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The Kondo scale TK for impurity systems is expected to guarantee universal scaling of physical quantities.
However, in practice, not every definition of TK necessarily supports this notion away from the strict scaling limit.
Specifically, this paper addresses the role of finite bandwidth D in the strongly correlated Kondo regime. For this,
various theoretical definitions of TK are analyzed based on the inverse magnetic impurity susceptibility at zero
temperature. While conventional definitions in that respect quickly fail to ensure universal Kondo scaling for a
large range of D, this paper proposes an altered definition of T sc

K that allows universal scaling of dynamical or
thermal quantities for a given fixed Hamiltonian. If the scaling is performed with respect to an external parameter
that directly enters the Hamiltonian, such as magnetic field, the corresponding T

sc,B
K for universal scaling differs,

yet becomes equivalent to T sc
K in the scaling limit. The only requirement for universal scaling in the full Kondo

parameter regime with a residual error of less than 1% is a well-defined isolated Kondo feature with TK � 0.01 D

irrespective of specific other impurity parameter settings. By varying D over a wide range relative to the bare
energies of the impurity, for example, this allows a smooth transition from the Anderson to the Kondo model.
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I. INTRODUCTION

The Kondo scale represents a dynamically generated low-
energy scale, which arises when an unpaired spin, to be referred
to as the impurity, is screened by a metallic host. Prototypical
examples include actual dilute magnetic impurities in met-
als [1–4], but also highly controllable quantum dot settings
which are characterized through transport measurements [5,6].
The precise definition of the Kondo scale, however, is usually
subject to conventions. Nevertheless, whatever the definition of
the Kondo scale TK, clean isolated Kondo features are expected
to be universal: that is after proper scaling with respect to TK,
the resulting data is expected to fully collapse onto a single
universal curve. Therefore whatever the specific definition of
the Kondo scale, e.g., up to an irrelevant definition-dependent
prefactor of order one, this represents an important stringent
requirement: TK must allow for accurate scaling of Kondo
related features. A prototypical application that requires such
scaling, for example, is the analysis of the prefactors in
Fermi-liquid scaling of interacting impurity models [7–10],
which strongly depends on the precise definition of TK. As
a matter of fact, the present work emerged and thus was
motivated from preliminary work in exactly this direction for
multiband models [4,11], with the results on the related Fermi
liquid coefficients to be published elsewhere.

With TK typically described by an exponential expres-
sion [12], the terms in the exponent usually do not depend on
the full bandwidth D of a given model. The prefactor in the def-
inition of TK, however, may depend on D with the consequence
that certain definitions of TK can spoil universal Kondo scaling
even if TK � D. Consider, for example, the standard single
impurity Anderson model (SIAM, see model Hamiltonian
further below) with the impurity onsite interaction U . For
U � D, the full bandwidth D becomes irrelevant for the
impurity related physics. This turns out to be the safe regime for
impurity related quantities . For the case U � D, however, the
bandwidth D becomes relevant for Kondo related quantities.
Importantly, this regime is (i) experimentally relevant, in that

the experiment is never truly in the Kondo scaling limit.
Moreover, through Schrieffer-Wolff transformation in the limit
U → ∞ of the particle-hole symmetric SIAM, (ii) this leads to
the Kondo model, a widely used model itself. With its Kondo
temperature given by TK � D

√
2νJ e−1/(2νJ ) [1,12,13], with

J the Kondo coupling and ν the density of states at the Fermi
edge, this model is intrinsically and strongly affected by finite
bandwidth. Therefore, in particular, the present discussion is
of clear relevance also for the Kondo model.

Proper Kondo scaling is already built-in by construction
in the experiment-like approach of using (full-width-) half-
maximum type measures of TK [5,6], which strictly focuses on
the low-energy features of the measured quantities, typically
assuming TK � D. However, this requires to measure or
calculate an entire curve while possibly subtracting a broader
background still [4]. In contrast, for the theoretical analysis it
appears more desirable to have a single measurable quantity,
instead, which uniquely defines TK up to a convention-
dependent constant prefactor of order one. To be specific, this
requires a definition of TK at zero temperature in the absence of
magnetic field in a static context, i.e., T = B = ω = 0 (using
kB = gμB = � = 1 throughout, for convenience). This TK is
measured through a weak perturbation of the system, and
hence can be computed within linear response. Considering
that the Kondo state is sensitive to an external magnetic field,
the quantity of interest discussed in this paper is the magnetic
susceptibility of the impurity. The following discussion,
however, can be generalized to other local susceptibilities.

A standard definition for the Kondo temperature for the
one-channel Kondo model is given by [12,14]

TK ≡ 1

4χ0
, (1)

with χ0 ≡ limT →0 χ (T ) the static magnetic susceptibility of
the impurity in the limit of zero temperature. The constant
prefactor of 1/4 is part of the definition, which may be chosen
differently, for example, for multichannel models [12]. The
immanent question, however, that arises with Eq. (1) is how
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does one precisely define the impurity contribution χ0 to the
magnetic susceptibility? The predominant conventions to be
found in the literature are [12,14–16]

χ (d)(T ) ≡ 〈
Ŝd

z

∥∥Ŝd
z

〉
T
, (2a)

χ tot(T ) ≡ 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉(0)
T

, (2b)

where 〈Ŝα‖Ŝβ〉 ≡ d
dB

〈Ŝβ〉|B=0 describes the static linear spin
susceptibility of 〈Ŝβ〉 in response to the perturbation Ĥ ′ =
−BŜα with B an external magnetic field (the minus sign in Ĥ ′
ensures χ � 0 if Ŝα = Ŝβ). Here Ŝd

z (Ŝ tot
z ) stands for the total

spin of the impurity (the entire system), respectively. Since, in
general, the spin of the impurity Ŝd

z is not conserved and hence
does not commute with the Hamiltonian, Eq. (2a) is equivalent
to the evaluation of a dynamical correlation function [14]. It
is a somewhat abstract quantity since from an experimental
point of view it is difficult to just apply a magnetic field
at the impurity itself. The second definition of the impurity
susceptibility in Eq. (2b), on the other hand, is typically
considered closer to an experimental realization, in that the
impurity contribution to the total susceptibility is evaluated by
taking the difference of the total susceptibility with [〈·〉T ] and
without [〈·〉(0)

T ] the impurity, where the latter acts as a reference
system. Equation (2b) includes the total spin Ŝ tot

z of the
system, which is assumed to be conserved and hence is simply
proportional to the overall spin fluctuations, 〈Ŝ tot

z ‖Ŝ tot
z 〉T =

β[〈(Ŝ tot
z )2〉 − 〈Ŝ tot

z 〉2] where β = 1/T . Hence, in principle, it
is easier to evaluate. However, from a computational point of
view, it has the disadvantage that one essentially needs two
calculations, one with and one without the impurity, followed
by the subtraction of two extensive macroscopic and thus large
values in order to obtain an intrinsic impurity-related finite
quantity. While one may expect that both definitions in Eq. (2)
give comparable results, they are not strictly equivalent. In
particular, neither definition in Eq. (2) necessarily guarantees
proper scaling of Kondo related features at finite bandwidth.

Scaling onto a universal curve requires an appropriate and
consistent set of parameters. For the Kondo physics analyzed in
this paper, these are simply a particle-hole symmetric setting
(or a similarly consistent asymmetric setting, e.g., U/εd =
const for the SIAM below), together with the bare requirement
of a well-defined isolated low-energy feature with TK �
0.01 D, e.g., the Kondo peak in the spectral function, which
allows to observe Kondo physics to start with. Here universal
scaling is understood in the usual way. Given a set of individual
curves y(x; {p}), when plotted versus x, these depend on a set
{p} of external model parameters. Here, x represents an energy,
e.g., x ∈ {ω,T ,B, . . .}. Therefore universal scaling of x by
an appropriately chosen Kondo scale T

sc,x
K , i.e., x̃ ≡ x/T

sc,x
K ,

implies that the curves y(T sc,x
K x̃; {p})/y0 =: ỹ(x̃) collapse onto

a single universal curve ỹ(x̃) independent of {p}. Note that
away from the Kondo scaling limit, this Kondo scale T

sc,x
K can

depend on the specific x ∈ {ω,T ,B, . . .} chosen. Moreover,
the vertical normalization y0 of the curves is not necessarily
related to T

sc,x
K . Rather, it depends on the measured quantity,

which may not even have units of energy. Typically, the specific
choice for y0 emerges out of context in a straightforward way,
and as such is specified with each application below.

The main result of this paper is the proposition of the altered
definition of the impurity susceptibility,

χ sc(T ) ≡ 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝbath

z

∥∥Ŝbath
z

〉
T

(3a)

= 2
〈
Ŝd

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝd

z

∥∥Ŝd
z

〉
T

, (3b)

used for the scaling of dynamical or thermal quantities, i.e.,
x ∈ {ω,T }. Here, Ŝbath

z ≡ Ŝ tot
z − Ŝd

z and 〈Ŝα‖Ŝβ〉 as defined
with Eq. (2). As will be demonstrated numerically, the
definition of the susceptibility in Eq. (3) provides a sensitive
Kondo scale through Eq. (1), i.e., T sc

K ≡ limT →0[1/4χ sc(T )] ≡
1/(4χ sc

0 ), which allows for proper scaling (sc) of frequency or
temperature dependent curves onto a single universal curve in
a wide range of impurity parameters with bare energies from
much smaller to much larger than the bandwidth D, provided
that one has a well-defined Kondo regime, i.e., TK � D. For
notational simplicity, x will not be specified with TK here,
i.e., T sc

K ≡ T sc
K

,ω ≡ T sc
K

,T . A motivation of Eq. (3) in terms
of the noninteracting system is given in the Appendix A.
More generally, as pointed out with Appendix A2, the above
scale-preserving susceptibility may be understood in terms of
the scaling of frequency by the quasiparticle weight z [17].

In contrast, the earlier definitions in Eq. (2) can be reliably
used for scaling in certain parameter regimes only (e.g. the
scaling limit when the bandwidth is the largest energy scale
by far). The major differences of the impurity susceptibility in
Eq. (3) to the definitions in Eq. (2) are apparent. As compared
to Eq. (2b), the last term in Eq. (3a) is calculated in the
presence of the impurity. This comes with the benefit that,
similar to Eq. (2a), Eq. (3b) can be computed entirely through
the nonextensive quantities since the extensive leading term
in Eq. (3a) cancels. Therefore, in contrast to Eq. (2b), the
impurity susceptibility in Eq. (3) can be computed for a
given system without having to resort to a reference system
without the impurity. Compared to Eq. (2a), on the other
hand, Eq. (3) acquires the relevant correction 〈Ŝd

z ‖Ŝd
z 〉T →

〈Ŝd
z ‖Ŝd

z 〉T − 2[〈Ŝd
z ‖Ŝd

z 〉T − 〈Ŝd
z ‖Ŝ tot

z 〉T ].
For the T sc

K derived from Eq. (3), the emphasis is on a given
fixed Hamiltonian with infinitesimal perturbations whose
(many-body) excitations are explored either dynamically or
thermally. For this, the Kondo scale derived from χ sc

0 mimics
the scaling limit, even if the parameters that enter the Hamil-
tonian do not strictly adhere to the scaling limit. In contrast,
as will be shown below, if the Hamiltonian itself is altered
through an external parameter x ∈ {B, . . .} via Ĥ ′ = −xX̂,
universal scaling vs. a finite range in x analyzed at zero
temperature is generally governed by a slightly different
Kondo scale, T

sc,x
K , based on a variant of the impurity

susceptibility (henceforth, the notation T
sc,x

K will be reserved
for this context only).

