
PHYSICAL REVIEW B 91, 224414 (2015)

Hexagon-singlet solid ansatz for the spin-1 kagome antiferromagnet
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We perform a systematic investigation on the hexagon-singlet solid (HSS) states, which are a class of spin liquid
candidates for the spin-1 kagome antiferromagnet. With the Schwinger boson representation, we show that all
HSS states have exponentially decaying correlations and can be interpreted as a (special) subset of the resonating
Affleck-Kennedy-Lieb-Tasaki (AKLT) loop states. We provide a compact tensor network representation of the
HSS states, with which we are able to calculate physical observables efficiently. We find that the HSS states
have vanishing topological entanglement entropy, suggesting the absence of intrinsic topological order. We also
employ the HSS states to perform a variational study of the spin-1 kagome Heisenberg antiferromagnetic model.
When we use a restricted HSS ansatz preserving lattice symmetry, the best variational energy per site is found to be
e0 = −1.3600. In contrast, when allowing lattice symmetry breaking, we find a trimerized simplex valence-bond
crystal with a lower energy, e0 = −1.3871.
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I. INTRODUCTION

Frustrated antiferromagnets on the kagome lattice have
attracted great research interest recently. The ground state of
a spin-1/2 kagome Heisenberg antiferromagnet (KHAF) has
been disclosed to be a disordered state without any sponta-
neous symmetry breaking, i.e., a quantum spin liquid [1,2].
However, less is known for the higher-spin KHAF models
(S > 1/2). Numerical studies on the KHAF models with spin
magnitude up to S = 3 showed that [3], while a long-range
magnetic order appears for S � 3/2, the ground states for
the S = 1/2 and S = 1 KHAF models remain nonmagnetic.
Experimentally, a number of spin-1 kagome compounds
have been synthesized and analyzed, e.g., m-MPYNN · BF4

[4–7] and Ni3V2O8 [8]. The former has been found to be
nonmagnetic even at very low temperatures (30 mK) [5], and
a spin gap has also been observed [6]. This thus raises an
interesting question: do spin-1 kagome antiferromagnets also
support an intriguing spin liquid ground state?

Various spin liquid proposals have been put forward for
the spin-1 frustrated antiferromagnet [9–17]. For the spin-1
KHAF model, Hida proposed a hexagon-singlet solid (HSS)
state as a candidate ground state [15]. This state is constructed
by projecting two virtual spin-1/2 particles around each vertex
of the kagome lattice into physical spin-1 degrees of freedom.
The name HSS refers to the fact that the six virtual spin-1/2’s
in a hexagon of the kagome lattice form an entangled singlet
[see Fig. 1(a)]. An alternative candidate is the spin-1 resonating
Affleck-Kennedy-Lieb-Tasaki loop (RAL) state [see Fig. 4(b)]
[16,17]. The physical picture of the RAL state is the following.
When representing the spin-1’s in each site as two spin-1/2’s
(through symmetrization), the spin-1/2’s from neighboring
sites all form valence-bond singlets and, thus, each site has
two valence bonds, which inevitably form closed AKLT loops
[18]. The RAL state is an equal weight superposition of all
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possible AKLT loops. On the kagome lattice, it belongs to a
Z2 spin liquid [17]. Compared to the HSS ansatz, the RAL has
a lower variational energy (for the spin-1 KHAF model) on
small clusters; while in the thermodynamic limit, the energy
per site is clearly higher, e0 ≈ −1.27 [17].

Very recently, several extensive numerical studies have been
devoted to the spin-1 KHAF model, exploring its ground-state
properties. Changlani and Läuchli (CL) [19] employed the
density matrix renormalization group (DMRG)[20] to simulate
the model with cylindrical geometries; at the same time, Liu
et al. [21] adopted tensor network methods [22,23] to explore
the same model on an infinitely large kagome lattice and
also on infinitely long cylinders with various widths. These
independent calculations, as well as another related tensor
network simulation by Picot and Poilblanc [24], concluded that
the ground state of the spin-1 KHAF is nonmagnetic, but that
it breaks lattice inversion symmetry and possesses a simplex
valence-bond crystal (SVBC) order. The simplex valence-bond
crystal is a nonmagnetic state that favors trimerization [25], in
that the energies (per triangle) differ between two neighoring
triangles (see Fig. 2). The energy per site of this SVBC state
was determined as e0 ≈ −1.41, in both DMRG and tensor
network calculations [19,21,24].

Even more recently, Nishimoto and Nakamura (NN14) [26]
came to a different conclusion: Based on DMRG calculations
for clusters of various types of shapes and boundary conditions,
they argued that the ground state of the spin-1 KHAF model
is a HSS state and not the SVBC state advocated in Refs.
[19,21,24]. However, NN14 were not able to directly access
states with HSS or SVBC structure; instead they sought to
access them indirectly, using purposefully-designed boundary
conditions that favor either HSS or SVBC structure. They then
estimated the bulk values of e0 by finite-size extrapolations
to the thermodynamic limit. They reported e0 = −1.391(2)
from SVBC-favoring clusters, e0 = −1.409 88 and −1.409(5)
from clusters with cylindrical or periodic boundary conditions,
respectively, and e0 = −1.410 95 from HSS-favoring clusters,
thus concluding that HSS states win.
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FIG. 1. (Color online) Schematic plots of (a) the spin-1 HSS
ansatz on the kagome lattice and (b) the spin-3/2 HSS ansatz on
the honeycomb lattices. Six spin-1/2 virtual particles (red dots) form
a spin singlet in each hexagon. In (a), the blue ovals denote projectors
mapping two virtual spin-1/2’s to a physical spin-1, while in (b), the
circles denote projectors mapping three spin-1/2’s onto a spin-3/2
space.

In our opinion, NN14’s strategy is intrinsically flawed on
very general grounds: in the thermodynamic limit boundary
effects should vanish, thus a tool (here ground-state DMRG
on finite-sized clusters) that relies on boundary effects to
distinguish two types of states (here HSS and SVBC), can not
reliably estimate the difference in bulk e0 values for these two
types of states. If different boundary choices lead to different
finite-size extrapolated e0 values, it just means that the clusters
are not yet large enough to reliably capture the true bulk e0

value of the true ground state, whatever it is. (More detailed
comments on NN14’s work are presented in Appendix E.)

To reliably access the bulk properties of HSS-type states
for the spin-1 KHAF, tools are needed that directly implement
HSS structure in the variational candidate ground state, without
relying on boundary effects. In this work, we devise two such
tools, one analytical, the other numerical, and use them to
perform a systematic investigation of HSS states.

Our analytical tool is a formulation of the HSS ansatz in
terms of SU(2) Schwinger bosons. In the Schwinger boson
picture, we are able to argue that the HSS states have
exponentially decaying correlation functions and thus describe
gapped spin liquids. Furthermore, we also reveal that the HSS

FIG. 2. (Color online) Illustration of the spin-1 simplex valence-
bond crystal state on a kagome lattice. Two neighboring triangles
have different energy expectation values, and the lattice inversion
symmetry is broken.

states have a hidden resonating AKLT-loop picture. However,
we show that they have zero topological entanglement entropy
[27,28], concluding that they are topologically trivial and thus
do not belong to the same phase as the RAL state.

