (b) in
Eq. (7).
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in the classical sense as the internal multiplet structures can
introduce nontrivial entanglement between neighboring sites.

The same formalism also applies for Abelian SPS. Reduc-
ing SU(2) to an Abelian U(1) symmetry in the Heisenberg
model, e.g., by choosing an anisotropy � �= 1 in Eq. (3) or
adding a finite magnetic field in the z direction, and choosing
the total spin Sz

tot as conserved quantity, a typical SPS takes
the form of

|q〉U(1) = |↓1〉|↓2〉|↑3〉|↓4〉 . . . |↑N 〉. (7)

In this case, the quantum label qj represents the sum of all
Sz contributions for sites i � j , i.e., qj = ∑

i�j Sz
i as shown

in Fig. 3(b). Hence, the total magnetization Sz
tot of the SPS is

given by the last label qN . In the Abelian case, a SPS can be
understood as a direct product of local symmetry eigenstates
of each site, and hence is always represented by a MPS of bond
dimension one, much like a classical product state.

Analogously to the CPS basis set {|σ 〉}, a full set of SPS
{|q〉} represents a complete orthonormal basis taking into
account all possible symmetry sectors of the system. Thus,
we can proceed as above and expand the trace of a thermal
expectation value 〈Â〉β = Tr[ρβÂ] in terms of the symmetry
product states |q〉:

〈Â〉β = 1

Zβ

∑
q

〈q|e−βĤ/2Âe−βĤ/2|q〉

= 1

Zβ

∑
q

Pq〈φq |Â|φq〉. (8)

The normalized states |φq〉 now represent a set of symmetric
METTS (SYMETTS) with probabilities Pq defined in analogy
to Eq. (2):

|φq〉 = 1√
Pq

e−βĤ/2|q〉, (9a)

Pq = 〈q|e−βĤ |q〉 . (9b)

The thermal expectation value 〈Â〉β is now estimated
by sampling SYMETTS |φq〉 according to the probability
distribution Pq/Zβ . However, we still have to establish
how to sample a set of SYMETTS {|φq〉} according to the
correct probability distribution Pq/Zβ , in a way that ensures
ergodicity.

C. Algorithm for efficient sampling

We illustrated in Sec. II B for the spin- 1
2 Heisenberg chain

that a collapse routine purely based on measurements along the
z axis, conserving the U(1)spin symmetry, fails to capture the
correct thermal properties of the model. This is due to strong
autocorrelation effects and the fact that the symmetry sectors
initially are distributed randomly instead of according to the
correct probability distribution Pq/Zβ . From this discussion,
we can learn that the SYMETTS sample has to be generated

FIG. 4. (Color online) Schematic illustration of the SYMETTS
sampling algorithm. For details on how to explicitly evaluate response
functions of the type 〈B̂(t)Ĉ〉β , see Sec. IV B.

from SPS that already capture the correct distribution of
symmetry sectors.1

This can be achieved by starting from a typical thermal
state, which already incorporates all the necessary thermal
information. To this end, we extend the METTS sampling
algorithm. After the conduction of a thermal step with a
nonsymmetric CPS |σ 〉 and METTS |φσ 〉 using a random
or maximally mixed collapse [cf. (i) and (ii) in Sec. II], we
employ an additional symmetrization step:

(iii) Using a symmetry-conserving collapse routine (de-
scribed in the following), we collapse |φσ 〉 to a SPS |q〉 with
probability pqσ = |〈q|φσ 〉|2. Each collapse generates a SPS
according to the correct probability distribution Pq/Zβ (thus
belonging to one of the relevant symmetry sectors at a given
temperature), as long as the nonsymmetric METTS has been
sampled according to Pσ /Zβ .

(iv) The resulting SPS |q〉 can easily be converted into an
MPS with explicit encoded symmetry sectors [36], which is
then evolved in imaginary time and normalized to generate the
SYMETTS |φq〉.

The combination of thermal and symmetrization step is
then repeated with the newly generated CPS |σ ′〉 to create a
full SYMETTS sample {|φq〉}, which represents the basis for
calculating static or dynamic observables at finite temperature
(see Fig. 4 for an illustration). Thus, we ensure that all
computed SYMETTS are minimally autocorrelated, as each
of them is generated from a different nonsymmetric METTS.

By maximizing the ergodicity of the sample, we face
additional computational cost, as we have to generate a full
nonsymmetric METTS sample {|φσ 〉} as well. In principle, it

1It was briefly noted in Ref. [31] that this can already be achieved
using a maximally mixed collapse procedure and treating the x

basis as an effective z basis. This is possible due to the presence
of the SU(2)spin symmetry in the isotropic model which is effectively
reduced to U(1) by this implicit switch of bases. Note that this is not
possible in absence of SU(2), e.g., in the anisotropic XXZ model or
in the presence of a magnetic field. Hence, this trick cannot be used
to exploit the full symmetry of the respective model.

115105-5



BRUOGNOLO, VON DELFT, AND WEICHSELBAUM PHYSICAL REVIEW B 92, 115105 (2015)

is possible to reduce the number of nonsymmetric METTS
by generating a larger number of SPS from each |φσ 〉 by
repeating the symmetrization step multiple times. However,
this may introduce artificial correlations between different
SPS generated from the same nonsymmetric METTS. For this
reason, we present the SYMETTS algorithm using a formula-
tion that maximizes ergodicity. This limits the applicability of
SYMETTS in terms of calculating static observables. In these
cases, we would have to work harder than with regular METTS.
However, when calculating dynamic quantities, generating
the SYMETTS sample accounts for only a factor O(10−3)
or less of the total computation time. Hence, our algorithm
ensures that the full potential of SYMETTS towards dynamic
applications is guaranteed and no ergodicity problems arise.

D. Collapse routine for non-Abelian symmetries

In this section, we illustrate step (iii) of the SYMETTS
sampling for the example of the isotropic spin- 1

2 Heisenberg
chain (3).

In context of U(1)spin, the collapse routine employed in step
(iii) simply corresponds to the z collapse discussed in Sec. II B,
i.e., measuring along the z axis only. The resulting SPS take the
form of direct products of local symmetry eigenstate |↑〉,|↓〉
and are automatically distributed according to the correct
probability Pq/Zβ .

However, to exploit the full SU(2)spin symmetry of the
model, the collapse routine has to be adapted in order to
generate a SPS ensemble {|q〉} of SU(2) eigenstates. For
a single SPS, this is achieved by using a nonsymmetric
METTS |φσ 〉 and sequentially collapsing it into the different

eigensectors of the total spin operator Ŝ
2
.

