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Equilibrium Fermi-liquid coefficients for the fully screened N-channel Kondo model
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We analytically and numerically compute three equilibrium Fermi-liquid coefficients of the fully screened
N -channel Kondo model, namely cB , cT , and cε , characterizing the magnetic field and temperature dependence of
the resisitivity, and the curvature of the equilibrium Kondo resonance, respectively. We present a compact, unified
derivation of the N dependence of these coefficients, combining elements from various previous treatments of this
model. We numerically compute these coefficients using the numerical renormalization group, with non-Abelian
symmetries implemented explicitly, finding agreement with Fermi-liquid predictions on the order of 5% or better.
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I. INTRODUCTION

The Kondo effect was first observed, in the 1930s, for iron
impurities in gold and silver [1,2], as an anomalous rise in
the resistivity with decreasing temperature. Kondo [3] showed
that this effect is caused by an antiferromagnetic exchange
coupling between the localized magnetic impurity spins and
the spins of the delocalized conduction electrons [3], and
based his arguments on a spin- 1

2 , one-band model. While this
model undoubtedly captures the essential physics correctly
in a qualitative way, it has recently been shown [4,5] that
a quantitatively correct description of the Kondo physics of
dilute Fe impurities in Au or Ag requires a fully screened
Kondo model involving three channels and a spin- 3

2 impurity.
This conclusion was based on a comparison of temperature
and magnetic field dependent transport measurements [4–6]
to theoretical predictions for fully screened Kondo models
with channel number N and local spin S related by N = 2S,
with N = 3 yielding much better agreement than N = 1 or 2.

The theoretical results in Ref. [5] were obtained using
the numerical renormalization group (NRG) [7–10], and
for N = 3 various non-Abelian symmetries [5,11], such as
SU(2)×U(1)×SU(N ), had to be exploited to achieve reliable
results at finite magnetic field. The technology for imple-
menting non-Abelian symmetries with N > 2 in NRG cal-
culations has been developed only recently [11,12]. Given the
complexity of such calculations, it is desirable to benchmark
their quality by comparing their predictions to exact results.
The motivation for the present paper was to perform such a
comparison for the low-energy Fermi-liquid behavior of fully
screened Kondo models, as elaborated upon below.

All fully screened Kondo models feature a ground state
in which the impurity spin is screened by the conduction
electrons into a spin singlet. The low-energy behavior of
these models can be described by a phenomenological Fermi-
liquid theory (FLT) formulated in terms of the phase shift
experienced by conduction electrons that scatter elastically
off the screened singlet. Such a description was first devised
for the simplest case of N = 1 by Nozières [13,14] in 1974,
and generalized to the case of arbitrary N by Nozières and
Blandin (NB) [15] in 1980. Their results were confirmed
and elaborated by various authors and methods, including
NRG [7,8,16–20], field-theoretic calculations [21,22], the

Bethe ansatz [23,24], conformal field theory (CFT) [25,26],
renormalized perturbation theory [27], and reformulations
[28–30] and generalizations [31–33] of Nozières’ approach
in the context of Kondo quantum dots.

In the present paper, we focus on three particular Fermi-
liquid coefficients, cB , cT , and cε, characterizing the leading
dependence of the resistivity on magnetic field (B) and
temperature (T ), and the curvature of the equilibrium Kondo
resonance as a function of excitation energy (ε), respectively.
Explicit formulas for all three of these coefficients are available
in the literature for N = 1, but for general N only for the case
of cT . Given the wealth of previous studies of fully screened
Kondo models, the lack of corresponding formulas for cB and
cε was somewhat unexpected. Thus, we offer here a unified
derivation of all three Fermi-liquid coefficients, cT , cB , and
cε. We follow the strategy which Affleck and Ludwig (AL)
[26] have used to reproduce Nozières’ results [13] for N = 1,
namely doing perturbation theory in the leading irrelevant
operator, and generalize it to the case of arbitrary N . Our
formulation of this strategy follows that used by Pustilnik and
Glazman (PG) [29] for their discussion of Kondo quantum
dots. While all pertinent ideas used here can be found in the
literature, we hope that our rather compact way of combining
them will be found useful.

For our numerical work, we faced two challenges: First,
the complexity of the numerical calculations increases rapidly
with increasing N ; this was dealt with by exploiting non-
Abelian symmetries. Second, numerical calculations do not
achieve the scaling limit that is implicitly presumed in analyti-
cal calculations; its absence was compensated by using suitable
definitions of the Kondo temperature, following Ref. [34].

The paper is organized as follows. In Sec. II we define
the model and summarize our key results for the Fermi-liquid
coefficients cB , cT , and cε. Section III compactly summarizes
relevant elements of FLT and uses them to calculate these
coefficients. Section IV describes our numerical work and
results. Section V summarizes our conclusions.

II. MODEL AND MAIN RESULTS

The fully-screened Kondo model for N conduction bands
coupled to a single magnetic impurity at the origin is defined
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by the Hamiltonian H = H0 + Hloc, with

H0 =
∑
kmσ

ξkc
†
kmσ ckmσ , (1a)

Hloc = JK

∑
kk′mσσ ′

c
†
kmσ

�τσσ ′

2
ck′mσ ′ �S − BSz. (1b)

Here H0 describes N channels of free conduction electrons,
with spin index σ = (+,−) = (↑,↓) and channel index m =
1, . . . ,N . We take the dispersion ξk = εk − εF to be linear and
symmetric around the Fermi energy, ξk = k�vF. Each channel
has exchange coupling JK to a local SU(2) spin of size S =
N/2 with spin operators �S, and B describes a local Zeeman
field in the z direction (we use units gμB = 1). The overall
symmetry of the model [19] is SU(2)×Sp(2N ) for B = 0, and
U(1)×Sp(2N ) for B �= 0 (see Sec. IV A for details). The model
is characterized by a low-energy scale, the Kondo temperature,
TK ∼ D̃ exp [−1/(νJK)], where ν is the density of states per
channel and spin species and D̃ is of the order of the conduction
electron bandwidth.