In the scaling limit where bandwidth is the largest energy
scale by far, it is found that 〈Ŝd

z ‖Ŝ tot
z 〉T � 〈Ŝd

z ‖Ŝd
z 〉T (for a proof

of this in the noninteracting case, see Appendix A2). Only in
this regime, the static magnetic susceptibility can be computed
equivalently in various ways including Eq. (2), i.e., χ sc(T ) �
χd(T ) � χFS(T ). Here, in particular, the more conventional
magnetic susceptibility χd(T ) may be replaced by χFS(T ),
which is much simpler and cheaper to evaluate.

The definitions for proper scale-preserving Kondo tem-
peratures at finite bandwidth as proposed in this paper are
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TABLE I. Proposed corrections to the Kondo temperature based on the commonly used zero-temperature impurity susceptibility χd
0 away

from the strict scaling limit of infinite bandwidth, yet in the Kondo regime having TK � 10−2D. In the scaling limit, all corrections vanish, i.e.,
χFS

0 = χ d
0 .

dependence on universal Kondo scale TK = 1
4χ0

correction to χ d
0 see also

ω or T T sc
K where χ sc

0 = 2χFS
0 − χ d

0 2 × (
χFS

0 − χ d
0

)
Eq. (3)

B T
sc,B

K where χ
sc,B
0 = χFS

0 1 × (
χFS

0 − χ d
0

)
Eq. (4)

summarized in Table I. This includes the Kondo temperature
T sc

K for fixed Hamiltonian for scaling of dynamical or thermal
quantities, as well as the Kondo temperature T

sc,B
K for scaling

versus an external parameter that alter the Hamiltonian at
T = ω = 0, here for the specific case of magnetic field B.
The derivation of the latter (see Sec. II C) may also serve
as a general guide for scaling versus other external physical
parameters that directly enter the Hamiltonian.

The remainder of the paper then is organized as follows.
The rest of the introduction discusses the role of the new
susceptibility 〈Ŝd

z ‖Ŝ tot
z 〉T introduced with Eq. (3) in terms of the

Friedel sum rule (Sec. I A). Furthermore, Sec. I still provides
general computational aspects on the static linear susceptibility
(Sec. I B), followed by model conventions and methods
(Sec. I C). Section II presents the results and discussion on
the scaling of dynamical impurity spin susceptibility (versus
frequency), as well as the scaling of the linear conductance
(versus temperature and magnetic field). Following sum-
mary and outlook, the appendices provide detailed technical
discussions. It includes (Appendix A) a motivation for the
scale-preserving susceptibility, which is mainly based on the
noninteracting system, (Appendix B) a technical discussion
of finite-size effects of the dynamical impurity susceptibility,
and (Appendix C) technicalities on the evaluation of the mixed
susceptibility χFS(T ) within the fdm-NRG framework. The
latter also contains a short discussion on the evaluation of the
impurity specific heat which, in a wider sense, also resembles
the structure of an impurity susceptibility. Finally, Appendix D
comments on the conventional extraction of phase shifts from
the many-body fixed-point spectra of the NRG, while also
providing a detailed analysis of discretization, i.e., finite size,
effects.

A. Magnetic susceptibility and Friedel sum rule

The definition of the impurity susceptibility in Eq. (3)
introduces the additional impurity susceptibility,

χFS(T ) ≡ 〈
Ŝd

z

∥∥Ŝ tot
z

〉
T

= β
〈
Ŝ tot

z Ŝd
z

〉
T

, (4)

where β ≡ 1/T , and “FS” stands for Friedel sum rule
as motivated shortly. It will also be referred to as mixed
susceptibility, as it combines the impurity spin with the
total spin. Assuming B = 0, the last equality in Eq. (4)
used 〈Ŝ tot

z 〉T = 〈Ŝd
z 〉T = 0. Given that Ŝ tot

z commutes with the
Hamiltonian, this reduces to the simple thermal expectation
value as indicated, which can be evaluated efficiently (see
Appendix C for details). Consequently, for T = 0+, this
corresponds to a strict low-energy quantity that does not
explore the dynamics at intermediated frequency ω � TK

[which is the case, for example, for the definition of the
impurity susceptibility in Eq. (2a)].

The susceptibility in Eq. (4) can be interpreted twofold:
(i) as the local contribution to the total magnetization due to
a global external field, or equivalently (ii) as the response in
the total magnetization of the system due to a local magnetic
field at the impurity only. The first can be seen as (yet
another) intuitive and qualitative description of the local spin
susceptibility. The latter interpretation, on the other hand,
allows a direct link to the Friedel-sum rule (FS) [hence the
label in Eq. (4)]: given an (infinitesimal) local change of
the Hamiltonian, FS relates the low-energy phase shifts ϕσ

of the entire system to the total change in local charge that
flows to or from infinity (note that this change in local charge
includes the displaced charge of both, the impurity itself as
well as the close vicinity of the impurity, which in total may
simply be interpreted as displaced “local” charge [18]).

The dependence of the low-energy phase shifts ϕσ of the
bath electrons on an external magnetic field at the impurity
can be used to define a Kondo scale T

ϕ

K [7],

lim
B→0

d

dB
ϕσ ≡ σ

π

4T
ϕ

K

, (5)

evaluated at T = 0, where σ ∈ {↑,↓} ≡ ±1. As a direct
consequence of the Friedel-sum rule then, it follows

T
ϕ

K = T FS
K (T = 0), (6)

since 〈Ŝ tot
z 〉 = 1

2 (�N↑ − �N↓)
FS= 1

2π
(ϕ↑ − ϕ↓), with �Nσ the

change in total number of particles with spin σ relative
to B = 0. Consequently, χFS ≡ d

dBimp
〈Ŝ tot

z 〉 = 1/(4T
ϕ

K ), which

coincides with the definition of T FS
K , and hence proves Eq. (6).

The identity in Eq. (6) has also been verified numerically to
within 1% accuracy (using NRG with � = 2 as defined below;
for a more detailed discussion on the explicit extraction of
phase shifts within the NRG, see Appendix D).

While, intuitively, one may have expected that the depen-
dence of the low-energy phase shifts on the magnetic field
yields a universal Kondo scale, this is true only in the specific
case that data is scaled versus magnetic field at T = ω = 0,
i.e., having x = B (see Sec. II C further below). However, this
alters the Hamiltonian. For dynamical or thermal quantities
for a given fixed Hamiltonian, having Eq. (3b), T FS

K does not
guarantee universal scaling. The reason for this may be seen
as follows: while, in fact, the phase shifts themselves are not
necessarily affected by finite bandwidth at B = 0+, i.e., at
the low-energy fixed point (cf. the discussion of χFS

0 for the
noninteracting case in Appendix A2), when investigating an
entire universal curve with respect to frequency or temperature,
this necessarily also explores states at intermediate energies.
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By exploring a range of energies, however, this becomes
susceptible to finite bandwidth. Hence T

ϕ

K fails to provide
proper scaling onto a universal curve for dynamical or thermal
data.

B. Static linear susceptibility

Consider the general static linear susceptibility for obtain-
ing a response in the measured operator 〈Ŷ 〉 by applying the
infinitesimal external perturbation Ĥ ′(λ) = −λX̂ to a given
Hamiltonian,

〈X̂‖Ŷ 〉T ≡ lim
λ→0

d

dλ
〈Ŷ 〉T ,λ =

∫ β

0
dτ · 〈δX̂(τ ) · δŶ 〉T , (7)

with β ≡ 1/T , δX̂ ≡ X̂ − 〈X̂〉T , similarly for δŶ , and X̂(τ ) ≡
eτĤ X̂e−τĤ evaluated at λ = 0. By definition, the operators X̂

and Ŷ are assumed Hermitian. The last equality in Eq. (7),
i.e., the imaginary-time Matsubara susceptibility, represents an
exact mathematical relation [27], which satisfies the properties
of a scalar product for Hermitian operators, i.e., 〈X̂‖Ŷ 〉T ≡
〈Ŷ‖X̂〉∗

T with 〈X̂‖X̂〉T � 0 (cf. Bogoliubov-Kubo-Mori scalar
product [27]). If X̂ and Ŷ do not commute with the Hamiltonian
and 〈X̂〉T = 〈Ŷ 〉T = 0, then Eq. (7) is equivalent to the Kubo
formula for linear response in the thermodynamic limit,

〈X̂‖Ŷ 〉T � 〈X̂‖Ŷ 〉(R)
T ≡ − lim

ω→0
χR

XY
(ω) (8)

with χR
XY

(ω) the Fourier transformed dynamical retarded (R)
correlation function χR

XY
(t) ≡ −iϑ(t)〈[X̂(t),Ŷ ]〉T [the sign

with the last term in Eq. (8) originates in the sign of the
definition of Ĥ ′ with Eq. (7), which ensures a positive
susceptibility for X̂ = Ŷ ]. The Kubo formula, as in Eq. (8),
however, assumes that the system has no long-time memory
of the applied operators X̂ or Ŷ . Importantly, for exactly
this reason, for discretized, i.e., effectively finite-size systems,
only Eq. (7) represents a reliable working definition, whereas
corrections can apply to Eq. (8) (e.g., see Appendix B). Most
notably, if the Hamiltonian preserves total spin (which will be
assumed throughout this paper), then with X̂ = Ŷ = Ŝ tot

z , the
resulting dynamical correlation function Im χ (ω) ∝ 0 · δ(ω)
is pathological. In contrast, Eq. (7) yields the correct re-
sult 〈Ŝ tot

z ‖Ŝ tot
z 〉T = β〈(Ŝ tot

z )2〉T − 〈Ŝ tot
z 〉2

T ≡ β · �2S tot
z , i.e., the

thermal fluctuations in the total spin of the system, using the
grand-canonical ensemble in the evaluation of the thermal
average 〈·〉T .

C. Models and method

A prototypical quantum impurity model is the single
impurity Anderson model (SIAM) [19,20]. It consists of the
local Hamiltonian, Ĥ SIAM

0 ≡ Ĥimp + Ĥcpl, with

Ĥimp =
∑

σ

εdσ n̂dσ + Un̂d↑n̂d↓, (9a)

Ĥcpl =
∑
kσ

(Vkσ d̂†
σ ĉkσ + H.c.) ≡

√
2D�

π

∑
σ

(d̂†
σ f̂0σ + H.c.).