To this end, we gradually build Ŝ
2

starting from the left
end of the chain. At the first site, the total spin is always 1

2
as we only consider a single spin, hence after constructing
Ŝ

2
1 no projection is required and the orthonormal center of |φσ 〉

can be shifted to the second site. Here, we generate the total
spin operator of first and second sites according to

Ŝ
2
L,2 = Ŝ

2
1 + Ŝ

2
2 + Ŝ1 Ŝ2 + Ŝ2 Ŝ1, (10)

with Ŝ
2
j = (Ŝx

j )2 + (Ŝy

j )2 + (Ŝz
j )2 and the subscript “L,2”

indicating that we consider the total spin of the left part of
the chain up to the second site. Diagonalizing this operator, we
obtain the two spin sectors SL,2 = 1

2 ± 1
2 = 0,1 corresponding

to the singlet and triplet configurations, and the projectors

P̂ (SL,2). We project the second bond of |φσ 〉 (and also Ŝ
2
L,2)

either into singlet or triplet configuration according to the
transition probabilities

p
(
S2

L,2

) = 〈φσ |P̂ (
S2

L,2

)|φσ 〉, (11)

and shift the orthonormal center of |φσ 〉 to the next site.
This procedure is repeated sequentially for every site j of
the system. Each time, we construct the spin operator for the
left and the local part of the chain according to

Ŝ
2
L,j = Ŝ

2
L,j−1 + Ŝ

2
j + ŜL,j−1 Ŝj + Ŝj ŜL,j−1, (12)

where Ŝ
2
L,j−1 denotes the total spin squared of all sites to

the left of (and excluding) site j . After diagonalization, the

transition probabilities are calculated and |φσ 〉 is projected at
bond j into a single spin sector. Just as for the initially consid-

ered example, the operator Ŝ
2
L,j always contains only two spin

sectors, namely, SL,j = SL,j−1 ± 1
2 . Hence, diagonalization

and projections can be carried out very efficiently.
In the end, one obtains an SU(2)spin symmetric SPS |q〉 with

probability pqσ = |〈q|φσ 〉|2. States of this type are the initial
point for setting up the SU(2) symmetric MPS framework [36].

IV. BENCHMARK RESULTS

In this section, we present some benchmark results for
our SYMETTS approach applied to both static and dynamic
observables of the XXZ Heisenberg model with N = 100 spins
in the isotropic (� = 1, XXX model) and the free-fermion
limit (� = 0, XX model). As truncation criterion, we choose to
keep all singular values above s tol

β > 10−5 during the process of
imaginary-time evolution, which is carried out using standard
tDMRG tools with a second-order Trotter decomposition and
a time step τ = 0.05. For the subsequent real-time evolution
we adapt only the truncation criterion to s tol

dyn = 10−4. All
quantities are expressed in terms of the coupling J = 1.

A. Static observables: Thermal energy

First, we discuss some static SYMETTS calculations for
the total energy of the isotropic Heisenberg chain (3) with
and without finite magnetic field. The data below conclusively
show that the slightly modified METTS algorithm above is
able to obtain results of similar accuracy as the nonsymmetric
METTS sampling at equal sample size M . Of course, this
is to be expected since SYMETTS essentially generates
the ensemble states analogously to the original algorithm.
Nevertheless, this exercise helps to understand the importance
of using sample states which are correctly distributed over the
relevant symmetry sectors.

To illustrate the method in more detail, Fig. 5 shows U(1)-
SYMETTS results resolving the different symmetry sectors
entering into the calculation of the thermal energy for four
different inverse temperatures. The upper row displays the
average energy of each subsample of states characterized by
fixed Sz

tot. In the middle row, we zoom into a window of order
of the temperature around the average energy of the sample.
The resulting values for 〈E〉β determined by SYMETTS
[Eq. (8)] are benchmarked against METTS calculations [Eq.
(1)] and quasiexact purification data. The thermal average of
all SYMETTS subsamples leads to highly accurate results for
〈E〉β .

For large β, the lowest energy is obtained by the Sz
tot = 12

sector, which corresponds to the ground-state symmetry sector
of the system. Depending on the temperature, the energy
of the neighboring sectors increases more or less steeply.
At high temperatures, thermal fluctuations become clearly
visible in the thermal energies of the different symmetry
sectors. Accordingly, the number of relevant symmetry sectors
obtained from the SYMETTS sampling step (ii) is closely
related to the temperature. Thermal fluctuations drive the
sample states into more “excited” symmetry sectors at high
temperatures: the maximum symmetry sector occurring in the
β = 4 simulation corresponds to Sz

tot = 20, whereas we find a
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FIG. 5. (Color online) U(1)-SYMETTS sampling of the thermal
energy for the isotropic Heisenberg chain with h = 1. Panels (a)–(d)
in the upper row display the thermal energy of each symmetry sector
entering the SYMETTS sample for β ranging between 4 and 20;
dashed lines indicate the overall ensemble average 〈E〉β determined
by SYMETTS. Moreover, a comparison to benchmark calculation
based on METTS (dotted lines) and purification (solid lines) is
provided. Panels (e)–(h) in the second row show β(E − 〈E〉β ), in
order to zoom into an energy window of order of the temperature
around 〈E〉β . Panels (i)–(l) in the last row illustrate the subsample
size MSz

tot of different symmetry sectors for a fixed total sampling size
M = 500.

maximum of Sz
tot = 15 for β = 20 as the system relaxes more

towards the ground state. This behavior is also illustrated by the
bottom row of Fig. 5, which shows the subsample size MSz

tot

of each symmetry sector for a fixed total sample size M =∑
Sz

tot
MSz

tot = 500. Again, we observe that the distribution of
symmetry sectors is broad at high temperatures and becomes
narrow for large values of β.

Figure 6 presents results for the thermal energy of the
isotropic Heisenberg chain (3) at zero magnetic field, where
we can exploit the non-Abelian SU(2) symmetry of the model.
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FIG. 6. (Color online) SU(2)-SYMETTS sampling of the ther-
mal energy for the isotropic Heisenberg chain with h = 0, using the
same layout as Fig. 5.

The layout of the panels and the parameters are chosen in
accordance with those in Fig. 5 above. Instead of Sz

tot sectors,
the SYMETTS are now categorized in terms of the total spin
Stot of each SU(2) multiplet in the sample. Again, the upper
and middle rows display the average energy of each subsample
corresponding to a fixed Stot. The resulting values for 〈E〉β
determined by SYMETTS [Eq. (8)] are benchmarked against
METTS calculations [Eq. (1)] and quasiexact purification data.
We find that the overall ensemble average of all SYMETTS
subsamples gives a good approximation of the thermal energy
of the state also for the non-Abelian sampling routine.

As for the Abelian case, the distribution of different
multiplets shown in the last row becomes more narrow towards
lower temperatures. Whereas the majority of states at β = 20
belong to the multiplets Stot = 0,1, these sectors deplete for
higher temperatures and the maximum moves towards Stot = 2
for β = 4.