Our numerical tool is based on a compact tensor network
representation of the HSS ansatz, with which we perform
accurate tensor-network-based simulations. The weights of
different hexagon-singlet configurations within a hexagon are
treated as variational parameters to seek the lowest possible
variational energy for the spin-1 KHAF model. It is found to
be as low as e0 = −1.3600, which is significantly higher than
the reported ground state energy (−1.41) of the SVBC state
[19,21]. Moreover, we mimic a single step of imaginary-time
evolution (on one of the two kinds of triangles), and thus
add one additional parameter τ . This gives a clear gain
in energy (e0 = −1.3871), for a state breaking the lattice
symmetry between two neighboring triangles. This variational
calculation indicates that the HSS state, which does not break
any lattice symmetry, may not be energetically favorable for
the spin-1 KHAF model.

The paper is organized as follows. In Sec. II, we introduce
the HSS ansatz in terms of the Schwinger boson representation.
In Secs. III and IV, we show a compact tensor network
representation for the HSS states, and use it to calculate the
physical quantities, including the variational energy for the
spin-1 KHAF model and various correlation functions. Section
V is devoted to the summary and discussions.

II. HEXAGON-SINGLET SOLID ANSATZ

In this section, we briefly review the hexagon-singlet
solid ansatz [15]. We start in Sec. II A by introducing the
construction of the HSS ansatz in terms of Schwinger bosons,
and then provide a physical picture of resonating AKLT loops
for these states in Sec. II B.

A. Schwinger boson formulation

The hexagon-singlet solid ansatz for the spin-1 kagome
antiferromagnet bears similarity to the construction of the 1D
spin-1 AKLT state [18]. For each physical spin-1 site, one
associates two virtual spin-1/2 particles. Since the kagome
lattice can be viewed as a lattice with corner-sharing hexagons,
each hexagon contains six virtual spin-1/2 particles [see
Fig. 1(a)]. On each hexagon, the six virtual spin-1/2 particles
are combined into a SU(2) spin singlet. The final step is to
recover a physical spin-1 wave function by symmetrizing
the two virtual spin-1/2’s in the same lattice site into
the spin-1 subspace. In contrast to ordinary AKLT states,
there exist inequivalent singlet configurations per hexagon
(depicted schematically in Fig. 3). Therefore this construction
provides a class of trial wave functions for the spin-1 kagome
antiferromagnet.

Formally, it is convenient to formulate the HSS ansatz
in terms of Schwinger bosons [29]. In Schwinger boson
language, the SU(2) spin operators for each site i are
represented as Sa

i = 1
2

∑
αβ=↑,↓ b

†
iασ a

αβbiβ (a = x,y,z), where
σa are Pauli matrices. On each site, a boson number constraint,∑

α=↑,↓ b
†
iαbiα = 2, has to be imposed to guarantee the

physical spin-1 Hilbert space. Here, the bosonic statistics takes
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FIG. 3. (Color online) Graphical representation of the hexagon
singlets. (a) All dimers are between nearest neighbors, like a
resonating benzene ring, |D±〉 is with + (−) sign convention in the
superposition. (b) An allowed dimer pattern |N〉 with longer-range
valence bonds in the hexagon. The arrow orientates from the first
to the second spins in a singlet, which is anti-symmetric towards
permutation of the two constituting spin-1/2’s. Notice that these
three hexagon singlets are all eigenstates of hexagon-inversion
symmetry: |D−〉 and |N〉 are odd (eigenvalue −1), while |D+〉 is even
(+1). Moreover, |D±〉 and |N〉 are all one-dimensional irreducible
representations of the point group C6v .

care of the symmetrization of two virtual spin-1/2’s into a
spin-1 and, in terms of Schwinger bosons, the three spin-1
states are represented as

|1〉= (b†↑)2

√
2

|vac〉, |0〉 = b
†
↑b

†
↓|vac〉, | − 1〉= (b†↓)2

√
2

|vac〉, (1)

where |vac〉 is the vacuum of the Schwinger bosons.
By using the Schwinger bosons, the HSS state is written as

|�〉 =
∏
�

P+
�|vac〉, (2)

where P+
� creates a singlet state formed by six spin-1/2

Schwinger bosons within the same hexagon and can be
generally written as

P+
� =

∑
α1α2···α6=↑,↓

Tα1α2···α6b
†
�,α1

b
†
�,α2

· · · b†�,α6
, (3)

where b
†
�,αi

are the Schwinger boson creation operators
sitting at site i of a hexagon [see Fig. 3(a)]. As there are
several inequivalent ways of combining six spin-1/2’s into a
singlet, Tα1α2···α6 in (3) reflects this freedom of choice. For the
wave function in (2), there are exactly two Schwinger bosons
for every site and no extra projector is needed to remove
unphysical configurations.

To gain further insight into the HSS ansatz, we exploit the
fact that the hexagonal singlet P+

�|vac〉 in (2) can always
be decomposed into a superposition of valence-bond singlets
(over-complete bases) as

P+
� =

∑
{ij,kl,mn}

wijwklwmnC+
�,ij

C+
�,kl

C+
�,mn

, (4)

where {ij,kl,mn} denotes all allowed singlet-pair configura-
tions (e.g., {12,34,56}, {13,25,46}), the valence-bond singlet
creation operator C is defined by

C+
�,ij

= b
†
�,i↑b

†
�,j↓ − b

†
�,i↓b

†
�,j↑, (5)

and wij are coefficients controlling the weights of the valence
bonds. Generically, wij can be viewed as a set of free
parameters. Comparing to (3), an obvious advantage of the
parametrization (4) is that the C6 lattice symmetry can be easily
imposed in these ansatz. For instance, one may consider a
simple choice with wij only depending on the distance between
sites i and j .

With the help of the Schwinger boson representation, we are
able to argue that the HSS class of states have exponentially
decaying correlation functions, indicating that they describe
a class of gapped spin liquids. The technical details on the
proof of this statement are given in Appendix A. In short, the
argument utilizes the spin-coherent state representation of the
Schwinger boson states to write the norm of the HSS ansatz
〈�|�〉 as the partition function of a two dimensional (2D)
classical statistical model describing interacting O(3) vectors
on the kagome lattice. Additionally, the two-point correlation
functions, say, the spin-spin correlation 〈�|Si · Sj |�〉/〈�|�〉,
can be expressed as the correlation function between O(3)
vectors in the 2D statistical model. As the statistical model
is at finite temperature and has only short-range interactions,
long-range order spontaneously breaking O(3) symmetry is not
allowed, according to the Mermin-Wagner theorm [30], and
the correlations between O(3) vectors (equivalently, spin-spin
correlations in the HSS ansatz) decay exponentially. This is a
direct generalization of the results in Ref. [31] showing that
2D AKLT states have exponentially decaying correlations.

In addition, the HSS construction is not restricted to
the kagome lattice, but applies as well to any other lattices
possessing hexagon motifs. For example, we show a spin-3/2
HSS ansatz on the honeycomb lattice in Fig. 1(b), where
the three spin-1/2 virtual particles surrounding a vertex are
symmetrized to constitute the physical spin-3/2 degree of
freedom. It is not difficult to see that our argument on the
gapped spin liquid nature of the kagome HSS states (in
Appendix A) also applies to all such HSS wave functions in
2D, including the spin-3/2 honeycomb HSS state in Fig. 1(b).

B. Resonating Affleck-Kennedy-Lieb-Tasaki loop picture

Let us now introduce a simple example belonging to the
HSS class on the kagome lattice, which we call the Benzene
Ring State (BRS). Based on the BRS example, we uncover a
resonating AKLT loop picture for the HSS ansatz.

