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1. Introduction

As smaller and smaller electric circuits can be manufactored by so called nanofab-
rication [1], physics in systems of mesoscopic lengthscale plays an important role in
state of the art experiments. In the mesoscopic regime, which is between the micro-
scopic and the macroscopic ones, objects are small enough, so quantum mechanic
behaviour emerges, but big enough, so that a statistical description is also possible.
The dimensionless conductance g = ETh

∆
of such systems should be large, g � 1, so

that the following descriptions are valid. This is equivalent to the Thouless energy
ETh = ~

τD
being much bigger than the average level spacing ∆, which also means

that the time τD an electron needs to traverse the system is very small. In some
samples, the mean free path of an electron can be comparable to the system size.
Such systems no longer self-average a quantity like the conductance G. It becomes
highly sample dependent, whereby G loses its meaning. At temperatures below the
Thouless energy, universal behaviour for G can be observed again. It can be quan-
tized at T < TTh in quantums of GQ = 2e2

h
, called the conductance quantum, with

e being the elementary charge and h being the Planck constant [2]. In Figure 1.1
experimental setups for investigation of physics on the mesoscopic length scale are
presented.

Figure 1.1.: (a) One dimensional wires. (b) A single quantum dot. (c) Three quan-
tum dots A, B and C. (d) A quantum dot in an Aharonov-Bohm ring.
The pictures have been copied from [3].

The brighter parts in Figure 1.1 are the gate leads, which are on top of an insulating
layer and can be charged. Below the insulator there is the conduction material, which
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is thin enough to confine electron movement in one direction. If the conductance of
this material is high, as stated before, the electrons inside can be described by a two
dimensional electron gas. The electric field of the charged gate leads enter into the
material below and the electron gas feels the electric field as a repulsive potential.
This potential confines the electrons to certain areas, which define the shape of the
system [2]. This mechanism is sketched in Figure 1.2. At this point it is clear, that
the microscopic shape of such systems is hard to control and is often not known in
experimental setups. Fortunately, the microscopic details are not necessarily needed,
as explained later.

Figure 1.2.: A schematic cross section of the experimental setups in Figure 1.1.

Elements, which are encountered frequently in such systems, are quantum dots
(QD) and one dimensional leads. A QD is a cavity like structure, which spacially
confines electrons inside. The further description of these objects follow mainly [2]
and [3]. A confinement of electrons to the size of QDs leads to discrete energy levels
ε0
j . Electrons can enter and leave the dot via attached leads if they are connected to

electron reservoirs. The more electrons are in the dot, the more energy is needed for
another electron to hop onto the dot, not only because the lower energy levels are
filled up and a single particle level spacing δj := ε0

j+1−ε0
j has to be overcome, but also

because the electron repulsion due to Coulomb interaction has to be compensated
by the energy ∆EN , depending on the number of electrons N already in the dot.
One can manipulate the number of electrons by attaching at least one lead to the
dot and applying a gate voltage Vg, which shifts all the energy levels of the dot.
Electrons can hop into or out of the dot, when the energies of the states ψn and
ψn+1, where the index denotes the number of electrons on the dot, is equal. This is
equal to the energy difference ∆E(n) = 0 and can be archieved by tuning the gate
voltage. The energy difference can be determined from the Hamiltonian of the QD.
Further electron-electron interactions to the charging energy will be neglected:
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Ĥdot =
∑
j

εjn̂j + Ecn̂
2 .

The first part of the Hamiltonian describes the discretete energy levels, that appear
due to the confinement of the electrons, εj are the energies of the single particle
levels and n̂j the respective electron number operators with the two eigenvalues 0
or 1 for spinless electrons. The second part is the charging energy of a capacitor,
Ec = e2

2C
is the charging energy, with C being the capacity of the dot, and n̂ =

∑
j n̂j

is the total electron number operator. ∆E(n) can be defined as the difference of the
expectation values of Ĥdot corresponding to the two states ψn and ψn+1. Assuming
that the lowest energy levels of the QD are filled, the difference reads:

∆E(n) = 〈ψn+1|Ĥdot|ψn+1〉 − 〈ψn|Ĥdot|ψn〉 =

=
n+1∑
j=1

εj + Ec(n+ 1)2 −
n∑
j=1

εj − Ecn2 = ε0
n+1 − Vg + Ec(2n+ 1)

⇒ ∆E(n) = 0 if Vg(n) = ε0
n+1 + Ec(2n+ 1) (1.1)

Figure 1.3.: Three CB peaks with CB valleys in between. The picture was taken
from [4].

At these values of Vg, an electron can move into the dot and the conductance of the
whole system has a peak, which is called a Coulomb-blockade (CB) peak. Figure
1.3 shows experimental data from [4] for the current through an Aharonov-Bohm
ring containing a QD. The structure of the Aharonov-Bohm ring will be described
later. The data reveals the typical CB peak behaviour as described before. The
region between two peaks is called the CB valley. It can be estimated from (1.1)
as ∆Vg,n = Vg(n) − Vg(n − 1) = δn + 2Ec. For systems consisting of many atoms
δj � Ec holds, so the width of CB valleys is almost constant, equal to 2Ec.

By attaching two leads to the dot and applying a voltage bias between them,
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Figure 1.4.: The two possible cotunneling processes. (a) Elastic cotunneling: an
electron from the left lead hops into a virtual state on the dot and off
to the right lead in one move. The initial and final state have the same
energy while the virtual state can have higher energy. In the end there
is one hole left in the left lead. (b) Inelastic cotunneling: an elctron
from the left lead hops on the dot and another electron from the dot
hops off to the right lead in one move. In the end there are two holes,
one in the left lead and one on the dot and one extra electron in the
dot. The pictues were taken form [3].

electron transport can be realized through the dot. Usually only the lowest empty
energy level contributes to electron transport. There are two transport regimes
in such a system. One is called the single electron transfer, since in this regime
the electrons move one after another and every electron motion to or from the dot
is energetically possible (∆E < 0). The other possible regime is the cotunneling
regime, in which electron movements occur simultaneously. This process is sketched
in Figure 1.4. It is energetically possible, but will be neglect in this thesis, since they
are second order processes. In an ideal system, electron transmission occours only
at the gate voltage Vg(n), as described above. But in a real system the coupling of
the leads to the dot can be non-trivial, for example, electrons coming from the lead
can be coupled to excited states inside the dot and not only to the lowest empty
energy level.The irregular structure of the QD can also complicate the description of
electron transport. Therefore, describing transport through the QD by transmission
amplitudes is better adapted to the problem.

A quantum mechanic tool to describe such a system is the scattering matrix Ŝ. It
relates the scattering states of incoming and outgoing electrons, which are scattered
by a quantum dot, cf. Figure 1.5:

~ψout = Ŝ ~ψin (1.2)

It is important to notice, that in this case, the scattering matrix does not only
depend on the properties of the dot but also on the coupling of the dot to the leads.
This coupling usually consists of a contraction of the lead at the lead-dot interface,
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see Figure 1.1. Such a contraction is called a quantum point contact (QPC) under
some conditions, which will be described later.

Figure 1.5.: Two leads connected to a quantum dot, which represents the scatter-
ing area. Each lead has one transmitting channel with incoming and
outgoing states.