B. Dynamic observables: Dynamic spin structure factor

Whereas SYMETTS does not offer any significant compu-
tational advantage over the original formulation for computing
static observables, its potential is enormous for the calculation
of dynamic quantities, such as response functions of the form

AB̂Ĉ
β (t) = 〈B̂(t)Ĉ〉β , with B̂(t) = eiĤ t B̂e−iĤ t . (13)

For such problems, generating the ensemble states represents
only a negligible part of the total computational costs. Most
computational effort has to be put into the real-time evolution
of each state in the sample, as the linearly growing entangle-
ment requires an exponential increase of the bond dimension of
the MPS towards longer time scales. Here, SYMETTS offers a
great advantage over the existing METTS approach since the
symmetry implementation strongly increases the numerical
efficiency during the real-time evolution. In addition, the over-
head cost of generating both a symmetric and nonsymmetric
sample in the SYMETTS sampling (see Sec. III C) can be
ignored in almost every case, as it only accounts for a very
small fraction [O(10−3)] of the total computational time. The
achievable efficiency gains are completely analogous to the
exploitation of symmetries in other MPS applications, such as
ground-state DMRG, tDMRG, or iTEBD. For example, the
direct implementation of the Abelian U(1) symmetries in spin
models can already speed up calculations by about a factor
of up to 10 [37,50].2 Even larger benefits can be achieved
when studying models with multiple Abelian or non-Abelian
symmetries.

To simulate a response function using real-time evolution,
we follow Ref. [34] and compute for every SYMETTS |φq〉 in
our sample the expectation value

[〈|φq |eiĤ t ]B̂[e−iĤ t Ĉ|φq〉] (14)

by carrying out two independent real-time evolutions
|ψq(t)〉 = e−iĤ t Ĉ|φq〉 and |φq(t)〉 = e−iĤ t |φq〉 using standard
tDMRG. Equation (14) can be evaluated at any intermediate
time step t by calculating the overlap for the operator

2See also Appendix B.
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FIG. 7. Schematic illustration of the dynamic calculation with
SYMETTS [34].

〈ψq(t)|B̂|φq(t)〉, as illustrated in Fig. 7. In the end, we take
the sample average to obtain a result for the finite-temperature
response function.

In principle, there are other options for calculating the real-
time evolution of response functions [34]. In this work, we
restricted ourselves to the scheme outlined above, as it requires
only two tDMRG simulations per sample state to access all
intermediate time steps up to the maximally reached time scale
tmax.

Instead of studying real-time response functions, here we
consider their Fourier transforms, i.e., spectral functions.
More particularly, we focus on dynamic spin structure factors
Sαβ (ω,k), which are the Fourier transform of dynamical
spin correlation functions. These quantities are of particular
experimental relevance, as they can be directly accessed by
inelastic neutron scattering experiment. For a benchmark,
we compute the dynamic spin structure factor of the XXZ
Heisenberg model with open boundaries:

Sαβ (k,ω) =
N∑
ij

sin (ik) sin (jk)

π (N + 1)

∫
dt eiωt

〈
Sα

i (t)Sβ

j (0)
〉
.

(15)
To this end, we define the spin-wave operator Ŝα

k =√
2

N+1

∑N
j=1 sin ( jπk

N+1 )Ŝα
j and evaluate 〈Ŝα

k (t)Ŝβ

k 〉β via Eq. (14)
for a number of intermediate points up to some maximum
time tmax. Then, we perform a Fourier transform to frequency
space, including a Gaussian broadening exp[−4(t/tmax)2] in
the integral in Eq. (15) to remove artificial oscillations, which
are caused by the finite cutoff of the real-time evolution [21].
This means that the exact spectral features are convolved
with a Gaussian exp[−ω2/(2W 2)], with a frequency resolution
W = 2

√
2t−1

max. In some cases, linear prediction can be used
to avoid the artificial broadening and extract more spectral
information from the time series [22,23]. However, we found
that linear prediction is not reliable in our study of the
generalized diamond chain (see Sec. V B). Hence, we refrain
from employing linear prediction in this work.

In a first study, we employ our U(1)-SYMETTS approach
to extract the dynamic spin structure factor in the limit of
� = 0. In this case, the XXZ model can be solved exactly
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FIG. 8. (Color online) tDMRG calculation for the dynamic spin
structure factor of the XX model using M = 300 ensemble states.
Panel (a) illustrates the time evolution of individual SYMETTS (thin
lines) at β = 4 used to calculate Szz(π/4,t) by taking the ensemble
average (thick red line). (b) Displays the SYMETTS ensemble
average for various inverse temperatures, which is then used to
compute the dynamic spin structure factor in frequency space. Panels
(c) and (d) show the frequency data obtained from Fourier transform
for k ≈ π/4 and π/2. For all considered inverse temperatures, we
find excellent agreement with the exact result (dashed lines).

by mapping the system by a Jordan-Wigner transformation
to noninteracting spinless fermions [51,52]. This allows us to
exactly evaluate the spin correlation functions 〈Ŝα

i (t)Ŝβ

j (0)〉 for
arbitrary times and obtain the dynamic spin structure factor by
Fourier transformation for direct comparison to the SYMETTS
data.

Figure 8(a) displays the real-time evolution of Szz(π/4,t)
for β = 4 up to tmax = 30, with the thin lines corresponding
to individual realization of particular SYMETTS states and
the thick red line denoting the ensemble average. The sample
averages are collected for different temperatures in Fig. 8(b).
After the real-time evolution, we perform a Fourier transform
to obtain the dynamic spin structure factor as a function of
frequency, as shown in Figs. 8(c) and 8(d) for k ≈ π/2 and
π/4. We find excellent agreement with exact results (dashed
lines). A prerequisite for agreement of this quality is that
the statistical sampling error, and hence the temperature, is
sufficiently small; for the sample size of M = 300 used in
Fig. 8 the relative error, defined as

δS =
√∫

dω[S(k,ω) − Sexact(k,ω)]2

√∫
dω Sexact(k,ω)2

, (16)

varies between δS ≈ 1% for β = 4 and δS ≈ 0.3% for β =
20. We note that the error is approximately proportional to the
temperature, which indicates that the dominant contribution is
given by the statistical error of the ensemble, which scales as
∼T/

√
M .

