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In this work, we numerically study critical phases in translation-invariant ZN parafermion chains with both
nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a ZN spin model with nearest-
neighbor couplings via a generalized Jordan-Wigner transformation and translational invariance ensures that the
spin model is always self-dual. We first study the low-energy spectrum of chains with only nearest-neighbor
coupling, which are mapped onto standard self-dual ZN clock models. For 3 � N � 6, we match the numerical
results to the known conformal field theory(CFT) identification. We then analyze in detail the phase diagram of
a N = 3 chain with both nearest and next-nearest-neighbor hopping and six critical phases with central charges
being 4/5, 1, or 2 are found. We find continuous phase transitions between c = 1 and 2 phases, while the phase
transition between c = 4/5 and 1 is conjectured to be of Kosterlitz-Thouless type.
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I. INTRODUCTION

In recent years, non-Abelian anyons have been a focus of
intense theoretical and experimental investigations [1]. Their
exotic properties have deepened our understanding of quantum
many-body phases and also found potential applications in
building topological quantum computers. However, quantum
phases that host these exotic quasiparticles, namely non-
Abelian topological phases, are usually quite elusive in nature
and often require delicate conditions (e.g., complicated forms
of many-particle interactions) to occur. Recently, proposals
of engineering non-Abelian phases from more conventional
materials have greatly stimulated this field of research [2–5].
For example, Majorana zero modes, being analogues of Ising
anyons, have been proposed to exist at ends of semiconductor
nanowires in proximity to s-wave superconductors [6,7], as
well as at the magnetic/superconducting domain walls on
the edge of two-dimensional topological insulators [8]. The
effort has culminated in the experimental observation of
possible signatures of Majorana zero modes in semiconduc-
tor/superconductor heterostructures [9–13].

Following this line of ideas, it has been proposed that
certain extrinsic defects in two-dimensional topologically
ordered phases can bind exotic zero modes which are natural
generalizations of Majorana zero modes [14,15]. Various
physical realizations have been proposed, including mag-
netic/superconducting domain walls on the edge of two-
dimensional fractionalized topological insulators [16–19] and
dislocations in bilayer quantum Hall systems [20,21] or
toric-code type models [22–24]. A common feature among all
these seemingly different realizations is that the zero modes
can be effectively described by second-quantized operators
obeying parafermionic algebra [25,26], which in the simplest
case reduce to the well-known Majorana operators. They are
therefore referred as parafermion zero modes subsequently.
The parafermion zero modes also exhibit non-Abelian braiding
statistics [17,18,23,27–29], with quantum dimensions squared
to an integer.

A recent theoretical development pushes the limit of this
engineering approach even further, where it was suggested
that even more exotic topological phase, such as the famed
Fibonacci phase, can be built by a delicate control of
interactions between an array of such defects. The basic fact
that underlies this construction is that a chain of interacting
Z3 parafermion zero modes can be tuned to a critical point
described by aZ3 parafermion CFT. Then by assembling many
such critical chains together and coupling neighboring chains
in an appropriate way [30,31], a superconducting analog of the
Fibonacci phase can emerge [32–34].

These interesting developments call for a more systematic
investigation of the collective behavior of parafermion zero
modes, in particular beyond the realm of exact integrability.
Unlike Majorana zero modes, a quadratic Hamiltonian of
parafermion zero modes is by no means a “free theory.”
They are inherently strongly interacting and even a simple
“quadratic” Hamiltonian consist of bilinears of parafermion
zero modes can exhibit a rich phase diagram. The study of the
physics of one-dimensional non-Abelian anyonic chains was
pioneered in [35], where the phase diagram of a chain of inter-
acting Fibonacci anyons was presented, and is subsequently
generalized to other anyon models [36–41]. More recently
there have been several works on gapped phases of parafermion
systems both in one and two dimensions [42–45]. In this
work, we focus on the phase diagram of a translation-invariant
quadratic Hamiltonian describing hopping parafermions in
one dimension. By mapping the parafermion Hamiltonian to
a ZN spin model using a Jordan-Wigner-type transforma-
tion [25,26], we see that translation invariance ensures that
the spin model is always self-dual, which suggests that these
models are critical. We first analyze the critical phases when
there are only nearest-neighbor hoppings. It is well-known
that these Hamiltonians can be mapped to self-dual ZN clock
models [26], which have been studied thoroughly in the
context of classical statistical mechanics. For 3 � N � 5, we
match the low-energy spectrum with theoretical predictions.
In particular, we highlight the subtleties in identifying the CFT
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spectra due to the nondiagonal CFT partition functions when
N = 3.

