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We study a Luttinger liquid (LL) coupled to a generic environment consisting of bosonic modes with arbitrary
density-density and current-current interactions. The LL can be either in the conducting phase and perturbed by
a weak scatterer or in the insulating phase and perturbed by a weak link. The environment modes can also be
scattered by the imperfection in the system with arbitrary transmission and reflection amplitudes. We present a
general method of calculating correlation functions under the presence of the environment and prove the duality
of exponents describing the scaling of the weak scatterer and of the weak link. This duality holds true for a broad
class of models and is sensitive to neither interaction nor environmental modes details, thus it shows up as the
universal property. It ensures that the environment cannot generate new stable fixed points of the renormalization
group flow. Thus, the LL always flows toward either conducting or insulating phase. Phases are separated by a
sharp boundary which is shifted by the influence of the environment. Our results are relevant, for example, for
low-energy transport in (i) an interacting quantum wire or a carbon nanotube where the electrons are coupled
to the acoustic phonons scattered by the lattice defect; (ii) a mixture of interacting fermionic and bosonic cold
atoms where the bosonic modes are scattered due to an abrupt local change of the interaction; (iii) mesoscopic
electric circuits.
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The Luttinger liquid (LL) is the canonical model which
describes low-energy properties of low-dimensional interact-
ing systems [1–3]. Its applicability is amazingly broad (see
the book [4] for a review) and ranges from quantum wires
and carbon nanotubes [5], to fractional and spin quantum
Hall systems [6–9], to mesoscopic electric circuits [10,11],
to name a few. Recent increasing interest in the LLs has been
stimulated by the theoretical progress in understanding physics
of cold gases [12] and topological insulators [13] where the
LL again plays the role of one the basic models [14,15].
Quasiparticles in the LL are collective waves, or plasmons,
described by the universal low-energy theory which can be
derived for fermionic [16] and for bosonic [17] interacting
systems. It yields a power-law decay of correlation functions
which have been detected experimentally via conductance
measurements and a scanning tunneling microscopy both in
carbon nanotubes [18–20] and quantum nanowires [21–24].
The correlation functions, in their turn, govern scaling behavior
of different perturbations, applied to the LL, and related
physical observables. For example, low-energy transport in
the LL is extremely sensitive to imperfections. Two archetypal
cases are usually considered: (i) the ideal LL, i.e., perfectly
conducting phase (CP), can be perturbed by a short-range
weak scatterer (WS); (ii) two ideal LLs on disjoint left/right
half-axes, i.e., insulating phase (IP), can be connected via
a weak-tunneling contact: the weak-link (WL) perturbation.
Both perturbations scale with changing the smallest energy in
the system, which can be temperature or bias. Their scaling
exponents �WS and �WL are system dependent [25–31],
however, they are related by the universal formula

�WS × �WL = 1 . (1)

Equation (1) is often referred to as the duality relation between
the WS and the WL. It was shown [25] that Eq. (1) follows

from the duality of fields whose correlation functions yield
�WS and �WL. The perturbation is relevant (irrelevant) if its
scaling dimension is smaller (greater) than Euclidean space
dimension d; d = 1 for a local perturbation. Therefore, the
duality (1) asserts that only one of these two perturbations is
relevant, the second one being irrelevant. Reformulating in the
renormalization group (RG) language, only one phase, either
the CP or the IP, corresponds to the stable fixed point of the RG
flow, the second phase is unstable. This immediately explains
transport properties of the system: if the WS is irrelevant and
the WL is relevant, the system is driven to the CP and it is
driven to the IP in the opposite case. The duality relation has
been demonstrated for a single LL not coupled to anything
else, for example, surrounding bath or environment. Without
environment attractive fermions and repulsive bosons fall into
the CP limit while repulsive fermions to the IP one.

The natural question is whether the duality is robust and
survives in more complex systems, like the LL coupled via the
density-density interaction to a single massless bosonic mode,
e.g., to the mode of acoustic phonons [32–34]. Surprisingly,
elaborated and rather lengthy calculations have shown that
the duality (1) holds true for an arbitrary set of systems
parameters, including the reflection amplitude of the phonon
mode from the imperfection [35]. It has been assumed that the
phonon sees the imperfection as an elastic pointlike scatterer.
Unfortunately, the cumbersome calculus did not allow the
authors to identify the origin of the duality. The breakthrough
has been achieved by one of us in the recent paper [36]. By
using a new method, N coupled LLs have been considered
for the case of the generic intermode interactions which
may include density-density and/or current-current channels.
For Nc conducting and Ni = N − Nc insulating phases,
a universal description of the Green’s functions has been
obtained which has manifested the duality of two sets of
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FIG. 1. (Color online) The system under consideration: the envi-
ronment consists of an arbitrary number of bosonic channels (dotted
lines) which interact (red wavy lines) with each other and with the
Luttinger liquid; the interchannel interaction is also implied though
not drawn. The bosonic modes can be scattered by the imperfection
(shadowed box) described by the arbitrary scattering/transmission
amplitudes R̂, T̂ . The LL is either in the conducting phase (upper
panel) and is perturbed by a weak scatterer (green box), or it is in the
insulating phase (lower panel) and is perturbed by a weak tunneling
(arrows connecting two half-axes).

the local correlation functions under interchanging CP and IP
subsystems. This explains the origin of the duality discovered
in Ref. [35] in the cases of freely propagating and fully
reflected phonons. In spite of a noticeable progress, only
several particular cases were considered in [35,36] and the
answers were obtained after lengthy algebra. For instance, only
fully reflected or freely propagating scatterers were addressed
in Ref. [35]; transport at small but finite energy would not allow
the classification of the subsystems onto the CPs and the IPs
and it is beyond the scope of Ref. [36]. Therefore, a complete
explanation of the duality origin and a clear understanding of
its applicability were still missing.