For a disordered metal containing a dilute concentration of
magnetic impurities, the magnetic-impurity contribution to the
resistivity has the form [5,35]

ρ(T ,B) ∝
∫

dε[−∂εf (ε,T )]
∑
mσ

Amσ (ε,T ,B). (2)

Here f (ε,T ) is the Fermi function, and the impurity spectral
function Amσ (ε) = − 1

π
ImTmσ (ε) is the imaginary part of the

T matrix Tmσ (ε) describing scattering off a magnetic impurity.
The latter is defined through [37,38]

Gc
mσ,k,k′ (ε) = G0

mσ,k(ε)δ(k − k′) + G0
mσ,k(ε)Tmσ (ε)G0

mσ,k′ (ε),

(3)

with Gc
mσ,k,k′ and G0

mσ,k the full and bare conduction electron
Green’s functions, respectively. [For a Kondo quantum dot
tuned such that the low-energy physics is described by Eq. (1),
the conductance G through the dot has a form similar to Eq. (2),
with ρ replaced by G [29]].

As mentioned in the Introduction, the ground state of the
fully screened Kondo model is a spin singlet, and the regime of
low-energy excitations below TK shows Fermi-liquid behavior
[13,15]. One characteristic Fermi-liquid property is that the
leading dependence of the T matrix on its arguments, when
they are small relative to TK, is quadratic,

Amσ (ε,T ,B)

Amσ (0,0,0)
= 1 − cεε

2 + c′
T T 2 + cBB2

T 2
K

. (4)

(Particle-hole and spin symmetries forbid terms linear in ε or
B.) This implies the same for the resistivity,

ρ(T ,B)

ρ(0,0)
= 1 − cT T 2 + cBB2

T 2
K

, (5)

with cT = (π2/3)cε + c′
T . The so-called Fermi-liquid coeffi-

cients cε, cT , and cB are universal, N -dependent numbers,
characteristic of the fully screened Fermi-liquid fixed point.
For N = 1, the coefficients cT and cB have recently been
measured experimentally in transport studies through quantum

dots and compared to theoretical predictions [39]. The coef-
ficient cε is, in principle, also measurable via the nonlinear
conductance of a Kondo dot coupled strongly to one lead and
very weakly to another [29]. (The latter condition corresponds
to the limit of a weak tunneling probe; it ensures that the
nonlinear conductance probes the equilibrium shape of the
Kondo resonance, and hence the equilibrium Fermi-liquid
coefficient cε.)

The goal of this paper is twofold: first, to analytically
establish the N dependence of cε, cT , and cB using Fermi-
liquid theory similar to NB; and second, to numerically
calculate them using an NRG code that exploits non-Abelian
symmetries, in order to establish a benchmark for the quality
of the latter. Our main results are as follows: First, if the Kondo
temperature is defined by

TK = N (N + 2)

3πχ imp
= 4S(S + 1)

3πχ imp
, (6)

where χ imp is the static impurity susceptibility at zero
temperature, the Fermi-liquid coefficients are given by

cB = (N + 2)2

9
, cT = π2 4N + 5

9
, cε = 2N + 7

6
. (7)

For general N , the formula for cT has first been found by
Yoshimori [21], while those for cB and cε are new (though not
difficult to obtain). Second, our numerical results for N = 1, 2,
and 3 are found to agree with the predictions of Eq. (7) to
within 5%.

III. FERMI-LIQUID THEORY

In this section, we analytically calculate the Fermi-liquid
coefficients cB , cT , and cε for general N . With the benefit
of hindsight, we selectively combine various elements of the
work on FLT of Nozières [13], NB [15], AL [26], and PG
[29]. Detailed justifications for the underlying assumptions
are given by these authors in their original publications and
hence will not be repeated here. Instead, our goal is to assemble
their ideas in such a way that the route to the desired results is
short and sweet.

We begin by summarizing Nozières’ ideas for expressing
the T matrix in terms of scattering phase shifts and ex-
panding the latter in terms of phenomenological Fermi-liquid
parameters. Next, we recount AL’s insight that this expansion
can be reproduced systematically by doing perturbation
theory in the leading irrelevant operator of the model’s
zero-temperature fixed point. Then we adopt PG’s strategy
of performing the expansion in a quasiparticle basis in which
the constant part of the phase shift has already been taken into
account, which considerably simplifies the calculation. Our
own calculation is presented using notation analogous to that
of PG, while taking care to highlight the extra terms that arise
for N > 1. It turns out that their extra contributions can be
found with very little extra effort.

A. Phase shift and T matrix

Since the ground state of the fully screened Kondo model
is a spin singlet, a low-energy quasiparticle scattering off the
impurity experiences strong elastic scattering as if the impurity
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were nonmagnetic. Moreover, it also experiences a weak local
interaction if some energy (	TK) is available to weakly excite
the singlet, causing some inelastic scattering. Since the singlet
binding energy is TK, the strength of this local interaction is
proportional to 1/TK.

Nozières [13] realized that this combination of strong
elastic scattering and a weak local interaction can naturally
be treated in terms of scattering phase shifts. The phase shift
of a quasiparticle with quantum numbers mσ and excitation
energy ε relative to the Fermi energy can be written as

δmσ (ε) = δ0
mσ + δ̃mσ (ε), δ0

mσ = π/2. (8)

Here δ0
mσ is the phase shift for ε = B = T = 0; it has the

maximum possible value for scattering off a nonmagnetic
impurity, namely π/2. Finite-energy corrections arising from
weak excitations of the singlet are described by δ̃mσ (ε), which
is proportional to 1/TK.

If inelastic scattering is weak, unitarity of the S matrix can
be exploited [13] to write the T matrix in the following form
(we use the notation PG [29]; for a detailed analysis, see AL’s
discussion [26] of the terms arising from their Figs. 6 and 7):

1 − 2πνiTmσ (ε) = e2iδmσ (ε)
[
1 − 2πνiT̃ in

mσ (ε)
]
. (9)

Here T̃ in accounts for weak inelastic two-body scattering
processes, and is proportional to 1/T 2

K. It is to be calculated
in a basis of quasiparticle states in which the phase shift δ0

mσ

has already been accounted for. (Here and below, tildes will
be used on quantities defined with respect to the new basis if
they differ from corresponding ones in the original basis.)