(9b)

It describes a single interacting fermionic (d) level, i.e., the
impurity (imp), with level-position εdσ and onsite interaction
U , which is coupled (cpl) through hybridization to a non-
interacting macroscopic Fermi sea Ĥbath ≡ ∑

kσ εkσ n̂kσ with
εkσ ∈ [−D,D] of half bandwidth D := 1 (all energies taken
in units of D, unless specified otherwise). Here, d̂†

σ (ĉ†kσ )
creates an electron with spin σ ∈ {↑,↓} at the d level (in
the bath at momentum k), respectively, with n̂dσ ≡ d̂†

σ d̂σ , and
n̂kσ ≡ ĉ

†
kσ ĉkσ . If a magnetic field is applied at the impurity (in

the bath), then εdσ = εd − σ
2 B (εkσ = εk − σ

2 B), respectively.
The sign has been chosen such that for B > 0, a positive
magnetization 〈Ŝz〉 arises. With ν the density of states, �σ (ε) ≡
πνV 2

σ (ε) = � θ (D − |ω|) is the hybridization strength. It is
taken constant and the same for each spin σ , for simplicity.

In the limit of large U , the SIAM reduces to the Kondo
model with a singly occupied impurity (a fluctuating spin),
which couples to the electrons in the bath through the spin-spin
interaction [1,12]

Ĥ Kondo
0 = 2J Ŝd · Ŝ0 (10)

with J > 0 the antiferromagnetic Heisenberg coupling
(using constant density of states ν = 1/2D of the bath, for
simplicity) [12], Ŝd the spin operator of the impurity and
Ŝx

0 ≡ 1
2

∑
σσ ′ f̂

†
0σ τ x

σ,σ ′ f̂0σ ′ the normalized spin operator of the
bath site f̂0σ at the location of the impurity with τ x the Pauli
spin matrices (x → {x,y,z}).

The generic interacting impurity setting above involves the
solution of a strongly correlated quantum many-body system,
which can be simulated efficiently using the quasi-exact
numerical renormalization group (NRG) [14,21]. In order to
deal with arbitrary temperatures in an accurate manner, the
fdm-NRG is employed [22–24], which is based on complete
basis sets [25]. While not explained in detail here (for this
see Refs. [14,21,24]), the essential NRG related computa-
tional parameters indicated with the figures below are the
dimensionless logarithmic discretization parameter � � 2, the
truncation energy Etr in rescaled units (as defined in Ref. [24]),
the number Nz of z-shifts for z-averaging [26], and the log-
Gaussian broadening parameter σ for smooth spectral data.

II. RESULTS AND DISCUSSION

A. Scaling of dynamical susceptibility

The dynamical magnetic susceptibility of the impurity is
analyzed in Fig. 1 for both the SIAM (upper panels) as
well as the Kondo model (lower panels) for a wide range
of parameters, resulting in a dense set of curves. For the
left panels, the horizontal frequency axis is scaled by T d

K ≡
1/(4χd

0 ), which clearly fails to reproduce a single universal
curve. The universal scaling is provided only by the scaling
of frequency using the altered T sc

K (right panels). The residual
tiny deviations stem from the data with largest TK, i.e. with
TK � 10−3D.

By analyzing the universal scaling at an accuracy of �1%,
this required at the very minimum a parameter setting in
the strongly correlated Kondo regime. Hence the Kondo
temperature was kept clearly smaller than the bandwidth, i.e.,
TK < 10−2. For the SIAM, this allowed a wide range for the
interaction strength from significantly smaller to significantly
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FIG. 1. (Color online) Scaling of the frequency of the dynamical
spin susceptibility χ d(ω)/χ d

0 by the conventional impurity suscepti-
bility T d

K ≡ 1/(4χ d
0 ) (left) vs. the scale-preserving definition of Kondo

temperature T sc
K ≡ 1/(4χ sc

0 ) (right): all the densely lying curves of
the left panels collapse onto a single universal curve in the right
panels, respectively. (a) and (b) analyze the SIAM. The inset to
(a) demonstrates the dependence of T d

K/T sc
K vs. the onsite interaction

U , while keeping the ratios U/� = 15 and εd = −U/2 fixed. The
color bar at the bottom of the inset relates the color of the lines
in the main panel to the specific values of U ranging from U � 1
to U � 1 (with D ≡ 1 the bandwidth). The limit limU→0[T d

K/T sc
K ]

has been fitted, resulting in the value of 1, with excellent accuracy
(actual value indicated together with the horizontal dotted line). The
inset to (b) shows the dependence of T sc

K vs. U , which stretches over
several orders of magnitude. In complete analogy, (c) and (d) analyze
the Kondo model. In particular, the fitted limit limJ→0 T d

K/T sc
K � 1

in the inset of (c) is the same as for the SIAM [cf. (a)] within the
numerical error of significantly less than 1% [for comparison, the
same calculation yet with the cheaper and less accurate setting of
� = 2 and Etr = 12 (not shown) already resulted in T d

K/T sc
K � 0.98,

while � = 4 and Etr = 20 (not shown) already agreed well with the
above results. In this sense, the above results for � = 4 and Etr = 40
are considered fully converged].

larger than the bandwidth [28], nevertheless, while keeping
�/U = 1

15 and εd/U = − 1
2 constant [cf. Fig. 1(a); similarly,

the scaling was also tested away from the particle-hole
symmetric point at εd/U = − 1

3 , resulting in equally excellent
scaling of the data (not shown). The scaling also was tested
for the noninteracting case (U = εd = 0 yet finite �; not
shown), where � takes the role of TK. As a consequence,
in complete analogy to above, for � < 10−2 this allowed
for similar excellent scaling of the data, yet, of course, to a
different universal curve].

The different definitions of the Kondo temperature, T d
K

versus T sc
K , are analyzed in the insets of the left panels,

showing clear deviations of T sc
K from T d

K of up to 20%,

with T d
K consistently smaller than T sc

K . The deviations are
more pronounced for the Kondo model, remembering that this
essentially reflects the large-U limit of the Anderson model,
which implies U � D (even for Kondo temperatures as small
as TK � 10−10, the difference between T d

K and T sc
K is still about

6% (see inset in lower panels). In the limit TK → 0, both,
the SIAM (U → 0 with appropriately adjusted � and εd ) as
well as the Kondo model (J → 0) result in the same ratio
T d

K/T sc
K = 1 within the accuracy of the fitted extrapolations in

the insets (using third-order polynomials with the fitting range
indicated with the fit in red on top of the data; see caption on
the convergence of T d

K/T sc
K with varying NRG parameters).

B. Scaling of static susceptibility and linear conductance
versus temperature (B = 0)

The scaling of the static magnetic susceptibility and the
linear conductance of the SIAM and Kondo model vs.
temperature is analyzed in Fig. 2. The left panels analyze the
SIAM in a wide range of the onsite interaction U . The center
panels analyze the SIAM still, yet in the large-U limit while
varying �, thus transitioning to the Kondo model. The right
panels, finally, analyze the Kondo model itself. In all cases, the
parameters were chosen such that TK � 10−2 with TK plotted
in the insets with the lower panels (the TK for the largest � in
the center panels exceeded 10−2 hence was excluded from the
scaling analysis as indicated by the gray cross in the insets for
the center panels).

The quantity T · χ (T ) as plotted in the upper panels of
Fig. 2 for the spin susceptibility, reflects spin fluctuations at
the impurity. The high-temperature limit for the Anderson
(Kondo) impurity is given by 1/8 (1/4), respectively, indicated
by the horizontal dashed lines. Clearly, once T exceeds U for
the SIAM (or D for the Kondo model), the large temperature
limit is rapidly and accurately approached for either definition
of the impurity susceptibility. For the SIAM, for U � D,
an intermediate regime D < T < U emerges that represents
a free spin, consistent with T · χ (T ) → 1

4 [see Figs. 2(a)
and 2(b)]. For the Kondo model [Fig. 2(c)], this regime is
represented by T > D.

In the regime U � D for the SIAM, the effective bandwidth
relevant for the impurity is given by U , such that the actual
full bandwidth D of the Fermi sea becomes irrelevant in
the description of the impurity [see U = 10−2 data (dark
blue) in Fig. 2(a)]. As a consequence, here the impurity
susceptibility is rather insensitive to its precise definition,
i.e., χd(T ) � χFS(T ) � χ sc(T ) [see U = 10−2 data in inset
of Fig. 2(a)], which thus is considered a safe regime for local
susceptibility calculations and subsequent Kondo scaling. The
differences between the three definitions of the impurity
susceptibility, however, become strongly visible as U increases
and surpasses the bandwidth [e.g., see U = 102 data (red
curves) in Fig. 2(a)]. This behavior is precisely also reflected
in the zero-temperature ratios T d

K/T sc
K as shown in the inset to

Fig. 2(a), which strongly deviate from ≈1 as U increases.
For fixed large U � D, TK can be strongly varied by

tuning the hybridization �. The resulting data for the magnetic
susceptibility is shown in Fig. 2(b). By plotting temperature
in units of T sc

K , the data for χ sc(T ) nicely collapse onto
a universal curve for T < D, a feat which, in particular,
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FIG. 2. (Color online) Temperature dependent scaling of the static spin susceptibility χ (T ) (top) and the linear conductance g(T ) (in units
of 2e2/h; bottom) for the SIAM (left and middle), as well as for the Kondo model (right). The color of the lines in the main panels matches
the colors of the symbols in the inset, hence this indicates the respective parameter setting. The upper panels compare various definitions of
the static spin susceptibility (χ d, χFS, χ sc in faint, dashed and solid, respectively). In the upper main panels, for clarity, the actual value of the
relevant parameters [{D,�,U} for (a) and (b) and D for (c)] are indicated in units of T sc

K for the largest and smallest TK only. Similar to Fig. 1,
the insets to the upper panels analyze the relation between T d

K and T sc
K as function of the parameters. Their ratio is fitted towards TK → 0,

resulting in a comparable value of 1 to very good accuracy as indicated for all three cases (a)–(c). The actual exponential range of T sc
K is shown

in the insets to the lower panels. The lower panels show the static linear conductance g(T ) vs. T/T d
K (nonuniversal; dashed faint lines, but color

match with symbols of inset otherwise) and vs. T/T sc
K (solid lines), which show proper scaling behavior, in that all lines collapse onto a single

universal curve. With T1/2 the temperature where g(T ) passes through 1/2, in units of T d
K, this ranges from T d

1/2 ≡ T1/2/T d
K = 1.25 down to

1.03 [indicated by the vertical dotted lines with the range of T d
1/2 specified with each panel (gray text at center right in each panel)]. In units of

T sc
K , this range collapses to the fixed value of T sc

1/2 ≡ T1/2/T sc
K � 1.03 to within residual relative variations of clearly less than 1% for all three

cases [panels d-f; indicated by vertical solid light lines with their range specified by T sc
1/2 (black text)]. Using � = 4 and Etr = 40 as indicated,

the value of T sc
1/2 � 1.03 above is considered well converged [for comparison, for � = 2 and Etr = 8 a similar calculation (not shown) resulted

in T sc
1/2 � 0.99, while � = 2 and Etr = 12 resulted in T sc

1/2 � 1.01; while good overall scaling can already be observed for Etr � 10, the minor
variations for smaller Etr can be mostly eliminated by normalizing g(T ) by the numerical value g(0) ≈ 1, which was not included here].

cannot be achieved for χd(T ) in a similarly accurate manner.
Furthermore, having U � D, the data in Fig. 2(b) for T < U

clearly resembles the Kondo model, as can be seen by
direct comparison to the data of the actual Kondo model
in Fig. 2(c).