In this paper, we present an improved version of the
analytical method which allows us to remove all listed
above restrictions of the previous studies and to clearly
formulate the class of systems where the duality of the given
scaling exponents is present. The system which we consider
consists of the LL coupled to N − 1 massless modes of
the environment (see a sketch on Fig. 1). The LL is in
one of the phases, either the CP, the upper panel of Fig. 1,
or the IP, the lower panel of Fig. 1. The intrachannel and
interchannel interactions are arbitrary: density-density and/or
the current-current interactions between all modes and chan-
nels. The current and the density are proportional to the
derivatives of the chiral bosonic fields and, therefore, the
effective bosonized action is quadratic. The imperfection,
located at the point x = 0, is capable of driving the LL
from the WS to the WL setup and it may cause an arbitrary
single-particle scattering of the environmental modes. The
only assumption on the environmental modes scattering is
that they can be described within quadratic theory in the

bosonic degrees of freedom with proper boundary conditions at
x = 0. Particles forming LL are assumed to be of a different
nature from those providing environmental bath. Therefore,
local scatterer enables transitions within LL and within the
environment but not mixing these two subspaces. Without loss
of generality, we assume the inversion (left↔right) symmetry
of translational-invariant system and the reflection symmetry
when a scatterer is placed at the origin.

We rigorously prove that the duality relation (1) holds
true under these very general conditions. This, in particular,
means that the environment is capable of neither modifying
the stability of the RG fixed points for the single LL nor
creating the new ones, unless multiparticle scattering is taken
into account or the RG flow becomes multidimensional due to
additional nonlinearities. Note that, in this paper, we consider
only a single LL coupled to quadratic bath and postpone above
extensions of the model for further studies.

Let us now specify the model in more details and outline
the main steps of the calculations. Detailed derivations can
be found in Appendices. We assume that N one-dimensional
(1D) channels each supporting two chiral modes (labeled by
η = R, L) are described by the Lagrangian density

L = 1

4π
�T (τ̂3 ∂t + V̂ ∂x) ∂x� , (2)

with bosonic real fields

�T = (
θT

R,θT
L

)
, θT

η = (
θ (1)
η , . . . ,θ (N)

η

)
, (3)

and with real time running over both Keldysh branches. Pauli
matrices τ̂j act in chiral space, i.e., in space of right and left
movers. The densities of chiral modes in the ith channel are
related to the chiral fields as ρ

(i)
R/L = ± ∂xθ

(i)
R/L/2π . Diagonal

entries of the 2N × 2N matrix V̂ describe chiral channels
with velocities being renormalized due to the intrachannel
interactions; the off-diagonal elements are strengths of inter-
channel interactions between chiral densities. The matrix V̂

is obviously real and symmetric but its exact structure is not
important for our purposes. We only assume the presence of
inversion symmetry, i.e., the Lagrangian is invariant under
transformation

�(x) → τ̂1 �(−x). (4)

Note that (1) the choice of origin is irrelevant so far since
we are dealing with the translational-invariant system at
the moment; and (2) that inversion symmetry implies that
arbitrary density-density interaction between chiral channels
is reduced to density-density and current-current channel
nonchiral interactions. Thus, the symmetries of the matrix V̂

are

V̂ = V̂ T, τ̂1 V̂ τ̂1 = V̂ . (5)

Let us now add the imperfection at x = 0. It can be naturally
described by implying the boundary (matching) conditions.
We choose to use the transfer matrix T̂

� (+0) = T̂ � (−0) . (6)

The transfer matrix T̂ must respect reflection symme-
try, i.e., inversion symmetry around the origin, under the
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transformation (4), which requires

τ̂1 T̂ τ̂1 = T̂ −1. (7)

We use notations for the fields θη(±0) = θη(x =±0,ω) in
the frequency domain, the latter allows one to accommodate
possible energy dependence of scattering amplitudes. The
transfer matrix can be written in terms of entries of the
scattering matrix Ŝ(

θR(+0)

θL(−0)

)
= Ŝ

(
θL(+0)

θR(−0)

)
, (8)

which also must respect reflection symmetry and, therefore,
obeys τ̂1 Ŝ τ̂1 = Ŝ and can be parametrized with only two N ×
N reflection and transmission matrices

Ŝ =
(

R̂ T̂

T̂ R̂

)
. (9)

The transfer matrix is expressed in terms of T̂ and R̂ as
follows:

T̂ =
(

T̂ − R̂T̂ −1R̂ R̂T̂ −1

−T̂ −1R̂ T̂ −1

)
. (10)

In the model which we consider, the particles forming LL (the
first channel) cannot be transformed into environment particles
at the impurity since they all are of different nature; therefore,
R̂ and T̂ are block diagonal:

R̂ =
(

R 0

0 r̂

)
, T̂ =

(
T 0

0 t̂

)
. (11)

Here, the LL channel and the environment are described by
scalars R and T and by (N − 1) × (N − 1) matrices r̂ and t̂ ,
respectively.