Expanding Eq. (9) in the small (real) number δ̃mσ (ε) and
recalling that e2iδ0

mσ = −1, one finds that the imaginary part of
the T matrix, which determines the spectral function, can be
expressed as

−πνImTmσ (ε) = 1 − [
δ̃2
mσ (ε) − πνImT̃ in

mσ (ε)
]
, (10)

to order 1/T 2
K. Comparing this to Eq. (4), we conclude that

knowing δ̃ to order 1/TK and T̃ in to order 1/T 2
K suffices to

fully determine the Fermi-liquid coefficients cB , cT , and cε.
Now, a systematic calculation of δ̃ and T̃ in requires a

detailed theory for the strong-coupling fixed point, which
became available only with the work of AL in the early
1990s. Nevertheless, Nozières succeeded in treating the case
N = 1 already in 1974 [13], using a phenomenological
expansion of δ̃mσ (ε) in powers of (ε − εZ

σ )/TK [εZ
σ represents

the Zeeman energy of quasiparticles in a magnetic field; see
Eq. (14) below] and δn̄m′σ ′ = nm′σ ′ − n0

m′σ ′ , the deviation of
the total quasiparticle number nm′σ ′ from its ground-state
value. The prefactors in this expansion have the status of
phenomenological Fermi-liquid parameters. Using various
ingenious heuristic arguments, he was able to show that all
these parameters, and also T̃ in, are related to each other and
can be expressed in terms of a single energy scale, namely the
Kondo temperature. Moreover, by choosing the prefactor of ε

in this expansion to be 1/TK, he suggested a definition of the
Kondo temperature that also fixes its numerical prefactor. (Our
paper adopts this definition, too.) In 1980, NB generalized
this strategy [15] to general N , finding an expansion of

the form

δ̃mσ (ε) = α
(
ε − εZ

σ

) − 3ψδn̄m,−σ

+ ψ
∑
m′ �=m

(δn̄m′σ − δn̄m′,−σ ), (11)

where α and ψ are phenomenological Fermi-liquid parameters
related by α = 3ψν = 1/TK. [NB’s initial version of Eq. (11),
their Eq. (34), does not contain the Zeeman contribution εZ

σ ,
but the latter is implicit in their subsequent treatment of the
Zeeman field before their Eq. (37).]

In the following subsections, we show how NB’s expansion
for δ̃ can be derived systematically. AL [26] and PG [29] have
shown how to do this for N = 1; we will generalize their
discussion to arbirtrary N .

B. Leading irrelevant operator

AL showed [26] that NB’s heuristic results can be derived
in a systematic fashion by doing perturbation theory in the
leading irrelevant operator of the model’s zero-temperature
fixed point. As perturbation, they took the operator with the
lowest scaling dimension satisfying the requirements of being
(i) local, (ii) independent of the impurity spin operator �S, since
the latter is fully screened, (iii) SU(2)-spin invariant, (iv) and
independent of the local charge density, just as the Kondo
interaction. The operator satisfying these criteria has the
form [25]

Hλ = −λ : �J (0) · �J (0) : , (12)

where �J (0) is the quasiparticle spin density at the impurity site,
and : . . . : denotes the point-splitting regularization procedure
(see Appendix). In Appendix D of Ref. [26], AL showed in
great detail how NB’s phase shifts can be computed using
Eq. (12), for the single-channel case of N = 1. They did not
devote as much attention to the case of general N , though
the needed generalizations are clearly implied in their work.
We here present the corresponding calculation in some detail,
following the notational conventions of PG, which differ
from those of AL in some regards (see Appendix). The main
difference is that PG formulate the perturbation expansion in a
new basis of quasiparticle states, in which the phase shift δ0

mσ

has already been accounted for, which somewhat simplifies the
discussion. (We remark that PG chose δ0

mσ = σπ/2 rather than
π/2 as used by NB and us, but the extra σ has no consequences
for the ensuing arguments.)

The quasiparticle Hamiltonian describing the vicinity of the
strong-coupling fixed point (fp) has the form

Hfp = Hfp,0 + Hλ, (13)

where

Hfp,0 =
∑
mσk

(
ξk + εZ

σ

)
:ψ†

kmσψkmσ : , εZ
σ = −σB

2
(14)

describes free quasiparticles in a magnetic field B, with
Zeeman energy εZ

σ . Note that although the Zeeman term in
the bare Hamiltonian (1) is local, it is global in Eq. (14),
because the effective quasiparticle Hamiltonian Hfp contains
no local spin. Using standard point-splitting techniques, which
we review in pedagogical detail in the Appendix, the leading
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FIG. 1. (Color online) (a)–(c) Vertices associated with H1, H2,
and H3, respectively. (d)–(f) Nonzero second-order contributions
to the quasiparticle self-energy, �̃R

mσ , involving H 2
1 , H 2

2 , and H 2
3 ,

respectively. The contributions involving H1H2, H1H3, and H2H3 all
vanish, the former two due to the odd power of energy in the two-leg
vertex.

irrelevant operator (12) can be written as Hλ = H1 + H2 +
H3, with

H1 = − 1

2πνTK

∑
mσkk′

(ξk + ξk′) :ψ†
kmσψk′mσ : , (15a)

H2 = 1

πν2TK

∑
m

:ρm↑ρm↓ : , (15b)

H3 = − 2

3πν2TK

∑
m�=m′

: �jm · �jm′ : , (15c)

where

ρmσ =
∑
kk′σ

ψ
†
kmσψk′mσ , (16a)

�jm = 1

2

∑
kk′σσ ′

ψ
†
kmσ �τσσ ′ψk′mσ ′ . (16b)

Here we have expressed the coupling constant λ in terms of
the inverse Kondo temperature using [cf. Eq. (A11)]

λ = 8π (�vF)2

3TK
, (17)

with the numerical proportionality factor chosen such that
TK agrees with the definition of the Kondo temperature
used by NB and PG, as discussed below. Importantly, the
point-splitting procedure fixes the relative prefactors arising
in H1, H2, and H3 (whereas NB’s approach requires heuristic
arguments to fix them). Our notation for H1 and H2 coincides
with that used by PG. H3 contains all new contributions that
enter additionally for N > 1. Figure 1 gives a diagrammatic
depiction of all three terms.