The lower panels of Fig. 2 analyze the scaling of
the linear conductance as measured in transport through
a quantum dot, which represents a prototypical quantum
impurity setting [5,6]. It is computed by folding the im-
purity spectral function Aσ (ω; T ) ≡ ∫

dt
2π

〈{d̂σ (t),d̂†
σ }〉T with

the derivative of the Fermi distribution function, i.e., g(T ) =
π�
2

∑
σ

∫
dω Aσ (ω; T )(− df

dω
) in units of 2e2/h. When scaling

the temperature by T d
K, the resulting data is plotted in light

dashed lines, which show a clear nonuniversal spread akin to
the earlier analysis in Fig. 1(a). In particular, the temperature
T d

1/2 where g(T ) passes through 1/2 changes from 1.25 down
to 1.03 in units of T d

K, with the large-U regime for the SIAM

[Fig. 2(e)] and in particular also the Kondo model itself
[Fig. 2(f)] most strongly affected. In contrast, when scaling the
temperature by T sc

K , again an excellent scaling collapse is ob-
served (solid lines in lower panels of Fig. 2). Note, furthermore,
that the resulting T sc

1/2 ≡ T1/2/T sc
K = 1.032 ± 0.005 nicely

agrees across all panels from the SIAM [Figs. 2(a) and 2(b)]
to the Kondo model [Fig. 2(c)], despite the broad parameter
range analyzed. Given � = 4 together with Etr = 40, these
results are considered well converged (see figure caption on
the convergence of T1/2/T sc

K with NRG parameters). Finally,
note that the value for T1/2/T sc

K above also agrees well with
the one cited by Merker et al. [10], which in the wide-band
limit suggests T1/2/T sc

K � 1.04. Overall, with T1/2/T sc
K being

constant, this is fully consistent with the fact that T1/2 itself
may serve and is frequently used as a universal definition of
TK, with a minor constant proportionality factor of 1.03 to the
T sc

K used here.
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FIG. 3. (Color online) Linear conductance vs. magnetic field at T = 0 for the SIAM (left and center panel), as well as for the Kondo
model (right panel). Again the insets indicate the respective parameter setting of the lines in the main panels. Analogous to the analysis in
Figs. 2(d)–2(f), here, the main panels show the static linear conductance g(B) vs. B/T d

K (nonuniversal; dashed faint lines, but color match
with symbols of inset otherwise) and vs. B/T

sc,B
K (solid lines), which demonstrate universal scaling. With B1/2 the magnetic field where g(B)

passes through 1/2, in units of T d
K, changes from Bd

1/2 ≡ B1/2/T d
K = 1.84 down to 1.55 for given data [indicated by the vertical dotted lines

with their individual range specified with each panel (gray text at center right in each panel)]. In units of T
sc,B

K , this range collapses to the value
Bsc

1/2 ≡ B1/2/T sc
K = 1.55 to within relative uncertainties of clearly less than 1% for all three cases [panels d–f; indicated by vertical solid light

lines with the range T sc
1/2 specified by the black text]. Using � = 4 and Etr = 40 as indicated, the data is considered fully converged (regarding

minor variations for significantly lower Etr � 10 and thus much faster calculations, see caption to Fig. 2).

The above results have direct implications on the Fermi
liquid coefficients derived from the conductance g(T ). For
example, with the Fermi liquid coefficient cT defined by
g(T ) � 1 − cT (T/TK)2 for T � TK [7–10], this strongly
depends on the precise definition of TK. Note that even
though TK is apparently well defined through the magnetic
susceptibility, depending on the precise definition of the latter,
nevertheless, variations of up to 10% are seen in the ratio
T d

K/T sc
K within a well-defined Kondo regime [cf. insets to upper

panels of Fig. 2]. Therefore, when using T d
K, this systematically

underestimates cT by up to 20%. It follows from the present
analysis that the correct choice for TK in the definition of cT

is T sc
K , as it reflects the scaling limit, despite using parameters

that do not strictly represent the scaling limit itself. Note,
however, that the strict scaling limit is given by the regime
T d

K/T sc
K � 1, which for the Kondo model through the inset to

Fig. 2(c) implies J � 0.01, resulting in the extremely small
and rather impractical TK � 10−45.

C. Scaling of linear conductance
versus magnetic field (T = 0)

The linear conductance at finite magnetic field yet zero
temperature is a strict low-energy quantity, in that g(B) =
π�
2

∑
σ Aσ (ω = 0; B,T = 0) requires the spectral function

evaluated at ω = 0 only. As a consequence, its sensitivity on
finite bandwidth is minimal (cf. Appendix A). This already
suggests that in a given case where the Hamiltonian is
altered by a finite external parameter, universal scaling is
not governed by the same T sc

K as introduced in Eq. (3).
Instead, through the Landauer formula, which in a given
case implies π� · Aσ (ω = 0; B,T = 0) = sin2 (ϕσ (B)), the
conductance can be directly linked to the spin-dependent
low-energy phase shifts ϕσ of the entire system. For a given
particle-hole symmetric case, these can be written as ϕσ (B) =
π
2 + δσ (B), where for |B| � T FS

K , δσ (B) ≡ σπB/(4T FS
K )

[cf. Eq. (5)] with σ ∈ {↑,↓} ≡ ±1. This directly identifies
T FS

K as defined in Eq. (4) as the relevant Kondo temperature
for universal scaling. Specifically, one obtains

g(B) = 1

2

∑
σ

sin2(ϕσ ) � 1

2

∑
σ

(
1 − 1

2
δ2
σ

)2

� 1 −
(

πB

4T FS
K

)2

≡ 1 − cT

(
B

πT FS
K

)2

(11)

with cT ≡ π4

16 the well-known Fermi-liquid coefficient with
respect to temperature for Kondo impurities [7–10].

The scaling of the linear conductance g(B) with T FS
K is

demonstrated in Fig. 3 for values of B that stretch well beyond
the quadratic regime in Eq. (11). The analysis in Fig. 3 is
completely analogous to Figs. 2(d)–2(f), except that here
the dependence is on magnetic field B. Consistent with the
earlier analysis, the data for the SIAM with smallest U = 0.01
in Fig. 3(a) already closely resembles the scaling limit. In
contrast, the curves for the Kondo model in Fig. 3(c) even for
the smallest coupling J with its extremely small TK still do
not strictly represent the scaling limit.

The above scaling analysis for g(B) has major conse-
quences for the extraction of the Fermi-liquid coefficient
cB , defined by g(B) � 1 − cB(B/TK)2 for B � TK at T = 0
[7–10]. The above analysis suggests that the Kondo scale,
which needs to be considered for an accurate evaluation of
cB in a practical setting, is T FS

K . This then again resembles
the scaling limit while, nevertheless, it allows to use finite or
narrow bandwidth in ones analysis provided that TK � 10−2

(in units of D as always).

III. SUMMARY AND OUTLOOK

In summary, an adapted scheme for the calculation of
the local susceptibility has been introduced that at zero
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temperature, allows to define a proper universal Kondo scale
T sc

K . The latter fully respects scaling of measured low-energy
properties such as Kondo related features. A distinction needs
to be made between dynamical or temperature dependent
quantities that are described by the same fixed Hamiltonian
(T sc

K ), as compared to dependence on external parameters that
directly enter the Hamiltonian, such as magnetic field (T sc,B

K ).
The corrections to the commonly used TK based on the local
susceptibility χd

0 have been summarized in Table I. For the
parameter sets analyzed in this paper, these corrections range
from about 0% to 10% (which become about twice as large
still for Fermi liquid coefficients), yet vanish in the scaling
limit.

The effect of finite bandwidth on the Kondo scale was
discussed while assuming a featureless hybridization other-
wise. Proper scaling was demonstrated for the SIAM in a
broad parameter regime, with the interaction U ranging from
much smaller to much larger than the bandwidth D. The latter
large-U limit then also was shown to smoothly connect the
SIAM to the Kondo model. Essentially, this is the numerical
equivalent of the Schrieffer-Wolff transformation without
actually making any approximation [23]. By construction, the
effects of finite bandwidth are clearly most prominent in the
large-U limit (U � D), and as a consequence also affect most
strongly the Kondo model itself. The discussion of a universal
low-energy scale for specific model parameters away from the
abstract true Kondo scaling limit with the bandwidth by far
the largest energy is important in the experimental context,
but also in the numerical context by choosing a parameter
regime where simulations can be performed more efficiently
(e.g., Kondo model versus SIAM). The explicit analysis and
discussion of the universal Kondo scale applied to Fermi-liquid
coefficients is beyond the scope of this paper, and will be
published elsewhere.

Finally, it is pointed out that the impurity contribution to
the specific heat, cV (T ), essentially also has the structure
of a susceptibility, namely, the response in energy at the
impurity due to an increase in the external parameter T , i.e.,
the temperature. The analogies remain vague, since tempera-
ture is special as compared to other external parameters such
as the magnetic field as it enters in the Boltzmann distribution
for thermal statistics. Moreover, it is also unclear a priori
whether and to what extent to associate the coupling term Ĥcpl

with the impurity or the bath. Nevertheless, an approximate
expression for the impurity contribution to the specific heat can
be evaluated by computing cV (T ) � d

dT
〈Ĥimp + 1

2 Ĥcpl〉T [29].
In contrast to Ref. [29], however, which computes cV (T ) by the
explicit numerical derivative with respect to temperature, the
latter can be fully circumvented along the lines of the mixed
susceptibility χFS discussed above by directly computing
the plain thermal expectation value β〈Ĥimp + 1

2 Ĥcpl‖Ĥtot〉T =
β2〈(Ĥimp + 1

2 Ĥcpl)Ĥtot〉T within the fdm-NRG framework (see
Appendix C2 for details).

ACKNOWLEDGMENTS

We want to thank Oleg Yevtushenko, Herbert Wagner, and
Jan von Delft for fruitful discussions, and also Theo Costi and
Mikhail Pletyukhov for their comments on the manuscript.