Let us diagonalize the Lagrangian by a transformation

�(x) = M̂ �̃(x) (12)

which must (i) keep τ̂3 invariant

M̂Tτ̂3M̂ = τ̂3 (13)

[cf. the first term in Eq. (2)]; and (ii) simultaneously diagonal-
ize the matrix V̂ which contains interactions

v̂ = M̂T V̂ M̂ = diag(v1, . . . ,vN ; v1, . . . ,vN ). (14)

The matrix M̂ is real and belongs to the pseudo-orthogonal
group O(N,N ) [see Eq. (13)]. We note that Eq. (13) is
equivalent to the preservation of the Kac-Moody algebra in
operator technique

[�̂(x),�̂
T
(x ′)] = iπ sign(x − x ′) τ̂3, (15)

with [�̂(x),�̂
T
(x ′)] ≡ �̂(x) ⊗ �̂

T
(x ′) − �̂(x ′) ⊗ �̂

T
(x).

In Eq. (14), we have taken into account the reflection
symmetry on the initial (interacting) problem via the relation
v̂ = τ̂1 v̂ τ̂1 which holds true if

τ̂1 M̂ τ̂1 = M̂. (16)

Equations (13) and (16) define the full symmetry of the
transformation matrix M̂ [37].

To resolve all above-formulated symmetry restrictions, we
can parametrize the transformation matrix M̂ with a single
N × N matrix M̂:

M̂ = 1 − τ1

2
⊗ M̂ + 1 + τ1

2
⊗ (M̂−1)T. (17)

After diagonalization of the Lagrangian, one obtains the
theory in terms of free noninteracting fields �̃ scattered
by the imperfection. These free fields have a very simple
Green’s function i ˆ̃G = 〈�̃ ⊗ �̃

T〉 which can be written in
the standard scattering state representation [38]. The latter
requires boundary conditions for �̃ which are obtained after
inserting Eq. (12) into (6):

�̃(+0) = ˆ̃T �̃(−0), ˆ̃T = M̂−1 T̂ M̂. (18)

Due to the symmetry (16), the new transfer matrix ˆ̃T has the
same structure as T̂ [cf. Eq. (10)], but with new scattering
amplitudes ( ˆ̃R, ˆ̃T ) [39].

The Green’s function of the original fields Ĝ can be found
from the transformation (12):

Ĝ(x,x ′) = M̂ ˆ̃G(x,x ′)M̂T. (19)

The matrix M̂ depends neither on coordinates nor on time.
Therefore, the relation between Ĝ and ˆ̃G is local. Equation (19)
completes the formal description of the system so we have
all information which is necessary to calculate the scaling
dimension of the WS and of the WL.

These perturbations acting in the LL channel are described
by [36]

LWS = λ cos[�(T = 1)], (20)

LWL = t cos[�(T = 0)], (21)

where the field � is the difference between two (right- and
left-) incoming chiral fields of the first channel

�(T ) = θ
(1)
R (x = −0,t) − θ

(1)
L (x = +0,t). (22)

The notation in Eqs. (20)–(22) stresses that the field � (and
its correlation function) depends on boundary conditions and,
in particular, on boundary conditions in the LL channel.
In Eq. (20), we assume that the LL channel is in the CP
with T = 1, R = 0 and it is perturbed by LWS. In the IP
with T = 0, R = 1 the LL channel is perturbed by LWL.
After integrating out high-energy degrees of freedom with the
energy lying above the running cutoff ε, the Green’s function
G = −i〈��〉 with retarded component

G = − 2πi

ω + i0
�11(T )

defines one-loop RG equations

∂ ln λ

∂ ln ε
= �WS − 1,

∂ ln t

∂ ln ε
= �WL − 1,

where

�WS = �11(T = 1), �WL = �11(T = 0). (23)
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The scattering and the tunneling amplitudes acquire an
effective power-law dependence on the smallest energy scale:

λ(ε) ∼ λ ε�WS−1, t(ε) ∼ t ε�WL−1. (24)

The scaling exponent �11(T ) is found from the local Green’s
function at the origin and can be written as “11” element of
the N × N matrix �̂ defined in the channel space:

�̂(T ) = 1
2M̂ [1 − ˆ̃R + ˆ̃T ] M̂T + 1

2 (M̂−1)T [1 + ˆ̃R − ˆ̃T ] M̂−1.

(25)

Equation (25) can be reduced to [40]

�̂(T ) = [ξ̂−1 + δ̂−1]−1 + [ξ̂ + δ̂]−1, (26)

where

ξ̂ = 1 − (R̂ − T̂ )

1 + (R̂ − T̂ )
, δ̂ = M̂ M̂T. (27)

The matrix δ̂ depends on interaction only and defines the
scaling exponent in the absence of environment. Taking into
account the block-diagonal structure of the matrices R̂ and T̂

[Eq. (11)], the matrix ξ̂ is also block diagonal

ξ̂ =
(

ξ 0

0 ζ̂

)
, (28)

where we have introduced the scalar ξ and the (N − 1) ×
(N − 1) matrix ζ̂ :

ξ = 1 − (R − T )

1 + (R − T )
, ζ̂ = 1 − (r̂ − t̂)

1 + (r̂ − t̂)
. (29)

The scalar ξ describes the phase of the LL: (i) ξ = ∞
for conducting phase (T = 1,R = 0) perturbed by WS; and
(ii) ξ = 0 for insulating phase (T = 0,R = 1) perturbed by
WL. The matrix ζ̂ describes scattering of bath modes. It is
arbitrary because no additional assumptions were implied, i.e.,
by the proper choice of the reflection and the transmission
matrices we can take into account the arbitrary environmental
scattering.