C. First-order terms

Our first goal is to recover NB’s expansion of the phase shift
δ̃ to leading order in ε − εZ

σ and δn̄. Following PG, this can be
done by calculating δ̃ perturbatively to first order in 1/TK, in
the new basis of quasiparticle states that already incorporate
the phase shift δ0. To order 1/TK, no inelastic scattering occurs,

and δ̃ is related to the elastic T matrix by

e2iδ̃mσ (ε) = 1 − 2πνiT̃ el
mσ (ε). (18)

The elastic T matrix, in turn, equals the real part of the
quasiparticle self-energy, T̃ el

mσ (ε) = Re�̃R
mσ (ε). (Actually, to

order 1/TK, the self-energy is purely real.) By expanding
Eq. (18) for small δ̃, the phase shift is thus seen to be given by
the real part of the self-energy:

δ̃mσ (ε) 
 −πνRe�̃R
mσ (ε). (19)

Now, as pointed out already by Nozières in 1974 [13],
a first-order perturbation calculation of the self-energy is
equivalent to treating interaction terms in the mean-field (MF)
approximation. They then take the form

H MF
2 = 1

πν2TK

∑
mσ

:ρmσ : δn̄m,−σ , (20a)

H MF
3 = − 1

3πν2TK

∑
σ

∑
m�=m′

:ρmσ : (δn̄m′σ − δn̄m′,−σ ), (20b)

where δn̄mσ = 〈:ρmσ :〉, the quasiparticle number relative to
the B = 0 ground state, is given by

δn̄mσ = −νεZ
σ = σνB/2. (21)

The mean-field version of the leading irrelevant operator thus
has the form

H MF
λ =

∑
mσkk′

hmσ (ξk,ξk′) :ψ†
kmσψk′mσ : , (22)

hmσ (ξk,ξk′) = 1

πνTK

[
−1

2
(ξk + ξk′) + δn̄m,−σ

ν

−
∑
m′ �=m

δn̄m′σ − δn̄m′,−σ

3ν

]
. (23)

For such a single-particle perturbation, the self-energy can be
directly read off from hmσ using

�̃R
mσ (ε) = hmσ

(
ε − εZ

σ ,ε − εZ
σ

)
, (24)

because k sums of the type
∑

k 1/(ε − ξk − εZ
σ + i0+) yield

residues involving ξk = ε − εZ
σ . Using Eq. (24) in Eq. (19) for

the phase shift, we find

δ̃mσ (ε) = 1

TK

[
ε − εZ

σ − δn̄m,−σ

ν
+

∑
m′ �=m

δn̄m′σ − δn̄m′,−σ

3ν

]
.

(25)

This fully agrees with the expansion (11) of NB if we make the
identification 1/TK = α = 3ψν, thus confirming the validity
of NB’s heuristic arguments. Note that the coefficient of
ε − εZ

σ in Eq. (25) comes out as 1/TK, in agreement with
the conventions of NB and PG, as intended by our choice of
numerical prefactor in Eq. (17).

As consistency check, let us review how NB used Eq. (25) to
calculate the Wilson ratio. First, Eq. (25) implies an impurity-
induced change in the density of states per spin and channel of
ν

imp
mσ (ε) = 1

π
∂εδmσ (ε). This yields a corresponding impurity-

induced change in the specific heat, C imp. At zero field (where
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εZ
σ and δn̄mσ vanish), the change relative to the bulk is given

by

C imp

C
= 2Nν

imp
mσ (0)

2Nν
= 1

πνTK
. (26)

Second, the Friedel sum rule for the impurity-induced change
in local charge in channel m for spin σ at T = 0 gives

N imp
mσ = 1

π
δmσ (0) = 1

2
+ 1

π
δ̃mσ (0), (27)

and Eq. (25), together with Eq. (21) for δn̄mσ , leads to

δ̃mσ (0) = σB

TK

[
1

2
+ 1

2
+ N − 1

3

]
= σB(N + 2)

3TK
. (28)

The linear response of the impurity-induced magnetization,
M imp = 1

2

∑
m(N imp

m↑ − N
imp
m↓ ), then gives the impurity contri-

bution to the spin susceptibility as

χ imp = M imp

B
= N (N + 2)

3πTK
= 4S(S + 1)

3πTK
. (29)

(For all expressions involving χ imp here and below, the limit
B → 0 is implied.) The corresponding bulk contribution is
χ = νN/2. Thus, the Wilson ratio is found to be

R = χ imp/χ

C imp/C
= 2(N + 2)

3
= 4(S + 1)

3
, (30)

in agreement with more elaborate calculations by Yoshimori
[21] and by Mihály and Zawadowski [22].

Note that Eq. (29) relates Nozières’ definition of the Kondo
temperature to an observable quantity, χ imp, that can be
calculated numerically. We used this as a precise way of
defining TK in our numerical work. (Subtleties involved in
calculating χ imp are discussed in Sec. IV B.) Note that up to
a prefactor, Eq. (29) for χ imp has the form χ free(TK), where
χ free(T ) = S(S + 1)/(3T ) is the static susceptibility of a free
spin S at temperature T .

We are now in a position to extract our first Fermi-liquid
coefficient, cB . For this, it suffices to know the spectral
function A in Eq. (4) to quadratic order in B, at ε = T = 0,
where T̃ in = 0. Inserting the corresponding expression (28)
for δ̃mσ (0) into Eq. (10) for ImT , we find

Amσ (0,0,B) = 1

νπ2

[
1 − (N + 2)2

9

B2

T 2
K

]
. (31)

Comparing this to Eq. (4), we read off cB = (N + 2)2/9.
Note that if the definition (29) of TK in terms of χ imp is taken

as given, cB can actually be derived on the back of an envelope:
for a fully screened Kondo model, the impurity-induced spin
susceptibility gets equal contributions from all N channels,
χ imp = Nχ

imp
m , and the Friedel sum rule relates the contri-

bution from each channel to phase shifts, χ
imp
m = M

imp
m /B =

[δ̃m↑(0) − δ̃m↓(0)]/(2πB), implying δ̃mσ (0) = σ (πχ imp/N )B.
Using this in Eq. (10) yields

Amσ (0,0,B) = 1

νπ2
[1 − (πχ imp/N)2B2], (32)

which is equivalent to Eq. (31) if Eq. (29) holds.

D. Second-order terms

We next discuss inelastic scattering for B = 0, but at finite
temperature. To order 1/T 2

K, inelastic scattering is described
by the imaginary part of the quasiparticle self-energy arising
from the second-order contributions of H1, H2, and H3, shown
in diagrams (d)–(f) of Fig. 1, respectively. These diagrams give

Im�̃R,1
mσ (ε) = − ε2

πνT 2
K

, (33a)

Im�̃R,2
mσ (ε) = −ε2 + π2T 2

2πνT 2
K

, (33b)

Im�̃R,3
mσ (ε) = 2

3
(N − 1) Im�̃R,2

mσ (ε). (33c)

The first two can also be found in the discussion of PG, whose
strategy we follow here. (They also appear, in slightly different
guise, in the discussion of AL [26].) The third is proportional to
the second, and the factor 2/3 originates from (2/3)22s(s + 1)
with s = 1/2, since the relative prefactor between H3 and H2

brings in two powers of 2/3, and the algebra of Pauli matrices
yields a factor 2s(s + 1).