Here ψin1,2 and ψout1,2 in lead 1 and 2 are the wavefunctions for incoming and outgoing
electrons. Before going into more details about the scattering matrix, the nature
of the leads should be specified . As stated earlier, the leads are confined by the
electric field of the gate wires placed on top of the conduction material. These fields
should be strong enough, so that the resulting potential for the electrons can be
described by an infinite potential well in every direction perpendicular to the lead
(y-,z-direction) and by a potential constant in x-direction (parallel to the wire).
For simplicity, we consider non-interacting leads, so electron-electron interactions
will be neglected and the electrons inside the leads form a free electron gas. This
assumption is valid for experiment if the applied voltage is small enough so electrons
move one by one through the leads. Electrons can only travel in one dimension
(the x-direction), therefore the leads can be described as ideal waveguides with a
wavefunction factorized into a part in x-direction and a part in y- and z-direction.
The latter is the solution of the infinite potential well and therefore consists of
standing waves with quantized energy levels En, which are also called channels.
Only the channels with En < EF , where EF is the Fermi energy, can be occupied by
electrons and therefore contribute to electron transport. These channels are called
”open” and their number is finite. Since the energy levels of an infinite potential
well En are proportional to L−2, with L the transverse size of the wire, the number
of open channels can be reduce by making the leads narrower. A contraction of the
width of the wire L(x) is called a QPC if the factorization of the total wavefunction is
still possible. This is true if the change of width is adiabatic, which means following
equations are true:
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∣∣∣∣dL(x)

dx

∣∣∣∣� 1 and L(x)

∣∣∣∣d2L(x)

dx2

∣∣∣∣� 1

A QPC enables to tune the number of open channels. Since the potential is constant
the wavefunction in x-direction is plane waves far from the QPC. For simplicity,
we consider only one channel in every lead. The incoming waves can either be
reflected from the dot or transmitted through the dot. So the outgoing waves consist
of a reflected and a transmitted part. In Figure 1.5 the reflection amplitudes r1

and r2 are introduced, which describe the reflection from the dot back into lead 1
and 2 respectively. Equivalently, the transmission amplidutes t12 and t21 describe
transmission from one lead to the other, from 1 to 2 and from 2 to 1 respectively.
All these amplitudes can be complex. The outgoing states read:

ψout1 = r1ψ
in
1 + t21ψ

in
2 , ψout2 = t12ψ

in
1 + r2ψ

in
2 .

With ~ψout = (ψout1 , ψout2 )
T

and ~ψin = (ψin1 , ψ
in
2 )

T
one can define the scattering matrix

from (1.2):

Ŝ =

(
r1 t12

t21 r2

)
(1.3)

The Ŝ matrix is unitary(Ŝ† = Ŝ−1) due to particle conservation [5]. As a result,
|t12| = |t21| = T and |r1| = |r2| = R with R2 + T 2 = 1. If the scattering process

is time reversal, the S-matrix is also symmetric (ŜT = Ŝ), so ~ψin and ~ψout can be
exchanged in (1.2). In a more general case, there are Nch channels in every lead
and reflection and transmission processes can occour between any channels. This
will not affect the general structure or properties of the scattering matrix, but only
change r1, r2 and t12, t21 to Nch×Nch matrices, where, for example, an entry

(
t̂21

)
kl

describes the transmission amplitude for a plane wave coming from channel l in
the second lead and going to the channel k in the first lead. The unitarity of the
scattering matrix generaly leads to t̂12t̂

†
12, t̂†12t̂12, t̂21t̂

†
21 and t̂†21t̂21 having the same

eigenvalues {TP}. Furthermore the eigenvalues {RP} of r̂1r̂
†
1, r̂†1r̂1, r̂2r̂

†
2 and r̂†2r̂2 are

the same with {TP}+ {RP} = 1.
The current through the system can be described with the help of the Landauer for-
mula, which uses the scattering matrix. By performing time and quantum mechanic
averaging, one can derive a formula for the current measured in experiment:

〈〈Î〉t〉QM =
GQ

e

ˆ ∞
0

dE
∑
p

Tp(E) [f1(E)− f2(E)]

Here fi(E) is the Fermi distribution function and TP (E) describe the energy depen-
dence of the eigenvalues.

Since the electron wavefunctions are plane waves in the leads, it is interesting to
look at interference experiments of these electrons. One setup for this kind of ex-
periment provides the so called Aharonov-Bohm (AB) ring, which will be described
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following [9]. The basic structure is demonstrated in Figure 1.6. Two wires in the
middle form a ring-like structure, which is connected to the outside via another two
leads. The connecting junctions can be described by 3×3 scattering matrices, since
every electron can either be reflected into the lead it comes from or transmitted into
one of the two wires. If a bias voltage is applied to the left (electron source) and right
lead (electron drain), electrons move through the ring. This bias should be small
enough, so that the bias drops completly at the two junctions and electrons can
move freely inside the ring. This way electrons can be reflected at the two junctions
multiple times before leaving the ring. The electrons aquire a phase depending on
the path covered from source to drain and any applied scalar or vector potential to
the ring. The electron waves interfere in the drain lead, which results in the trans-
mission amplitude for the whole system. The aquired phase of the electrons has
two contributions, namely the dynamical phase χt and the magnetic phase φt. χt
depends on the total distance an electron covers inside the ring but not the direction
in which the path is run through. It is therefore sample dependent. Furthermore,
the dynamical phase depends on the electron energy and any scalar potential in the
ring. Denoting the phase aquired in the upper arc of the ring by χ1 and in the lower
arc by χ2, the dynamical phase reads: χt = n1χ1 + n2χ2, with ni the number of
passes through the i-th wire.

Figure 1.6.: The structure of an AB ring connected to an electron source and drain.
The Φ in the middle of the ring denotes a magnetic flux arising from an
applied magnetic vector potential. The picture was taken from [9]

φt does depend on the direction in which a path is run through. This results in
different signs for the phase of counter clockwise and clockwise propagating electrons
in the ring. the absolute value of φt depends on the magnetic flux through the ring
thus, it depends on the vector potential of the magnetic field and not the magnetic
field itself. The gauge degree of freedom of the magnetic vector potential translates
to φt( ~A), which is therefore also not gauge invariant. Since the total transmission
of the system must be gauge invariant, one has to find a gauge invariant quantity
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depending on the magnetic phase. This quantity is the phase aquired by a closed
loop with winding number one and can be calculated as φl = πΦ

Φ0
, with Φ the magnetic

flux through the ring and Φ0 = hc
2e

the flux quantum. Since φt only depends on the
loop number nl and the flux through the ring, it is sample independent. Denoting
the magnetic phase in the upper arc of the ring by φ1 and in the lower arc by φ2,
one can find:

φt = nlφl +

{
−φ1, if the particle passes lead 1 first
+φ2, if the particle passes lead 2 first

Here nl is the number of clockwise loops minus the number of counter-clockwise
loops and we define: φl = φ1 + φ2. The total phase θk aquired for a certain path
labeled by k is the sum of χt,k and φt,k. For real valued scattering matrices the
transmission through the ring reads:

T =

∣∣∣∣∣∑
k

Ake
iθk

∣∣∣∣∣
2

=
∑
k,n

AkAne
i(θk−θn) =

∑
k,n

AkAne
i(χt,k−χt,n+φt,k−φt,n) =

= Tcl + Tqm

with Tcl =
∑
k

A2
k and Tqm =

∑
k 6=n

AkAn cos (χt,k − χt,n + φt,k − φt,n) . (1.4)

Tcl and Tqm are the classical and quantum contribution to the transmission, respec-
tively. Ak are weights taking into account the probability of a path k and can be
calculated from the two scattering matrices representing the left and right junction.
Tqm is gauge invariant, since the gauge dependent parts φ1 and φ2 of φt,k − φt,n
either cancel each other or add up to a full loop in clockwise or anti-clockwise di-
rection. Tqm can be further split into two contributions, a part dependent and a
part independent of the dynamical phases χt,k. The former part with χt,k 6= χt,n
vanishes when taking the ensemble average over χt,k. In experiment this can be
realised by performing conductance measurements for either different ring setups,
thus changing the length of the two arcs forming the ring, or for different chemi-
cal potentials in the ring leads, and therefore using the energy dependence of the
dynamical phase to change it. The second part of Tqm with χt,k = χt,n will not van-
ish in an ensemble average, since the magnetic phase is independent of the sample.
The arguments of the cosine functions contributing to this part have the structure
φt,k − φt,n = 2mφl = 2mπΦ

Φ0
, with integer m. Therefore, contributions to Tqm, which

do not depend on the dynamical phases, are periodically maximal at the same flux
Φ = sΦ0, with s a number. Any perodical dependency of a physical quantitiy on Φ

Φ0
,

like the transmission amplitude in an AB ring, is called the Aharonov-Bohm effect.