Finally, combining Eqs. (23)–(28) we arrive at our main
result

�WS = lim
ξ→∞

�̂11 =
[
δ̂−1 +

(
0 0

0 ζ̂−1

)]−1

11

, (30)

�WL = lim
ξ→0

�̂11 =
[
δ̂ +

(
0 0

0 ζ̂

)]−1

11

. (31)

It gives explicit expressions for scaling dimensions of opera-
tors which perturb the LL. The well-known expression for the
scaling exponents in the case of a single LL can be obtained
from Eqs. (30) and (31) straightforwardly [41]. The duality
relation (1) directly results from the structure of matrices in
Eqs. (30) and (31) [42]. The duality is universal: details of bath
scattering ζ̂ and of interactions δ̂ are all irrelevant.

To conclude, we have proven that the duality between
the weak-scatterer and the weak-link scaling exponents holds
true in the system where the Luttinger liquid is coupled to a
very generic environment. The duality guarantees the same
classification of the fixed stable points of the RG flow as
in the isolated LL [25,26], the coupling to the environment

is unable to create new stable fixed points. The duality and
the structure of the RG flow are universal and very robust
because (i) the duality relation is insensitive to parameters
of the LL, of the environment, and of the coupling; (ii) the
type of the coupling does not influence the duality, so it can
be arbitrary chiral density-density interactions; and (iii) the
scattering of the environmental modes by the imperfection can
be arbitrary, the duality and the RG fixed points survive even
opening the system when the number of coherent particles
at the imperfection is not conserved (but cf. [43]). We have
restricted ourselves to a system with the reflection symmetry.
This assumption is only a technical simplification which can
be easily removed without changing our results. The necessary
condition for the duality of the scaling exponents is the
Kac-Moody algebra [Eq. (15)] [or related duality of linear
combinations of the chiral fields θR ± θL]. It leads to the
symmetry relation (13) and allows one to derive Eq. (26).
Based on our results, we can define the universality class
where the duality is always present due to the symmetry (13):
it includes the systems where there are no (i) direct transitions
between the LL and the environment at the imperfection,
(ii) multiparticle scattering, (iii) additional nonlinearities
except those which are related to the WS and the WL
perturbations. Presence of any of these three effects could
change the RG drastically, but such extensions are beyond the
scope of this paper and will be considered elsewhere.

In real experiments, our model is applicable, for instance, to
an interacting quantum wire or a carbon nanotube where the
electrons are coupled to the acoustic phonons scattered by
the lattice defect [32]. Another physical realization is a mixture
of interacting fermionic and bosonic cold atoms where the
bosonic modes are scattered due to an abrupt local change of
the interaction [44].

O.M.Ye. acknowledges support from the DFG through
SFB-TR12, and the Cluster of Excellence, Nanosystems
Initiative Munich. I.V.Y. acknowledges hospitality of the
Ludwig Maximilians University, Arnold Sommerfeld Center,
Munich.

APPENDIX A: DIAGONALIZATION OF
THE LAGRANGIAN

Let us prove that the Lagrangian (2), with the matrix V̂

obeying symmetry relations

V̂ T = V̂ , τ̂1 V̂ τ̂1 = V̂ , (A1)

can be diagonalized with the help of the matrix M̂, which has
the symmetries

M̂T τ̂3 M̂ = τ̂3, τ̂1 M̂ τ̂1 = M̂. (A2)

It is convenient to introduce rotated matrices

V̂L = L̂ V̂ L̂−1, M̂L = L̂M̂ L̂−1, (A3)

with

L̂ = 1√
2

(
1 −1

1 1

)
, L̂−1 = L̂T. (A4)
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Having noticed that

L̂τ̂3 = τ̂1L̂, (A5)

the symmetry relations in the new basis read as

V̂ T
L = V̂L, τ̂3 V̂L τ̂3 = V̂L; (A6)

M̂T
L τ̂1 M̂L = τ̂1, τ̂3 M̂L τ̂3 = ML. (A7)

These constraints are solved by the

V̂L = diag(V̂1,V̂2), V̂ T
i = V̂i , i = 1,2 (A8)

M̂L = diag[M̂,(M̂−1)T]. (A9)

Now, to prove validity of Eq. (14), we will construct the matrix
M̂. We repeat Eq. (14) for the convenience of readers:

M̂T V̂ M̂ = v̂ = diag(v̂d ,v̂d ) ; v̂d ≡ diag(v1, . . . ,vN ).

(A10)

Rotating this equation by the matrix L̂, we find

M̂T
L V̂L M̂L = v̂, (A11)

which, due to the block-diagonal structure of V̂L and M̂L,
breaks into two simultaneous diagonalizations

M̂T V̂1 M̂ = v̂d , M̂−1 V̂2 (M̂−1)T = v̂d . (A12)

The matrix V̂1 is symmetric [Eq. (A8)] and real (see the main
text). Therefore, we can write a decomposition

V̂1 = ÔT
1 λ̂1 Ô1, (A13)

where Ô1 is the orthogonal matrix and λ̂1 is the diagonal
matrix of positive (to provide stability of the Luttinger liquid)
eigenvalues. The first Eq. (A12) allows us to write

M̂ = ÔT
1 λ̂

−1/2
1 μ̂, μ̂Tμ̂ = v̂d (A14)

and we can choose

μ̂ = ÔT (v̂d )1/2, ÔTÔ = 1. (A15)

We note that the orthogonal matrix Ô is arbitrary so far and we
will find it by using the second Eq. (A12). Namely, inserting
Eqs. (A14) and (A15) into the second Eq. (A12), we obtain

M̂−1 V̂2 (M̂−1)T = μ̂−1 Â (μ̂−1)T = v̂d , (A16)

where we have introduced the auxiliary real symmetric matrix

Â = λ̂
1/2
1 Ô1 V̂2 ÔT

1 λ̂
1/2
1 = ÔT (v̂d )2 Ô; (A17)

the latter equality results form Eqs. (A15) and (A16). Equa-
tion (A17) fixes the matrix Ô. Thus, we have constructed the
matrix M̂ for the arbitrary matrices V̂1,2. This completes the
proof.