This work has received support from DFG (TR-12, SFB631,
NIM, and WE4819/1-1).

APPENDIX A: MOTIVATION FOR SCALE PRESERVING
SUSCEPTIBILITY AT T = 0

The definition of the magnetic susceptibility χd(T ) in
Eq. (1) is typically computed through its spectral function
χ ′′(ω) ≡ − 1

π
ImχR(ω), having χ (ω) ≡ χ ′(ω) − iπχ ′′(ω) [for

simplicity, the following discussion only refers to the static lo-
cal impurity susceptibility χd(T ), hence the superscript d will
be skipped for readability]. This spectral function is given by

χ ′′(ω) =
∫

dt

2π
eiωtχ (t)

=
∑
a,b

(ρa − ρb)
∣∣Ŝd

z

∣∣2
ab

δ(ω − Eab), (A1)

with χ (t) ≡ 〈[Ŝz(t),Ŝz]〉T ≡ χ>(t) − χ<(t), corresponding to
the two terms of the commutator, respectively. The last line in
Eq. (A1) provides the Lehmann representation of χ ′′(ω), with
a and b complete many-body eigenbasis sets, having ρa =
1
Z
e−βEa and Eab ≡ Eb − Ea . Hence with χ (ω) = χ ′(ω) −

iπχ ′′(ω), the static spin susceptibility χ (T ) is obtained
through Kramers-Kronig relations (Hilbert transform),

χ (T ) = lim
ω→0

P
∫

χ ′′(ω′)
ω − ω′ dω′ = −P

∫
χ ′′(ω′)

ω′ dω′, (A2)

with P indicating principal value integral [for finite discrete
systems, this skips all energetically degenerate terms in
Eq. (A1) with Ea = Eb; the implications of the terms Ea = Eb

for finite-size systems or for preserved operators are discussed
in Appendix B]. Note that even though χ0 ≡ limT →0 χ (T )
describes a low-energy property, through Eq. (A2), it requires
dynamical information from all frequencies. In contrast, the
mixed impurity susceptibility in Eq. (4) results in the plain
expectation value χFS(T ) = β〈Ŝ tot

z Ŝd
z 〉T . At T = 0, this cor-

responds to a ground-state expectation value. Consequently,
this quantity is static and does not explore the dynamics of the
system, and hence strictly focuses on the low-energy sector.
For this reason, as pointed out in the main text, this quantity
exactly reflects, for example, the phase-shifts experienced by
the electrons of the bath in the low-energy fixed point spectrum.

Nevertheless, this mixed impurity susceptibility is still
insufficient for the evaluation of a proper scale-preserving
susceptibility. In order to proceed, while still insufficient,
it is instructive to consider the effects of spectral moments
(next section). This will be followed by the actual motivation
of the scale-preserving susceptibility based on the plain
noninteracting resonant level model.

1. Effects of spectral moments

The Kramers-Kronig or Hilbert transform in Eq. (A2), in
a sense, corresponds to the spectral moment with n = −1
[by using the spectral weight (ω′)n within the integral].
This clearly weights small frequencies more strongly. Hence
this emphasizes the low-energy sector while, nevertheless, it
weakly reaches out towards large energies. This becomes more
pronounced still for n = 0, which simply corresponds to the
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spectral sum rule,

I ≡
∫

χ>(ω′) dω′ =
∫

(1 − f (ω′))χ ′′(ω′) dω′

= 〈(
Ŝd

z

)2〉
T

� 1

4
, (A3)

with f (ω) the Fermi function. For T = 0, this exactly describes
the area underneath the spin-spin correlation function χ ′′(ω)
for positive or, up to a sign, for negative frequencies [cf. Fig. 1;
the integral over the entire χd(ω) for all frequencies yields zero
by the antisymmetry of χd(ω)].

For the SIAM in the local-moment (Kondo) regime, the
value of the integral in Eq. (A3) at T = 0 is close to its
upper bound, I SIAM

0 � 0.25, with minor variations of � 10%
depending on the specific model parameters. For the Kondo
model (which represents the large-U limit of the SIAM, i.e.,
U � D), by construction, the sum-rule in Eq. (A3) exactly
yields the upper bound IKondo

0 = 1/4.
At T = 0, the scaling of the spectral data χ ′′(ω) by

χ0 = limT →0 χ (T ) ensures that the height of χ ′′(ω) is properly
normalized [e.g., see Fig. 1, all panels]. Since the area
underneath χ ′′(ω) is (roughly) conserved, scaling of the
frequency ω by χ−1

0 leads to approximate scaling (left panels
of Fig. 1). Specifically, since for the Kondo model the area
is exactly preserved (see above), the remaining horizontal
variations in Fig. 1(c) must be due to finite bandwidth. In
conclusion, the sum-rule in Eq. (A3) is not particularly useful
for a proper scale-preserving local susceptibility. This is not
surprising, considering that it represents the spectral moment
n = 0, and hence is strongly susceptible to effects of finite
bandwidth (for the Kondo model this means that, while the
area in Eq. (A3) is preserved, there can be a shift of spectral
weight from the band edge to low-energy Kondo regime and
vice versa, hence spoiling the scaling of the low-energy Kondo
features). Higher spectral moments will make things even
worse. Hence this route appears ill-suited for the search of
a scale-preserving local susceptibility at T = 0.

2. Motivation through the noninteracting SIAM

The scale-preserving susceptibility proposed in the main
text was also tested successfully for the asymmetric SIAM,
as well as in the limit U → 0 at finite �, i.e., the plain
noninteracting resonant level model. Even there, the proposed
χ sc

0 still nicely allowed for the scaling of low-energy features,
such as the impurity spectral function A(ω) ≡ − 1

π
ImGd (ω),

as long as the low-energy scale (here �) is clearly smaller
than the bandwidth, i.e., � � 10−2. The reason for this will
be explained in what follows. Considering that the general
impurity Green’s function for an interacting system can be
written as Gd (ω) = [ω − εd − �(ω) − �(ω)]−1, with �(ω)
the impurity self-energy, the discussion of the effects of finite
bandwidth on the hybridization function �(ω) below may
serve as a more general motivation, indeed, for the definition
of a scale preserving susceptibility. In particular, as it is
demonstrated in the main paper, the result can also be nicely
applied to interacting systems.

For the noninteracting case, with σ ∈ {↑,↓} ≡ {±1},
the spin susceptibility reduces to the impurity charge-
susceptibility for the spinless model. With 〈Ŝd

z 〉T = 0,

one has

χd(T ) = 1

4

∑
σ,σ ′

σσ ′ 〈n̂σ‖n̂σ ′ 〉0︸ ︷︷ ︸
∝δσσ ′

= 1

2
〈n̂(σ )‖n̂(σ )〉0

≡ −1

2
lim
ω→0

χ c(ω), (A4a)

[regarding the sign in the last line, see Eq. (A2)], with the
charge susceptibility given by

χ c(ω) ≡ FT{−iϑ(t)〈[n̂(t),n̂]〉T }, (A4b)

with n̂ ≡ d̂†d̂, and FT( ) indicating Fourier transform. In the
noninteracting case, this results in the impurity susceptibility

χd(T ) = − ∂

∂εd

〈n̂〉T = Im
∫

dω

2π
[Gd (ω)]2f (ω), (A5)

with Gd (ω) the impurity Green’s function and f (ω) the
Fermi function. This results in the correct large temper-
ature limit, limT →∞ T χ0(T ) = 1

8 for arbitrary Gd (ω). The
low-temperature limit is model dependent. Considering the
noninteracting case, the impurity Green’s function is given

by Gd (ω) = [ω − εd − �(ω)]−1, with �(ω+) ≡ ∑
k

V 2
k

ω+−εk
≡

E(ω) − i�(ω) the hybridization function. In the wide-band
limit for constant �(ω) = θ (D − |ω|)�, it follows that
E(ω) → 0. The effects of finite bandwidth D manifest
themselves at small frequencies ω through

εd → εd + E(ω) � ε̃d − aω, (A6a)

with ε̃d ≡ εd + E(0) and a ≡ − d
dω

E(ω)|ω=0 ∼ �/D � 1
some dimensionless small constant (note that for the particle-
hole symmetric resonant level model with constant �, one has
a � 0). This leads to the scaling

ω → ω̃ ≡ (1 − a)ω (A6b)

of the frequency in Gd (ω) in Eq. (A5) (interestingly, this
may be interpreted more generally in an interacting context
as the scaling of frequency by the quasiparticle weight z [17]).
Therefore far away from the bandwidth, |ω| � D, the impurity
spectral function appears slightly stretched along the frequency
axis while preserving its height. Overall, however, the line
shape for small frequencies remains unaltered up to proper
scaling factors.

With respect to frequency, Eq. (A6b) suggests the increased
energy scale T sc

K = T ∞
K /(1 − a) relative to T ∞

K which, to
lowest order in a, represents the energy scale in the wide-band
limit. Remembering that χ0 ∝ T −1

K represents an inverse
energy scale, one obtains

χ sc
0 (D) = (1 − a)χ∞

0 , (A6c)

with χ sc
0 (D) the scale-preserving local susceptibility at given

finite bandwidth, and χ∞
0 ≡ 1/(4T ∞

K ).
On the other hand, at T = 0, the Fermi function in Eq. (A5)

is unaffected by the scaling ω → ω̃, such that the overall
integral in Eq. (A5) may be rewritten in terms of ω̃, resulting
in

χd
0 (D) � 1

1 − a
χ∞

0
(A6c)=

(
1

1 − a

)2

χ sc
0 (D). (A7)

With a > 0, this shows that χd
0 (D) overestimates the scale-

preserving susceptibility χ sc(D) for given finite bandwidth D.
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The mixed susceptibility now allows to determine and
subsequently eliminate the scale factors (1 − a). With

χFS(T ) =
∫ β

0
dτ

〈
Ŝd

z (τ )Ŝ tot
z

〉 = β
〈
Ŝd

z Ŝ
tot
z

〉

= β

2
(〈n̂N̂〉 − 〈n̂〉〈N̂〉), (A8a)

the last line again already refers to a spinless model, with
n̂ ≡ d̂†d̂ the number of particles at the impurity and N̂ the
total number of particles in the system. In the noninteracting
case with A(ω) ≡ − 1

π
ImGd (ω) the impurity spectral function,

this becomes

χFS(T ) = 1

2

∫
dωA(ω)[−f ′(ω)]. (A8b)

In the limit T → 0, this yields χFS
0 = A(0)/2. While A(ω)

depends on the rescaled frequency ω → (1 − a)ω, as dis-
cussed above, this is irrelevant here since A(ω) is evaluated
at ω = 0. In the wide-band limit of a featureless bath,
i.e., constant hybridization �, Eq. (A5) exactly agrees with
Eq. (A8b). Together with the fact that χFS

0 does not explic-
itly depend neither on the bandwidth nor dynamically on
finite frequency, this allows to identify χFS

0 = χ∞
0 even at

finite D.
Using Eq. (A7), the effects of finite bandwidth on χ sc

0 (D)
to lowest-order in a are thus summarized by

χ sc
0 (D) = (1 − a)2χd

0 (D) � (1 − 2a)χd
0 (D). (A9)

The first reduction of χd
0 (D) by the factor (1 − a) leads

to χFS
0 . Another reduction by the same factor leads to the

desired χ sc
0 (D). With a � 1, this implies that the difference

between χd
0 (D) and χFS

0 , as well as the difference between
χFS

0 and χ sc
0 (D) are the same to lowest order in a, and are

given by the first equality in Eq. (A7), aχd
0 (D) � χd

0 (D) −
χFS

0 . Together with the last term in Eq. (A9) then, one
obtains the final expression for the scale-preserving local
susceptibility,

χ sc
0 (D) = 2χFS

0 − χd
0 (D), (A10)

in agreement with Eq. (3b) in the main text.