In state of the art expermients, AB rings and QDs are combined. For example, the
QD can be put into one arm of the AB ring, see the last panel of Figure 1.1. It was
shown in [4], that coherent electron transport through a quantum dot is possible if
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Figure 1.7.: The experimental results of the transmission of a QD in an AB ring
published in [6]. (a) The CB peaks and valleys of a sole quantum dot
are clearly visible. The peak values vary between 0.8 and 1.0 while the
valleys always go down to zero. (b) The phase continously increases
from zero to π in the range of one CB peak and abruptly jumps down
by π everytime the transmission amplitude goes to zero.

the coupling of the QD to the leads is strong enough. In this case, the AB effect still
affects the total transmission amplitude of the system. By changing the flux and
recording the resulting oscillations of the current through the system in the linear
response regime, information about the quantum dot, for example the transmission
amplitude, can be calculated. This is done by adding more junctions to the ring
leads, at which electrons can leave the ring. This reduces the probability for an
electron to pass a whole arc of the ring and paths covering more than one lead are
neglectable in the sums of (1.4). A more detailed theory is presented in [10]. The
transmission amplitude of the dot in the AB ring can be written as Td = |Td|eiα,
transmission through the dot occurs with an amplitude |Td|, but transmission also
adds a phase α to the electron wave. Both quantities depend on the gate voltage
applied to the QD. Figure 1.7 shows experimental data from [6], where a setup
containing a ”large” quantum dot with about 200 electrons was used. |Td(Vg)| shows
the typical coulomb blockade peaks and valleys, which are almost periodic, see Figure
1.7 (a). Between two CB peaks α(Vg) increases continously by π, as expected for
such a system, but when the transmission amplitdue goes to zero in the CB valley
the phase abruptly jumps by π. This effect is called a phase lapse and its occurrence
is found to be universal in this data, which means there is a phase laps in every CB
valley. Therefore, it cannot be explained by microscopic details of the dot, which are
in general not known. For example, the unknown shape of the dot governs random
energy levels. If phase lapses were sensitive to such details, their appearance would
also seem to be random. In another experiment [7], which used a smaller QD with
a maximum of 20 electrons, a so called mesoscopic regime was discovered. This is a
regime, in which the observed physics is sensitive to microscopic details, but since
they are not known, the behaviour seems to be random. The mesoscopic regime
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emerges if 10 or less electrons are in the dot [7]. The more electrons are in a QD the
smaller is its levelspacing and the higher becomes the charging energy of the dot. To
investigate whether these quantities trigger the change from the mesoscopic to the
universal regime, a numerical approach, focusing on the interplay between the level
spacing δj of the energy levels of the dot, their widths Γj and the charging energy
U , was done in [8].
The model used in this numerical simulation consists of three parts. Firstly spinless
electrons in the QD are described by the Hamiltonian:

Ĥdot =
N∑
j=1

εjn̂j +
1

2
U
∑
j 6=j′

(
n̂j −

1

2

)(
n̂j′ −

1

2

)
(1.5)

whwew N is the number of levels contributing to the transmission, εj is the energy

and n̂j = d̂†j d̂j the particle number operator of the j-th state. d̂†j/d̂j are the cre-
ation/annihilation operators for spinless electrons of the j-th state in the dot. U > 0
describes the Coulomb interaction inside the dot and is therefore a charging energy
which seperates the CB peaks. The energy levels of the dot can be shifted by the
gate voltage and define the single particle level spacing δj = εj+1− εj and the mean
level spacing ∆ = 1

N

∑
j δj.

The second part of the model is the Hamiltonian for the leads:

Ĥl = −t
∞∑
m=0

(
ĉ†m,lĉm+1,l + h.c.

)
(1.6)

which describes a semi-infinite tight-binding chain with a zero on-site energy. t is
the hopping amplitdue and ĉ†m,l/ĉm,l the creation/annihilation operators for the m-
th site of the lead l. Two leads, left and right, were used in this paper, so l = L,R.
The site with m = 0 is the one closest to the QD, see Figure 1.8. The Hamiltonian
describes a system, in which only one electron per site is allowed, so electrons move
one by one. Furthermore the electrons can only hop to their nearest neighbours.
The last part of the model describes the lead-dot coupling:

ĤT = −
∑
j,l

(
tlj ĉ
†
0,ld̂j + h.c

)
. (1.7)

Here tlj are the coupling amplitudes for the j-th channel inside the dot and the
l-th lead connected to the dot. The site m = 0 of the lead is coupled to the QD,
see Figure 1.8. The coupling amplitudes define the level width via Γj =

∑
l πν|tlj|2

where ν is the local energy-independent density of states of the lead, calculated on
the site m = 0.
By assuming a constant level spacing δ, it was observed, that if δ ≤ Γ and |Γ−δ| � δ,
as many energy levels as leads attached to the QD become much wider than the
others. Furthermore the position of these broad levels as a function of gate voltage
is almost constant over a large interval of Vg if U 6= 0. In this interval, the energy of
the broad levels is close to the chemical potential of the leads. After changing the
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Figure 1.8.: Sketch of the tight binding model for the left lead.

gate voltage in this interval, the remaining narrow energy levels cross the wide ones.
This overlap enables electron transport in two or more energy levels simultaniously,
which leads to interference effects. The transmission zero accopanying every phase
lapse indicates destructive interference between transmitting channels. Interferences
in a setup of a discrete energy level overlapping with a continuum of possible energies,
can be described by Fano-type antiresonances, which are accompanied by a phase
lapse [13]. The discrete energy level can be identified with a narrow energy level
and the continuum with a broad energy level [8]. To summarize, the important
conditions for the occurence of a phase lapse are δ ≤ Γ, |Γ − δ| � δ and U 6= 0.
It was noticed that the the broad energy levels exist for U = 0 aswell. Some of
the results of numericial calulations in the universal regime can be seen in Figure
1.9. The red line is the position of the broad energy level. It is almost constant
for a wide range of gate voltage. Everytime one of the three narrow energy levels
crosses the red line a phase laps and transmission zero occurs. For U ≥ Γ the CB
peaks are well seperated and the typical behaviour of phase can be observed. By
further increasing the charging energy to U � Γ, the resulting curve matches the
experimental results.
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Figure 1.9.: The top panel shows the energy levels of the dot changing with gate
voltage. The Fermi level of the lead was set to zero. The red line is the
position of the broad energy level which is almost zero for a wide range
of Vg. The phase and the absolute vlaue of the transmission amplitude
are plotted in the lower panel. The data was taken from [8].



2. The emergence of the broad
energy levels

The presented explanation for the phase lapses taken from [8] depends crucially
on the existence of the broad energy levels. The Hamiltonian for the dot and a
constant level spacing was assumed for the simulations. It was proposed, that a
small deviation from the latter assumption does not change the results. However the
assumption about a regular nature of the QD spectrum and even more importantly,
about the specific lead-dot coupling considered in [8] can substantially disagree with
experiments. In particular, the energy levels inside the dot are not known and very
random. Also the coupling of the QD to the leads can be very different. For example
a lead can be connected to many levels inside the dot or only to a few. But since
the phase lapses occur in different QDs, the explanation of this effect must not
depend the assumption of constant level spacing or a specific coupling. Therefore
it is left to study, whether the occurence of the broad energy levels depends on
the above mentioned assumptions or if it is a more general effect arising from the
generic coupling to the leads. A more general model, which can be derived from
microscopic assumptions and takes the randomness of the QD into account will be
studied in this thesis. The focus will be on the occurance and stability of the broad
energy levels and on finding the relevant regimes where it appears. This is done
by numerically diagonalizing the Hamiltonian of the system. The distribution of
the energy widths will be investigated and its dependencies on the number of levels
inside the dot and the strength of the coupling between the dot and the lead will
be studied. Furthermore a generalization of the description for the QPC will be
suggested.