APPENDIX B: GREEN’S FUNCTIONS

Let us consider the Green’s function ˆ̃G(x,x ′,ω) of nonin-
teracting chiral bosons

i ˆ̃G = 〈�̃ ⊗ �̃
T〉, �̃

T = (
θ̃

T
R,θ̃

T
L

)
, θ̃

T
η = (

θ̃ (1)
η , . . . ,θ̃ (N)

η

)
.

(B1)

The Green’s function without any scatterer is diagonal in the
space of channels and its retarded component reads as [cf.
Eq. (2) in the main text]

ĝ−1 = 1

2π
(τ̂3∂t + v̂∂x)∂x ⇒ ĝ(q; ω+) = 2π

(τ̂3ω+ − v̂q)q
,

ω+ ≡ ω + i0 (B2)

with the Pauli matrices τ̂k acting in the chiral space and the
diagonal 2N × 2N matrix v̂ being defined in Eq. (14) of the
main text. Calculating the Fourier transform, we find

ĝ(x − x ′; ω+) = g0 ei
|x−x′ |ω+

v̂

(
θ (x − x ′) 0

0 θ (x ′ − x)

)

− g0

2
τ̂3 sign(x − x ′), g0 ≡ −2πi

ω+
(B3)

where θ (x) is the step function.
Let us now add a scatterer at x = 0, which will be described

by its transmission and reflection amplitudes. In the scattering
state representation, we have to introduce incoming/outgoing
fields

�̃out ≡
(

θ̃R(x = +0)

θ̃L(x = −0)

)
, �̃in ≡

(
θ̃L(x = +0)

θ̃R(x = −0)

)
(B4)

[cf. Eq. (8) in the main text]. The correlation function of these
fields

iĜa,b ≡ 〈�̃a ⊗ �̃b〉 , a,b = in/out (B5)

can be introduced as usually:
(1) Correlations of “in-in” and “out-out” fields are not

affected by the scatterer and, therefore,

Ĝin,in(ω) = Ĝout,out(ω) = ĝ(ω+,0) = g0

2
⊗ 12N×2N . (B6)

(2) Incoming fields are independent on the outgoing ones,
i.e., they are not correlated:

Ĝin,out(ω) = 0. (B7)

(3) Correlations of outgoing fields with incoming ones are
given by the scattering matrix

Ĝout,in(ω) = g0
ˆ̃S, ˆ̃S =

(
ˆ̃R ˆ̃T
ˆ̃T ˆ̃R

)
(B8)

[see Eq. (9) in the main text]; here, N × N matrices T̂ and R̂

are transmission and reflection amplitudes, respectively, and
we have taken into account the symmetry of the scattering
matrix with respect to the matrix τ̂1 due to the reflection
symmetry.

Combining Eqs. (B6)–(B8), we determine the Green’s
function ˆ̃G(x,x ′ → 0):

ˆ̃G++ ≡ ˆ̃G(x → +0,x ′ → +0) = g0

(
1/2 ˆ̃R

0 1/2

)
, (B9)

ˆ̃G+− ≡ ˆ̃G(x → +0,x ′ → −0) = g0

(
ˆ̃T 0

0 0

)
, (B10)
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ˆ̃G−+ ≡ ˆ̃G(x → −0,x ′ → +0) = g0

(
0 0

0 ˆ̃T

)
, (B11)

ˆ̃G−− ≡ ˆ̃G(x → −0,x ′ → −0) = g0

(
1/2 0

ˆ̃R 1/2

)
. (B12)

The Green’s function of the original chiral modes

iĜ = 〈� ⊗ �T〉, �T = (
θT

R,θT
L

)
, θT

η = (
θ (1)
η , . . . ,θ (N)

η

)
(B13)

is related to ˆ̃G as

Ĝ(x,x ′) = M̂ ˆ̃G(x,x ′)M̂T (B14)

[see Eq. (19) in the main text]. Ĝ(x,x ′) is needed at x,x ′ = ±0 only, thus we introduce Ĝ±± ≡ Ĝ(x = ±0,x ′ = ±0) and
express it in terms of ˆ̃G±±:

(
Ĝ++ Ĝ+−
Ĝ−+ Ĝ−−

)
=

(
M ˆ̃G++MT M ˆ̃G+−MT

M ˆ̃G−+MT M ˆ̃G−−MT

)
= g0

⎛
⎜⎜⎜⎜⎝
M

(
1/2 ˆ̃R

0 1/2

)
MT M

(
ˆ̃T 0

0 0

)
MT

M
(

0 0

0 ˆ̃T

)
MT M

(
1/2 0

ˆ̃R 1/2

)
MT

⎞
⎟⎟⎟⎟⎠ . (B15)

APPENDIX C: TRANSFER MATRIX AND
SCATTERING AMPLITUDES

Right ↔ left (inversion) symmetry of the system requires
the following symmetry properties of the scattering and
transfer matrices:

Ŝ = τ̂1 Ŝ τ̂1 and τ̂1 T̂ τ̂1 = T̂ −1. (C1)

The first symmetry relation means

Ŝ11 = Ŝ22, Ŝ12 = Ŝ21,

i.e., Ŝ can be parametrized with only two N × N reflection
and transmission matrices:

Ŝ =
(

R̂ T̂

T̂ R̂

)
. (C2)

The second symmetry relation results in(
T̂22T̂11 + T̂ 2

21 T̂22T̂12 + T̂21T̂22

T̂11T̂21 + T̂12T̂11 T̂11T̂22 + T̂ 2
12

)
= 1. (C3)

Thus, T̂ can be parametrized, for example, by elements T̂11

and T̂22:

T̂ =
(

T̂11

√
1 − T̂11T̂22

−
√

1 − T̂22T̂11 T̂22

)
. (C4)

Using definitions of the scattering and transfer matrices
[Eqs. (6) and (8) in the main text], and excluding T̂21 with the
help of Eq. (C3), one can find the relation between scattering
and transfer matrices:

Ŝ =
(
T̂12T̂ −1

22 T̂11 − T̂12T̂ −1
22 T̂21

T̂ −1
22 −T̂ −1

22 T̂21

)

=
(
T̂12T̂ −1

22 T̂ −1
22

T̂ −1
22 T̂12T̂ −1

22

)
=

(
R̂ T̂

T̂ R̂

)
. (C5)

Therefore, T̂22 = T̂ −1 and T̂12 = R̂T̂ −1 and, using again
Eq. (C3), we arrive at

T̂ =
(

T̂ − R̂T̂ −1R̂ R̂T̂ −1

−T̂ −1R̂ T̂ −1

)
. (C6)

After diagonalization of Lagrangian by the transformation

�(x) = M̂ �̃(x), (C7)

we have to rotate the transfer matrix

ˆ̃T = M̂−1 T̂ M̂. (C8)

Note that M̂ = τ1 M̂ τ1 and it can be parametrized as follows:

M̂ = L̂−1 M̂L̂, M̂ = diag{M̂1 , M̂2}, (C9)

where

L̂ = 1√
2

(
1 −1

1 1

)
, L̂−1 = L̂T. (C10)

Equation (C9) is equivalent to Eq. (17) in the main text after
substituting M̂ → M̂1 , and (M̂−1)T → M̂2. The symmetry of
the transfer matrix in the system with the inversion symmetry

ensures that the matrix ˆ̃T has the same structure as T̂ , but
with different scattering amplitudes:

ˆ̃T =
⎛
⎝ ˆ̃T − ˆ̃R ˆ̃T

−1 ˆ̃R ˆ̃R ˆ̃T
−1

− ˆ̃T
−1 ˆ̃R ˆ̃T

−1

⎞
⎠ . (C11)

Now, we will find relations between ( ˆ̃R, ˆ̃T ) and (R̂, T̂ ).
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Let us introduce (auxiliary) rotated transfer matrices

T̂ L = L̂ T̂ L̂−1 = 1

2

(
T̂ + (1 − R̂) T̂ −1 (1 + R̂) T̂ − (1 − R̂) T̂ −1 (1 − R̂)

T̂ − (1 + R̂) T̂ −1 (1 + R̂) T̂ + (1 + R̂) T̂ −1 (1 − R̂)

)
(C12)

and

ˆ̃T
L = L̂ ˆ̃T L̂−1 = 1

2

⎛
⎝ ˆ̃T + (1 − ˆ̃R) ˆ̃T

−1
(1 + ˆ̃R) ˆ̃T − (1 − ˆ̃R) ˆ̃T

−1
(1 − ˆ̃R)

ˆ̃T − (1 + ˆ̃R) ˆ̃T
−1

(1 + ˆ̃R) ˆ̃T + (1 + ˆ̃R) ˆ̃T
−1

(1 − ˆ̃R)

⎞
⎠ . (C13)

The matrix ˆ̃T
L

can also be expressed via entries of T̂ L:

ˆ̃T
L = M̂−1 T̂ L M̂ =

(
M̂−1

1 T̂ L
11M̂1 M̂−1

1 T̂ L
12M̂2

M̂−1
2 T̂ L

21M̂1 M̂−1
2 T̂ L

22M̂2

)
. (C14)

Using the identity L̂−1τ̂1L̂ = τ̂3, one can prove that the matrix T̂ L obeys the symmetry

τ̂3 T̂ L τ̂3 = (T̂ L)−1, (C15)

which means ⎛
⎝[

T̂ L
11

]2 − T̂ L
12 T̂ L

21 −T̂ L
11 T̂ L

12 + T̂ L
12 T̂ L

22

T̂ L
21 T̂ L

11 − T̂ L
22 T̂ L

21

[
T̂ L

22

]2 − T̂ L
21 T̂ L

12

⎞
⎠ = 1. (C16)

Thus, we can parametrize T̂ L by, for example, its off-diagonal entries

T̂ L
11 =

√
1 + T̂ L

12 T̂ L
21, T̂ L

22 =
√

1 + T̂ L
21 T̂ L

12 . (C17)

A straightforward algebra yields

T̂ L = 1

2

(
T̂ L

11 −(1 − R̂ + T̂ ) T̂ −1 (1 − R̂ − T̂ )

−(1 + R̂ + T̂ ) T̂ −1 (1 + R̂ − T̂ ) T̂ L
22

)
(C18)