We then study the phase diagram of a Z3 parafermion chain
with both nearest-neighbor (NN) and next-nearest-neighbor
(NNN) couplings, which leads to a spin model that has not
been considered before. Translation invariance still guarantees
criticality, but we observe numerically that as the ratio between
the NN and NNN couplings are tuned, critical phases with
different central charges including c = 4/5,1,2 are realized.
We also characterize the phase transitions between these
critical phases. We find that the transitions between c = 1
and c = 2 phases are continuous.

The paper is organized as follows. In Sec. II, we introduce
the parafermion zero modes and define the model Hamiltonian
that is the focus of the paper. We also briefly review the
generalized Jordan-Wigner transformation. In Sec. III, we
establish the phase diagram of ZN parafermion chains with
NN couplings. In Sec. IV, we study Z3 parafermion chains
with both NN and NNN couplings. Section V concludes the
paper.

II. MODEL AND DEFINITION

Let us first define formally what parafermion zero modes
are. A ZN parafermion mode is defined as a unitary operator γ

such that γ N = 1. For many parafermions, if a certain ordering
prescription is chosen, we then have the commutation relation:

γiγj = ωsgn(j−i)γjγi, ω = e
2πi
N . (1)

When N = 2 this is the familiar anti-commutation relation
of Majorana zero modes. Notice that 2n parafermions can be
represented by Nn-dimensional Hilbert space, therefore in a
sense each parafermion zero mode carries “

√
N”-dimensional

states.
In one dimension, lattice sites are naturally ordered. A

generic hopping Hamiltonian can be written down as

H =
∑
ij

(tij γ
†
i γj + H.c.). (2)

Although the Hamiltonian is quadratic, it is by no means
free/noninteracting when N > 2 due to the parafermionic
commutation relation between the operators. If we try to
diagonalize the Hamiltonian by Fourier transformation, the
commutation relation between the momentum-space modes
becomes utterly complicated. Therefore the model is intrin-
sically a strong-coupling problem. To have a glimpse of the
rich physics contained in this model, we consider hoppings
up to the NNN bonds, see Fig. 1(a) for an illustration of this
parafermion chain.

We notice that the definitions of the operators γj allow aZN

gauge redundancy: γj → ωnj γj where nj ∈ Z. The hopping
amplitudes also have the same redundancy:

tij → tijω
ni−nj . (3)

For example, in an open chain, tij and ω|j−i|tij are identical up
to gauge transformations. However, tij and −tij in generally
are not related for odd N . In fact, the “equivalence classes” of
hopping amplitudes are labeled by gauge-invariant quantities
such as ti,i+1ti+1,i+2ti+2,i = t2

1 t∗2 . For example, we can per-
form a gauge transformation γi → ω−iγi , and t1 → ωt1 and

FIG. 1. (Color online) Illustration of (a) the model of
parafermion chain and (b) the corresponding ZN spin model.

t2 → ω2t2. Such a transformation can also leave the boundary
condition of the parafermions twisted if they sit on a ring.
However, we mainly focus on open boundary condition and
we expect twisted periodic boundary conditions do not affect
the major low-energy characterizations of the bulk.