Now, the term called T̃ in in Eq. (9) by definition describes
the contribution of the two-body terms H2 and H3 to inelastic
scattering:

ImT̃ in
mσ (ε) = Im

[
�̃R,2

mσ (ε) + �̃R,3
mσ (ε)

]
. (34)

The contribution Im�̃R,1 from H1 is not included in ImT̃ in

here, since it actually equals −δ̃2/πν, and hence is already
contained in the factor e2iδ̃ in Eq. (9). Indeed, in Eq. (10) for
the imaginary part of the T matrix in the original basis, the δ̃2

term equals −πνIm�̃R,1. Collecting all ingredients, Eq. (10)
gives

Amσ (ε,T ,0) = 1

νπ2

[
1 − ε2

T 2
K

− ε2 + π2T 2

2T 2
K

(
1 + 2

3
(N − 1)

)]

= 1

νπ2

[
1 − (2N + 7)ε2 + (2N + 1)π2T 2

6T 2
K

]
.

(35)

For N = 1, the second term reduces to the familiar form
−(3ε2 + π2T 2)/(2T 2

K) found by AL [26] and GP [29]. Com-
paring Eqs. (35) and (4) and (5) we read off cε = (2N + 7)/6
and c′

T = π2(2N + 1)/6, implying cT = π2(4N + 5)/9.

IV. NRG RESULTS

In this section, we describe our NRG work. We had
set ourselves the goal of achieving an accuracy of better
than 5% for the Fermi-liquid coefficients. To achieve this,
two ingredients were essential: first, exploiting non-Abelian
symmetries; and second, defining the Kondo temperature with
due care. The latter is a matter of some subtlety [34] because
the wide-band limit assumed in analytical work does not apply
in numerical calculations.

We begin below by giving the Lehmann representation for
the desired spectral function. We then discuss the non-Abelian
symmetries used in our NRG calculations and explain how
the Kondo temperature was extracted numerically. Finally, we
present our numerical results.
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A. NRG details

To numerically calculate the T matrix of Eq. (3), we use
equations of motion [37,38] to express it as

Tmσ (ε) = JK〈Sz〉 + 〈〈Omσ ; O†
mσ 〉〉, (36a)

Omσ ≡ [�mσ (0),Hloc] = JK

∑
σ ′

�S · �τσσ ′

2
�mσ ′(0). (36b)

Here 〈〈 · ; · 〉〉 denotes a retarded correlation function, and
�mσ (0) = 1√

Ndisc

∑
k ckmσ , where Ndisc is the number of

discrete levels in the band (and hence proportional to the
system size). The spectral function is then calculated in its
Lehmann-representation,

Amσ (ε,T ,B) =
∑
a,b

e−βEa + e−βEb

Z
|〈a|Omσ |b〉|2δ(ε − Eab),

(37)

with Eab = Eb − Ea , using the full density matrix (FDM)
approach of NRG [9,40–42].

For our numerical work, we take the conduction-band
energies to lie within the interval ξk ∈ [−D,D], with Fermi
energy at 0 and half bandwidth D = 1, and take the density
of states per spin, channel, and unit length to be constant,
as 1/2D. (It is related to the extensive density of states
used in Sec. III by ν = Ndisc/2D.) For the calculations used
to determine the Fermi-liquid parameters, we use exchange
coupling νJK = 0.1, so that the Kondo temperature TK/D ∝
exp[−1/(νJK)] has the same order of magnitude for N = 1, 2,
and 3, namely �10−4. Following standard NRG protocol
[7,8,10], the conduction band is discretized logarithmically
with discretization parameter �, mapped onto a Wilson chain,
and diagonalized iteratively. NRG truncation at each iteration
step is controlled by either specifying the number of kept states
per shell, NK, or the truncation energy Etr (in rescaled units,
as defined in Ref. [43]), corresponding to the highest kept
energy per shell. Spectral data are averaged over Nz different,
interleaving logarithmic discretization meshes [44]. The values
for NRG-specific parameters used here are given in legends in
the figures below.

For the fully screened N -channel Kondo model, the dimen-
sion of the local Hilbert space of each supersite of the Wilson
chain is 4N . Since this increases exponentially with the number
of channels, it is essential, specifically so for N = 3, to reduce
computational costs by exploiting non-Abelian symmetries
[11] to combine degenerate states into multiplets. Several
large symmetries are available [19]: For B = 0, the model has
SU(2)×U(1)×SU(N ) spin-charge-channel symmetry. If the
bands described by H0 are particle-hole symmetric, as assumed
here, the model also has a SU(2)×[SU(2)]N spin(charge)N

symmetry, involving SU(2) mixing of particles and holes in
each of the N channels. The U(1)×SU(N ) and [SU(2)]N

symmetries are not mutually compatible (their generators do
not all commute), however, implying that both are subgroups
of a larger symmetry group, the symplectic Sp(2N ). Thus the
full symmetry of the model for B = 0 is SU(2)×Sp(2N ). For
B �= 0 it is U(1)×Sp(2N ), since a finite magnetic field breaks
the SU(2) spin symmetry to the Abelian U(1) Sz symmetry.
When the model’s full symmetry is exploited, the multiplet

spaces encountered in NRG calculations exhibit no more
degeneracies in energy at all.

Using only Abelian symmetries turned out to be clearly
insufficient to obtain well converged numerical data for
N = 3, despite having a relatively large �. This, however,
is required for accurate Fermi-liquid coefficients with er-
rors below a few percent. For numerically converged data,
therefore, it was essential to use non-Abelian symmetries.
For our B = 0 calculations, it turned out to be sufficient to
use SU(2)×U(1)×SU(N ) symmetry for calculating cT , but
the full SU(2)×Sp(2N ) symmetry was needed for calculating
cε. Likewise, for our B �= 0 calculations of cB , we needed
to use the full U(1)×Sp(2N ) symmetry. Doing so led to an
enormous reduction in memory requirements, the more so the
larger the rank of the symmetry group [Sp(2N ) has rank N ,
and SU(N ) has rank N − 1]. For N = 3, for example, we
kept �13 500 multiplets for SU(2)×U(1)×SU(3) or �3 357
multiplets for SU(2)×Sp(6) during NRG truncation, which, in
effect, amounts to keeping �980 000 individual states [11].