The BRS states are defined by restricting hexagonal singlets
in (4) to short-range dimers between neighboring sites. Two
(inequivalent) such choices for wij in (4) are given by

w12 = w34 = w56 = 1, w23 = w45 = w61 = 1, (6)

and

w12 = w34 = w56 = 1, w23 = w45 = w61 = −1, (7)

respectively. The graphical representations for the above two
hexagonal singlet choices, resembling resonating benzene
rings, are shown in Fig. 3(a).

When building the wave function (2) using (6) or (7),
expanding the product

∏
� in (2) leads to a number of nearest-

neighbor valence-bond configurations. A typical configuration
is shown in Fig. 4(a). An interesting observation is that this
configuration can be viewed as the covering of spin-1 AKLT
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FIG. 4. (Color online) (a) Typical resonating AKLT-loop config-
uration arising from the benzene construction. The green ellipses
denote the valence bonds. When cutting the loop configurations either
vertically or at 60 degrees to the vertical (denoted by dashed lines),
it is only possible to intersect an even number of valence bonds. (b)
A typical RAL configuration, shown for comparison. The RAL state
has four virtual particles 0 ⊕ 1/2 on each vertex (see more details in
Ref. [17]), which is a fully packed equal weight superposition of all
possible loops, thus contains some configurations that are prohibited
in the HSS state. Periodic boundary conditions are assumed on both
horizontal and vertical directions.

loops on the kagome lattice. This is due to the fact that each site
shares two spin-1/2 valence bonds (forming spin-1 physical
sites), that is to say, every site is involved in two valence bonds,
which inevitably form fully packed loop structure. Based on
this observation, we conclude that the BRS state can be viewed
as an equal weight superposition of resonating AKLT loops.

What about the HSS ansatz with longer-range valence
bonds within each hexagon? It is not difficult to see that, when
expanding the product

∏
� in (4), the AKLT loop structure

in each configuration is still preserved, though the loops can
connect sites beyond nearest neighbors (NN). Then, the role
of the weights wij in (4) is to control the loop tension. This
shows that all HSS ansatz (2) belong to the broader family of
resonating AKLT loop states.

To be concrete, we consider the following expansion of
Hida’s hexagon singlet (note that the valence-bond basis states
are nonorthogonal and overcomplete, thus the expansion below
is not the unique choice, see more discussions in Appendix B):

|G〉 = |D−〉 + ω|N〉, (8)

where |D−〉 and |N〉 are illustrated in Fig. 3, and |G〉 is the
ground state (a hexagon singlet) of a six-site NN Heisenberg
ring model, firstly used by Hida in constructing his HSS state.
A straightforward calculation reveals that ω 	 0.5826 (also
seen in Fig. 9). Therefore the corresponding wi,j coefficients
of the HSS state read

w12 = w34 = w56 = 1 + ω,

w23 = w45 = w61 = −1 + ω, (9)

w14 = w52 = w36 = ω,

which clearly demonstrates the resonating AKLT-loop nature
of Hida’s HSS state.

Coming back to the BRS states, which can be regarded
as an equal weight superposition of AKLT loops, it is rather
interesting to make a comparison between them with the RAL
state considered in Ref. [17]. In the latter, the RAL state is an
equal weight superposition of all possible AKLT loops [see
Fig. 4(b)] and has Z2 topological order on the kagome lattice.
However, there is an additional constraint in the BRS due to
the benzene ring construction, which requires that no loop
can be formed that contains two successive valence bonds
within the same hexagon. This means that the allowed loop
configurations in the BRS states are strictly less than those of
the RAL state. Actually, this leads to an important observation
that reveals the difference between them: when the BRS state
is defined on a torus, cutting the torus in either horizontal or
vertical direction always intersects an even number of valence
bonds [see Fig. 4(a)]. However, this is not the case for RAL
states, where such a cut can intersect an even or odd number of
valence bonds [Fig. 4(b)]. To be precise, there are four types of
RAL states corresponding to the four combinations of parities
for the number of valence bonds encountered along horizontal
cuts (even/odd) and vertical cuts (even/odd). For a given RAL
state, the parities are invariant when the cuts are swept through
the lattice [17]. While the existence of such “parity” sectors is
essential for Z2 topological order, this already gives a hint that
there is no topological order (at least not Z2 type) in the BRS
state and they are distinct from the RAL state, even though they
share very similar loop structure with the latter. In Sec. III, we
will provide numerical evidence that the HSS ansatz, including
the BRS state, has vanishing topological entanglement entropy
and thus no topological order.

III. TENSOR NETWORK REPRESENTATION AND
SIMULATION OF THE HEXAGON-SINGLET SOLID

STATES

In this section, we provide a compact tensor network
representation for the HSS states (see Fig. 5) and calculate
the physical quantities by using tensor-network-based simula-
tions. In Sec. III A, we start with analyzing the BRS, a special
HSS state introduced in Sec. II B. In Sec. III B, we move on to
the study of another special HSS state introduced in Ref. [15].

According to Sec. II, the HSS state (2), instead of its
Schwinger boson formulation, can be alternatively written as

|�〉 =
⊗

i

Pi

∏
�

|ψ�〉 (10)

and

|ψ�〉 =
∑

{σ∈�}
Tσiσj σkσlσmσn

|σi,σj ,σk,σl,σm,σn〉, (11)

where σi is a virtual spin-1/2 located at site i belonging to
the hexagon. |ψ�〉 denotes the hexagon singlet formed by six
virtual spin-1/2 particles, and P projects two virtual particles
onto the triplet subspace:

P =
∑
σ1,σ2

∑
m

Cm
σ1,σ2

|m〉〈σ1,σ2|, (12)

where m ∈ {±1,0} denotes the physical, σ1,σ2 ∈ {±1/2} the
virtual space, and Cm

σ1,σ2
is the Clebsch-Gordan coefficient
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M   
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Sd1 Sd2

Sd3
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S3

=

S2 S3

S1

S2

FIG. 5. (Color online) (a) Tensor network representation of the
HSS ansatz on the kagome lattice. (b) The local projector P

(dashed ovals) maps two spin-1/2 virtual particles onto the physical
spin-1 space. (c) By fusing two virtual spins, we thus introduce
composite virtual particle 0 ⊕ 1 on the bond. (d) A projection tensor

M
(Sd1 ,md1 )(Sd2 ,md2 )(Sd3 ,md3 )

(S1,m1)(S2,m2)(S3,m3) [(Si,mi)’s are geometric indices along red
solid lines and (Sdi

,mdi
)’s are physical indices], and (e) a rank-three

hexagon tensor R(s1,m1)(s2,m2)(s3,m3) are obtained using the composite
virtual particles. S and m denote the spin and magnetic quantum
numbers, respectively.

symmetrizing two spin-1/2’s into a physical spin-1, with
nonvanishing elements as C1

1/2,1/2 = C−1
−1/2,−1/2 = 1 and

C0
1/2,−1/2 = C0

−1/2,1/2 = 1/
√

2. In Fig. 5(a), the HSS structure
is depicted: the sixth-order tensor T is represented by the ring
within each hexagon and the dashed oval on each site indicates
the projector P [Fig. 5(b)].

However, from a numerical point of view, this represen-
tation is not practical for calculations, owing to the high
coordination number (z = 6) of the T tensors. To overcome
this difficulty, we here introduce a scheme shown in Figs. 5(d)
and 5(e): two neighboring spin-1/2 particles (in the hexagon)
are fused into a composite virtual particle 0 ⊕ 1 of dimension
four, and the coordination number of the hexagon tensor is
lowered down to z = 3. After this transformation, we get a
hexagonal tensor network consisting of M and R tensors,
which can be more easily treated with the tensor network
techniques. Notice that one has the freedom to block the virtual
particles in two different ways [odd-even, or even-odd pairs,
as in Fig. 3(a)], they represent essentially the same state.