3. The random matrix approach

3.1. The total Hamiltonian

The model, that is used in this thesis, consists of three parts which describe spinless,
non-interacting electrons. Furthermore, we put ~ = 1 for the whole thesis. The first
part is ĤD, describing the QD, the second is ĤL, describing the leads and the last
is ĤLD, describing the coupling of the leads to the QD and therefore resembles the
QPC. Since properties of electron transport, which mostly origins from electrons
with energies close to the Fermi energy, are of interest, the electrons in the leads can
be discribed by the linearized, one dimensional dispersion relation of a free electron
gas. By assuming non-interacting leads, ĤL reads:

ĤL = vF

Nch∑
j=1

ˆ
dk

2π
kψ̂†j(k)ψ̂j(k) . (3.1)

Here Nch is the number of open channels in the lead, vF is the Fermi velocity and
k is the wavevector relative to the Fermi level; ψ̂†j(k)/ψ̂j(k) are the fermionic cre-
ation/annihilation operators for electrons in channel j in momentum representation.
If more than one lead is attached to the QD, Nch is the sum of the open channels
in every lead. Assuming a random potential U inside the QD, ĤD reads:

ĤD =

ˆ
d~r

[
1

2m
~∇â†~∇â+ Uâ†â

]
with electron creation/annihilation operators â†/â and electron mass m. It is known
[2] that such a Hamiltonian can be split into two parts: a universal part Ĥ(0), which
is corresonds to g → ∞, and a non-universal part Ĥ(1/g), which is proportional to
g−1. Since g >> 1, Ĥ(1/g) is small and will be neglected. Since interactions [11] are
neglected in this thesis, the Hamiltonian for the QD reads:

ĤD =
M∑

α,γ=1

Hαγφ̂
†
αφ̂γ . (3.2)

M is the number of energy levels in the QD and φ̂†α/φ̂α are the respective creation
annihilation operators. Hαγ are the entries of a random hermitian M ×M matrix
(H = H†) from the WD Gaussian ensemble. Its elements are Gaussian distributed
with the correlation function
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〈HαγHα′γ′〉 =
M∆2

π2

[
δαγ′δα′γ +

(
2

β
− 1

)
δαα′δγγ′

]
. (3.3)

Here β is the Dyson symmetry parameter, which reflects time-reversal symmetry.
For β = 1 the system has time-reversal symmetry resulting in H real and for β =
2 the system has no time-reversal symmetry resulting in H complex with equal
variances of imaginary and real parts of Hij. For simplicity, time-reversal symmetry
is assumed (β = 1) in this thesis. ∆ = πM−1/2 is the mean, one electron level
spacing for a Gaussian orthogonal distribution in the dot [14], so (3.3) reduces to:

〈HαγHα′γ′〉 = δαγ′δα′γ + δαα′δγγ′ . (3.4)

The last part of the model is the coupling of the lead to the dot:

ĤLD =

Nch∑
j=1

M∑
α=1

ˆ
dk

2π

[
Wαjφ̂

†
αψ̂j(k) +Wαjψ̂

†
j(k)φ̂α

]
. (3.5)

Here Wαj are the elements of a real M × Nch matrix (W = W ∗) describing the
coupling of the dot and the lead, so this parameter represents the QPC. The total
Hamiltonian is the sum of the three parts:

Ĥtot = ĤD + ĤL + ĤLD . (3.6)

3.2. Impact of the leads on the dot

Since we focus on the properties of the QD, the leads will be integrated out in Ĥtot

to find an effective Hamiltonian Ĥeff describing only the QD and the QPC. We can
write the total Hamiltonian as:

Ĥtot = ĤL ⊗ 1D + 1L ⊗ ĤD + ĤLD .

The wavefunction it acts on has the structure: |ψL〉⊗ |ψD〉, with a wavefunction for
the lead |ψL〉 and the dot |ψD〉. To find Ĥeff , a quantum mechanic averaging with

the groundstate wavefunction of the lead is performed: Ĥeff = 〈Ĥtot〉L . 〈ĤL〉L1D is

a number and can therefore be neglected. 〈1L〉LĤD = ĤD since the wavefunctions
are normalized. The expectation value of the Hamiltonian for the coupling of the
lead and the dot 〈ĤLD〉L yields the self energy Σ in a Green’s function approach.
The Dyson’s equation for a Green’s function for the dot reads:

Ĝ−1
D (ε = 0) =

(
Ĝ0
D(ε = 0)

)−1

− Σ̂ (3.7)

Where Ĝ0
D(ε = 0) =

(
ĤD

)−1

and ĜD(ε = 0) =
(
Ĥeff

)−1

. Σ̂ describes a hop-

ping of electrons to and from the QD. The only non vanishing contribution to Σ̂ is
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〈ĤLDĤLD〉L. It describes an electron hopping to the lead and back to the dot again
without any propagation in the lead, so it depends on the Green’s function in the
lead at x = 0: Ĝ0

L(0, 0;ω). For easier calculations, the basis of ψ̂†j(k)/ψ̂j(k) in ĤLD

will be changed from momentum to real space represantation.

ψ̂j(k) =

ˆ
dx〈k|x〉ψ̂j(x) =

ˆ
dx e−ikxψ̂j(x) (3.8)

ψ̂†j(k) =

ˆ
dx〈x|k〉ψ̂†j(x) =

ˆ
dx eikxψ̂†j(x) (3.9)

This yields ĤLD in real space representation:

ĤLD =

Nch∑
j=1

M∑
α=1

[
Wαjφ̂

†
αψ̂j(0) +Wαjψ̂

†
j(0)φ̂α

]
. (3.10)

By using

〈ψ̂†i (x)ψ̂†j,(x)〉L = 〈ψ̂i(x)ψ̂j(x)〉L = 0 ∀i, j

〈ψ̂†i (x)ψ̂j(x)〉L = 〈ψ̂i(x)ψ̂†j(x)〉L = 0 for i 6= j

we find with omitting x = 0 dependencies:

〈ĤLDĤLD〉L =
M∑

α,β=1

Nch∑
j=1

Wα,jWβ,j

[
〈ψ̂jψ̂†j〉Lφ̂†αφ̂β + 〈ψ̂†j ψ̂j〉Lφ̂αφ̂

†
β

]
=

=
M∑

α,β=1

Nch∑
j=1

Wα,jWβ,j

[
〈ψ̂jψ̂†j〉Lφ̂†αφ̂β + 〈ψ̂†j ψ̂j〉Lφ̂βφ̂†α

]
=

=
M∑

α,β=1

φ̂†α

[
〈ψ̂jψ̂†j〉L − 〈ψ̂

†
j ψ̂j〉L

]
︸ ︷︷ ︸

=iĜ0
L

[
WW †]

αβ
φ̂β =

=
M∑

α,β=1

φ̂†α

(
iĜ0

L

[
WW †]

αβ

)
φ̂β . (3.11)

By using the Feynman rules [15], one can express the self energy as: Σαβ = −iVαβĜ0
L.

It follows from (3.11) that Vαβ = i
[
WW †]

αβ
. Ĝ0

L(0, 0;ω) = ∓πiν(ω) [5], ν(ω) ≈
ν(εF ) = ν is the density of states in the lead at the Fermi energy, since ω ≈ εF . The
sign of Ĝ0

L must correspond to the retardation (− retarded, + advanced). In total
the selfenergy reads:

Σαβ = ∓iπν
[
WW †]

αβ
. (3.12)

The effective Hamiltonian with the retarded self energy reads:
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Ĥeff =
M∑

α,β=1

(
Hαβ + iπν

[
WW †]

αβ

)
φ̂†αφ̂β . (3.13)

The coupling of the leads to the dot yields an imaginary contribution to the eigen-
values. The imaginary part of the eigenvalues of (3.13) determines the life timeof
the state, which is inverse to the level broadening. The highest possible rank of
the matrix WW † is the number of channels in the leads Nch by construction. So
the number of non zero eigenvalues of the selfenergy matrix is Nch and the number
broadened energy levels is expected to be also Nch [8].



4. Description of the QPC

To find the coupling matrix W , the scattering matrix for the whole system will be
derived and seperated in parts originating from the QD and the QPC.

4.1. Deriving the S-matrix for the whole system

This section follows the Appendix C of [2]. As stated in the introduction, the S-
matrix relates incoming and outgoing electrons. Equation (1.2) for each channel
takes the form:

aouti =

Nch∑
j=1

Sija
in
j (4.1)

with aouti /ainj the amplitudes of the outgoing/incoming electrons in channel i/j. We
assume that the 1-D interference is at x = 0, see Figure [?].

Figure 4.1.: Definition of the coordinates at a lead-dot interface. The picture was
taken from [2].

As explained in the introduction, the wavefunction for all electrons in the lead
consists of plane wave contributions with an amplitude Φj(~r⊥) depending on the
perpendicular coordinates. With k = ε

vF
, the wavefunction reads:
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ψe(~r) =

Nch∑
j=1

Φj(~r⊥)

[
ainj e

i
(
kF + ε

vF

)
x

+ aoutj e
−i

(
kF + ε

vF

)
x

]
(4.2)

The corresponding annihilation operator can be written as:

ψ̂e(~r) =

Nch∑
j,l=1

Φj(~r⊥)

ˆ
dk

2π

[
U∗jle

i(kF +k)x + Ujle
−i(kF +k)x

]
ψ̂j(k) (4.3)

where U describes the boundary conditions at x = 0. If there is no coupling to the
dot, electrons will be reflected at x = 0, resulting in a phaseshift of π without mix-
ing channels. This way all channels are incorporated into one matrix. The Dirichlet
boundary condition, ψ̂e(0) = 0 yields Ujl = iδjl, if the boundary is an infinite wall.