B. Definition of TK

The Fermi-liquid theory of Sec. III implicitly assumes
that the model is considered in the so-called scaling limit,
in which the ratio of Kondo temperature to bandwidth
vanishes, TK/D → 0. In this limit, physical quantities such as
ρ(T ,B)/ρ(0,0) are universal scaling functions, which depend
on their arguments only in the combinations B/TK and T/TK.
Since the shape of such a scaling function, say ρ(0,B)/ρ(0,0)
plotted versus B/TK, is universal, i.e., independent of the
bare parameters (coupling JK and bandwidth D) used to
calculate it, curves generated by different combinations of
bare parameters can all be made to collapse onto each other
by suitably adjusting the parameter TK for each. In the same
sense the Fermi-liquid parameters cB , cT , and cε, being Taylor
coefficients of universal curves, are universal, too.

One common way to achieve a scaling collapse, popular
particularly in experimental studies, is to identify the Kondo
temperature with the field B1/2 or temperature T1/2 at which the
impurity contribution to the resistivity has decreased to half
its unitary value,

ρ(0,B1/2) = ρ(0,0)/2, ρ(T1/2,0) = ρ(0,0)/2. (38)

However, this approach is not suitable for the purpose of
extracting Fermi-liquid coefficients, for which TK has to
be defined in terms of (analytically accessible) low-energy
properties characteristic of the strong-coupling fixed point. In
Sec. III we have therefore adopted Nozières’ definition of TK

in terms of the leading energy dependence of the phase shift
δ̃0
mσ [Eq. (25)], implying that it can be expressed in terms of

χ imp, of the local static spin susceptibility at zero temperature
[Eq. (29)]. In the scaling limit, this definition of TK matches B1/2

or T1/2 up to prefactors, i.e., B1/2/TK and T1/2/TK are universal,
N -dependent numerical constants, independent of the model’s
bare parameters.

In numerical work, however, the scaling limit is never
fully realized, since the bandwidth is always finite. It may
thus happen that a scaling collapse expected analytically
is not found when the corresponding curves are calculated
numerically. For example, if the Kondo temperature is defined,
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as seems natural, in terms of a purely local susceptibility, χ loc,
involving only the response of the local spin to a local field,

4S(S + 1)

3πT loc
K

≡ χ loc ≡ d

dB
〈Sz〉|B=0, (39)

then curves expected to show a scaling collapse actually do not
collapse onto each other, as pointed out recently in Ref. [34]
[see Figs. 2(d)–2(f) there]. That paper also showed how to
remedy this problem: the static spin susceptibility used to
calculate TK has to be defined more carefully, and two slightly
different definitions have to be used, depending on the context.
The first option is needed when studying zero-temperature
(i.e., ground state) properties as a function of some external
parameter, such as the field dependence of the resistivity
(needed for cB). In this case, a corresponding susceptibility
defined in terms of the response of the system’s total spin to a
local field should be used:

4S(S + 1)

3πT FS
K

≡ χFS ≡ d

dB

〈
S tot

z

〉∣∣
B=0. (40)

The superscript FS stands for “Friedel sum rule,” to highlight
the fact that using this rule to calculate the linear response of
〈S tot

z 〉 to a local field directly leads to relation (29) between
χ imp and TK. The second option is needed when studying
dynamical or thermal quantities that depend on the system’s
many-body excitations for given fixed external parameters
(e.g., fixed B = 0), such as the temperature dependence of
the resistivity (needed for cT ), or the curvature of the Kondo
resonance (needed for cε). In this case, one should use

4S(S + 1)

3πT sc
K

≡ χ sc ≡ 2χFS − χ loc. (41)

The superscript sc stands for “scaling,” to indicate that
this definition of the Kondo temperature ensures [34] a
scaling collapse of dynamical or thermal properties. Figure 2
demonstrates that a scaling collapse is indeed found when
the field- or temperature-dependent resistivity, plotted versus
B/T FS

K or T/T sc
K , respectively, is calculated for two different

values of JK (solid and dashed lines, respectively). Note that
this works equally well for N = 1, 2, and 3. (For N = 1, such
scaling collapses had already been shown in Ref. [34].)

We remark that the three Kondo temperatures defined in
Eqs. (39)–(41) differ quite significantly from each other for
the Kondo Hamiltonian of Eq. (1), with differences as large
as 12%, 31%, and 55% for N = 1, 2, and 3, respectively, for
the parameters used in Fig. 2. This indicates that although
we have chosen bare parameters for which TK/D is smaller
than 10−4, we have still not reached the scaling limit [in
which the definitions Eqs. (39)–(41) of the Kondo temperature
should all coincide numerically [34]]. We have checked that
the differences between T loc

K , T FS
K , and T sc

K decrease when
νJK is reduced in an attempt to get closer to the scaling
limit, but estimate that truly reaching that limit would require
νJK < 0.01 for the Kondo model, implying TK/D < 10−45.
Thus, reaching the scaling limit by brute force is numerically
unfeasible. Therefore, using T FS

K and T sc
K rather than T loc

K
is absolutely essential for obtaining scaling collapses. It
is similarly essential for an accurate determination of the
Fermi-liquid parameters. Correspondingly, for the results
discussed below, we have used T FS

K as definition of the Kondo
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FIG. 2. (Color online) Scaling collapse of (a) the resistivity at
zero temperature as a function of field, and (b) at zero field as a
function of temperature, calculated for two different values of the
bare coupling, νJK (dashed or solid), and for N = 1, 2, and 3. For
each N , the dashed and solid curves overlap so well that they are
almost indistinguishable. The insets compare the energy scales B1/2

and T1/2 at which the resistivity has decreased to half its unitary value
[cf. Eq. (38)], to the scales T FS

K and T sc
K [cf. Eqs. (40) and (41)],

respectively. The shown ratios are universal numbers of order unity,
but not necessarily very close to 1, with a significant dependence
on N : B1/2/T FS

K = 1.22,1.31,1.60 and T1/2/T sc
K = 0.82,1.02,1.36 for

N = 1, 2, and 3, respectively. The legend in the lower left of panel (b)
specifies the NRG parameters used for both panels.

temperature when extracting cB , and T sc
K when extracting cT

and cε.