Next, we consider an isotropic coupling � = 1, which
allows us to compute Ŝ(k,ω) using SU(2) SYMETTS, since
the XXZ Hamiltonian (3) features the full spin symmetry in
this case. Figures 9(a) and 9(b) show the results for k ≈ 3π/4

115105-8



SYMMETRIC MINIMALLY ENTANGLED TYPICAL THERMAL . . . PHYSICAL REVIEW B 92, 115105 (2015)

0 10 20 30
−1

−0.5

0

0.5

1

1.5

t

S
(k

≈4
/5

π,
t)

0 0.5 1 1.5

0

0.5

1

1.5

2

ω/π

S
(k

≈4
/5

π,
   

)

β=50

ω

β=20 β=8 β=4

SYMETTS
Purification

(b)(a)

R
e[

]

FIG. 9. (Color online) SU(2)-SYMETTS calculation (solid
lines) for (a) Ŝ(3π/4,t) and (b) Ŝ(3π/4,ω) of the isotropic
Heisenberg chain using M = 300 ensemble states. For all considered
inverse temperatures, we find very good agreement with data
obtained from matrix-product purification (dashed lines).

in time and frequency space, respectively, in comparison to
purification calculations using the same truncation criterion
(black dashed lines). The maximum time tmax varies for differ-
ent temperatures,since we stopped the SYMETTS calculations
when a threshold of 1000 states was exceeded by the bond
dimension D, which was determined adaptively by keeping
all singular values >10−4 (see Fig. 10 and upper panel of
Table I for values of tmax). Again, we find excellent agreement
for the considered temperature range.

In this context, we briefly discuss the intriguing question
whether SYMETTS can reach longer time scales than purifi-
cation in certain limits. To this end, we study the growth of
entanglement during the real-time evolution, which manifests
itself in the growing bond dimension of both the average
SYMETTS as well as the purified density matrix. Figures 10(a)
and 10(b) present SU(2) data for the average maximum
multiplet bond dimension D̄∗ and the corresponding states
space dimension D̄, respectively. We find that an average
SYMETTS requires significantly less numerical resources at
β = 20,50. For such low temperatures, SYMETTS certainly
allows to access longer time scales than purification when
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FIG. 10. (Color online) (a) Average multiplet bond dimension
D̄∗ and (b) the corresponding bond dimension D̄ of SU(2) SYMETTS
during the calculation of Ŝ(3π/4,t) (solid lines) in comparison to
the purified density matrix (dashed lines). In both cases, we keep
all singular values >10−4 during real-time evolution. For β = 4,8
we include a backwards time evolution of the auxiliary bonds of the
purified density matrix, as this leads to a reduction of the entanglement
growth [24,53]. (c) Average bond dimension D̄ of U(1)-SYMETTS
sample during the calculation of Szz(3π/4,t) for comparison.

TABLE I. Upper panel: maximum time tmax reached in the
simulations shown in Figs. 9 and 10. Lower panel: average multiplet
bond dimension D̄∗ and corresponding average and maximum bond
dimension for SU(2) and U(1) symmetry product states for various
temperatures.

tmax β = 4 β = 8 β = 20 β = 50

SYMETTSSU(2) 11.2 21.4 >35 >35
PurificationSU(2) 18 22 26.1 30.6
SYMETTSU(1) 19.8 31.2 >35 >35

Bond dim. β = 4 β = 8 β = 20 β = 50
D̄∗

SU(2) 1 1 1 1
D̄SU(2) 4.11 3.08 2.31 1.96
max[DSU(2)] 16 12 7 5
D̄U(1) 1 1 1 1

fixing the numerically feasible bond dimension to an upper
cutoff. Note that due to the presence of the statistical error,
this does not imply that SYMETTS is generally more accurate
than purification when fixing the total computation time and
judging accuracy by comparing to quasiexact calculations, as
done in Ref. [34]. However, if one does not insist to push
the statistical error towards the order of the truncation error,
and moreover takes into account parallelizability, SYMETTS
offers much potential towards the dynamical description of
low-dimensional systems at low temperature. This is already
illustrated by the calculations in this section, demonstrating
that it is possible to extract the dynamic structure factor with
high accuracy using a sample size of only a few hundred states.

On the other hand, SYMETTS is limited to small tmax at high
temperatures. Particularly at β = 4, a single SU(2) SYMETTS
on average requires larger bond dimensions D̄ than the purified
density matrix! This can be attributed to the intrinsic structure
of the SU(2) symmetry product states. Although their multiplet
dimension D∗ is strictly unity at infinite temperature, the
SPS already contain some entanglement due to the presence
of nontrivial multiplet sectors with internal structure, which
lead to a state space dimension D > 1. Because of thermal
fluctuations, these “excited” multiplet sectors appear more
frequently at high temperatures, which is illustrated by the
comparison D̄∗ and D̄ of the corresponding SPS samples
in the lower panel of Table I for different temperatures.
With these nontrivial multiplets being present in the SPS, the
subsequent imaginary- and real-time evolution obviously also
induces more entanglement. This explains why D̄ of an SU(2)
SYMETTS exceeds the bond dimension necessary to represent
the purified density matrix already before starting the real-time
evolution at β = 4 [cf. Fig. 10(b)].

This issue is not present in the context of U(1) SYMETTS,
where the SPS does not contain any intrinsic entanglement
at infinite temperature and thus can still be considered as a
classical product state. Thus, the initial D̄ is strictly smaller
than the bond dimension of the purified density matrix for all
temperatures, as shown in Fig. 10(c). Moreover, the increase of
D̄ at high and intermediate temperatures is slightly less severe
than in the SU(2) calculations.

We conclude from this analysis that it is possible for
SYMETTS to exploit both Abelian and non-Abelian sym-
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metries. In combination with tDMRG, it represents a valuable
alternative to computing spectral functions, particularly for
low temperatures. In addition, we find that Abelian SYMETTS
have favorable entanglement properties over their non-Abelian
counterparts at high temperatures. Hence, one should refrain
from exploiting non-Abelian SYMETTS in these cases and
switch to U(1) SYMETTS or matrix-product purification.

We point out that the METTS algorithm in principle can also
exploit time-translational invariance in order to reformulate
the response function in terms of 〈B̂(t/2)Ĉ(−t/2)〉, which
effectively doubles the maximum reachable time scale tmax

[25,27,34]. Ideally, the time evolution is then carried out in the
Heisenberg picture by evolving B̂ and Ĉ directly in terms of
matrix-product operators (MPO) [54]. so that it still requires
only two tDMRG simulations to access all intermediate time
steps. We note that working in the Heisenberg picture is
generally considered to be suboptimal for matrix-product
purification [27]. However, it seems more appealing for the
METTS framework as one could carry out the real-time
evolution only once for the MPO and compute the response
function by calculating the overlap of the time-evolved MPO
and the METTS sample. Thus, the time-evolved MPO could
be recycled for arbitrary temperatures. In general, this would
imply that the maximum reachable time scale is set by
the real-time evolution of the operators. In the pure-state
formulation, tmax would then be temperature independent, as
temperature only enters through the calculation of the overlaps
with the METTS sample. Naturally, this idea enormously
profits from the inclusion of symmetries into the METTS
language presented here, but is beyond the scope of this paper
and will be discussed elsewhere.