We heavily rely on numerical methods to understand the
low-energy physics of this model. In order to carry out
numerical simulations, the model is transformed into a ZN

spin model with a generalized version of Jordan-Wigner
transformation [25,26]. To be specific, we assume that open
boundary condition is imposed. We then define the following
transformation:

γ2i = σi

∏
j<i

τj , γ2i+1 = βσiτi

∏
j<i

τj . (4)

Here, σi,τi are spin operators that act on a N -dimensional
Hilbert space for each site, satisfying

σN
j = τN

j = 1, σ
†
j σj = τ

†
j τj = 1, σj τj = ωτjσj . (5)

The spin operators on different sites commute. The constant β

must satisfy βN = ω
N(N−1)

2 = (−1)N−1 so that γ N
2i+1 = 1.

We now apply this transformation to the parafermion chain
Hamiltonian with NN and NNN couplings:

H =
∑

i

(t1γ
†
i γi+1 + t2γ

†
i γi+2 + H.c.). (6)

The parafermion bilinears become

γ
†
2j γ2j+1 = βτj ,γ

†
2j+1γ2j+2 = β∗ω∗σ †

j σj+1,

γ
†
2j γ2j+2 = σ

†
j τjσj+1,γ

†
2j+1γ2j+3 = ω∗σ †

j σj+1τj+1. (7)

As a result, we obtain the following ZN spin model [see
Fig. 1(b)]:

H =
∑

j

(t1β
∗ω∗σ †

j σj+1 + t1βτj + H.c.)

−
∑

j

(t2ω
∗σ †

j σj+1τj+1 + t2σ
†
j τjσj+1 + H.c.). (8)

It is convenient to set β = ω− N+1
2 and redefine t1 =

−β∗J1,t2 = −J2,

H = −
∑

j

(J1σ
†
j σj+1 + J1τj + H.c.)

−
∑

j

(J2ω
∗σ †

j σj+1τj+1 + J2σ
†
j τjσj+1 + H.c.). (9)
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We will be working with this form of the Hamiltonian in the
rest of the paper and mainly focus on the case where both J1

and J2 are real for simplicity.
Let us examine the symmetries of the Hamiltonian. The

parafermion model, as well as the spin model obtained by
applying the Jordan-Wigner transformation, both have a global
ZN symmetry generated by

Q =
∏
j

τj =
∏
j

γ
†
2j γ2j+1. (10)

Q can be regarded as the global ZN charge. Later the
ZN quantum numbers will be exploited in the numerical
simulation.

We now turn to space-time symmetry. We can define space
inversion and time reversal transformations as follows:

I : σj ↔ σ−j , τj ↔ τ−j ,

T : σj ↔ σ
†
j , τj ↔ τj . (11)

The J2 term breaks both the inversion and the time-reversal
symmetry.

We now show that the spin model obtained in this way is
always self-dual. Let us define the dual disorder variables:

μj =
∏
l�j

τl,νj = σ
†
j σj+1. (12)

Under the duality transformation, we have

σ
†
j σj → νj ,τj → μ

†
j−1μj ,

σ
†
j σj+1τj+1 → νjμ

†
jμj+1. (13)

So the Hamiltonian is invariant.
We notice that the self-duality of the spin model corre-

sponds exactly to the translation invariance of the parafermion
model [46]. Therefore a translation-invariant parafermion
chain always maps to a self-dual spin model. Although there
is no rigorous proof that self-duality implies criticality, we are
not aware of any counterexamples in one-dimensional systems.
We will see in the following sections that our model indeed
exhibits criticality.

III. ZN MODEL WITH ONLY NN COUPLINGS

In this section, we start from the ZN model (9) with J2 = 0,
where only NN couplings are present. For J1 = 1, the ZN

parafermion chain maps exactly to the self-dual ZN clock
model. The study of the phase diagram of ZN clock model has
a long history. Utilizing a field theoretical approach, it has been
argued that [47] the quantum model in one dimension can be
related to the classical planar XY model with ZN symmetry-
breaking fields in two dimensions in certain anisotropic limit.
The Euclidean action of the classical model is equivalent to
that of a sine-Gordon model given by [47]