=
(

T̂ L
11 [(1 − R̂ + T̂ )−1 − (1 − R̂ − T̂ )−1]−1

[(1 + R̂ + T̂ )−1 − (1 + R̂ − T̂ )−1]−1 T̂ L
22

)
. (C19)

The same manipulations with Eq. (C14) yield

ˆ̃T
L =

⎛
⎝ ˆ̃T L

11 [(1 − ˆ̃R + ˆ̃T )−1 − (1 − ˆ̃R − ˆ̃T )−1]−1

[(1 + ˆ̃R + ˆ̃T )−1 − (1 + ˆ̃R − ˆ̃T )−1]−1 ˆ̃T
L

22

⎞
⎠ . (C20)

Combining Eqs. (C14), (C18), and (C20) and inverting matrix entries, we find

from entries {1,2} : (1 − ˆ̃R + ˆ̃T )−1 − (1 − ˆ̃R − ˆ̃T )−1 = M̂−1
2 [(1 − R̂ + T̂ )−1 − (1 − R̂ − T̂ )−1] M̂1; (C21)

from entries {2,1} : (1 + ˆ̃R + ˆ̃T )−1 − (1 + ˆ̃R − ˆ̃T )−1 = M̂−1
1 [(1 + R̂ + T̂ )−1 − (1 + R̂ − T̂ )−1] M̂2. (C22)

To solve these equations, we parametrize

Ŝ± = R̂ ± T̂ = 1 − ξ̂±
1 + ξ̂±

⇒ 1 − Ŝ± = 2ξ̂±
1 + ξ̂±

and 1 + Ŝ± = 2

1 + ξ̂±
(C23)

and

ˆ̃S± = ˆ̃R ± ˆ̃T = 1 − ˆ̃ξ±
1 + ˆ̃ξ±

⇒ 1 − ˆ̃S± = 2 ˆ̃ξ±
1 + ˆ̃ξ±

and 1 + ˆ̃S± = 2

1 + ˆ̃ξ±
, (C24)

and reduce Eqs. (C21) and (C22) to

ˆ̃ξ
−1

+ − ˆ̃ξ
−1

− = M̂−1
2 [ξ̂−1

+ − ξ̂−1
− ] M̂1, (C25)

ˆ̃ξ+ − ˆ̃ξ− = M̂−1
1 [ξ̂+ − ξ̂−] M̂2. (C26)
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The obvious solution of Eqs. (C25) and (C26), which relates
( ˆ̃R, ˆ̃T ) and (R̂, T̂ ), reads as

ˆ̃ξ± = M̂−1
1 ξ̂± M̂2. (C27)

The second solution of Eqs. (C25) and (C26) can be obtained
after noticing that they are invariant with respect to transfor-
mation ˆ̃ξ+ ↔ − ˆ̃ξ−. Applying this transformation to Eq. (C27)
we find

ˆ̃ξ± = −M̂−1
1 ξ̂∓ M̂2. (C28)

Note, however, that the solutions (C28) do not satisfy the
continuity. Namely, in the noninteracting case, where M̂1 =
M̂2, we require ˆ̃ξ± = ξ̂± which holds true only for the solution
(C27).

APPENDIX D: AUTOCORRELATION FUNCTION �̂

Both weak-scatterer and weak-link perturbations can be
written in a unified way [see Eqs. (20) and (21) in the main
text]:

LWS = λ cos[�(T = 1)], (D1)

LWL = t cos[�(T = 0)], (D2)

where the field �(T ) is the difference between two incoming
chiral fields of the first channel for the conducting phase (T =
1) and for the insulating phase (T = 0):

�(T ) = [
θ

(1)
R (x = −0,t) − θ

(1)
L (x = +0,t)

]
at

(D3){
T = 1, R = 0 for CP,

T = 0, R = 1 for IP.

The notation in Eq. (D3) stresses that the field �(T ) and
its autocorrelation function depend on boundary conditions
including, of course, boundary conditions in the LL channel. In
particular, one can restore formulas for the same perturbations
introduced in Ref. [35] by using the matching conditions

θ
(1)
R,L(x = −0,t) = θ

(1)
R,L(x = +0,t) in the CP, (D4)

θ
(1)
R (x = ±0,t) = θ

(1)
L (x = ±0,t) in the IP. (D5)

As discussed in the main text, the RG equations are governed
by the retarded component of the Green’s function G(t −
t ′; T ) = −i〈�(t ; T ) �(t ′; T )〉:

G(ω+; T ) ≡ g0 [�̂(T )]11. (D6)

Here, we have defined the N × N matrix �̂(T ) which
depends on the phase (either the CP or the IP) and can
be found by using the Green’s functions introduced in
Appendix A:

�̂ = 1

g0
[ĜRR

−− + ĜLL
++ − ĜRL

−+ − ĜLR
+−]; (D7)

superscripts are related to chirality indices. Using Eq. (B15)
we arrive at

�̂ = 1

2
trch M̂

(
1 ˆ̃S−
ˆ̃S− 1

)
M̂T, ˆ̃S− = ˆ̃R − ˆ̃T . (D8)

Trace trch is calculated over the chiral space of right/left
movers; expanding it in Eq. (D8) we find

�̂ = 1
2

[
M̂1(1 − ˆ̃S−)M̂T

1 + M̂2(1 + ˆ̃S−)M̂T
2

]
. (D9)

Now we (a) use Eqs. (C24) and (C27) to express ˆ̃S− in terms
of ξ̂− and matrices M̂1,2; and (b) simplify Eq. (D9) to

�̂ = [ξ̂−1
− + δ̂−1]−1 M̂2M̂

T
1 + [ξ̂− + δ̂]−1 M̂1M̂

T
2 ,

(D10)
δ̂ ≡ M̂1 M̂−1

2 .