Finally, we remark that we have also explored the possibility
of combining SYMETTS with a Chebyshev expansion to
directly compute spectra in frequency space. However, this
approach is computationally more expensive due to technical
reasons and therefore not recommendable (see Appendix A
for details).

V. GENERALIZED DIAMOND CHAIN MODEL
FOR AZURITE

In the following, we demonstrate the efficiency of
SYMETTS by studying a more complicated spin-chain model
of direct experimental relevance. We focus on the natural
mineral azurite Cu3(CO3)2(OH)2, which has attracted much
attention due to the discovery of a plateau at 1

3 in the
magnetization curve at low temperatures [4,5,39–49]. Some
authors proposed that the magnetic properties of this material
are well described by a spin- 1

2 diamond chain formed by the
copper atoms with purely antiferromagnetic exchange cou-
plings [42,45,55]. Others suggested a dominant ferromagnetic
coupling [4,43,44] and the importance of interchain coupling
[46], yet none of them were able to derive a microscopic
model for azurite that is able to fully characterize its complex
magnetic properties.

Employing a combination of first-principle methods, exact
diagonalization, and DMRG, Ref. [39] recently derived a full
three-dimensional model which can be mapped to an effective
one-dimensional system, namely, a generalized diamond chain
model with purely antiferromagnetic couplings, illustrated
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FIG. 11. (Color online) (a) Illustration of the generalized dia-
mond chain model with the antiferromagnetic exchange couplings
J1,J2,J3, and Jm. One unit cell of the system is highlighted by the gray
area. (b) Dependence of the magnetization on an external magnetic
field H , which we calculated by employing DMRG and SYMETTS at
zero and finite temperature, respectively. In all calculations, we keep
every singular value larger than the truncation threshold s tol = 10−5

and use a sample size of M = 1000. For a system of N = 90 spins
in total, the emergence of the 1

3 plateau can be observed for fields in
the range of Hl,c � H � Hu,c. At finite temperatures, the plateau is
washed out and the magnetization curve becomes a linear function of
H . The vertical dashed lines indicate the parameter choices for our
dynamical SYMETTS calculations in Sec. V B.

in Fig. 11(a). One third of the Cu spins (dark blue balls)
forms weakly coupled monomers (dashed horizontal lines),
whereas the other two thirds (light blue balls) form strongly
coupled dimer singlets (heavy vertical lines). The dominant
energy scale is determined by the dimer-dimer coupling
J2. In addition, there are nearest- and third-nearest-neighbor
dimer-monomer exchange J1 and J3 as well as the monomer-
monomer coupling Jm. More precisely, the full Hamiltonian
of the generalized diamond chain is defined as

Ĥ0 =
N/3∑
j=1

[J1 Ŝm,j · (Ŝd1,j+1 + Ŝd2,j ) + J2 Ŝd1,j · Ŝd2,j

+ J3 Ŝm,j · (Ŝd1,j + Ŝd2,j+1) + Jm Ŝm,j · Ŝm,j+1]

− gμBH

N/3∑
j=1

[
Ŝz

d1,j + Ŝz
d2,j + Ŝz

m,j

]
, (17)

with external magnetic field H , Bohr magneton μB , and
gyromagnetic ration g = 2.06 [56]. N labels the total number
of Cu spins in the system, the number of unit cells is
therefore given by N/3. Note that this model features a U(1)spin

symmetry for finite values of H , which we exploit in our
SYMETTS calculations. The value of the couplings has been
determined by DFT calculations and small refinements using
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experimental data, leading to

J1 = 15.51 K, J2 = 33 K,
(18)

J3 = 6.93 K, Jm = 4.62 K.

Based on this system, the authors of Ref. [39] managed to
derive a full microscopic picture for azurite, that is able to
explain a wide number of experimental results. Additional
support for the validity of this model is given by Ref.
[40], which explores further aspects such as magnetocaloric
properties and excitation spectrum. Although Refs. [39,40]
also present some selected results for the dynamic spin
structure factor using dynamical DMRG (DDMRG), their
resolution in the energy ω and the momentum transfer k is
limited, since DDMRG is numerically expensive and requires
separate calculations for each ω. Moreover, their results are
restricted to zero temperature.

We will now illustrate the power of SYMETTS by calculat-
ing the excitation spectra in the plateau phase and analyze the
influence of magnetic field and temperature on the excitation
branches.

A. Magnetization plateau

The most striking feature of azurite is the plateau at 1
3

in the magnetization curve as a function of a magnetic field
applied along the b axis of the crystal lattice [42]. This property
can be nicely captured by the generalized diamond chain
model, as already demonstrated in Ref. [39] by employing a
direct comparison of the magnetization obtained from ground-
state DMRG calculations with experimental data. Performing
DMRG on an open chain with N = 90 spins, we obtain the
magnetization plateau at T = 0 shown in Fig. 11(b) (black
line). For better comparison, we use experimental units in
the rest of this section. We find that the plateau phase is
bounded by a lower and upper critical field Hl,c ≈ 9.8 T
and Hu,c ≈ 31.0 T. Note that the small intermediate steps for
H < Hl,c and H = 28.5 T are artifacts caused by finite-size
effects of the chain.

The plateau can be explained by a very intuitive argument
[39]. The dominant dimer-dimer exchange coupling J2 forces
the dimer spins into a singlet state, whereas the monomer spins
are only weakly coupled by Jm. Therefore, the monomer spins
polarize first for a finite magnetic field, whereas the dimers re-
main in the singlet state for a considerable interval of H . Only
at large fields H > Hu,c, the dimers are arranged in a polarized
state. Thus, only 1

3 of the total spins is aligned in direction of the
field at intermediate fields strengths Hl,c � H � Hu,c, leading
to the emergence of the 1

3 magnetization plateau.
Introducing thermal fluctuations by employing SYMETTS,

we observe that the plateau is gradually washed out with
increasing temperature. At high temperatures, the quantum
mechanical properties of the system are almost erased and
the magnetization curve becomes a linear function of the
magnetic field. We note that in the plateau phase, the effect
of temperature on the magnetization depends strongly on
the specific field strength. For values of H significantly
smaller than 20 T the magnetization strongly decreases with
increasing temperatures. In this case, we expect the change in
magnetization to be predominantly caused by the monomers,
which have to vacate their fully polarized state. On the other

hand, the monomers cannot contribute to the thermal increase
of the total magnetization for H > 20 T as they are already
fully polarized on the plateau. Here, the thermal fluctuations
should predominantly excite the dimers by breaking up their
singlet structure. We expect this to be reflected in the excitation
spectra on the plateau. We study these next by means of the
transverse dynamic spin structure factor, for the three values
H = 14,20,27 T indicated by the vertical dashed lines in
Fig. 11(b).