A. The benzene ring state

We start with the BRS depicted in Fig. 4, which only
contains NN valence bonds. There are two hexagon-singlet
configurations in the BRS for two sign choices, i.e., |ψ�〉
in Eq. (10) can be chosen as |D±〉 in Fig. 3(a), and we thus
construct |BRS〉E,O = ⊗

i Pi
∏
� |D±〉. The details of tensors

M and R which constitute the SU(2)-invariant tensor network
representation of BRS can be found in Appendix C.

We take the BRS as a variational ground-state wave
function of the spin-1 KHAF model (with the Hamiltonian
HKHAF = ∑

〈i,j〉 Si · Sj ) and first calculate the energy per site
e0 using the infinite projected entangled-pair state (iPEPS)
contraction algorithm [via the boundary matrix product state

FIG. 6. (Color online) The tensor networks on (a) XC and (b) YC
cylindrical geometries, where periodic (open) boundary condition in
vertical (horizontal) direction is assumed. The length units ax,y = 1
are also shown.

(MPS) scheme] [22,23]. The resulting energy per site is
e0 = −1.316 706 02 for |BRS〉O, while e0 = −0.831 271 138
for |BRS〉E.

In Fig. 7(a), we show the numerical results of various corre-
lation functions of |BRS〉O, which are also obtained by iPEPS
contractions (thus measured on an infinite kagome lattice). The
correlation functions include the spin-spin CSS(j − i) = 〈Si ·
Sj 〉, the quadrupole-quadrupole CQQ(j − i) = 〈Qi · Qj 〉, and
the dimer-dimer CDD(j − i) = 〈(Si · Si+1)(Sj · Sj+1)〉 − 〈Si ·
Si+1〉〈Sj · Sj+1〉 correlations. All the correlation functions
are calculated in an SU(2)-invariant manner, i.e., the CSS

and CQQ correlations are computed using irreducible tensor
operators S(1) = {S+,Sz,S−} and Q(2) = {(S+)2, − (S+Sz +
SzS+),

√
2
3 (3(Sz)2 − 2),(S−Sz + SzS−),(S−)2}, respectively.

The correlations are measured along the vertical line marked
as a red dashed line in Fig. 6(b), with length unit ay = 1
being specified there, and are found to decay exponentially,
as expected from the argument in terms of Schwinger bosons
(Sec. II and Appendix A). The correlation lengths ξ , extracted
by linear fittings from the semi-log plot, are found to be rather
short.

Besides the infinite kagome lattice, we are also interested in
evaluating the properties of BRS on the cylindrical geometries
(see the XC and YC geometries in Fig. 6). In Fig. 7(b), we
show the entanglement entropy results [S(L) = −tr(ρ ln ρ),
where ρ is the half-cylinder reduced density matrix] of XC and
YC geometries, versus various cylinder circumferences (up to
L = 16 for both geometries), which measures the quantum
entanglement between two half-infinite cylinders. As shown in
Fig. 7(b), we extrapolate S(L) using the formula S = αL − γ

[33], and get γ 	 0 as L → 0, in both XC and YC cases.
This observation shows unambiguously that the BRS possesses
no long-range entanglement and thus no intrinsic topological
order, this is due to the local constraint arising from the benzene
construction (related discussions in Sec. II B).

B. Hida’s HSS state

Next, we turn to the original HSS state proposed in Ref. [15]
(henceforth to be referred to as Hida’s HSS state, or more
briefly the Hida state), where the hexagon singlet |ψ�〉 in Eq.
(10) is chosen to be the ground state of a six-site (hexagonal)
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FIG. 7. (Color online) (a) The spin-spin, quadrupole-quadrupole, and dimer-dimer correlation functions of the |BRS〉O, obtained by SU(2)
iPEPS contractions. All of the correlation functions C(x) are found to decay exponentially, as C(x) ∼ exp(−x/ξ ). The correlation lengths ξ

are obtained from fitting the data. (b) Entanglement entropies of the odd BRS on XC and YC geometries with various circumferences (up to
L = 16), the entropy data extrapolate to γ = 0 in the L = 0 limit.

spin-1/2 Heisenberg ring,

H� = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + J3

∑
〈〈〈i,j〉〉〉

Si · Sj ,

(13)
where J1 is the NN coupling, J2,J3 are the second- and
third-NN interactions, and S’s are the S = 1/2 spin operators.
Following the original definition of Hida’s HSS state in Ref.
[15], we also diagonalize the Heisenberg ring with only
NN couplings (couplings J1 = 1,J2 = J3 = 0) in a hexagon,
and find five orthonormal singlet eigenstates, with energies
−2.8028, −1.5000, −0.5000, −0.5000, and 0.8028, with a
considerable gap (∼ 1.3) between the resulting ground and the
first excited states. After fixing the ground-state hexagon sin-
glet, we can obtain the tensor network representation (M and
R tensors) of the Hida state (see Appendix C for more details).

We again consider two kinds of geometries for the evalua-
tion of observables: the infinite kagome lattice and cylinders
(including XC and YC geometries). Firstly, the energy per site
e0 is calculated through iPEPS contractions and the results
are shown in Table I. The small truncation error suggests that
the data are very well converged when more than D∗

c = 10
multiplets (corresponding to Dc = 26 states) are retained in
the geometric bond of the boundary MPS.

Besides the iPEPS calculations, we also performed exact
contractions on various cylinders, the results are shown in

TABLE I. Energy expectation values of Hida’s HSS state for the
spin-1 KHAF model, obtained by SU(2) iPEPS contractions. D∗

c (Dc)
is the number of multiplets (individual states) retained on the MPS
bond. We show thirteen significant digits for e0, since e0 is converged
to that accuracy upon retaining D∗

c larger than 10.

D∗
c Dc e0 truncation error

4 8 −1.359 944 730 698 2 × 10−6

5 11 −1.359 910 140 148 4 × 10−8

6 16 −1.359 909 517 302 2 × 10−12

10 26 −1.359 909 517 316 2 × 10−13

16 44 −1.359 909 517 316 2 × 10−15

Fig. 8(a). Notably, the energy expectation value is determined
as e0 = −1.359 910 231 678 for XC12, in excellent agreement
with the accurate iPEPS results in Table I. This value is also
in accordance with that in Ref. [19], where the HSS energy is
estimated as −1.36 based on the exact diagonalization results
on several small clusters. This variational energy is lower than
that of the RAL state (≈ −1.27) in Ref. [17], but still higher
than the best estimate e0 	 −1.410 (of an SVBC state) in
Refs. [19,21] for the actual ground state of the spin-1 KHAF
model.

In Fig. 8(b), we show the entanglement entropies on (both
XC and YC) cylinders of various circumferences L. They
extrapolate to zero in the L = 0 limit, meaning that Hida’s
HSS state possesses no intrinsic topological order, just as
the |BRS〉O investigated in Sec. III A. This is an expected
and consistent observation, because the argument in Sec. II
guarantees that all HSS states are gapped spin liquids and thus
the Hida state should belong to the same (non topological)
phase as the BRS.