S = 1

2

∫
d2r[(∇ϕ)2 + g cos(

√
Nϕ) + g̃ cos(

√
Nθ )], (14)

where ϕ(r) is a bosonic field and θ (r) is the conjugate field.
The two cosine potentials in (14) always have the same scaling
dimensions, thus competing with each other. The duality
transformation of the spin model corresponds to ϕ ↔ θ in the

field theory. Hence when g = g̃ the field theory is self-dual.
It is useful to first consider the weak-coupling limit and
perform a renormalization group analysis of the perturbations
to the Gaussian fixed point. For N < 4, the two perturbations
cos

√
Nϕ and cos

√
Nθ are both relevant. So they drive

the theory to a new strong-coupling fixed point whose
central charge is less than 1 according to Zamolodchikov’s c

theorem [48]. Therefore the infrared fixed-point is necessarily
a CFT minimal model. It is known that the new fixed-point
is described by an Ising CFT with central charge c = 1/2
for N = 2, and a Z3 parafermion CFT with central charge
c = 4/5 for N = 3. For N = 4, the perturbation is marginal
and the low-energy fixed-point will be identified below. For
N � 5, the cosine perturbations in (14) become irrelevant, thus
the low-energy fixed point is again Gaussian.

We now come back to lattice models. For N = 3, the clock
model (9) coincides with the famous 3-state Potts model, which
has the special property of being integrable [49]. J1 = 1 will
be called the ferromagnetic(FM) coupling, since the Z3 spins
are aligned in the same direction in the ground state of the
Hamiltonian with just the term −J1

∑
j (σ †

j σj+1 + σ
†
j+1σj ),

and correspondingly J1 = −1 the antiferromagnetic(AF) cou-
pling. For the FM case, one can deduce from the Bethe
ansatz solutions that the chain has gapless excitations [50]
and the low-energy effective theory is the Z3 parafermion
CFT [51], also known as the minimal model M(6,5) with
a central charge c = 4/5. However, the field content of the
three-state Potts criticality differs from the genuine M(6,5)
CFT. Only six primary fields out of the ten with conformal
dimensions h = 0,2/5,7/5,3,1/15,2/3 are responsible for
the ferromagnetic three-state Potts model. In fact, the field
content is completely specified by the following nondiagonal
modular-invariant partition function [52]:

ZF = |χ0 + χ3|2 + |χ 2
5
+ χ 7

5
|2 + 2|χ 1

15
|2 + 2|χ 2

3
|2, (15)

where χh = trh(qL0−c/24) is the holomorphic CFT character
with trh the trace in the conformal block h (labeled by the
conformal dimension).

For the Z3 clock model with antiferromagnetic coupling,
it was proposed in Ref. [53] based on Bethe ansatz that
the critical theory should be the Z4 parafermion CFT with
central charge c = 1. The partition function relevant for the
antiferromagnetic three-state Potts model has been shown to
be the nondiagonal combination of characters [54]

ZA = |χ0 + χ1|2 + 4|χ 3
4
|2 + 2|χ 1

3
|2 + 2|χ 1

12
|2, (16)

where five primary fields with conformal dimensions h =
0,3/4,1,1/3,1/12 show up. Notice that if we represent the Z4

parafermion CFT as the coset SU(2)4/U(1), then only fields
with integer SU(2) spins appear in the partition function. This
implies that the CFT can be obtained from SU(2)4/U(1) by
“condensing” the highest spin primary fields in SU(2)4, which
results inSU(3)1 theory [55]. With this perspective, the CFT of
the antiferromagneticZ3 Potts chain should better be described
as SU(3)1 × U(1)2 � U(1)6.1

1We thank E. Ardonne for very helpful correspondence on the CFT
of antiferromagnetic Z3 Potts model.
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In order to verify these field theoretical predictions, we
perform numerical simulations for ZN clock models (9) with
only nearest-neighbor interactions, based on density-matrix
renormalization group (DMRG) and exact diagonalization
(ED) techniques. The numerical methods that we adopt here
also form the basis for our further investigations of more
complicated models in subsequent sections. In the DMRG
method, we approximate the ground states and sometimes also
several low-lying excited states of the Hamiltonian with open
boundary conditions by matrix-product states. For the ground
states of 1D critical quantum chains with length L and open
boundaries, it has been shown [56–58] that the von Neumann
entanglement entropy of a block of x consecutive spins scales
as

S = c

6
log2

(
L

π
sin

πx

L

)
+ S0, (17)

where c is the central charge of the CFT and S0 is a nonuniver-
sal constant. In the case of periodic boundary condition, the
coefficient of the logarithmic scaling of entanglement entropy
in (17) should be modified to c/3. In DMRG calculations, we
fit the numerically computed von Neumann entropy with this
formula, from which one can read off the central charge c .