B. Transverse dynamic spin structure factor

We employ U(1) SYMETTS to compute the transverse
dynamic spin structure factor of the generalized diamond chain
model, which can directly be measured by neutron scattering
experiments. Following Ref. [40], the dynamic spin structure
factor is defined as

Sxx(k,ω) = 1

N

∑
m,n

eik(Ri−Rj )

[ ∫
dt eiωt

〈
Ŝx

i (t)Ŝx
j

〉]
. (19)

Note that it is important to use the precise positions Ri of
the Cu spins in azurite [57] and the experimentally chosen
momentum direction in order to make the data comparable to
the experiment in Ref. [4].

We perform all calculations for an open chain of N = 90
spins, which allows an accurate resolution of the momentum
transfer k along the chain direction. For each k, we average
over a SYMETTS sample of 300 states exploiting the U(1)spin

symmetry of the model. In comparison to nonsymmetric
METTS, U(1) SYMETTS yields a reduction of CPU time by a
factor between 4 and 10 for the parameters considered here (see
Appendix B for a more detailed assessment). Using a second-
order Trotter decomposition, we set the time step τβ = τdyn =
0.05J−1

2 and truncation error s tol
β = 10−5, s tol

dyn = 5 × 10−4

in the imaginary- and real-time evolutions, respectively. We
stop the real-time evolution at tmax = 50J−1

2 and checked
that calculations are not impaired by finite-size reflections
on this time scale. This setup leads to a maximum bond
dimension D < 600 at tmax for all the time-evolved SYMETTS
considered. To minimize finite-time effects, we here use a
Gaussian broadening to perform the Fourier transform, leading
to a frequency resolution W ≈ 0.16 meV. As an alternative
route, we had also tested linear prediction, but found that
for this model its results were very sensitive to changes
of the regularization parameter and the statistical window
on the given time scale. Therefore, while in principle after
significant further fine tuning, linear prediction may allow
a systematic extrapolation to longer time scales to enhance
spectral resolution, we did not further pursue this route.

Our results are displayed in Fig. 12. Each column
indicates a different magnetic field strength H = 14,20,27
T and each row corresponds to a different temperature
T = 0,4.125,8.25 K.

Let us first note that Fig. 12(a) at zero temperature and
H = 14 T nicely reproduces all features of the DDMRG data
used in Ref. [39] for a direct comparison with the experiment in
Ref. [4]. We observe a gapped system with a low-energy band
dispersing along k, corresponding to the monomer excitations,
and a dimer branch at higher energies, whose dispersion
is weakened by the competition of J1 and J2 [39]. The
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FIG. 12. (Color online) Transverse dynamic spin structure factor Sxx(k,ω) of a generalized diamond chain model for azurite. The intensity
is displayed in arbitrary units. Each column indicates a different magnetic field strength, H = 14,20,27 T, corresponding to distinct points in
the 1

3 plateau phase. The ground state spectra are displayed in panels (a)–(c) in the first row, whereas the panels (d)–(i) show finite-temperature
results obtained using tDMRG in combination with U(1) SYMETTS (for details see text).

spectral weight in both branches is mainly distributed around
k = π . Moreover, we find an additional excitation branch at
ω > 3 meV with only small spectral weight and almost no
dispersion. In the experiment, this branch is shifted towards
higher energies (by ∼1 meV) [4].

Increasing the magnetic field has an effect on the position
of both the monomer and dimer bands (but not on their disper-
sion), which can be understood easily in an intuitive picture.
As discussed in Sec. V A, the monomers are fully polarized
in the entire plateau phase. Hence, exciting a monomer spin
becomes increasingly expensive for larger magnetic fields
because a spin flip is penalized by the additional Zeeman
energy. Comparing the position of the monomer branch in
Figs. 12(a) and 12(c), the shift towards higher energies at
H = 27 T is fully captured by the change in the Zeeman term
gμB�H ≈ 1.6 meV.

The magnetic field has the reversed effect on the dimer
band, which is shifted to lower energies. Again, the effect can
be understood using the same line of arguments. Exciting a
dimer singlet results in the break off of the singlet structure,
allowing the dimer spins to polarize in the direction of H .
At larger field strength, each excited dimer spin is therefore
rewarded by a factor of (1/2)gμB�H from the Zeeman term.
This fully accounts for the shift of the dimer branch to lower
energies in Figs. 12(a) and 12(c). At H = 20 T, the system
is approximately probed in the middle of the plateau phase
(cf. Fig. 11). At this point, the band gap reaches a maximum
�E ≈ 1 meV, as the monomer branch has already moved to
rather high energies while the dimer band is about to cross it,
as illustrated in Fig. 12(b).

Based on this discussion, we can confirm the very distinct
effects of temperature on the different points at the 1

3 plateau

and put the arguments given in Sec. V A on solid ground. For
regions of the plateau where the magnetization decreases at
finite temperature, the thermal fluctuations primarily excite the
monomers as this is energetically favorable. On the other hand,
the thermal increase of the magnetization for larger magnetic
fields observed in Fig. 11(b) can be understood in terms of the
lowering of the dimer excitation energy due to the additional
rewards in Zeeman energy, which has the opposite effect on
the monomer band.

Figures 12(d)–12(i) displays the evolution of the spin
excitations at finite temperature. The thermal broadening
effects are strongly visible at H = 14 and 27 T, where the low-
energy bands are strongly smeared out even at intermediate
temperatures. This is expected from the comparatively small
band gap at T = 0 and Fig. 11(b), which shows strong
effects of temperature on the magnetization in this regime.
In contrast, thermal fluctuations have a much weaker effect at
H = 20 T, where the band gap is maximal. Indeed, comparing
Figs. 12(b) and 12(e), we see almost no difference in the
distribution of the spectral weight. Only Fig. 12(h) shows
some thermal broadening, yet no new features arise in the
spectrum. Again, this is in good agreement with the robustness
of the magnetization for finite temperature in the middle
of the plateau, as illustrated in Fig. 12(b). These features
become even more prominent when studying cross sections
of Fig. 12, i.e., the spin excitations for a specific momentum
value. These are displayed in Fig. 13 for k ≈ 4/5π . Again, we
observe that the large peaks indicating the monomer and dimer
branches are already washed out at intermediate temperatures
at the edges of the plateau phase [Figs. 13(a) and 13(c)]. In
both cases, thermal fluctuations strongly redistribute spectral
weight in-between the two excitation peaks. In contrast, the
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FIG. 13. (Color online) Transverse dynamic spin structure factor Sxx(k,ω) at k ≈ 4π/5 of a generalized diamond chain model for azurite
for three different field strengths in the plateau phase. At the edges of the plateau phase [(a) and (c)], the large peaks indicating the monomer
and dimer branches are already washed out at intermediate temperatures. Thermal fluctuations redistribute spectral weight in-between the two
excitation peaks in these cases. In the middle of the plateau phase (b) thermal broadening is almost not present at T = 4.125 K. Only at high
temperatures is the height of the combined peak of monomer and dimer excitations significantly reduced.

height of the combined monomer and dimer excitation peaks
in the middle of the plateau phase is significantly reduced only
at high temperatures [Fig. 13(b)].