For easier calculations, the basis of ψ̂†j(k)/ψ̂j(k) in ĤL will be changed from momen-
tum to real space represantation, see equations (3.8) and (3.9). The result reads:

ĤL = −ivF
Nch∑
j=1

ˆ
dx ψ̂†j(x)

d

dx
ψ̂j(x) . (4.4)

Denoting the single electron wavefunctions for each channel in the lead by ψj and in
the dot by φα and the ground state by ψ0 in the leads and φ0 in the dot respectivly,
the creation/annihilation operators act as follows:

ψ̂j(x
′)ψi(x) = δijδ(x− x′)ψ0 (4.5)

ψ̂†j(x)ψ0 = ψj(x) (4.6)

φ̂αφγ = δαγφ0 (4.7)

φ̂†αφ0 = φα (4.8)

Writing down the Schrödinger equation with the total Hamiltonian (3.6) for the
leads, with the wavefuntion ψi(x)⊗φ0, and for the dot, with the wavefuntion ψ0⊗φα,
yields the equations:

εψi(x) = ivF
dψi(x)

dx
+

M∑
α=1

W ∗
αiδ(x)φα (4.9)

εφβ =
M∑
α=1

Hβαφα +

Nch∑
j=1

Wβjψj(0) (4.10)

At x < 0, equation (4.9) describes a left moving particle. Using (4.2), (4.9) and
(4.10), we can find ψj(x):
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ψj(x) =



e−ikx
∑Nch

l=1 Ujla
in
l , x = +0

1
2

∑Nch

l=1

(
Ujla

in
l + U∗jla

out
l

)
, x = 0

e−ikx
∑Nch

l=1 U
∗
jla

out
l , x < 0

(4.11)

with the proper normalization at x = 0. The unknown wavefunction inside the QD
can now be eliminated with (4.9) and (4.10). But before the divergence in (4.9) at
x = 0 has to be taken care of. Let us integrate over x from −ε to ε in the limit
ε→ 0:

ε lim
ε→0

ˆ ε

−ε
ψj(x)dx︸ ︷︷ ︸

→0, since ψj(0) finite

= lim
ε→0

ˆ ε

−ε
ivF

∂ψj(x)

∂x
dx+ lim

ε→0

ˆ ε

−ε

M∑
ν=1

W ∗
νjδ(x)φνdx

⇒ 0 = lim
ε→0

ivF (ψj(+ε)− ψj(−ε)) +
M∑
ν=1

W ∗
νjφν (4.12)

Reading a
(in/out)
l and φα as vector entries and substituting (4.11) into (4.10) and

(4.12), yields:

ivF
(
U~a(in) − U∗~a(out)

)
+W †~φ = 0 (4.13)

ε~φ = H~φ+
1

2
W
(
U~a(in) + U∗~a(out)

)
(4.14)

Now we can eliminate the wavefunction inside the dot ~φ in (4.13)-(4.14) and find
~a(out), cf. (4.1). This yields the scattering matrix:

S(ε) = UT
[
1− iπνW † (H − ε)−1W

]−1 [
1 + iπνW † (H + ε)−1W

]
U (4.15)

Here the density of states in the one dimensional leads ν = 1
2πvF

has been introduced.

4.2. Finding the scattering matrix of the QPC

Since we want to investigate the coupling of the QD to the leads, it is convenient
to seperate the S matrix of the total system into parts coming from the QPC and
the QD. The following calculation is taken from [12]. If two leads with N channels
each are connected to a scattering region, QPC a 2N × 2N scattering matrix with
time-reversal symmetry is assumed, so it has the structure:

Ŝc =

(
rc tTc
tc r′c

)
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where rc/tc describes the reflection/transmission to the dot for waves coming from
the leads and r′c/t

T
c the reflection/transmission to the leads for waves coming from

the dot. Let’s denote the scattering matrix of the QD by S0. The total scattering
matrix must account for all pathes, on which an incoming electron can leave the
dot:

S(ε) = rc + tTc S0(ε)tc + tTc S0(ε)r′cS0(ε)tc + tTc S0(ε)r′cS0(ε)r′cS0(ε)tc + ...

The first term is direct reflection at the QPC and the remaining terms describe
multiple reflections between the QPC and the QD before leaving the dot. This is a
geometric series and thus S(ε) can be written in the form:

S(ε) = rc + tTc S0(ε) [1− r′cS0(ε)]
−1
tc (4.16)

To split S(ε) this way we first use a parametrization of W from [2]:

W = NV OW̃ . (4.17)

Here N is a normalization constant, V is an orthogonal M×M matrix, O is a M×N
projection matrix with Omn = δmn and W̃ is a real N ×N matrix, which describes
the QPC. The normalization in [2] corresponds to a Lorentzian distribtution [12],
so it must be adapted to fit the Gaussian distribution, which we use. It can be
found by calculating the scattering matrix for H = 1 and assuming a ballistic QPC,
which means that the reflection amplidtudes are zero. In this case, electrons with
zero energy can only aquire a phase in the scattering process. Thus the scattering
matrix must be the identity matrix multiplied with a phase factor eiΘ:

eiΘ = −
[
1− iπνW †W

]−1 [
1 + iπνW †W

]
⇔ W †W = − 1

πν

sin Θ

(1− cos Θ)

Choosing Θ = 3
2
π to get an easy expression, yields for the nomalization factor

N = 1√
πν

. Thus, (4.17) reduces to:

W =
1√
πν
V OW̃ . (4.18)

Inserting (4.18) into (4.15) yields:

S(ε) = U
[
1 + iW̃ †H̃(ε)W̃

] [
1− iW̃ †H̃(ε)W̃

]−1

UT (4.19)

where H̃ = O†V † (H − ε)−1 V O was introduced. Since the distribution P (H) is
invariant under the orthogonal transformation, the rotation caused by V and V T ,
does not change the distribution of the entries of H, one can argue that H̃ still
describes only the random QD with the Hamiltonian taken from the WD-RMT. If
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we put W̃ = U = 1, than S(ε) = S0:

S0(ε) =
[
1 + iH̃(ε)

] [
1− iH̃(ε)

]−1

⇔ H̃ = i
[
1− 2 (1 + S0(ε))−1 S0(ε)

]
(4.20)

Inserting (4.20) into (4.19), one can find:

S(ε) = U
1− W̃ †W̃

1 + W̃ †W̃
UT +

+

(
W̃

2

1 + W̃ †W̃
U

)T
c

S0(ε)

[
1 + W̃

1− W̃ †W̃

1 + W̃ †W̃
W̃−1S0(ε)

]−1

W̃
2

1 + W̃ †W̃
U ;

(4.21)

detailed calculations are presented in Appendix A. Comparing (4.16) and (4.21), we
find the entries of Ŝc:

rc = U
1− W̃ †W̃

1 + W̃ †W̃
UT , r′c = −W̃ 1− W̃ †W̃

1 + W̃ †W̃
W̃−1, tc = W̃

2

1 + W̃ †W̃
U . (4.22)

If W̃ †W̃ ≈ 1, the reflection amplitdues at the QPC are close to zero, corresponding
to the almost ballistic coupling. For W̃ †W̃ ≈ 0, the reflection amplitudes are close
to −1, which corresponds to the almost closed QPC. This is a parametrization of a
point like QPC, therefore the reflection amplitudes have to be in the interval [−1, 0]
due to Dirichlet boundary conditions for a point like scatterer. This restricts the
elements of W̃ †W̃ to the interval [0, 1].