Once c is determined, we can compute the energy spectra
of a finite-size chain with periodic boundary condition and
further constrain the conformal dimensions of primary fields
in the CFT. This is based on the following result. For a 1D
critical chain described by a CFT, the energy spectra are given
by [59,60]

E = ε∞L − πvc

6L
+ 2πv

L
(h + h + n + n), (18)

where ε∞ is the ground-state energy per site in the thermody-
namic limit, v is the sound velocity, h and h are conformal
dimensions of the CFT primary fields, and n and n are
non-negative integers. In practice, we can find v accurately
from the finite-size scaling of the ground-state energy. Then
comparing the numerically computed energy spectra with (18)
allows to extract conformal dimensions of the CFT primary
fields, which are characteristic quantities for identifying the
CFT.

Notice that caution should be taken when one tries to extract
the holomorphic conformal dimension h from (18). From the
excited energy spectra, we can only obtain h + h directly. If
the partition function is diagonal, all CFT states have zero
conformal spins meaning h = h. However, in the present case
the relevant partition functions of both Z3 and Z4 parafermion
CFTs are nondiagonal, which means that operators with
nonzero conformal spins appear in the spectrum. For example,
for the Z4 parafermion CFT, one should find two degenerate
levels corresponding to (h,h) = (1,0),(0,1), and the other
levels should all be diagonal meaning that h = h (modulo
the n and n shifts).

For the ferromagnetic Z3 Potts model, we confirm that
the central charge is well fitted to c = 4/5 in our DMRG
calculations. The numerically computed von Neumann entan-
glement entropy is shown in Fig. 2(a). The (rescaled) finite-size
spectrum of a periodic chain with L = 14 sites is shown in
Fig. 3(a). Using Eq. (18), the CFT primary fields appearing
in (15) are found in the low-lying spectrum, including the
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FIG. 2. (Color online) Block entanglement entropy of the Z3

FM(θ = 0) and AF(θ = π ) Potts model. (a) θ = 0 with c = 4
5 and

(b) θ = π with c = 1. Open boundary conditions are adopted in both
cases.

nondiagonal combinations (3,0) and (0,3), see Fig. 3(a). Our
extrapolated ground-state energy per site ε∞ = −2.43599
(from DMRG calculations) and sound velocity v = 2.58441
(from ED results with size L = 14) both agree very well with
the exact values ε∞ = − 2

√
3

π
− 4

3 and v = 3
√

3
2 from the Bethe

ansatz solution [50].
For the antiferromagnetic Z3 Potts model, we find c = 1

from the numerical fit of entanglement entropy [see Fig. 2(b)].
We have observed that the ground-state energy has an even-odd
dependence on the system size, so we extract conformal
dimensions from a chain with even system size L = 14 [see
Fig. 3(b)]. This is in agreement with the ED ground state
being located at momentum π . Our numerical results confirm
the U(1)6 CFT prediction for the antiferromagnetic three-state
Potts model, as well as the relevant primary fields in the
partition function (16). Moreover, the numerically computed
ground-state energy per site ε∞ = −1.816071 (from DMRG
calculations) and sound velocity v = 1.2883 (from ED results
with size L = 14) are also in very good agreement with
the exact values ε∞ = −

√
3

π
− 3

√
3

2 + 4
3 and v = 3

√
3

4 [50].
All low-lying excited levels can be matched up with CFT
predictions, including two nondiagonal combinations (1,0)
and (0,1).