In addition, we also studied the entanglement spectra
(ES) of the HSS states on various cylinders through exact
contractions [34,35]. In Appendix D, we show results at
the Hida point, where a nonvanishing triplet gap has been
observed in the ES [Fig. 12(a)]. This is in contrast to the S = 2
AKLT state on a square lattice, where the gaps in the ES
decrease as the system size increases, and finally vanish in the
thermodynamic limit [see Fig. 12(b)] [34,36]. The absence of
a gapless edge excitation in the HSS state indicates that it has
no symmetry-protected topological (SPT) order, since gapless
edge modes necessarily appear in the SPT phases [37,38].

IV. VARIATIONAL STUDY OF THE KAGOME
HEISENBERG ANTIFERROMAGNETIC MODEL

In this section, we discuss the variational energies of the
HSS states for the spin-1 KHAF model, and furthermore search
for a lower variational energy within the present tensor network
ansatz with D∗ = 2 (i.e., two multiplets 0 ⊕ 1, which contain
D = 4 individual states). Among various ways to perform the
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FIG. 8. (Color online) (a) Energy expectation values (per site) e0 of Hida’s HSS state on cylinders with various circumferences L [see Fig.
6 for the illustration of the XC and YC geometries, the length units ax,ay = 1 are also shown in Fig. 6(b)]. The energy results converge very
fast to the thermodynamic limit obtained by iPEPS contractions. (b) Entanglement entropy results extrapolate to γ 	 0 as L → 0, for both XC
and YC geometries.

variational studies, we will discuss three cases below, which
turn out to produce consistent results.

First, as discussed in Sec. II B, we expand the hexagon
singlet with the overcomplete basis of valence bonds as in
Eq. (8) (with |D−〉 and |N〉 defined in Fig. 3, see more details
in Appendix B).

As shown in Fig. 9(a), by tuning ω, we can indeed connect
smoothly the |BRS〉O with the Hida point (at ω 	 0.5826).
Notably, the lowest energy state turns out to deviate slightly
from the Hida point, although the energy difference between
them is rather tiny. In addition, the exact expansion (8) at
the Hida point means that Hida’s HSS state, like the BRS in
Fig. 4(a), also has a simple resonating AKLT-loop picture, but
with both NN and third-NN valence bonds (instead of only
NN bonds) across each hexagon.

Second, we tune the tensor elements of hexagon tensor R,
and thus explore all states in the HSS family. After accounting
for all symmetry constraints, these tensor elements can all be
expressed in terms of only two independent parameters, say, α
and β. In Fig. 9(b), e0 versus energy difference (eA − eB) on

two kinds of triangles are shown for each curve with fixed α

and varying β parameters (see Tables II and III in Appendix C
for the specific definition). From Fig. 9(b), we can see that the
global minimum is located at eA − eB = 0, with the lowest
energy per site found as e0 = −1.360 00, again only slightly
lower than the value e0 = −1.359 91 of the Hida point.

Besides the above two simulations, the third approach we
have adopted is to introduce second- (J2) and third-NN (J3)
couplings in the hexagon [see Eq. (13)], so as to strengthen
longer-range valence bonds. Through tuning J2 and J3 in (13),
we find the same lowest variational energy as the above two
calculations (not shown). Therefore we conclude that the best
variational energy of the spin-1 KHAF model, within the HSS
states, is e0 = −1.360 00, located at eA − eB = 0, i.e., without
any trimerization order.

Beyond the HSS states, we are also interested in improving
the variational energy of the spin-1 KHAF, within the present
D∗ = 2 (i.e., two bond multiplets 0 ⊕ 1) tensor network ansatz
shown in Fig. 5. Notice that the present M (obtained by com-
bining three projectors P ) itself leaves the three physical spins
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FIG. 9. (Color online) Variational energies of the HSS states. (a) By adding the hexagon-singlet configurations in Fig. 3(b), with weight
ω, to the benzene-ring state, we connect smoothly the latter (ω = 0) with the Hida point (ω = 0.582 618 977). The lowest variational energy
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FIG. 10. (Color online) Variational study of the spin-1 KHAF
model beyond the HSS ansatz. (a) Although the hexagon singlets are
intact, applying an imaginary-time evolution operator on the triangle
tensor M will mess up the HSS picture, where the three-site triangle
operator I − τH� is shown in (b).

uncorrelated, the correlation only enters through the singlet
construction in R. If we now instead introduce correlations
directly between physical spins within M across hexagons
(where R still allows singlets within the hexagons only), the
HSS picture will generally be shuffled [see Fig. 10(a)]. In
practice, we add one more parameter τ , in addition to α and
β, to tune tensor M and thus explore the variational energies.

In Fig. 11(a), inspired from the more sophisticated
imaginary-time evolution approach, [39–43] we show that
when fixing the parameter τ �= 0, and scanning through various
α,β parameters, the lowest energy state turns out to be
located at eA − eB �= 0; while the sign and magnitude of �e =
2(eA − eB)/3 depends on the values of the three parameters of
α, β, and τ . We repeat the analysis of Fig. 11(a) for various
τ values and for each collect the curve containing the lowest
variational energies, like the α = 0.5 curve for τ = 0.23 in
Fig. 11(a). We show them in Fig. 11(b), from which it is found
that the best variational energy is e0 = −1.3871, significantly
lower than the non-symmetry-breaking HSS state, and the
energy difference �e = 2(eA − eB)/3 ≈ 0.2683, about 20%
of e0. This implies that the SVBC has lower energy than
any HSS states with D∗ = 2. This conclusion and even the
magnitude of trimerization order parameter, obtained only by
considering the three parameters here, are in nice agreement
with the previous calculations of Refs. [19,21,24], where the
estimate e0 ≈ −1.41 of a SVBC state was obtained with much

larger bond dimensions and more sophisticated numerical
algorithms. However, our conclusion that SVBC states yield
a lower energy than HSS states disagrees with the main
conclusion of NN14 in Ref. [26]. Possible reasons for this
disagreement are given in Appendix E.

V. SUMMARY AND DISCUSSION

To summarize, we have performed a systematic inves-
tigation of the hexagon-singlet solid states for the spin-
1 kagome antiferromagnet. Through the Schwinger boson
representation, we have shown that the HSS states are gapped
paramagnets, which have a hidden resonating AKLT-loop
picture when the hexagon singlet is decomposed within the
over-complete valence-bond bases. However, in contrast to
the RAL state (equal weight superposition of all possible loop
configurations), which is a Z2 spin liquid, the HSS states,
owing to the local constraint of hexagon-singlet construction,
turn out to have no intrinsic topological order. By performing
numeric simulations using the tensor network representation,
we have shown that the HSS states are indeed gapped spin
liquid, with all correlation functions decaying exponentially,
and the results of the entanglement entropy and spectra
confirm that these states are topologically trivial. Furthermore,
we find out that the best variational energy for the spin-1
KHAF model, among all the non-symmetry-breaking HSS
states, is e0 = −1.360 00. Moreover, by an enlightening
variational study, we have shown that, within the present
D∗ = 2 tensor network ansatz, the simplex valence-bond
crystal state (e0 = −1.3871) is more energetically favorable
than the non-symmetry-breaking HSS state.