To conclude, our finite-temperature study of the spectra
of the generalized diamond chain model for azurite fits in
nicely with previous work [39,40] and provides new insight
in the plateau phase. We observe a crossing of the monomer
and dimer branches with increasing magnetic field, which can
very intuitively explain the effects of finite temperature on
the plateau phase. Testing these features in neutron scattering
experiments would provide additional information on the
validity of the microscopic model for azurite. Such a study
would be particularly enlightening in the context of the results
provided by Ref. [5], which showed discrepancies of using
an isotropic spin model to describe azurite in the regime of
H < Hl,c, i.e., for fields below the plateau phase.

VI. CONCLUSION

In this work, we have introduced an intuitive and easily
implemented extension of the minimally entangled typical
thermal state approach of Ref. [30], which allowed us to
generate a METTS sample of symmetry eigenstates. We ex-
plicitly showed how to construct such a SYMETTS ensemble
exploiting both the Abelian U(1)spin and non-Abelian SU(2)spin

symmetry of spin- 1
2 Heisenberg chains, without introducing

strong autocorrelation effects in-between the ensemble states.
Whereas SYMETTS does not improve the numerical

efficiency when calculating static observables as compared
to METTS, the benefits of using symmetries come fully to
the fore when calculating more complex dynamic quantities
such as response functions. Here, most computational effort
has to be put into the real-time evolution of each state in the
sample and the gains of explicitly exploiting symmetries in
the MPS simulations is enormous. We checked the validity
of our approach for the dynamic spin structure factors of the
XX and XXX Heisenberg chains and found that SYMETTS in
principle is able to reach longer time scales than purification
at low temperatures.

Moreover, we applied SYMETTS to study the finite-
temperature excitation spectra of a generalized diamond
chain model for the natural mineral azurite Cu3(CO3)2(OH)2.

Focusing on the plateau phase of the system, we found very
distinct effects of temperature on the different points at the
1
3 plateau, which are caused by the Zeeman term shifting
the dimer and monomer branches in opposite directions. Our
results fit in nicely with previous work [39,40] and provide
new insight in the plateau phase.

Interesting questions for future work involve the treatment
of fermionic systems, where the symmetric ensemble states
could be formulated in terms of a combination of SU(2)charge
and SU(2)spin symmetries or their Abelian counterparts. For
example, SYMETTS could be employed to study finite-
temperature density profiles in interacting quantum-point con-
tacts [58]. In this context, it would be particularly interesting
to further explore the possibility of combining a real-time
evolution to an MPO with local support in the Heisenberg
picture, as briefly described at the end of Sec. IV B. In
principle, this would simplify combining METTS with the
concept of time translational invariance [27] to double the
maximum reachable time scale and could be a generally more
efficient approach for finite-temperature response functions at
low temperatures.

Finally, we note as an outlook that the SYMETTS algorithm
may also be entirely based within symmetry eigenstates, in that
the nonsymmetric sampling as described in this paper is fully
replaced by Metropolis sampling. Based on the weights Pq
above, necessarily, this must also include a proposal distribu-
tion to switch to neighboring symmetry sectors. To minimize
rejection probability, this random walk towards neighboring
symmetry sectors can be chosen temperature dependent. By
definition, the Metropolis sampling also guarantees detailed
balance. And, by rejecting certain higher-energy states, this
may lead to reduced spread and hence enhanced convergence
of computed observables. In this formulation, SYMETTS
would also provide benefits for the calculation of static
properties and might allow the finite-temperature treatment
of 2D clusters.
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APPENDIX A: CHEBYSHEV EXPANSION AND METTS

Chebyshev expansion techniques have been successfully
established as an alternative approach for the computation of
spectral functions in the context of kernel polynomial methods
[59]. More recently, Ref. [29] introduced the Chebyshev
expansion in the MPS formalism (CheMPS) to determine
spectral properties at zero temperature. Based on this work,
CheMPS has been applied to determine signatures of the
Majorana fermion in the interacting Kitaev model [60], in the
context of the interacting resonating level model [61], and as
impurity solver for single- and two-band DMFT calculations
in combination with linear prediction [62,63]. In addition,
CheMPS has been expanded towards finite-temperature cal-
culations using a Liouvillian in a matrix-product purification
framework [28].

The question as to whether CheMPS is the most efficient
method for computing spectral functions using MPS methods
cannot be generally considered settled, as there is no one-to-
one correspondence of CheMPS in its most efficient setup to
real-time evolution. Nevertheless, the claim of Ref. [29] that
CheMPS is significantly less expensive than tDMRG to obtain
the same spectral information can no longer be supported
[64]. We have not conducted a systematic comparison of
both approaches, but in our experience CheMPS and tDMRG
require similar computational effort when aiming for the same
spectral resolution and employing an equal truncation criterion
at zero temperature. CheMPS, though, offers a significant
advantage over tDMRG as it allows better control over the
broadening procedure of the spectral data [29,61].

In this context, it is worthwhile to explore the compatibility
of SYMETTS and CheMPS. To this end, we start with the
Fourier transform of the response function in Eq. (13):

AB̂Ĉ
β (ω) =

∫
dω̄〈δ(ω̄ − Ĥ )B̂δ(ω + ω̄ − Ĥ )Ĉ〉β . (A1)

To compute the response function in this form, we follow
Ref. [59] and expand both δ functions in terms of orthog-
onal Chebyshev polynomials of the first kind Tm(ω + ω̄)
and Tn(ω̄) before integrating over the frequency index ω̄

for every SYMETTS |φq〉 in our sample. This “double”
Chebyshev expansion involves Chebyshev moments of the
type μB̂Ĉ

mn = 〈Tm(Ĥ ′)B̂Tn(Ĥ ′)Ĉ〉β , where Ĥ ′ represents the
Hamiltonian with a rescaled spectrum ω′ ∈ [−1,1] to ensure
the convergence of the Chebyshev recursion. This is usually
achieved by using a linear rescaling with the parameters a,b:

Ĥ ′ = Ĥ − b

a
. (A2)

The moments μmn are determined by calculating a first set
of Chebyshev vectors up to the desired expansion order NChe

via the recursion relation

|tm〉 = 2Ĥ ′|tm−1〉 − |tm−2〉,
(A3)|t0〉 = |φq〉, |t1〉 = Ĥ ′|t0〉,
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FIG. 14. (Color online) CheMETTS calculation for spin struc-
ture factor of the XX model with N = 50, s

dyn
tol = 5 × 10−4, NChe =

300, η = 0.1, and M = 300. For all considered inverse temperatures,
we find excellent agreement with the exact result. However, note that
the required numerical resources clearly exceed those used in Fig. 8,
where tDMRG was employed for a system with twice as many spins!

and keeping it in storage. Then, we iteratively obtain a second
set of vectors |t̃n〉 using a different starting vector |t̃0〉 = Ĉ|φq〉.
For each |t̃n〉, we compute the overlap μmn = 〈tm|B̂|t̃n〉 for
m = 0,1, . . . ,NChe − 1.