Now we turn to N > 3. We confirm that, for N = 4,5,6,
the central charges of the ZN clock models with J1 = ±1 are
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(a)

(b)

FIG. 3. (Color online) Low-energy spectra of the quantum Z3

Potts model of size L = 14 with periodic boundary conditions for
(a) the ferromagnetic coupling J1 = 1 and (b) the antiferromagnetic
coupling J1 = −1. The spectra have been shifted and rescaled by
the exact values of the ground-state energy and the sound velocity
according to Eq. (18), so that the comparison to the CFT predictions
is more transparent. The open circles (squares) denote the energy
levels with Z3 quantum number Q = 0 (Q = ±1). The energy
levels corresponding to the CFT primary fields are labeled by their
conformal dimensions (h,h̄).

all equal to 1, in consistent with the field theoretical prediction
based on (14). In addition, we have extracted the conformal
dimensions of corresponding primary fields from the low-lying
excited states. For N = 4, the lowest six primary fields have
conformal dimensions h = 1/16,1/16,1/8,1/2,1/2,9/16, in
perfect agreement with the Z2 orbifold of a U(1) boson
compactified on a circle of radius R = 2 [61], which is just two
copies of Ising CFTs. For N = 5, regardless of the sign of the
coupling the lowest two conformal dimensions read h = 1/20
and 1/5, in agreement with the CFT of a compactified boson on
a circle of radius R = √

10 [62]. Thus we expect that for N � 5
all ZN clock models with J1 = ±1 are described by c = 1
free-boson CFT with a compactification radius R = √

2N .
We summarize these results in Table I.

TABLE I. Summary of the low-energy CFT descriptions of the
ZN clock model. “PF” is short for parafermion CFT. R is the
compactification radius of the U(1) boson CFT.

N Coupling CFT Remarks

2 AF/FM Ising
3 FM Z3 PF nondiagonal partition function
3 AF U(1)6 nondiagonal partition function
4 AF/FM U(1)4/Z2 R = 2
�5 AF/FM U(1)2N R = √

2N

IV. Z3 MODEL WITH UP TO NNN COUPLINGS

In this part we present the phase diagram of a Z3

parafermion chain with NN and NNN hoppings, which is
summarized in Fig. 4. We parametrize the two hopping
strengths by J1 = cos θ and J2 = sin θ . The Hamiltonian is
solved numerically by the DMRG method with open boundary
conditions. As expected, the whole phase diagram are filled
by critical phases. This is readily seen by calculating the
ground-state entanglement entropy as a function of the block
size x and fitting it with Eq. (17). From the scaling we also
read off the central charge c of the critical phase.

To accurately pin down the phase boundaries, we first
calculate numerically the ground-state energy density (i.e.,
energy per site) and its first- and second-order derivatives
with respect to θ to locate the phase transition points which
at the same time reveal the nature of the phase transitions.
In Fig. 5, we show the energy per site e0, its first and
second-order derivatives with respect to θ as a function of
θ . One can clearly see that the first-order derivative de0

dθ
is

c 1

c 0.8

c 2

c 1

c 2
c 1

Z3Z4

0.04 π

0.36 π0.57 π

1.17 Π

1.62 π

0.04 π

FIG. 4. (Color online) Phase diagram of the Z3 Potts model.
There are six critical phases labeled by different central charges.
There are two exactly solvable points at θ = 0 and π [49], which
extend to a c = 4

5 phase and a c = 1 phase, respectively. In addition,
there are two c = 2 critical phases, roughly centered around the θ = π

2
and θ = 3π

2 points. There also exist two c = 1 phases between the
c = 2 phases and the c = 4

5 phase. The positions of transition points
separating the c = 1 and c = 2 phases are determined by locating the
positions of peaks in second-order energy derivatives. The boundaries
between c = 4