APPENDIX B: IMPURITY SUSCEPTIBILITY
AND FINITE SIZE EFFECTS

Consider the Lehmann representation of the generic impu-
rity susceptibility given by the last term in Eq. (7):

〈X̂‖Ŷ 〉T =
∑
a,b

e−βEa

Z
(δX)ab(δY )ba

1 − e−βE+
ab

E+
ab

(B1a)

=
∑
a �=b

e−βEa − e−βEb

Z

XabYba

E+
ab︸ ︷︷ ︸

=〈X̂‖Ŷ 〉(R)
T

+β
∑

a

e−βEa

Z
(δX)aa(δY )aa

︸ ︷︷ ︸
≡〈X̂‖Ŷ 〉(δ)

T

.

(B1b)

Here, a and b represent complete many-body eigenba-
sis sets, i.e., Ĥ |a〉 = Ea|a〉 with Eab ≡ Eb − Ea , and the
Boltzmann distribution ρa = e−βEa /Z [note that (δX)aa =
Xaa − 〈X̂〉T �= 0 in general]. In the first line, the positive

infinitesimal, E+
ab ≡ Eab + i0+, was added for convenience

to correctly deal with the case Ea = Eb (the sign of the
infinitesimal imaginary part is initially actually irrelevant
here). By splitting off the terms a = b of the sum in Eq. (B1a)
into the correction 〈X̂‖Ŷ 〉(δ)

T , the first term in Eq. (B1b) then
translates into the Kubo formula for linear response 〈X̂‖Ŷ 〉(R)

T

based on the retarded response function. By the way the spe-
cific infinitesimals are chosen, actually, all degenerate terms
Ea = Eb drop out of the first term (principal value integral
in the continuum’s limit), which therefore ignores accidental
degeneracies, i.e., degeneracies beyond strict internal multiplet
degeneracies due to symmetries that are included with the
second term. As a consequence, the sum in the first term can
be relaxed back to all a,b including a = b. Furthermore, the
correction 〈X̂‖Ŷ 〉(δ)

T in Eq. (B1b) is relevant only if the spin
states of the states a are sufficiently long-lived. In the extreme
case X̂ = Ŷ = Ŝ tot

z , the first term 〈X̂‖Ŷ 〉(R)
T in Eq. (B1) is

strictly zero, and therefore the entire susceptibility is carried by
the second term. In contrast, for the case that the Hamiltonian
does not commute with, say, X̂, in the thermodynamic limit
one expects that Xaa → 0 and the second term in Eq. (B1)
vanishes. In this case, linear response using either Kubo
formula or the imaginary-time Matsubara susceptibility is safe.
However, in the presence of discretized finite-size systems,
Xaa �= 0 can become a significant contribution neverthe-
less! In this case, both contributions in Eq. (B1) must be
included.

1. Limit of large temperature for finite system

For a finite system in the limit β|Eab| � 1, Eq. (B1a)
becomes

lim
T →∞

〈X̂‖Ŷ 〉T �
∑
a,b

e−βEa

Z
(δX)ab(δY )ba

1 − (1 − βE+
ab)

E+
ab︸ ︷︷ ︸

=β

= β lim
T →∞

〈δX̂ · δŶ 〉T
= β lim

T →∞
[〈X̂Ŷ 〉T − 〈X̂〉T 〈Ŷ 〉T ], (B2)

which is equivalent to the situation where either operator X̂ or
Ŷ actually commutes with the Hamiltonian! This again serves
to emphasize the importance of both terms in the evaluation of
the impurity susceptibility in Eq. (B1) in any numerical setting
for a finite system, even if both, X̂ and Ŷ , do not commute
with the Hamiltonian. While in the case of small T the
last term in Eq. (B1b) may be negligible, it gains relative
importance with increasing temperature, to the extent that
for a finite system with T → ∞, comparable weight is
carried by both terms in Eq. (B1b) [note that for large T ,
〈X̂‖Ŷ 〉(R)

T ∝ 1/T , while the 1/T behavior of the correction
〈X̂‖Ŷ 〉(δ)

T is caused by the leading β; cf. explicit NRG analysis
in Fig. 4].

2. Impurity susceptibility at large temperatures

In the limit T → ∞, the thermal density matrix is fully
mixed and hence independent of the eigenbasis of the actual
Hamiltonian. The thermal average therefore can be reduced to
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FIG. 4. (Color online) Contributions to the impurity susceptibility χd as in Eq. (B1) for the data in Fig. 2 in the main text [(a)–(c) have
exactly the same parameter setting as Figs. 2(a)–2(c)]. The lower panels replicate the same data as in the upper panel, yet switch to a logarithmic
scale also on the vertical axis. The thick light solid line corresponds to a plain power-law fit, suggesting that the correction T χδ decays like
1/T 2, hence becomes irrelevant in the limit T → 0. The insets in the lower panels have been replicated from Fig. 2 to indicate the parameter
setting.

the thermal average within the impurity space alone. Therefore
with Ŝ tot

z ≡ ∑
n Ŝ(n)

z summed over all (Wilson) sites n including
the impurity, having 〈Ŝd

z 〉T = 0, Eqs. (2)–(4) reduce to the same
asymptotic form

(T χ )∞ ≡ lim
T →∞

T χ sc(T ) � lim
T →∞

〈
Ŝd

z

∥∥Ŝd
z

〉
T

= 1

di

∑
σi

(
Sd

z,σi

)2
, (B3)

where the impurity is described by the state space σi of
dimension di that also diagonalizes Ŝd

z . For a Kondo impurity,
or also for an Anderson impurity in the case TK � D �
T � U , this implies χ∞ = 1

4T
[this also may be taken as a

motivation for the definition of the Kondo temperature TK =
1

4χ0
in Eq. (1) in the opposite limit of T → 0; more generally

still, for an impurity of spin S one obtains (T χ )∞ = S(S+1)
3 ].

On the other hand, for an Anderson impurity with T � U ,
one obtains χ∞ = 1

8T
due to the enlarged accessible local state

space [30] [see also Figs. 2(a)–2(b)].

3. Implications for the NRG

The above considerations are clearly relevant for numerical
simulations such as the NRG. There the effective length
of the Wilson chain becomes ever shorter for calculations
with increasing temperature (automatically so in case of
fdm-NRG) [22,24]. In case of NRG, the interplay between
finite-size effects and large temperatures can therefore be
considered enhanced.

The two contributions to the static susceptibility in Eq. (B1)
are analyzed in detail in Fig. 4 for the data in Fig. 2 of the main
text. From the log-log plots in the lower panels, it is clearly
seen that the correction χδ behaves like T · χδ ∝ 1/T 2 for
T � TK [in contrast to T · χR ∝ 1/T ], and hence becomes
negligible in the limit T → 0. Nevertheless, once T increases
and becomes comparable to TK, the correction T · χR(T )
becomes sizable. While the two contributions to the static
susceptibility in Eq. (B1b) show rather irregular behavior
individually, as seen in Fig. 4, their sum yields a smooth
physically meaningful curve.

In practice, when computing the first term in Eq. (B1b) as
standard susceptibility within linear response (Kubo formula),
the second term shows up in a disguised manner as δ(0) contri-
bution with opposite sign for ω = 0±. This may be collected in
the smallest frequency bin for positive and negative frequen-
cies, respectively, when collecting the discrete data. While
these δ(0) contributions drop out of the principal value sum-
mation in the Kramers-Kronig transformation, nevertheless,
they represent and thus can be simply used to subsequently
evaluate the correction given by the last term in Eq. (B1b).

APPENDIX C: CALCULATION OF THE MIXED
SUSCEPTIBILITY χFS(T ) WITHIN FDM-NRG

Given that the total spin operator Ŝ tot
z commutes with the

Hamiltonian, the mixed susceptibility χFS(T ) ≡ 〈Ŝd
z ‖Ŝ tot

z 〉T in
Eq. (4) can be evaluated in a simple and cheap manner, as
it reduces to the plain set of expectation values, T χFS(T ) =
〈Ŝ tot

z Ŝd
z 〉T − 〈Ŝ tot

z 〉T 〈Ŝd
z 〉T . This includes one local operator Ŝd

z
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and one global operator, the total spin operator Ŝ tot
z ≡ ∑

n Ŝ(n)
z

which is given by the sum of local spins Ŝ(n)
z associated with

site n along the Wilson chain including the impurity, say, at
n = −1. Being interested in the magnetic susceptibility at zero
magnetic field, it follows 〈Ŝ tot

z 〉T = 〈Ŝd
z 〉T = 0. The remaining

quantity,

T · χFS(T ) = 〈
Ŝ tot

z Ŝd
z

〉
T

= tr
[
ρ̂(T ) · Ŝ tot

z Ŝd
z

]
, (C1)

then is a simple intrinsic quantity linked to the impurity. In
given case, only a single sum over a complete many-body
eigenbasis a suffices, with the Lehmann representation of
Eq. (C1) given by

T · χFS(T ) =
∑

a

e−βEa

Z
S tot

z,a

(
Ŝd

z

)
aa

, (C2)

where Ĥ |a〉 ≡ Ea|a〉. By construction, the full thermal density
matrix as well as the total spin operator S tot

z are strictly
diagonal, with the matrix elements given by [S tot

z ]aa′ = δaa′S tot
z,a

and [ρ̂(T )]aa′ = δaa′e−βEa /Z, respectively, with Z(T ) ≡∑
a e−βEa the grand-canonical partition function.
In what follows, the complete basis set a is given by the

iteratively discarded state spaces generated by the NRG [25],
i.e., |a〉 → |se〉Dn ≡ |s〉Dn ⊗ |e〉n with sn ∈ D a discarded state
at iteration n and en the environment with respect to iteration
n, i.e., the full state space for the remainder of the Wilson
chain n < n′ � N with N the final length of the Wilson chain
considered. The resulting full thermal density matrix (fdm) is
given by [22,24]