5. Numerical study of the effective
Hamiltonian

5.1. Basic equations

In this thesis, we will study numerically a simple case with two leads attached to the
QD. Furthermore, only one open channel per lead is assumed, so two broad energy
levels are expected. Assuming that the QPCs are far away from each other, there is
no mixing of channels in the reflection and transmission matrices of Ŝc. Therefore,
rc, r

′
c tc and correspondingly W̃ are diagonal. With Ukl = iδkl the equations (4.22)

read:

rc = r′c = −1− W̃W̃

1 + W̃W̃
, tc = iW̃

2

1 + W̃W̃
. (5.1)

Matrix elements of W̃ 2 can be found from the first equation of (5.1):

W̃ 2
j =

1 + rj
1− rj

. (5.2)

Using (5.2) together with the parametrization for W as in equation (4.18), the
effective Hamiltonian, (3.13), can be written as:

Heff = H + iV OW̃W̃OTV T . (5.3)

The eigenvalues of the Hamiltonian does not change under the rotation by an or-
thogonal matrix and as explained before, the distribution of entries of H does also
not change under such a rotation. Therefore, rotating (5.3) with the orthogonal
matrix V yields the Hamiltonian, which will be used to calculate the energy levels
and widths:

V THeffV = H + iOW̃W̃OT . (5.4)

This Hamiltonian will be diagonalized numerically with Matlab. The program code
is presented in the Appendix B. Since W̃ is diagonal, OW̃W̃OT is diag(W̃ 2

1 , W̃
2
2 , 0, ..., 0),

according to (5.2), and the rest being zero. The symmetric random matrix H in
(5.4) will be initialisied by creating a random matrix and taking its upper triangular
part, including the diagonal elements, and add the transposed of its upper triangular
part, without the diagonal elements, to it. All entries are Gaussian distributed with
mean value of zero and variance of one. The mean level spacing δl can be found for
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every realization l of H from the real parts of the eigenvalues λ:

∆l =
max [Re (λ)]−min [Re (λ)]

M
. (5.5)

The mean level widths Γl of every realization is calculated just as ∆l, but with the
imaginary parts of the eigenvalues. Averaging both quantities over many realizations
of H gives the total mean level spacing ∆ and the total mean level width Γ. ∆ will
be compared to Γ and is used as an unit for the level widths γi. Using the level
widths for many realizations of the random matrix H, enables us to plot statistics.

5.2. Results of the calculations

Figure 5.1.: Histogram for an almost closed QPC. (a) The distribution of all values
of γi. (b) Zoomed in at higher values of γ.

First, the γi of L = 105 realizations are plotted in a histogram H(γ), which is
normalized so

´
H(γ)dγ = 1. For an almost closed QPC, where r1 and r2 are close

to −1, the result is shown in Figure 5.1. The distribution 5.1(a) can be fitted quite
well by an exponential decay, with the most probable level width at zero. Since
we are interested in the broad energy levels, the same distribution zoomed in at
higher values of γ is shown in Figure 5.1(b). At higher values, the distribution still
looks like an exponential decay and there is no behaviour indicating the existance
of stable broad energy levels. Due to the long tail of the distribution, fluctuations of
the broad energy levels are large. Since Γ

∆
≈ 0.008� 1, this behaviour is expected
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[8].The same plots for an almost ballistic QPC,where r1 and r2 are close to 0, are
shown in Figure 5.1. The behaviour is qualitativly the same as for the almost closed
QPC. The distribution looks like an exponential decay, but is flatter than in the
almost closed QPC, so there is a trend to broader energy levels. But there is still no
peak at higher level widths, which would indicate a scale seperation. Γ

∆
≈ 0.051 is

still much smaller than one. The trend is a higher ratio Γ
∆

for reflection amplitudes
closer to zero. For rj = 0, Γ

∆
≈ 0.075 is the maximal value, which can be reached

in this model. This is still far from the regime Γ
∆
≥ 1, which was observed for the

existance of the broad energy levels in [8].

Figure 5.2.: Histogram for an almost ballistic QPC. (a) The distribution of all values
of γi. (b) Zoomed in at higher values of γ.

Since there can still be a scale seperation in this model, which is just not visible in
the statistics of many realizations of disorder in the QD due to strong fluctuations,
γi of several, randomly choosen, realizations are plotted in Figure 5.3 and 5.4. In
panel (a) of each Figure, a single realization of γi is plotted. After looking at many
randomly picked realizations, both were chosen to reflect the typical pictures. For
the almost closed as well as for the almost ballistic QPC, there is no scale seperation
at all. In rare cases, there are gaps in between the level widths, but that is due to the
fluctuations arising from the random matrix and do not reflect a stable distribution
of energy widths. In panel (b) of 5.3 and 5.4, 10 realizations of γi are plotted.
The fluctuations of the two highest energy levels overlap with the fluctuations of the
narrow energy levels, so no gap in the level widths can be seen. The other parameter
which can be changed in this model is M , the number of energy levels inside the
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Figure 5.3.: Randomly choosen realizations of disorder for the almost closed QPC.
(a) γi of a single realization, which was found to be typical in this
configuration. (b) γi of 5 different realizations.

QD. As M decreases, it scales the total mean level width Γ, but does not change
the qualitative behaviour of the system, down to M = 5. At this point Γ

∆
≈ 0.25

and there is still no gap seperating broad and narrow energy levels. Increasing M
reduces the ratio Γ

∆
even further and does not bear new results.

In this model the regime of the broad energy levels could not be reached, since
Γ
∆
� 1. So far rj are bounded to rj ∈ [−1, 0], which reflects a coupling of W̃ 2

j ∈ [0, 1]
(cf. Eq.(5.2)). Relaxing this constriction to rj ∈ [−1, 1] reflects an arbitrary coupling
with no bounds. The only possibility to enter the regime ∆

Γ
≥ 1 is using stronger

couplings W̃ 2 and therefore violating the constrictions of the point like scatterer.
Using rj > 0 to see whether broad energy levels exist for stronger couplings yields
the results in Figure 5.5. Additionally peaks can be observed in the statistics as the
regime Γ

∆
≈ 1 is entered, so broad energy levels mathematically exist in the RMT

model and an alternative description of the QPC could help.

5.3. Comparing the results to a constant δ model

In this section we reproduce numerical results obtained in [8] for the model described
in the introduction and compare them with our findings for the RMT-based model.
The structure of the effective Hamiltonian in [8] is:
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Figure 5.4.: Randomly choosen realizations of disorder for the almost ballistic QPC.
(a) γi of a single realization, which was found to be typical in this
configuration. (b) γi of 5 different realizations.

Heff,c = h+ iπνttT . (5.6)

t is the M × Nch coupling matrix from (1.7) and h is a M ×M diagonal matrix
with the entries εi from (1.5). The levelspacing is constant and equal the mean level
spacing from the random matrix model, so the results are comparable: ∆ = 0.5322
for M = 50. The coupling matrix t will be parametrized as W before:

t =
1√
πν
V Ot̃ . (5.7)

Here t̃ is a diagonal Nch ×Nch matrix and V is used to get a full coupling matrix.

→ Heff,c = h+ iV Ot̃t̃TOTV T . (5.8)

The mean level width Γ is given by:

Γ =
πν

M

∑
αj

t2αj =
πν

M
Tr
[
ttT
]

=
1

M
Tr
[
Ot̃t̃OT

]
(5.9)

Assuming two leads with one channel in each lead, t̃ can be parametrized by a
reflection amplitude rj, Eq. (5.2) after substitutiong t̃ for W̃ . This way the coupling
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Figure 5.5.: Histogram for an almost ballistic QPC with positice reflection ampli-
tudes. (a) All values. (b) Zoomed in at higher γ.

strengths can be compared to the previous calculations. Since t has no restrictions
in [8], it will be taken from the interval [−1, 1]. V is chosen as the symmetric
eigenvector matrix for second difference matrix (taken from the help catalogue of
Matlab) to get an easy way of getting an orthogonal matrix of any size. The program
code can be found in appendix C. The results are summarized in Figure 5.6. Firstly,
we study negative r1,2 similar to the RMT model for the almost ballistic QPC, see
panel (a). In this case Γ

∆
<< 1 there is no gap between broad and narrow energy

levels. For positive reflection amplitudes rj, a seperation of scales can be observed
at at Γ

∆
≈ 0.25, see Figure 5.6(b)-(d). This is in a qualitative agreement with [8]. So

neither in the diagonal model nor in the RMT model do broad energy levels exist
for rj ∈ [−1, 0], while both models show a gap for rjin[0, 1].
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Figure 5.6.: Level widths of a diagonal Hamiltonian for the dot with constant level
spacing. (a) Negative reflection amplitdues as in the previous model.
There is no gap between broad and narrow energy levels. (b)-(d) A gap
emerges and becomes clearly visible at positive rj, where Γ→ ∆.