5 and c = 1 phases are more subtle and can be extracted
from the entanglement data.
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FIG. 5. (Color online) Ground-state energy per site e0 and its
(first- and second-order) derivatives with respect to the parameter θ . eo

and its derivatives are seen to converge with increasing system sizes
nearly everywhere, except for θ in the vicinity of transition points
(diverging peaks of d2e0/dθ2). The four peaks (at 0.356π , 0.572π ,
1.168π , and 1.624π ) in the d2e0/dθ2 clearly signal continuous
transitions.

continuous and there are discontinuities in the second-order
derivative d2e0

dθ2 at θ ≈ 0.36π,0.57π,1.17π,1.62π . We then
calculate the central charge in different regions of the phase
diagram in order to identify the phases. We show the block
entanglement entropy for selected points in Fig. 6. This also
provides an alternative check of phase boundaries. We find
that the phase transitions between c = 1 and c = 2 phases
are very likely to be continuous, and in these cases the two
ways of obtaining the phase boundaries agree with each other
perfectly.

However, the energy and its derivatives do not show any
features near the “transition” between the c = 4

5 phase and
the neighboring c = 1 phases. This part of the phase diagram
near θ = 0 is particularly relevant to the recent studies of the
Fibonacci phase [32,34,63], so we carefully perform finite-size
scaling of the central charge to map out the phase diagram
in this region, see Fig. 7. We confirm that the c = 4

5 Z3

parafermion CFT region extends roughly from −0.04π to
0.04π , beyond which it is taken over by c = 1 phases. In order
to confirm there is indeed a phase transition, we calculate the
bipartite entanglement entropy around the “transition” point
and observe a clear jump as shown in Fig. 8, which implies
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FIG. 6. (Color online) Block entanglement entropy: (a) θ =
π/2,3π/2 with c = 2; (b) selected points in the two phases with
c = 1 above and below the c = 4

5 phase (0.05π < θ < 0.36π and
−0.05π < θ < −0.4π ).

a dramatic change of the ground-state wave function between
the c = 4

5 and c = 1 phases.
Regarding the nature of the transition between the c = 4

5
and c = 1 phases, there can be three possibilities theoretically,
all consistent with the numerical results. (1) The singularity
appears in third- or higher-order derivatives. (2) There is a
Kosterlitz-Thouless transition where the derivatives of the
energy with respect to the tuning parameter are smooth to
all orders. (3) It is a crossover instead of a phase transition.
Although we are limited by the accuracy of numerical
simulations, we believe a third-order phase transition is not
very likely. The third option is also unfavored due to the
abrupt change in the ground-state entanglement. We therefore
conjecture that the phase transition is of the Kosterlitz-
Thouless type.

Interestingly, near the θ = π
2 , 3π

2 points where there are
only NNN couplings one may naively think that the chain
can be decoupled as two copies of the model with only NN
hopping. This expectation is, however, not true. Due to the
unusual commutation algebra (1) between the parafermions,
the two “copies” do not commute and are still highly entangled.
This is quite different from the case of the Majorana hopping
model(N = 2 parafermion chain). When there are only NNN
coupling the even sites and the odd sites decouple from each
other and form two c = 1

2 CFTs. In the present case, for both
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5 , roughly ranging from θ =
−0.03π to θ = 0.03π .

AF and FM NNN couplings, we find c = 2, obtained by the
entanglement fitting in Fig. 6(a).

The nature of these c � 1 phases remains unclear. Due to
strong finite-size effect we are unable to identify the CFTs of
these phases except their central charges. In the following, we
calculate the spin-spin correlation functions C(x) ≡ 〈σiσ

†
i+x〉,

which may reveal useful information about the conformal
dimensions of the scaling fields in the CFT. We notice that
in general the CFT field identification of lattice operators is a
highly nontrivial problem [46], so caution should be taken in
interpreting the numerical results.