An interesting issue we leave for a future study is to find
a realistic Hamiltonian which could stabilize the HSS phase;
such a Hamiltonian might contain second- or even third-NN
couplings in the hexagons, which can still be conveniently
treated in the present tensor network ansatz in Fig. 5. Moreover,
through the investigations of the RAL [17] and HSS states,
it has been shown that the resonating AKLT loops, which
constitute a rather general representation of spin-1 many-body
singlets, are able to describe a variety of states, ranging from
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FIG. 11. (Color online) (a) Energies per site e0 for fixed τ = 0.23. By tuning α,β, we find the lowest variational energy e0 = −1.3871 is
at α = −0.5 and β = 0.384, with eA − eB �= 0. (b) We collect the curves that possess the lowest variational energy for various fixed τ . The
global minimum is on the α = −0.5 and τ = 0.23 curve, and with �e/e0 ∼ 20% [�e = 2(eA − eB )/3].
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the topologically ordered RAL to the topologically trivial HSS
states. Therefore we expect that there could be more exotic
quantum states by exploring the resonating AKLT loop family
in future studies.
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APPENDIX A: EXPONENTIALLY DECAYING
CORRELATIONS IN HSS ANSATZ

In this appendix, we provide technical details on showing
that the HSS ansatz all have exponentially decaying spin cor-

relations. This relies on the spin-coherent state representation
of the SU(2) Schwinger boson states. Following Refs. [29] and
[31], S = 1 spin coherent states are defined by

|�〉 = 1
2 (ub

†
↑ + vb

†
↓)2|vac〉, (A1)

where the O(3) vector � is parameterized by the solid angle,
� = (sin θ cos φ, sin θ sin φ, cos θ ), and u and v are given
by u(θ,φ) = cos θ

2 e−i 1
2 φ and v(θ,φ) = sin θ

2 ei 1
2 φ . The spin

coherent states satisfy the following relations:

3

4π

∫
d� |�〉〈�| = I, (A2)

3

2π

∫
d� �|�〉〈�| = S, (A3)

where the integration
∫

d� is over the solid angle,
∫

d� =∫ π

0 sin θdθ
∫ 2π

0 dφ. By using these relations, the norm of the
HSS wave function (2) is expressed as

〈�|�〉 = 3

4π

∫
d� 〈�|�〉〈�|�〉= 3

4π

∫
d� |�(�)|2,

(A4)

where �(�) is given by

�(�) = 〈�|�〉 = 〈vac|
∏
�

⎡
⎣ ∑

{ij,kl,mn}
w̄ij w̄klw̄mnS

−
�,ij

S−
�,kl

S−
�,mn

⎤
⎦ ∏

i

|�i〉

∝
∏
�

⎡
⎣ ∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

⎤
⎦, (A5)

and |�(�)|2 is written as

|�(�)|2 ∝
∏
�

∣∣∣∣∣∣
∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

∣∣∣∣∣∣
2

. (A6)

Note that the norm 〈�|�〉 in (A4) is proportional to the following partition function of a classical statistical model defined on
the same kagome lattice:

Z =
∫

d� |�(�)|2

=
∫

d�
∏
�

∣∣∣∣∣∣
∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

∣∣∣∣∣∣
2

=
∫

d� exp

⎛
⎜⎝ln

∏
�

∣∣∣∣∣∣
∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

∣∣∣∣∣∣
2
⎞
⎟⎠

=
∫

d� exp

⎛
⎝2

∑
�

ln

∣∣∣∣∣∣
∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

∣∣∣∣∣∣

⎞
⎠

=
∫

d� exp

⎛
⎝−

∑
�

h�

⎞
⎠, (A7)
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where h� is the classical Hamiltonian describing local interactions among the O(3) vectors within each hexagon

h� = −2 ln

∣∣∣∣∣∣
∑

{ij,kl,mn}
w̄ij w̄klw̄mn(u�,iv�,j − v�,iu�,j )(u�,kv�,l − v�,ku�,l)(u�,mv�,n − v�,mu�,n)

∣∣∣∣∣∣. (A8)

Similarly, the spin-spin correlation function can be represented by using spin coherent states as

〈�|Si · Sj |�〉
〈�|�〉 = 4

Z

∫
d� |�(�)|2�i · �j (i �= j )

= 4

Z

∫
d� �i · �j exp

⎛
⎝−

∑
�

h�

⎞
⎠. (A9)

This shows that the spin-spin correlation function in the
HSS ansatz is equivalent to the two-point correlation func-
tion between the O(3) vectors in a 2D classicial sta-
tistical model. Since the classical statistical model is at
finite temperature and has only short-range interactions,
Mermin-Wagner theorem [30] indicates that there is no
long-range order and the correlation function (A9) decays
exponentially.

Notice, however, that there still exists the possibility
that the classical Hamiltonian in Eq. (A8) is unbounded
for certain choices of wij (due to the interaction in a
logarithmic form). In that case, the Mermin-Wagner the-
orem would not apply directly and a more rigorous ap-
proach would be needed. In any case, our numerical ev-
idence strongly suggests that our argument does hold for
general wij .

Other correlation functions, such as the quadrupole-
quadrupole and dimer-dimer correlation functions, can be
similarly represented as correlation functions in the same
classical statistical model. Apart from a qualitative un-
derstanding of their behaviors using the Mermin-Wagner
theorem, an additional benefit of this quantum-classical
mapping is that Monte Carlo techniques can also be ap-
plied directly to compute the physical quantities accurately

TABLE II. Hexagon tensor R of even and odd BRS, as a QSpace
object. {Si} are the spin quantum numbers, and the third column after
it demonstrates the dimensions of corresponding CGC tensor in each
channel (simply also determined from the symmetry labels Si), the
fourth column stores the reduced multiplet elements ||R||. The values
for α and β listed here define the even and odd BRS state, discussed in
Sec. III A. In Sec. IV, though, they are used as variational parameters.

|BRS〉E [S1,S2,S3] dimensions ||R||
1. [ 0, 0, 0 ] 1 × 1 × 1 1
2. [ 0, 1, 1 ] 1 × 3 × 3 α = 1/3
3. [ 1, 0, 1 ] 3 × 1 × 3 α = 1/3
4. [ 1, 1, 0 ] 3 × 3 × 1 α = 1/3
5. [ 1, 1, 1 ] 3 × 3 × 3 β = −1/3
|BRS〉O

1. [ 0, 0, 0 ] 1 × 1 × 1 1
2. [ 0, 1, 1 ] 1 × 3 × 3 α = −0.2
3. [ 1, 0, 1 ] 3 × 1 × 3 α = −0.2
4. [ 1, 1, 0 ] 3 × 3 × 1 α = −0.2
5. [ 1, 1, 1 ] 3 × 3 × 3 β = 0.2

(see, e.g., Ref. [44] for this application to the 3D AKLT
states).

APPENDIX B: THE HIDA STATE AS A RESONATING
AKLT-LOOP STATE

In this appendix, we discuss the expansion of Hida’s HSS
state with the valence-bond basis and thus reveal that it belongs
to the family of resonating AKLT-loop state (RAL), therefore
elaborating the discussion in Sec. II B. By comparing the
tensor elements in Tables II and III in Appendix C, we can
see that Hida’s HSS state has similar weights as |BRS〉O in
corresponding channels, which suggests that these two states
may have a big overlap, and the dominating hexagon-singlet
configuration in the former might consist of NN valence bonds.
Thus we could add a hexagon-singlet configuration containing
longer-range bonds in addition to the configurations |D−〉 of
the |BRS〉O [Fig. 3(a)]. Here we consider the configuration
in Fig. 3(b), which consists of two NN and one second
NN bonds in each hexagon. Associating a weight ω with
this hexagon-singlet configuration (denoted as |N〉), i.e., the
singlet state can be defined as |ψ�(ω)〉 = |D−〉 + ω|N〉 in
each hexagon, and we thus construct a one-parameter HSS
state family |�(ω)〉 = ⊗

i Pi

∏
� |ψ�(ω)〉 according to Eqs.