ρ̂(T ) =
∑

n

wn(T )ρ̂D
n (T ), (C3)

where wn(T ) is a well-defined temperature-dependent weight
distribution along the Wilson chain that is peaked near the
energy scale of temperature. The operators ρ̂D

n are normalized
thermal density matrices within the discarded state space of
iteration n (the sum over the environment of the remaining
iterations, resulting in the degeneracy factor dN−n with d the
dimension of the local state space of a single Wilson site,
has been already properly included in the weight distribution
wn) [22,24]. With the full thermal density matrix a scalar
operator, all entries in Eq. (C3) are block-diagonal. In
particular, being initialized within the discarded (eigen-) state
space at iteration n itself, all ρ̂D

n are strictly diagonal.
Now, assuming that also Ŝ tot

z commutes with the Hamil-
tonian, it is also block diagonal. Using the complete basis
set |se〉Dn ≡ |s〉Dn ⊗ |e〉n, in the expectation value in Eq. (C2)
for the mixed susceptibility, the environment is traced over.
Specifically with

Ŝ tot
z ≡

∑
n

Ŝ(n)
z =

∑
n′�n

Ŝ(n′)
z

︸ ︷︷ ︸
≡Ŝ

n,tot
z

+
N∑

n′>n

Ŝ(n′)
z

︸ ︷︷ ︸
≡Ŝ

e,tot
z

,

the total spin of the entire Wilson chain splits into two parts
with respect to a given iteration n, the total spin up to and
including site n, and the total spin for the remainder of the
chain. The corresponding matrix elements are given by (note
that the degeneracy factor dN−n has been already included

with the weight distribution wn and is thus compensated in the
following expression)

1

dN−n

∑
en

〈se|Ŝ tot
z |s ′e〉n

= δss ′Sn,tot
z,s + δss ′

∑
n′>n

1

d

∑
σn′

〈σn′ |Ŝ(n′)
z |σn′ 〉

︸ ︷︷ ︸
=〈Ŝ(n′ )

z 〉∞=0

,

where σn′ spans the d-dimensional local Hilbert space of
Wilson site n′. The last term represents the fully mixed average
of the local spin for a given site n′, i.e., corresponding to an
effective T = ∞, and thus vanishes identically by symmetry.
Overall, this implies that at iteration n, only the total spin
Ŝn,tot

z up to and including iteration n needs to be considered.
Therefore the mixed susceptibility in Eq. (C1) can be evaluated
in the NRG context as follows:

T · χFS(T ) =
∑

n

wn(T )tr
[
ρD

n (T )Sn,tot
z Sd

z

]
︸ ︷︷ ︸
= ∑

s∈Dn

ρn,s (T )Sn,tot
z,s (Sd

z )ss

, (C4)

where the trace runs over the discarded state space of iteration
n as indicated. Here, the notation of the operators without
hats indicates that they already correspond to the matrix
representations in the basis s ∈ Dn, i.e., the discarded states
at iteration n. The computationally most expensive part for
the result Eq. (C4) is the evaluation of the matrix elements
of Ŝd

z in the discarded state space of iteration n. From these,
however, only the diagonals are required. Once computed, the
calculation of χFS(T ) becomes extremely fast for an arbitrary
set of temperatures. It is important, though, that for the
physically correct impurity susceptibility thermal averaging at
T = 0+ is required. Hence the Wilson chain has to be chosen
long enough such that the weight distribution wn(T ) clearly
fits within the Wilson chain, i.e., T � ωN , with N the length
of the Wilson chain considered (in practice, wN (T ) � 10−2;
in contrast, if T � ωN , then T χFS(T ) → 〈0|Ŝ tot

z Ŝd
z |0〉 = 0).

1. Evaluation in the presence of non-Abelian symmetries

In the above discussion, the external magnetic field was ap-
plied in the z direction. However, if the magnetic susceptibility
at B = 0 is computed, the Hamiltonian typically possesses
SU(2) spin symmetry. This can be taken advantage of when
evaluating the mixed susceptibility above as follows. Clearly,
the evaluation of the mixed susceptibility Eq. (C1) can be
symmetrized with respect to x, y, and z components [23],

T χFS(T ) = 〈
Ŝ tot

z Ŝd
z

〉
T

= 1
3

〈
Ŝ tot · Ŝd

z

〉
T

,

where Ŝ ≡ [ −1√
2
Ŝ+,Ŝz,

+1√
2
Ŝ− ]T ≡ {Ŝμ} with μ ∈ {+1,0, − 1}

represents the irreducible three-dimensional spinor for the spin
operator which transforms according to a spin J = 1 multiplet.
Now every component in the spinor Ŝ tot commutes with the
Hamiltonian such that Ŝ tot

± only raises or lowers the state index
within the same multiplet, but never leaves a given multiplet.
As a consequence, Ŝ tot is still a strictly diagonal operator in
multiplet space, while the nondiagonal matrix elements within
the same multiplet factorize as Clebsch-Gordan coefficients
(cf. Wigner Eckart theorem). To be specific, in the presence

075130-12



LOCAL SUSCEPTIBILITY AND KONDO SCALING IN THE . . . PHYSICAL REVIEW B 89, 075130 (2014)

of symmetries, the state space at each iteration n is organized
using the composite index labels [23] |s〉n → |J s; M〉n where
s(J ) now labels a specific multiplet within symmetry sector J ,
and M(J ) represents the Sz labels, i.e. sequences the internal
state space of multiplet J . With this, the matrix elements of
the total spin operators are given by

〈J ′n′; M ′|Ŝn,tot
μ |Jn; M〉

= δJJ ′δnn′
√

J (J + 1)︸ ︷︷ ︸
≡‖Sn,tot

J ‖nn′

· (JM ′|1μ; JM),

with (·|·; ·) indicating the Clebsch-Gordan coefficients. The
prefactor represents the reduced matrix elements ‖Sn,tot

J ‖ for
symmetry sector J . It guarantees that one obtains the familiar
Casimir operator,

〈Jn; M ′|(Ŝn,tot)† · Ŝn,tot|Jn; M〉 = J (J + 1)δMM ′ . (C5)

Consequently, in the presence of SU(2) spin symmetry, within
the NRG the mixed susceptibility in Eq. (C4) can be rewritten
as follows:

T χFS(T ) = 1

3

∑
n

wn tr
[
ρD

n

(
Sd · Sn,tot

)]
. (C6)

The apparent overhead in terms of the extra summation over
the μ components of the spinors in Sd · Sn,tot is completely
negligible when compared to the gain by the reduced dimen-
sionality on the reduced matrix element, i.e., the multiplet
level. First of all, it only affects Clebsch-Gordan coefficient
spaces. Moreover, by inspecting the block-diagonal structure
of Eq. (C6), for the specific contribution of any symmetry
sector within the trace exactly the same Clebsch-Gordan
coefficient space appears twice, in both Sn,tot

μ as well as
Sd

μ. Hence, by performing the trace for the Clebsch Gordan
coefficient space similar to Eq. (C5), this only adds a factor
(2J + 1), i.e., the 3j -symbol, which is simply equal to the
dimensionality of multiplet J . Hence the explicit contraction
of the Clebsch-Gordan coefficients can be fully circumvented.
In summary, the effect of non-Abelian symmetries on the
evaluation of the mixed susceptibility in Eq. (C6) is that
(i) Sd can be reduced to its block-diagonal components due
to the block-diagonal structure of all the remaining partici-
pants. (ii) The traced-over Clebsch-Gordan spaces together
with the definition of Sn,tot results in the combined factor
1
3

√
J (J + 1)(2J + 1) for symmetry sector J that can be

directly multiplied onto the reduced matrix elements of Sd.
Finally, with the Clebsch-Gordan coefficients taken care of,
(iii) the remaining trace is carried out over the reduced
multiplet space only.

2. Evaluation of the approximate impurity specific heat
〈(Ĥimp + 1

2 Ĥcpl)Ĥtot〉T within fdm-NRG

The impurity specific heat has a similar mathematical struc-
ture when compared to the general discussion of susceptibility
above. However, since it would be a susceptibility that refers to
the temperature itself as the variable physical parameter, in the
presence of thermal averages, these similarities necessarily
remain vague and the impurity specific heat is special.
Nevertheless, as it turns out [29], the impurity specific heat can

also be computed through the following local approximation:

cV (T ) � ∂

∂T(tot)
〈Ĥipc〉T = ∂

∂Tipc
〈Ĥtot〉T , (C7)

where Ĥipc ≡ Ĥimp + 1
2 Ĥcpl, with Ĥimp and Ĥcpl the impurity

Hamiltonian and its coupling to the bath, respectively [e.g., see
Eq. (9); here ipc stands for impurity plus part of the coupling
to the bath]. The first expression, ∂

∂T(tot)
〈Ĥipc〉, has the intuitive

physical interpretation that it represents the change in energy
at the impurity due to a change in the overall total temperature,
where the contribution of the hybridization is shared in equal
parts with the bath [29]. Mathematically, this is equivalent to
the second expression in Eq. (C7), ∂

∂Tipc
〈Ĥtot〉, which represents

the change in total energy due to a change in local temperature,
i.e., with β ≡ 1/T(tot) and Ĥ(tot) ≡ Ĥipc + Ĥbpc (where bpc
stands for bath plus remaining contribution from the coupling
to the impurity),

e−βĤ ≡ exp

[
− 1

T(tot)
(Ĥipc + Ĥbpc)

]

→ exp

(
− 1

Tipc
Ĥipc − 1

Tbpc
Ĥbpc

)
, (C8)

evaluated at Tipc = Tbpc = T(tot) after taking the derivative for
cV (T ), as indicated by the trailing subscript T in the last term
of Eq. (C7).