Let us start from the θ = 0,π exactly solvable points. It has
long been known that at θ = 0 the σi operators actually turn
into the twist field in the Z3 parafermion CFT with scaling
dimension 2

15 , so C(x) ∼ x−4/15 [46]. Similarly, at θ = π
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FIG. 8. (Color online) Bipartite entanglement entropy (Sb) by
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±0.05π ) between c = 4

5 and c = 1 regions. MPS bond dimension is
set to D = 300 in this calculation.
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†
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θ . The inset (log-log plot) illustrates the algebraic decay of absolute
values of CF with distance. (b) The static structure factor of the CFs,
revealing explicitly the long period of oscillations.

the σi turns into the twist field in the Z4 parafermion CFT
with scaling dimension 1

12 and C(x) ∼ x−1/3, which we have
verified numerically. In both cases, the identification of the
continuum limit of σi is rather straightforward.

Once we move away from the integrable points, the
behavior of the spin correlation function becomes more
complicated. We find that in the c = 1 phase, C(x) exhibits
oscillations whose characteristic wave vectors depend on θ

[see Fig. 9(a)]. This can be seen most easily from the peaks of
the static structure factor defined as S(k) = ∑L−1

x=1 cos kx C(x)
[see Fig. 9(b)]. This behavior is reminiscent of correlation
functions in a Luttinger liquid, which often exhibit oscillations
on the scale of Fermi wavelength. We also fit the decay
exponent of the envelop function of C(x) for two different
values of θ and in both cases the values are close to −1/3. It
is tempting to conjecture that the CFT in this phase is closely
related to U(1)6 CFT, but our data are still too preliminary to
draw any conclusions. We leave investigations of the CFT for
future works.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we numerically study the criticality of a
translation-invariant chain of ZN parafermion zero modes by
mapping to a ZN spin model. We completely characterize
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the low-energy CFT of the ZN parafermion chain with NN
couplings by a combination of DMRG and ED methods and the
results are in perfect agreement with theoretical predictions.
We also determine the phase diagram of the Z3 parafermion
chain with up to NNN couplings. We show that the introduction
of a relatively small NNN coupling (compared to the NN
coupling) can significantly alter the low-energy properties.
Phase transitions between different critical phases are also
characterized.

We now briefly discuss the physical implications of the
results. Parafermion zero modes can be realized at the edge of
some Abelian fractional quantum Hall states. For example, by
patterning alternating regions gapped out by electron tunneling
or s-wave pairing on the edge of a spin-unpolarized ν = 2/3
FQH state, Z3 parafermion zero modes are localized on the
domain walls [32] (a similar setup without superconductivity
is considered in Ref. [64]). Virtual tunneling of quasiparticles
across the gapped regions then splits the degeneracy, and
the effective low-energy Hamiltonian is given by (2). The
tunneling amplitudes decay exponentially with the separation
between domain walls, i.e., tij ∼ e−|xi−xj |/ξ , where xi is the
position of the parafermion zero modes and ξ is the correlation
length. To the leading approximation, if the domain walls are
evenly separated, they collectively realize a Z3 parafermion
CFT. Our results show that Z3 parafermion CFT is destablized
if tNNN/tNN is larger than a critical value which we estimate
to be tan 0.04π ≈ 0.12, which roughly corresponds to the
separation between NN sites being ∼2ξ .

We also emphasize that the criticality is protected
by translation invariance. This should be compared to
the topological symmetry that protects gapless phases
in other one-dimensional models of non-Abelian anyonic
chains [35,36,40]. In fact, one can realize such a ZN

parafermion chain on the edge of a translation-symmetry
enriched topological phase naturally. An exactly solvable

model of this type on a square lattice has been recently studied
in Ref. [22]. The topological order in the bulk is identical
to that of the ZN toric code (or equivalently, a ZN lattice
gauge theory coupled to matter). However, the translation
symmetry has a nontrivial interplay with the topological
order: the elementary electric charge and the magnetic charge
are exchanged under lattice translations. As a result, ZN

parafermion zero modes appear on the lattice dislocations.
This model also has gapless edge modes if the edge preserves
the translation invariance of the system. One can show that the
edge can be described by (2) exploiting a parafermionic parton
representation of the model. The translation symmetry on the
edge is inherited from that of the bulk. One might wonder
whether the generalized Jordan-Wigner transformation breaks
the translation invariance by hand when the parafermion zero
modes are grouped to form ZN spins [65].
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