6. Alternative description of the
QPC

In the previous chapter it was shown that broad energy levels do not exist within
the restriction of rj ∈ [−1, 0]. This restriction origins at the Dirichlet boundary
conditions for the point like QPC. Therefore a different description of the QPC,
with different boundary conditions, is needed. A possible solution is a QPC with a
finite width of boundaries, which must be described by their own S-matrices without
restrictions assumed for point like scatterers.

6.1. Composing Sc from two scatterers

To parametrize the QPC, a left and a right boundary of the QPC is defined. The
boundaries can be represented by the two scattering matrices SL/R, which are unitary
and assumed to be time-reversal (SL/R = STL/R) and left-right symmetric (SL/R =

τ2SL/Rτ2, with τ2 being the Pauli matrix). Furthermore, no mixing of channels is
assumed, so the reflection and transmission matrices in the scattering matrix are
diagonal. The unitarity condition for a S-matrix with diagonal entries yields an
equivalent and independent set of equations for every channel, so only a one channel
problem has to be solved. Therefore, a one channel problem will be considered from
here on and channel indices will be omitted. From the general parametrization of a
2× 2 unitary matrix

S = eiφ
(

cos (α)eiν i sin (α)eiµ

i sin (α)e−iµ cos (α)e−iν

)
the conditions for the imposed symmetries can be found. Time-reversal symmetrie
yields: eiφi sin (α)eiµ = eiφi sin (α)e−iµ ⇔ µ = 0 and left-right symmetry yields:
eiφ cos (α)eiν = eiφ cos (α)e−iν ⇔ ν = 0. Introducing rL/R = cos (αL/R) and tL/R =
sin (αL/R) so r2

L/R + t2L/R = 1 results in:

SL/R = eiφL/R

(
rL/R itL/R
itL/R rL/R

)
. (6.1)

In the most general case Sc matrix has the structure as stated in (1.3), but it can still
be multiplied by a global phase factor eiΦ without violating the unitarity condition:

Sc = eiΦ
(
rc t′c
tc r′c

)
.
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rc/tc and r′c/t
′
c are matrices describing reflection/transmission from the left and the

right respectively. To compose Sc from SL/R, all paths that traverse both bound-
aries of the QPC are summed up in tc/t

′
c and all paths that do not traverse both

boundaries yield rc/r
′
c. Figure 6.1 illustrates this procedure.

Figure 6.1.: (a) Paths adding up to the reflection of the QPC. (b) Paths adding up
to the transmission of the QPC.

Because of this construction, the assumption of non-mixing channels in SL/R trans-
fers to Sc. The entries of Sc read:

rc = eiφLrL − ei(2φL+φR)tLrRtL − ei(3φL+2φR)tLrRrLrRtL − ...

→ rc = eiφLrL −
ei(2φL+φR)t2LrR

1− ei(φL+φR)rRrL
= eiφL

rL − ei(φL+φR)rR
1− ei(φL+φR)rRrL

(6.2)

tc = −ei(φL+φR)tLtR − ei(2φL+2φR)tLrRrLtR − ...

→ tc = − ei(φL+φR)tLtR
1− ei(φL+φR)rRrL

(6.3)

r′c and t′c follow by exchanging L and R in the indices. It follows that tc = t′c, so the
time-reversal symmetry also transfers from SL/R to Sc. r

′
c reads:

r′c = eiφR
rR − ei(φL+φR)rL
1− ei(φL+φR)rRrL

(6.4)

So whether the entries of Sc are real or complex depends on the global phases φL
and φR. In this case the unitarity condition ScS

†
c = 1, yields:

eiΦ
(
rc tc
tc r′c

)
e−iΦ

(
r∗c t∗c
t∗c r′∗c

)
=

(
rcr
∗
c + tct

∗
c rct

∗
c + tcr

′∗
c

tcr
∗
c + r′ct

∗
c tct

∗
c + r′cr

′∗
c

)
=

(
1 0
0 1

)
.
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This is equivalent to the three independent equations:

|rc|2 + |tc|2 = 1 (6.5)

tcr
∗
c + r′ct

∗
c = 0 (6.6)

|r′c|2 + |tc|2 = 1 (6.7)

With rc, r
′
c and tc it can be validated if the constructed Sc can be unitary:

|rc|2 = |r′c|2 =
r2
L + r2

R − 2 cos (φL + φR)rLrR
1 + r2

Lr
2
R − 2 cos (φL + φR)rLrR

|tc|2 =
t2Lt

2
R

1 + r2
Lr

2
R − 2 cos (φL + φR)rLrR

=
1− r2

L − r2
R + r2

Lr
2
R

1 + r2
Lr

2
R − 2 cos (φL + φR)rLrR

Therefore (6.5) and (6.7) are fulfilled. (6.6) reads:

−e
i(φL+φR)tLtRe

−iφL(rL − e−i(φL+φR)rR) + e−i(φL+φR)tLtRe
iφR(rR − ei(φL+φR)rL)

(1− ei(φL+φR)rRrL)(1− e−i(φL+φR)rRrL)
= 0

By omitting the trivial cases with rL, rR, tL, tR = 0, 1 it follows:

⇒ eiφR(rL − e−i(φL+φR)rR) + r−iφL(rR − ei(φL+φR)rL) = 0

⇔ eiφRrL − e−iφLrR + e−iφLrR − eiφRrL = 0

This is true, so Sc is unitary by construction. Since the equations (5.1) must still
be fullfilled in this picture, the condition rc = r′c, which is left-right symmetry, must
be imposed on Sc. Furthermore, the value for the global phase can be deduced as
either Φ1 = π

2
or Φ2 = 3π

2
by comparison. Implying this on (6.2) and (6.4) yields:

→ eiφL
rL − ei(φL+φR)rR
1− ei(φL+φR)rRrL

= eiφR
rR − ei(φL+φR)rL
1− ei(φL+φR)rRrL

⇔ eiφLrL − ei(2φL+φR)rR = eiφRrR − ei(φL+2φR)rL

⇔ (1 + ei2φR)eiφLrL = (1 + ei2φL)eiφRrR

For this to be true for all rL/R, it follows: φL = φR = π
2
. The total reflection and

transmission entries read:

rt = eiΦ1/2rc = eiΦ1/2r′c = ∓ rL + rR
1 + rRrL

(6.8)

tte
iΦ1/2tc = ±i tLtR

1 + rRrL
(6.9)
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6.2. How to express W̃ in terms of rL,R

By comparing (5.1) to (6.8) and (6.9), W̃ can be expressed in terms of rL/R. Assum-

ing W̃ being diagonal, this yields an equivalent and independent set of equations
for each channel. Therefore channel indices will be dropped again and only an one
channel problem has to be solved: W̃ii ≡ W̃ . The equations read:

1− W̃ 2

1 + W̃ 2
= ± rL + rR

1 + rRrL
(6.10)

2W̃

1 + W̃ 2
= ± tLtR

1 + rRrL
. (6.11)

The solution to (6.10) and (6.12) with t2L/R = 1− r2
L/R = (1− rL/R)(1+ rL/R), reads:

W̃1/2 = ±

√
(1∓ rR)(1∓ rL)

(1± rR)(1± rL)
= ±1∓ rR

tR

1∓ rL
tL

. (6.12)

The upper sign is true for Φ1 = π
2

and the lower for Φ2 = 3π
2

. This parametrization of
the QPC has two degrees of freedom in each channel, while the point like description
only had one degree of freedom. In this parametrization the Direchlet boundary
conditions of the point like QPC are replaced by the unitarity condition of the
scattering matrix Sc. Therefore, there is no restriction on rj in this parametrization
and W̃W̃ † is now arbitrary. For r → 0, W̃W̃ † ≈ 0 and for tc → 0, W̃W̃ † →∞.