While in Ref. [29] the derivative in Eq. (C7) was computed
numerically by first computing the expectation values 〈Ĥipc〉T ,
the derivative in Eq. (C7) can be easily expressed analytically,

cV (T ) = β2(〈ĤipcĤtot〉T − 〈Ĥipc〉T 〈Ĥtot〉T ), (C9)

which still can be directly evaluated numerically within
the NRG using complete basis sets [22,24,25]. The term
〈Ĥipc〉T corresponds to a simple thermal average of a local
quantity [24]. The total energy, on the other hand, is given by

〈Ĥtot〉T =
∑

n,s∈D

∑
e

e−βEn
s

Z︸ ︷︷ ︸
=wn(T ) e−βEn

s

Zn
≡wnρn

s

(
ωnẼ

n
s + δn

)
(C10a)

with the eigenenergies En
s ≡ ωnẼ

n
s + δn as is customary, the

NRG eigenenergies Ẽn
s are given in rescaled units, with ωn

the energy scale at iteration n and δn here the cumulative
subtracted energy offset with respect to the ground state at
iteration n. While a global energy reference drops out of
the entire definition of the impurity specific heat Eq. (C9),
of course, the individual energy references δn for Wilson
shell n do not cancel and hence must be properly included.
Therefore En

s ≡ ωnẼ
n
s + δn represent the eigenenergies in

nonrescaled physical units with respect to a single common
energy reference, e.g., the ground-state energy of the entire
Wilson chain. In this case, the offsets δn, when computed
starting from the low-energy side (i.e., large n) scale like
δn ∝ ωn. In Eq. (C10a), finally, again a single sum over
the complete discarded (D) basis set (s,e,n)D suffices, since,
obviously, Ĥtot commutes with itself, i.e., with the Hamiltonian
used in the evaluation of the overall thermodynamic average.
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With the remaining term in Eq. (C9) given by

〈ĤipcĤtot〉T =
∑

n,s∈D

wnρ
n
s

(
ωnẼ

n
s + δn

)〈sn|Ĥipc|sn〉, (C10b)

the resulting impurity specific heat can be expressed as follows:

cV (T ) = β2
∑

n,s∈D

wnωnρ
n
s Ẽn

s (〈sn|Ĥipc|sn〉 − 〈Ĥipc〉T )

+β2
∑

n,s∈D

wnδnρ
n
s (〈sn|Ĥipc|sn〉 − 〈Ĥipc〉T )

≡
∑

n

wn

[
1

ωn

c̃
(D,n)
V (T ) + δn

T 2
(〈Ĥipc〉D

n − 〈Ĥipc〉T )

]
,

(C11)

where c̃
(D,n)
V (T ) stands for the specific heat computed within

the discarded states space of Wilson shell n in rescaled units,
i.e., using Ẽn

s and T → T̃n ≡ T/ωn. While c̃
(D,n)
V (T ) is clearly

independent of the energy references δn for each individual
Wilson shell n, these δn do lead to a finite contribution through
the very last term in Eq. (C11). The reason is that, in general,
the thermal expectation value 〈Ĥipc〉D

n in the discarded state
space of iteration n is unequal to the full thermal average
〈Ĥipc〉T for the entire system. Only for very late Wilson
shells in the low-energy fixed point, i.e., T → 0, it follows
〈sn|Ĥipc|s ′

n〉 � 〈Ĥipc〉0 · δss ′ . This leads to cancellation of the
last term, which is required for limT →0 cV (T ) = 0.

APPENDIX D: ON THE EXTRACTION OF
PHASE SHIFTS WITHIN THE NRG

The Kondo scale T FS
K derived from the mixed susceptibility

[see Eq. (4)] is identical to the Kondo scale T
ϕ

K obtained from
the phase shifts [see Eq. (5)], i.e., T FS

K = T
ϕ

K , as discussed
with Eq. (6) in the main text. For a Fermi liquid in the
thermodynamic limit, the one-particle level spacing can be
considered equally spaced around the Fermi energy yet
different for each electronic flavor such as spin σ ,

ε̃kσ = ε1σ + k ε2σ , (D1)

with k ∈ {. . . ,−2,−1,0,1,2, . . .} and ε1σ ∈ [0,ε2σ [, given that
ε1σ is essentially defined up to modulo ε2σ . Here the tilde
on ε̃kσ indicates that the original decoupled fixed bath modes
may already have been (phase-) shifted by the presence of a
coupled impurity. If the baths are identical for each flavor σ

including their discretization, ε2σ is independent of σ . This is
typically the case for NRG where ε2σ ∝ ωN ∝ �−N/2, with
ωN the energy scale at large but finite length N of the Wilson
chain. Hence ε1σ /ωN and ε2σ /ωN are both of order 1. For the
ground state, all levels with ε̃kσ < 0 are occupied. If ε1σ = 0,
the many-body ground state is degenerate. For a Fermi liquid,
the phase shift ϕσ can be extracted independently for each σ .
In the thermodynamic limit, it is given by the ratio

ϕσ

π
= ε1σ

ε2σ

(D2)

[this can be simply motivated by using the connection of phase
shifts to the change in (local) occupation through the Friedel
sum rule, while taking a proper continuum limit starting from
a finite yet large system, i.e., a discrete model].

Within the NRG, the one-particle level position in energy
can be determined from the many-body eigenspectrum of the
energy flow diagram, i.e., the finite-size fixed-point spectra
at T = 0+. This allows to extract ϕσ through Eq. (D2). Note,
however, that due to the intrinsic even-odd alternations with the
actual shell of the Wilson chain, the resulting phases ϕσ differ
by the constant offset of π/2 between even and odd shells;
nevertheless, since only differences in the phases due to the
presence of the impurity, i.e., phase shifts, are considered, for
an arbitrary but fixed energy shell this offset is irrelevant. The
problem with Eq. (D2), however, is that it is based on an equally
spaced one-particle level spectrum around the Fermi energy,
which is not quite the case within NRG at all! Even though
NRG does allow to directly access the thermodynamic limit
in the numerical simulation due to the underlying logarithmic
discretization in � [21,31], for a given length N of the Wilson
chain and a necessarily rather coarse discretization with � �
2, the approximately uniform level spacing around the Fermi
energy quickly transforms into exponentially separated energy
levels further away from the Fermi energy [32], as shown in
Fig. 5.
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FIG. 5. (Color online) Dependence of single-particle energy
level spectra ε̃kσ (εd ) on local occupation 〈n̂loc,σ (εd )〉 and level index
k for the SIAM [NRG (green dot-dashed)] as well as the RLM
[quadratic solution (blue) and NRG (red dashed)] using a long
even Wilson chain of length N as specified. The local occupation
〈n̂loc,σ (εd )〉 and thus the phase shift is changed by varying the position
of the impurity energy level εd(,σ ). While this level is swept from +∞
to −∞, 〈n̂loc,σ (εd )〉 changes smoothly from 0 to 1. Combining all
energies in units of the energy scale ωn vs. x ≡ k − 〈n̂loc,σ (εd )〉, this
results in a single continuous antisymmetric curve ε(x) that is linear
for small |x|, yet is quickly dominated by exponential behavior for
larger |x| � 2 (see inset and text). The discrete levels ε̃kσ (εd ) < 0 (i.e.,
within the range x < 0) correspond to single-particle levels below
the Fermi energy and are thus occupied in the ground state. The data
for the blue curve were obtained by numerical diagonalization of
the quadratic Hamiltonian (RLM), hence all single-particle energies
are easily obtained. In particular, their energies are not restricted to
the energy range below the truncation energy, as is the case for the
NRG-method (dashed and dot-dashed lines).
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Figure 5 analyzes the single-particle level spectra for the
interacting as well as the noninteracting SIAM [the latter also
referred to as the resonant level model (RLM)] as defined in
Eq. (9) for an arbitrary late but fixed even Wilson shell N [i.e.,
H0 such as in Eq. (9) plus some larger even number of further
Wilson sites; for an odd length of the Wilson chain, all curves in
Fig. 5 would be trivially offset horizontally by 1/2, which can
be ignored]. With εd ≡ {εdσ } the (magnetic field dependent)
level positions of the impurity, ε̃kσ (εd ) is the one-particle
level spectrum of the entire system. The shift of the discrete
single-particle spectrum due to an arbitrary but fixed εd is
directly related to phase shifts via Friedel sum rule. Thus when
plotted versus the continuous variable x ≡ k − 〈n̂loc,σ (εd )〉
having εd(,σ ) ∈ [−∞,∞] and hence 〈n̂loc,σ (εd )〉 ∈ [0,1] with
〈n̂loc,σ (εd )〉 the change in local charge at and close to the impu-
rity [18] depending on the impurity setting, this allows to col-
lect all one-particle level spectra ε̃kσ (εd ) after rescaling by the
approximate one-particle level spacing ωN into a single contin-
uous curve ε(x), as demonstrated in Fig. 5. In a sense, with the
Wilson chain in mind, the presence of the impurity allows to al-
ter the boundary condition for the bath electrons, thus resulting
in an impurity-dependent phase shift, which sets the horizontal
offset 〈n̂loc,σ (εd )〉 of the discrete energy levels in Fig. 5.

The resulting curve ε(x), which describes the macroscopic
bath, is universal in the sense that it only depends on
the bath discretization (i.e., �), but is independent of the
specifics of the microscopic impurity as long as the low-energy
behavior represents an effective Fermi liquid. For example, as
demonstrated in Fig. 5, the resulting curve ε(x) is exactly
the same independent of whether the impurity is interacting
(SIAM) or not (RLM, with or without NRG). Using the same
bath discretization for all flavors σ , as is customary within
the NRG, this curve ε(x) is also independent of σ , as already
indicated by its notation.

As a consequence, for a given bath discretization, the curve
ε(x) can simply be computed for the noninteracting case
(spinless RLM) by repeated diagonalization of the underlying

quadratic Hamiltonian while sweeping εd ∈ [−∞,∞] (e.g.,
see solid line in Fig. 5). With the NRG bath discretization
being particle-hole symmetric, the resulting curve ε(x) is
antisymmetric in x, i.e., ε(−x) = −ε(x). Then given the
reference curve ε(x) together with the requirement of its
antisymmetry, the single-particle spectrum for any other
impurity setting can be fitted (provided Fermi liquid behavior),
which allows to extract the horizontal offset 〈n̂loc,σ (εd )〉 and
hence the phase shift ϕσ independently for each flavor σ , even
if the single-particle spectrum is not exactly uniformly spaced
around the Fermi energy.

The range of linearity of ε(x) around x = 0 indicates the
regime of equally spaced single-particle levels closest to the
Fermi energy, given an exponentially large but finite system
size, as represented by the length N of the Wilson chain. For
� = 2, linearity is given to a good approximation (within about
0.8%) for x ∈ [−0.5, 0.5], i.e., for the lowest single-particle
and single-hole excitation in the particle-hole symmetric case,
and hence justifies using Eq. (D2) [this method was used for
extracting T

ϕ

K and verifying Eq. (6) to within 1% accuracy in
the main text]. In contrast, for � = 4, the linearity of ε(x) even
within this minimal regime is already clearly compromised
(about 3%). Here usage of Eq. (D2) already leads to clear
systematic errors due to the strongly increased coarseness of
the underlying logarithmic discretization, leading to about a
7% error in Eq. (6). Therefore the extraction of phase shifts
for larger � from the single-particle spectra requires a more
careful analysis such as the aforementioned fitting to the
curve ε(x). Given a logarithmic discretization, it follows that
εk ∼ sgn(k) ωN �|k| for larger |k| for a fixed length N of the
Wilson chain. From the semilog-y representation in the inset of
Fig. 5 it can be seen, that for |x| � 2, ε(x) is already described
by a plain exponential behavior to within 0.1%. Thus rather
than fitting the data for |x| � 1, alternatively, one may simply
concentrate on the exponential behavior for larger |x|, which,
however, requires to extract the single-particle spectrum at
least up to the third single-particle level.
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