The symmetry Eq. (13) in the main text implies

M̂1M̂
T
2 = 1. (D11)

Taking this into account (and skipping subscripts of ξ̂− and
M̂1), we reduce Eqs. (D9) and (D10) to Eqs. (25) and (26) of
the main text.

APPENDIX E: EXAMPLE: SCALING EXPONENTS IN THE
CASES OF A SINGLE LL

The single-channel Lagrangian for bosons �̂T = (θR,θL)
moving right θR and left θL with unperturbed velocity vF is
given by

L1 = 1

4π
(θR,θL)[τ̂3∂t + (vF + V̂1)∂x]∂x

(
θR

θL

)
; (E1)

the subscript “1” is used in this section to emphasize that only
one channel is studied. Here, we have defined the interaction
matrix

V̂ = vF

(
g4 −g2

−g2 g4

)
(E2)

using standard “g-ology” notations for intermode interactions
g2 and for intramodes ones g4. Let us introduce a matrix of
hyperbolic rotations

τ̂ (ϕ) =
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

)
, τ̂ (ϕ)τ̂3τ̂ (ϕ) = τ̂3,

(E3)
τ̂ (ϕ1)τ̂ (ϕ2) = τ̂ (ϕ1 + ϕ2),

which parametrizes 1 + V̂ /vF:

1 + 1

vF
V̂ =

(
1 + g4 −g2

−g2 1 + g4

)
=

√
(1 + g4)2 − g2

2 τ̂ 2(−ϕ0),

(E4)
tanh 2ϕ0 = g2

1 + g4
.

It follows from Eqs. (E3) and (E4) that one can diagonalize
the Lagrangian L1 with the help of a transformation(

θR

θL

)
= M̂1

(
θ̃R

θ̃L

)
, M̂1 ≡ τ̂ (ϕ0). (E5)

The Lagrangian for new chiral bosonic fields reads as

L̃1 = 1

4π
(θ̃R,θ̃L) [τ̂3∂t + u∂x] ∂x

(
θ̃R

θ̃L

)
,

(E6)
u = vF

√
(1 + g4)2 − g2

2 .
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Following notations used in the main text [Eq. (17)], we rewrite
the matrix M1 as follows:

M̂1 =
(

K−1/2 + K1/2 K−1/2 − K1/2

K−1/2 − K1/2 K−1/2 + K1/2

)

= 1 − τ1

2
M1 + 1 + τ1

2
M−1

1 (E7)

with

M1 ≡ K1/2, K ≡ e−2φ0 ; (E8)

here, K is the usual Luttinger parameter. We note that the
“matrix” M1 and, correspondingly, δ1 = M2

1 are scalars be-
cause we consider only one channel. Inserting this expression
for δ1 into Eqs. (30) and (31) of the main text we find the
scaling dimensions for the single LL:

�WS = δ = K, �WL = δ−1 = K−1. (E9)

APPENDIX F: DUALITY OF MATRIX ELEMENTS

Let us consider N × N symmetric matrix and write it as a
block matrix (

a0 ψT

ψ b̂

)
, (F1)

where a0 is scalar, ψ is (N − 1)-dimensional vector, and b̂

is (N − 1) × (N − 1) symmetric matrix. Its inversion is given
by(

a0 ψT

ψ b̂

)−1

=
(

A −A[b̂−1ψ]T

−Ab̂−1ψ [b̂ − ψ ⊗ ψT/a0]−1

)
,

(F2)
A = (a0 − ψTb̂−1ψ)−1.

Our goal is to find matrix entries

�WS = lim
ξ→∞

[
1

δ̂−1 + ξ̂−1

]
11

, �WL = lim
ξ→0

[
1

δ̂ + ξ̂

]
11

,

(F3)

where ξ = ξ̂11, δ̂ = M̂M̂T, and the matrices δ̂ and ξ̂ can be
written in the decomposition (F1) as follows:

δ̂ =
(

δ ψT

ψ δ̂e

)
, ξ̂ =

(
ξ 0
0 ζ̂

)
(F4)

[see Eqs. (26) and (27) in the main text].
Using Eq. (F2), we find

�WL =
(

δ ψT

ψ δ̂e + ζ̂

)−1

11

= [δ − ψT(δ̂e + ζ̂ )−1ψ]−1. (F5)

To calculate �WS, let us use the identity

(α̂−1 + β̂−1)−1 = α̂(α̂ + β̂)−1β̂ (F6)

which holds true for nonsingular matrices α̂ and β̂ and allows
us to write the formula for �WS as follows:

�WS = lim
ξ→∞

[δ̂(δ̂ + ξ̂ )−1ξ̂ ]11 = [δ̂ lim
ξ→∞

{ξ (δ̂ + ξ̂ )−1}]11.

(F7)
The limit ξ → ∞ is easily found from the inversion (F2):

lim
ξ→∞

{ξ (δ̂ + ξ̂ )−1}

=
(

1 −[(δ̂e + ζ̂ )−1ψ]T

−(δ̂e + ζ̂ )−1ψ −ψ ⊗ ψT

)
. (F8)

Inserting Eq. (F8) into (F7), we find

�WS = δ − ψT(δ̂e + ζ̂ )−1ψ ⇒ �WS = �−1
WL . (F9)
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