The sample average of the Chebyshev moments is then
used to compute the finite-temperature response function in
frequency space.

To this end, we work with a finite broadening η instead
of the usual kernel approach for δ(ω′ + ω̄′ − Ĥ ′) to remove
the artificial “Gibbs” oscillations caused by finite expansion
order from the spectral data [61]. Note that the broadening
has to be performed for the δ function containing the external
frequency index only as ω̄′ is integrated out to obtain the final
result. The finite-temperature response function in Eq. (A1)
then takes the form

AB̂Ĉ
β (ω) = 1

a

NChe−1∑
m,n=0

μmn(2 − δm0)

×
∫

dω̄′ 1

π
√

1 − ω̄′2 Tm(ω̄′)αn(z), (A4)

with z = (ω′ + ω̄′) + iη/a and αn given by [61]

αn(z) = 2/(1 + δn0)

(z)n+1(1 + √
z2

√
z2 − 1/z2)n

√
1 − 1/z2

. (A5)

In principle, this approach represents an alternative to the
combination of tDMRG plus Fourier transform, which we
have applied in the main part of this work. We illustrate this
in Fig. 14, where we used U(1) SYMETTS and a double
Chebyshev expansion to compute the dynamic spin structure
factor of the XX model showing excellent agreement with
exact calculations (dashed lines). However, the Chebyshev
approach in the METTS formalism involves significantly
higher computational costs than the real-time evolution since,
in contrast to T = 0 CheMPS, (i) the full set of Chebyhsev
vectors |tm〉 has to be stored throughout the entire calculation,
and (ii) the number of moments increases from NChe to N2

Che,
also squaring the number of MPS overlaps to be calculated.

Therefore, we conclude that the combination of CheMPS
and METTS is not a competitive alternative to real-time
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evolution for calculating spectra at finite temperature since
the advantage of the more controlled broadening procedure
does not outweigh the drastically enhanced numerical costs
involved in the double Chebyshev expansion.

APPENDIX B: NUMERICAL EFFICIENCY OF SYMETTS
FOR AZURITE

Here, we assess the numerical performance of SYMETTS
and the existing METTS approach on an explicit example.
We focus on the average cumulative CPU time t̄CPU required
to carry out the real-time evolution of one ensemble state
up to t � tmax = 50J−1

2 when determining the dynamic spin
structure factor Sxx(k,ω) of azurite in Eq. (19). For simplicity,
we choose the same model parameters as in Fig. 13(a), namely
N = 90, H = 14 T, and k = 4/5π , and in Figs. 15(a) and 15(b)
display the resulting average cumulative CPU times for the two
temperatures T = 4.125 and 8.25 K. Using the tDMRG setup
described in Sec. V B, each calculation was performed on a
single core Xeon E5-2670v2 (2.50 GHz) machine with 4GB
memory.

The explicit implementation of the U(1) symmetry in the
SYMETTS ensemble states clearly enhances the numerical
efficiency, resulting in an average reduction of CPU time by a
factor of 4 for T = 4.125 K in comparison to a nonsymmetric
METTS sample [cf. Fig. 15(a)]. The efficiency gain increases
to a factor of almost 10 for T = 8.25 K in Fig. 15(b) since states
with a larger bond dimension profit even more from the ex-
ploitation of the spin symmetry. This is illustrated in Figs. 15(c)
and 15(d), where we show the average computation time of a
single time step τ as a function of the average maximum bond
dimension D̄. The additional imaginary-time evolution neces-
sary for the generation of the SYMETTS requires on average
only 25 and 12 s for T = 4.125 and 8.25 K, respectively. Thus,
the overhead costs of the generating the SYMETTS sample
are clearly negligible compared to the total computation time.
In addition to benefits in terms of memory requirement,
SYMETTS enables us to reduce the CPU time necessary
to compute the dynamic spin structure factor for various
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FIG. 15. (Color online) (a), (b) Display the numerical perfor-
mance of SYMETTS and METTS in terms of the average cumulative
CPU time t̄CPU as a function of tJ2, when carrying out the real-time
evolution to determine the dynamic spin structure factor Sxx(k,ω)
of azurite in Eq. (19) using the parameters N = 90, H = 14 T, and
k = 4/5π . (c), (d) Show the average computation time of a single
time step τ as a function of D̄. We note that the ensemble states
have a D̄ ≈ 20 at both temperatures after the initial imaginary-time
evolution. The dashed lines in Fig. 15(d) are guide to the eye
illustrating the t̄CPU ∼ D3 scaling of the CPU time for larger bond
dimensions. The employed tDMRG setup is described in Sec. V B.

momenta and magnetic fields presented in Fig. 12 from O(106)
to O(105) hours. Consequently, when running 400 CPUs
in parallel, SYMETTS generates these data in roughly one
week, whereas the same calculation would require almost three
months in the original METTS formulation. Note that the fac-
tor of 10 gained in numerical efficiency by implementing the
U(1) spin symmetry in simple spin-chain models has also been
reported in Refs. [37,50] in the context of iTEBD and tDMRG,
respectively. Even larger benefits can be achieved when study-
ing models with multiple Abelian or non-Abelian symmetries.
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[54] I. Pižorn, V. Eisler, S. Andergassen, and M. Troyer, New J. Phys.

16, 073007 (2014).
[55] H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T.

Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys.
Rev. Lett. 97, 089702 (2006).

[56] H. Ohta, S. Okubo, T. Kamikawa, T. Kunimoto, Y. Inagaki, H.
Kikuchi, T. Saito, M. Azuma, and M. Takano, J. Phys. Soc. Jpn.
72, 2464 (2003).

[57] F. Zigan and H. D. Schuster, Z. Kristallogr. 135, 416 (1972).
[58] F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B.

Bruognolo, D. Schuh, W. Wegscheider, J. von Delft, and S.
Ludwig, Nature (London) 501, 73 (2013).

[59] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.
Phys. 78, 275 (2006).

[60] R. Thomale, S. Rachel, and P. Schmitteckert, Phys. Rev. B 88,
161103 (2013).

[61] A. Braun and P. Schmitteckert, Phys. Rev. B 90, 165112 (2014).
[62] M. Ganahl, P. Thunström, F. Verstraete, K. Held, and H. G.

Evertz, Phys. Rev. B 90, 045144 (2014).
[63] F. A. Wolf, I. P. McCulloch, O. Parcollet, and U. Schollwöck,
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