C. Using unbroadened discrete data only

When one is interested in spectral properties, one typically
has to broaden the discrete data. For the determination of
the Fermi-liquid coefficients, however, where high numerical
accuracy is required, it is desirable to avoid standard broad-
ening. For the calculation of cT and cB this can be achieved
[9] by directly inserting the Lehmann sum over δ functions for
the spectral function Amσ (ε,T ,B) [Eq. (37)] into the energy
integral for ρ(T ,B) [Eq. (2)], resulting in a sum over discrete
data points that produces a smooth curve. The curve is smooth
because Eq. (2) in effect thermally broadens the δ peaks in the
Lehmann representation. This is true even in the limit T → 0,
because in NRG calculations it is realized by taking T nonzero,
but much smaller than all other energy scales.

For the determination of cε, in contrast, one faces the
problem that Amσ (ε,0,0) is represented not as an integral of
a sum over discrete δ functions, but directly in terms of the
latter. To avoid having to broaden these by hand, it is desirable
to find a way to extract cε from an expression involving an
integral over the discrete spectral data, as for cB and cT . This
can be achieved as follows. First, note that cε is, by definition,
a coefficient in the general Taylor expansion of the normalized
spectral function Anorm(ε) ≡ Amσ (ε,0,0)/Amσ (0,0,0) for small
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frequencies,

Anorm(ε) =
∞∑

n=0

an(ε/TK)n, cε = a2. (42)

Due to particle-hole symmetry, an = 0 for all n odd, and
by definition a0 = 1. To determine a2 from an integral over
discrete data, we consider a weighted average of Anorm(ε)
over ε,

Ā(τ ) ≡
∫

dεAnorm(ε)Pτ (ε), (43)

where Pτ (ε) is a symmetric weighting function of width τ and
weight 1, and moments defined by∫

dε(ε/τ )nPτ (ε) ≡ pn (44)

for integer n � 0 (with p0 = 1). Here we use

Pτ (ε) = 1

4τ

1

cosh2 (ε/2τ )
= −∂f (ε,τ )

∂ε
, (45)

but other choices are possible, too (e.g., a Gaussian peak).
Clearly, the leading τ dependence of Ā(τ ) for small τ reflects
the leading ε dependence of Anorm(ε) and allows for an
accurate determination of a2. Indeed, using Eqs. (42)–(45), we
obtain a power-series expansion for Ā(τ ) of the form Ā(τ ) =∑

n anpn(τ/TK)n. Thus, by fitting Āfit(τ ) = ∑
n fnτ

n to the
NRG data for Ā(τ ), one can determine the desired coefficients
in (42) using an = T n

Kfn/pn. In particular, the Fermi-liquid
coefficient of present interest is given by cε = a2 = T 2

Kf2/p2.

D. Extraction of Fermi-liquid coefficients

Figures 3(a)–3(c) show our NRG data (heavy solid lines)
for the resistivity plotted versus B/T FS

K at zero temperature or
plotted versus T/T sc

K at zero field, and for the weighted spectral
function plotted versus τ/T sc

K , respectively. We determined
the Fermi-liquid coefficients cB , cT , and cε from the quadratic
terms of fourth-order polynomial fits to these curves. Including

TABLE I. Numerically extracted values of cB , cT , and cε , given
here relative to the corresponding predictions from FLT of Eq. (7).
The deviations between NRG and FLT values are �5% in all cases.
To numerically determine these coefficients, we used the quadratic
coefficient of a fourth-order polynomial fit to the corresponding NRG
data. Error bars were estimated by comparing the quartic fits to
polynomial fits of different higher orders.

N cNRG
B /cFLT

B cNRG
T /cFLT

T cNRG
ε /cFLT

ε

1 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.03
2 1.02 ± 0.03 0.98 ± 0.03 0.99 ± 0.03
3 1.05 ± 0.05 1.01 ± 0.03 1.02 ± 0.07

the fourth-order term allows the fitting range to be extended to-
wards somewhat larger values of the argument, thus increasing
the accuracy of the fit. For each solid curve, the quadratic term
from the fit is shown by heavy dashed lines; these are found
to agree well with the corresponding predictions from FLT,
shown by light lines of matching colors. The level of agreement
is quite remarkable, given the rather limited range in which the
behavior is purely quadratic: with increasing argument, quartic
contributions become increasingly important, as reflected by
the growing deviations between dashed and solid lines; and
at very small values of the argument (�0.02), the NRG data
become unreliable due to known NRG artefacts.

Numerical values for the extracted Fermi-liquid coefficients
are given in Table I; they agree with those predicted ana-
lytically to within �5%. This can be considered excellent
agreement, especially for the numerically very challenging
case of N = 3.

V. CONCLUSIONS

Our two main results can be summarized as follows. First,
we have presented a compact derivation of three Fermi-liquid
coefficients for the fully screened N -channel Kondo model,
by generalizing well-established calculations for N = 1 to
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FIG. 3. (Color online) (a) Resistivity as function of magnetic field at T = 0, (b) resistivity as function of temperature at B = 0, and (c) the
weighted spectral function Ā(τ ) [cf. Eq. (43)] at T = B = 0, all shown for N = 1,2,3. Each panel contains NRG data (heavy solid lines), the
quadratic term from a fourth-order polynomial fit (heavy dashed lines) and the corresponding predictions from FLT of Eq. (7) for the quadratic
term (light solid lines). Left and right vertical dotted lines in matching colors indicate the lower and upper borders of the fitting range used for
each N . The boxed legends specify the NRG parameters used here.
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general N . The corresponding calculations, building on ideas
of Nozières, Affleck and Ludwig, and Pustilnik and Glazman,
are elementary. We hope that our way of presenting them
emphasizes this fact, and perhaps paves the way for similar
calculations in less trivial quantum impurity problems that
also show Fermi-liquid behavior, such as the asymmetric
single-impurity Anderson Hamiltonian, or the 0.7 anomaly
in quantum point contacts [45].

Second, we have established a benchmark for the quality of
NRG results for the fully screened N -channel Kondo model, by
showing that it is possible to numerically calculate equilibrium
Fermi-liquid coefficients with an accuracy of better than 5%
for N = 1, 2, and 3. To achieve numerical results of this
quality, two technical ingredients were essential, both of which
became available only recently: first, exploiting larger-rank
non-Abelian symmetries in the numerics [11,12]; and second,
carefully defining the Kondo temperature [34] in such a way
that numerically calculated universal scaling curves are indeed
universal, in the sense of showing a proper scaling collapse,
despite the fact that the scaling limit TK/D → 0 is typically
not achieved in numerical work.
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APPENDIX

This Appendix offers a pedagogical derivation of the
Hamiltonian Hλ given in Eq. (15) of the main text using
the point-splitting regularization strategy, following AL (Ap-
pendix D of [26]). Its main purpose is to show how the relation
α = 3ψν = 1/TK between Fermi-liquid parameters that NB
had found by intuitive arguments [15] follows simply and

naturally from point splitting. For a detailed discussion of the
point-splitting strategy, see Refs. [47–49].