(10)–(12) in the main text.
At a first glance, the fact that the hexagon singlet |G〉

(i.e., the ground state of a six-site Heisenberg ring) in Hida’s
HSS state can be expressed exactly as a superposition of
|D−〉 and |N〉 at ω = 0.582 618 977 (see Fig. 9 in the main
text) is surprising, since chances are these three normalized
while nonorthogonal states (vectors) do not lie on the same
plane. In fact, there are two independent components α and
β for the C3 lattice rotational invariant states, as shown in

TABLE III. Hexagon tensor R of Hida’s HSS state. Notice that
to keep the C3 discrete rotational lattice symmetry, the coefficients of
records 2 to 4 should be equal (denoted by α).

No. [S1,S2,S3] dimensions ||R||
1. [ 0, 0, 0 ] 1 × 1 × 1 1
2. [ 0, 1, 1 ] 1 × 3 × 3 α = −0.2457
3. [ 1, 0, 1 ] 3 × 1 × 3 α = −0.2457
4. [ 1, 1, 0 ] 3 × 3 × 1 α = −0.2457
5. [ 1, 1, 1 ] 3 × 3 × 3 β = 0.1315
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Tables II and III, which can parametrize a sphere (after proper
reorganizations). Nevertheless, it turns out that these three
states satisfy the condition 〈G|D−〉2 + 〈G|N〉2 + 〈N|D−〉2 =
1 + 2〈G|D−〉〈G|N〉〈N|D−〉, meaning |G〉, |N〉, and |D−〉 are
on the same unit circle and thus are linearly dependent. As
a more careful analysis shows, the reason for this is that
these hexagon singlets (and the corresponding non-symmetry-
breaking HSS states) are all 1D irreducible representations of
the full C6v point group. For example, they are eigenstates of
the hexagon-inversion symmetry operator (with eigenvalues
±1). Therefore symmetry adds one more constraint and leaves
only one independent parameter ω in Eq. (8) when one expands
the hexagon singlet state |G〉 with |N〉 and |D−〉 of the same
inversion parity (−1), the other state |D+〉 in Fig. 3 not used
in the expansion of |G〉 above belongs to an +1 eigenstate of
hexagon-inversion symmetry).

APPENDIX C: THE QSPACE REPRESENTATION
OF THE HSS STATES

In this appendix, we show the specific SU(2)-invariant
tensor-network representations of the HSS states, including the
BRS and Hida’s HSS state, thereby elaborating the discussion
in Sec. III.

For the BRS’s, corresponding R tensors are shown in
Table II, where R is described in the QSpace language, a
practical framework for implementing non-Abelian symme-
tries in tensor networks [32]. In the QSpace framework, the
tensor R can be decomposed into the reduced multiplet data
||R|| and the Clebsch-Gordan coefficients (CGCs) C, i.e.,

R =
∑
{Si }

∑
{mz

i }
||R||S1,S2,S3

(
C

Shex=0
S1,S2,S3

)
mz

1,m
z
2,m

z
3
, (C1)

where {Si} are the spin quantum numbers and mi ∈ [−Si, +
Si] are the z component of magnetic quantum number of
paired-up virtual spins. Notice that R represents a tensor of
order four where the fourth dimension specifies the symmetry
of the total tensor, which here for the HSS state by definition
always a singlet state (Shex = 0). The last dimension therefore
represents a singular dimension which can be safely ignored.
Overall then, what represents a 4 × 4 × 4 tensor in full state

space becomes a 2 × 2 × 2 tensor in the reduced multiplet
space.

In Table II, the first column enumerates different records
or fusion channels, i.e., the different ways three virtual
particles can be coupled into a hexagon spin singlet. The
second column shows the spin quantum numbers (S-labels)
of these virtual particles: there are three spin-0 (in record No.
1), two spin-1’s and a spin-0 (Nos. 2–4), and three spin-1
particles (No. 5), respectively. The third column contains the
dimensions of the CGC tensor (Cq=0

S1,S2,S3
)mz

1,m
z
2,m

z
3
, which varies

in different records because of the different spin quantum
numbers [S1,S2,S3]. The last column gives the value of the
reduced tensor element obtained when coupling S1, S2, and
S3 together to obtain a hexagon singlet. The norm of ||R||
is chosen such that the weight in the first record is 1, the
other weights are denoted as α in records 2–4, and β in the
last record, respectively. Note that in Table II and other tables
for QSpace tensors hereafter, the actual number of the CGC
coefficients is not shown. In practice, the CGC tensor in each
channel is normalized in such a way that the largest tensor
element equals ±1, and the first nonzero coefficient is positive.

Similar to the hexagon tensor R, the triangle tensor M can
also be determined by performing a few steps of contractions
[as indicated in Fig. 5(d)], with the three physical S = 1 spins
combined into a single-state space (33 = 27 states reduced to
seven multiplets), and this results in a tensor of rank four.

On the other hand, for Hida’s HSS state, the QSpace
representation of tensor R is shown in Table III, which is
the lowest singlet ground state of a hexagonal Heisenberg ring.
Since there are only two multiplets (a S = 0 singlet and a S = 1
triplet) on each geometric bond, the reduced bond dimension
is thus again D∗ = 2 (i.e., two multiplets), corresponding to
four individual states (D = 4).

APPENDIX D: ENTANGLEMENT SPECTRA

In this appendix, we show the results of the entanglement
spectra (ES) on cylinders with various widths L. By perform-
ing exact contraction for small L and MPS-based approximate
contractions for large L (�12), one can get converged left
and right vectors Vl(i,i ′) and Vr (i,i ′) after a sufficient number
(typically 10 ∼ 20) of iterations. The vectors Vl,Vr are the

0 0.05 0.1 0.15 0.2 0.25
0

5

10

1/L

E
nt

an
gl

em
en

t S
pe

ct
ra

(a)

HSS

S=0

S=1

S=2

S=3

S=4

S=5

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

1/L

E
nt

an
gl

em
en

t S
pe

ct
ra (b)

S=2 AKLT

S=0

S=1

S=2

S=3

S=4

S=5

S=6

FIG. 12. (Color online) The entanglement spectra (ES) on YC geometries, with various cylinder widths L. Each symbol in the figure labels
a multiplet, instead of an individual plain state. The spectra of different circumferences have been offset so as the lowest eigenvalues are zero.
(a) The ES of Hida’s HSS state on cylinders with L = 4,6,8,10,12,14. There exists a nonvanishing singlet-triplet gap (δ ∼ 1.6) in the spectra.
(b) The ES of the S = 2 square-lattice AKLT state on cylinders with L = 4,6,8,10,12,14, where the singlet-triplet gaps δ (∼ 1/L) extrapolate
to zero in the large L limit.
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dominating (left and right) eigenstates of the transfer-matrix
of the double-layer cylinder tensor network; and |i),|i ′) are
the virtual bases on the geometric bond. Since the |i) and |i ′)
bases are not orthonormal to each other, it is important to notice
that Vl,Vr themselves are not the reduced density matrices of
the half-cylinder. The reduced density matrix can be obtained
through transformation ρ = √

VrVl

√
Vr [34].

By diagonalizing ρ = U �U ′, in Fig. 12 we show the
entanglement spectrum, i.e., the minus logarithmic of the den-
sity matrix spectrum − ln(�), on cylinders of various widths.
Notice that since SU(2) symmetry has been implemented in the
tensor network, each symbol in Fig. 12 represents a multiplet
with well-defined spin quantum bumber S, so we can tell the
spin S of each level. In Fig. 12(a), there is a distinct gap
between lowest singlet and the first excited triplet state, which
does not vanish as L increases. This is in contrast to a typical
S = 2 AKLT state on a square lattice; in Fig. 12(b), we show
the ES of the S = 2 AKLT state on cylinders, for which the
singlet-triplet gap δ is propositional to the inverse width 1/L.
δ vanishes in the infinite-L limit, suggesting a gapless edge
mode, in agreement with the results in Refs. [34,36]. The
different behaviors of the HSS and S = 2 square-lattice AKLT
states implies that the former is a trivial insulator phase, and
does not belong to an SPT phase.

APPENDIX E: COMMENTS ON NN14’S DMRG
STUDY ON HSS STATES

In this appendix, we address the relation between our
present tensor network study of the HSS state and the work
of NN14 in Ref. [26], who studied the same model using
DMRG, but, in contrast to us and Refs. [19,21,24], concluded
that the model’s ground state is an HSS state. They performed
DMRG simulations for the spin-1 KHAF on four types of
clusters: (i) cylindrical clusters; (ii) periodic clusters; (iii)
clusters with open boundary conditions (OBC) purposefully
designed to favor a HSS ground state, by choosing cluster
shapes that contain only hexagons around the edges and
putting spin-1/2’s on the outermost sites (called HSS clusters);
and (iv) clusters with OBC purposefully designed to favor
SVBC order, by choosing cluster shapes that contain only
triangles around the edges (called SVBC clusters). For (i)
to (iii), they found ground states without clear signatures of
trimerization, while for (iv), they found a ground state that
clearly trimerizes. Their conclusion of vanishing trimerization
order on (i) is in direct contradiction to CL’s observation that
stable trimerization order exists on cylinders with width L = 8
[19]. NN14 estimated the energy per site in the bulk, e0, by
finite-size extrapolations to the thermodynamic limit. Their
SVBC clusters, (iv), yielded the highest extrapolated energy
[e0 = −1.391(2)]; their cylindrical and periodic clusters, (i)
and (ii), yielded extrapolated energies [e0 = −1.409 88 and
e0 = −1.409(5), respectively] consistent with those of CL[19]
and Liu et al. [21]; and their HSS clusters, (iii), yielded the
lowest extrapolated energy (e0 = −1.410 95). Based on this
evidence, NN14 argued that the ground state is a HSS state,
and not the SVBC state advocated in Refs. [19,21,24].

In our opinion, NN14’s conclusion is flawed because the
tool that they use to distinguish the HSS and SVBC states,
namely ground-state DMRG on finite-size clusters, relies on

boundary effects to distinguish these states. However, such a
tool can not reliably estimate the difference in bulk e0 for these
two types of state, since by definition, the bulk value of e0 is
the value obtained for clusters so large that boundary effects
vanish. Not surprisingly, the data for their HSS and SVBC
clusters shown in their Fig. 4 have a much stronger finite-size
dependence (larger slope of data plotted versus inverse system
size) than their cylinder and periodic clusters. The fact that
their extrapolations from the HSS and SVBC clusters disagree
with each other in the thermodynamic limit just means that
these clusters are not yet large enough to give reliable bulk
e0 values. Thus the discrepancy between NN14’s e0 values for
HSS and SVBC clusters in our opinion does not reflect the true
difference in the e0 values of bulk SVBC and bulk HSS states;
rather, it reflects the error bar, induced by boundary effects, in
their determination of the bulk e0 of the true ground state.

In addition, we also would like to point out that in Ref. [47],
a strategy similar to that of NN14 has been applied to J1-J2

honeycomb Heisenberg model, there, too, inconsistent results
were reported when changing the cluster shapes.

We would also like to make a comment regarding the
trick of pinning spin-1/2’s on the open boundary of a spin-1
model. This trick was first developed for simulating a spin-1
Heisenberg chain, where two spin-1/2’s are put on the ends
of the open chain to remove the edge states (and related
degeneracies) [45]. Some of us (WL, AW, JvD) have actually
used this trick ourselves in recent work on spin-1 Heisenberg
chains [46]. In that context, this trick leads to a better numerical
convergence for the bulk properties, since it binds the edge
modes localized on both open ends. Importantly, however, it
does not change the bulk physics, i.e., the same value for e0

is obtained with or without employing spin-1/2’s on the ends
[45,46]. In contrast, in NN14’s work, the presence or absence
of spin-1/2 particles on the outermost sites of their HSS or
SVBC cluster, respectively, is an attempt to use boundary
effects to stabilize two states with different bulk properties.
As argued above, this strategy is intrinsically flawed. Thus, in
our opinion, NN14 are mistaken in believing that their DMRG
calculations on HSS clusters can be used to reliably predict
the bulk properties of HSS states. Their DMRG calculations
target purely ground state properties, and if a certain type of
state (here the HSS state) happens not to be the actual ground
state (as argued in the present paper and in Refs. [19,21,24]),
then its bulk properties are simply inaccessible to NN14’s
DMRG simulations. In contrast, through the present work we
find an explicit tensor network state representation for the HSS
state family, which makes Hida’s HSS state readily accessi-
ble with tensor network methods. We show unambiguously
that the best HSS variational energy for the spin-1 KHAF
model is −1.3600, much higher than NN’s “HSS” energy
(−1.410 95).

In contrast to NN14’s HSS and SVBC data, their data for
cylinder and periodic clusters show much weaker finite-size
effects (smaller slopes when plotted versus inverse system
size). We believe that the e0 values extrapolated from these
data do reflect the bulk e0 value of the true ground state
rather accurately—they are certainly consistent with our own
e0 values and those of CL. We find it all the more surprising
and perplexing that NN14 did not observe evidence for
SVBC order in their cylinder clusters, whereas CL, who used
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essentially similar cylindrical clusters, did [19]. We suspect
that in NN14’s calculations the presence of a symmetry-
breaking ground state was still hidden by boundary effects,
which can cause a non-symmetry-breaking ground state to
appear through superposition. Indeed, CL reported that in
their calculations SVBC order emerged clearly only in their
cylinders of largest circumference (width 8).

We conclude with a comment about the bond dimension
used in the present tensor network study, namely D∗ = 2
(corresponding to 0 ⊕ 1 in Tables II and III), or D = 4.
One might ask: is our conclusion in Sec. IV that HSS states
have higher energy than SVBC states robust with respect
to increasing D? Perhaps HSS states would yield a lower
energy than SVBS states if each hexagon were allowed to
involve not only spin-1/2 virtual particles but also higher-spin

virtual particles? In this regard, we note that the HSS states
studied here are a subset of the much more general class
of tensor network states studied by Liu et al. in Ref. [21],
where tensor network variational calculations were performed
with bond dimensions as large as D = 20, implying that
many more virtual particles with higher spin were included.
Those large-D calculations showed unambiguously that the
spin-1 KHAF model possesses a SVBC ground state with
e0 = −1.410 35. Therefore the conclusion of the present work,
that HSS states lie significantly higher in energy than SVBC
states, is not specific to using an HSS ansatz with D = 4, as
done here; instead, the results of Ref. [21] demonstrate that
it holds throughout as D is increased up to D = 20, a value
sufficiently large that the results reported in Ref. [21] were well
converged.
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