According to AL, the leading irrelevant operator for the
fully screened N -channel Kondo model has the form

Hλ = −λ : �J (0) · �J (0) : . (A1)

Here �J (x) = ∑N
m=1 : �Jm(x) : is the total (point-split) spin

density from all channels at position x (the impurity or dot
sits at x = 0), and

�Jm(x) = 1

2

∑
σσ ′

�†
mσ (x)�τσσ ′�mσ ′(x) (A2)

is the corresponding (non-point-split) spin density for chan-
nel m. Here : . . . : denotes point splitting,

:A(x)B(x) :≡ lim
η→0

[A(x + η)B(x) − A(x + η)B(x)], (A3)

a field-theoretic scheme for regularizing products of operators
at the same point by subtracting their ground-state expectation
value, AB = 〈AB〉. (In most cases, point splitting is equivalent
to normal ordering.) For present purposes, we follow AL [26]
and take

�mσ (x) = 1√
L

∑
k

e−ikxψkmσ (A4)

to be free fermion fields with linear dispersion (ξk = k�vF)
in a box of length L → ∞ (with k ∈ 2πn/L, n ∈ Z), with
normalization {ψkmσ ,ψ

†
k′m′σ ′ } = δkk′δmm′δσσ ′ and free ground-

state correlators

〈�†
mσ (x)�m′σ ′(0)〉 = 〈�mσ (x)�†

m′σ ′(0)〉 = δmm′δσσ ′

2πix
. (A5)

Note that we follow PG in our choice of field normalization,
which differs from that used by AL [26] by �here = ψAL/

√
2π .

Consequently, our coupling constant is related to theirs by
λhere = (2π )2λAL.

In the definition of Hλ, point splitting is needed because the
product of two spin densities, �J (x + η) · �J (x), diverges with
decreasing separation η between their arguments. To make this
explicit, we use Wick’s theorem,

:AB ::CD : = :ABCD :+ :ABCD :+ :ABCD :+ :ABCD : ,

to rewrite the product of spin densities as follows:

�J (x + η) · �J (x) = 1

4

∑
mσσ ′

∑
m′σ̄ σ̄ ′

:�†
mσ (x + η)�τσσ ′�mσ ′(x + η) : :�†

m′σ̄ (x)�τσ̄ σ̄ ′�m′σ̄ ′(x) : (A6a)

= 1

4

∑
mσσ ′

∑
m′σ̄ σ̄ ′

�τσσ ′ · �τσ̄ σ̄ ′

[
:�†

mσ (x + η)�mσ ′(x + η)�†
m′σ̄ (x)�m′σ̄ ′(x) :

+ δmm′

2πiη
(δσ ′σ̄ :�†

mσ (x + η)�mσ̄ ′(x) : + δσ σ̄ ′ :�mσ ′(x + η)�†
mσ̄ (x) :) + δσ σ̄ ′δσ ′σ̄ δmm′

(2πiη)2

]
. (A6b)

The point-splitting prescription in Eq. (A1) subtracts off the 1/η2 divergence of the last term of Eq. (A6b). The contributions of
the second and first terms to Hλ can be organized as Hλ = H1 + Hint, describing single-particle elastic scattering and two-particle
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interactions, respectively. Taking x = 0 and η → 0, we find

H1 = − λ

8πi
lim
η→0

∑
mσσ ′

:
1

η

[
�†

mσ (η)�τ 2
σσ ′�mσ ′(0) −�

†
mσ ′ (0)�τ 2

σ ′σ�mσ (η)
]

: (A7a)

= − 3λ

8πi
lim
η→0

∑
mσ

:

[
1

η
(�†

mσ (η) − �†
mσ (0))�mσ (0) − �†

mσ (0)
1

η
(�mσ (η) − �mσ (0))

]
: (A7b)

= − 3λ

8πi

∑
mσ

: [(∂x�
†
mσ )(0)�mσ (0) − �†

mσ (0)(∂x�mσ )(0)] : , (A7c)

Hint = −λ
∑
mm′

: �Jm(0) · �Jm′ (0) : . (A8)

To obtain Eq. (A7b), we used �τ 2
σσ ′ = 3δσσ ′ and subtracted

and added :�†
mσ (0)�mσ (0): inside the square brackets. Now

pass to the momentum representation, using Eq. (A4) and the
shorthand notations (following PG [29])

ρmσ (0) = 1

L
ρmσ , ρmσ =

∑
kk′

ψ
†
kmσψk′mσ , (A9a)

�Jm(0) = 1

L
�jm, �jm = 1

2

∑
kk′σσ ′

ψ
†
kmσ �τσσ ′ψk′mσ ′ , (A9b)

for the conduction electron channel-m charge and spin densi-
ties at the impurity. This gives

H1 = − α1

2πν

∑
mσkk′

(ξk + ξk′) :ψ†
kmσψk′mσ : , (A10a)

Hint = − 2φ1

3πν2

∑
mm′

: �jm · �jm′ : . (A10b)

Here ν = L/(2π�vF) is the extensive 1D density of states per
spin and channel, and the prefactors were expressed in terms

of the constants

α1 = φ1 = 3λ

8π (�vF)2
= 1

TK
. (A11)

(This notation is consistent with that of Ref. [46], where
Hλ served as a starting point for calculating Fermi-liquid
corrections, too.) Checking dimensions, with [Hλ] = E and
[�mσ ]=1/

√
L (E stands for energy, L for length), we see

that [λ] = EL2. Since [ν] = 1/E , [�vF] = EL, we have [α1] =
[φ1] = 1/E , thus, α1 and φ1 have dimensions of inverse energy.
In the main text, they are identified with 1/TK; in fact, the
numerical prefactor in Eq. (A11) is purposefully chosen such
that the leading term in the expansion (25) of the phase shift
δ̃mσ (ε) turns out to take the form ε/TK.

To elucidate how the case N > 1 differs from N = 1, we
write Hint = H2 + H3 in the main text, with H2 and H3 given
in Eqs. (15b) and (15c), respectively, where H3 occurs only
for N > 1.
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