7. Conclusion

We have studied a RMT model for a QD coupled to noninteracting leads via QPCs
to see whether broad energy levels also emerge in a certain regime. These broad
levels are needed in [8] to describe the transport effect of phase lapses. A numerical
approach was used to find the distribution function of the level widths. The main
result is that generically, the broad energy levels can not be observed with a point
like description of the QPC with the Dirichlet boundary conditions at the interfaces
[2]. The Dirichlet boundary condition of a point like QPC, restricts the coupling
amplitudes, so that it is not possible to reach the regime Γ

∆
≈ 1. This holds true

for the RMT model and for the model of the regular QD, used previously in [8].
The emergence of the broad energy levels can only be observed in both models if
the restriction on the reflection amplitude of the QPC is removed. This can be
done if we assume that the interfaces of the QPC are extended , so each should
be described by the S-matrix, but the Kirchhof’s law does not apply. We have
suggested a new description of the QPC, which corresponds to such systems. This
way the restriction on the reflection amplitudes can be lifted and broad energy levels
exist in both models.



A. Derivation of equation (4.21)

For this calculation two identities are needed:

(I) : (1 + PQ)−1 P = P (1 +QP )−1

(II) : (1 + P )−1 = 1− (1 + P )−1 P

Proof:

(I) : P (1 +QP ) = P + PQP = (1 + PQ)P

⇔ (1 + PQ)−1 P (1 +QP ) (1 +QP )−1 = (1 + PQ)−1 (1 + PQ)P (1 +QP )−1

⇔ (1 + PQ)−1 P = P (1 +QP )−1

For shorter notation rc, r
′
c and tc, as stated in (4.22), will be substituted as soon as

possible.

S(ε) = U
[
1− W̃ † [1− 2 (1 + S0(ε))−1 S0(ε)

]
W̃
]
×

×
[
1 + W̃ † [1− 2 (1 + S0(ε))−1 S0(ε)

]
W̃
]−1

UT =

= U

(1− W̃ †W̃
)

︸ ︷︷ ︸
=:N−

+2W̃ † (1 + S0(ε))−1 S0(ε)W̃

×

×

(1 + W̃ †W̃
)

︸ ︷︷ ︸
=:N+

−2W̃ † (1 + S0(ε))−1 S0(ε)W̃


−1

UT =

= U
[
N− + 2W̃ † (1 + S0(ε))−1 S0(ε)W̃

]
N−1

+ ×

×

1− 2W̃ † (1 + S0(ε))−1 S0(ε)W̃N−1
+︸ ︷︷ ︸

=:X

−1

UT =

= U

N−N−1
+ [1−X]−1︸ ︷︷ ︸

use (II)

+X [1−X]−1

UT =
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= U
{
N−N

−1
+

(
1 + [1−X]−1X

)
+X (1−X)−1}UT =

= U
{
N−N

−1
+ +

(
N−N

−1
+ + 1

)
[1−X]−1X

}
UT =

= UN−N
−1
+ UT︸ ︷︷ ︸

=rc

+UT (N− +N+)︸ ︷︷ ︸
=2

N−1
+

[
1− 2W̃ † (1 + S0(ε))−1 S0(ε)W̃N−1

+

]−1

W̃ †︸ ︷︷ ︸
use (I)with P=W̃ †

×

× (1 + S0(ε))−1 S0(ε) W̃2N−1
+ U︸ ︷︷ ︸

=tc

=

= rc + UT2N−1
+ W̃ †︸ ︷︷ ︸

=tTc

[
1− 2 (1 + S0(ε))−1 S0(ε)W̃N−1

+ W̃ †
]−1

(1 + S0(ε))−1 S0(ε)tc =

= rc + tTc

[
1 + S0(ε)− 2S0(ε)W̃N−1

+ W̃ †
]−1

S0(ε)tc =

= rc + tTc

[
1 + S0(ε)

(
1− 2W̃N−1

+ W̃ †
)]−1

S0(ε)tc =

(I)
= rc + tTc S0(ε)

[
1 +

(
W̃N+N

−1
+ W̃−1 − 2W̃N−1

+ W̃ †W̃W̃−1
)
S0(ε)

]−1

tc =

= rc + tTc S0(ε)
[
1 + W̃

(
N+N

−1
+ − 2N−1

+ W̃ †W̃
)
W̃−1S0(ε)

]−1

tc =

= rc + tTc S0(ε)

1 + W̃
(
N+ − 2W̃ †W̃

)
︸ ︷︷ ︸

=N−

N−1
+ W̃−1S0(ε)


−1

tc =

= rc + tTc S0(ε)

1−
(
−W̃N−N

−1
+ W̃−1

)
︸ ︷︷ ︸

=r′c

S0(ε)


−1

tc =

= rc + tTc S0(ε) [1− r′cS0(ε)]
−1
tc



B. Code for the random matrix
Hamiltonian

1 %number o f channe l s in the dot
2 M = 50 ;
3
4 %number o f i n t e r v a l s f o r the historgram of a l l e i g e n v a l u e s
5 res = 500 ;
6
7 %number o f d i s o r d e r r e a l i z a t i o n s
8 L = 10000;
9

10 %number o f randomly picked r e a l i z a t i o n s p l o t t e t in one f i g u r e
11 nall = 5 ;
12
13 %number o f randomly picked r e a l i z a t i o n s p l o t t e t in d i s t i n c t f i g u r e s
14 nsin = 5 ;
15
16 %r e f e l c t i o n ampl itudes o f the QPC
17 r = [−0.1 −0 .3 ] ;
18
19 %c a l c u l a t e s e l f e n e r g y part
20 d = size ( r ) ;
21 W2 = zeros ( M ) ;
22 for m=1:d (2 )
23 W2 (m , m ) = (1+r ( m ) ) /(1−r ( m ) ) ;
24 end

25
26 %c a l c u l a t e imagniary par t s o f the e i g e n v a l u e s in un i t s o f mean l e v e l s p a c i n g f o r ←↩

a l l r e a l i z a t i o n s
27 data = zeros ( L∗M , 1 ) ;
28 delta = 0 ;
29 gamma = 0 ;
30 for k=1:L
31 A = normrnd (0 , 1 , M , M ) ;
32 H = triu ( A )+(triu (A , 1 ) . ' ) +1i∗W2 ;
33 lambda = ( eig ( H ) ) . ' ;
34 gamma = gamma + imag ( sum ( lambda ) ) /M ;
35 data ( ( k−1)∗M+1:k∗M ) = imag ( lambda ) ;
36 delta = delta + ( max ( real ( lambda ) )−min ( real ( lambda ) ) ) /M ;
37 end

38
39 gamma = gamma/L ;
40 delta = delta/L ;
41 data_mls = data/delta ;
42 [ n , x ]=hist ( data_mls , res ) ;
43 delta_x = x (2 ) − x (1 ) ;
44
45 %plo t s t a t i s t i c o f a l l r e a l i s a t i o n s
46 figure

47 bar (x , n/sum ( n∗delta_x ) , 'hist' ) ;
48 set ( gca , 'FontSize ' , 30) ;
49 title ( sprintf ( 'r_1=%g, r_2=%g, L=%g, M=%g, \\ Gamma /\\ Delta =%0.2g' , r (1 ) , r (2 ) ,L , M ,←↩

gamma/delta ) ) ;
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50 ylabel ( 'normalized number of occurences ' ) ;
51 xlabel ( '\gamma/\Delta ' ) ;
52 legend ( sprintf ( 'bar width=%g' , delta_x ) ) ;
53
54
55 %plo t s i n g l e randomly taken r e a l i s a t i o n s in d i f f e r e n t p l o t s
56 rsin = randi (L , nsin , 1 ) ;
57
58 for z=1:nsin
59 figure

60 pic = sort ( data_mls ( M∗rsin ( z )−M+1:M∗rsin ( z ) ) ) ;
61 stem ( pic ) ;
62 set ( gca , 'FontSize ' , 30) ;
63 title ( sprintf ( 'r_1=%g, r_2=%g, M=%g, \\Gamma /\\ Delta =%0.2g' , r (1 ) , r (2 ) ,M , gamma←↩

/delta ) ) ;
64 xlabel ( '\gamma sorted by size' ) ;
65 ylabel ( '\gamma/\Delta ' ) ;
66 set ( gca , 'XTickLabelMode ' , 'manual ' , 'XTickLabel ' , [ ] ) ;
67 end

68
69 %plo t randomly taken r e a l i s a t i o n s in to one p l o t
70 rall = randi (L , nall , 1 ) ;
71
72 figure

73 set ( gca , 'FontSize ' , 30) ;
74 title ( sprintf ( 'r_1=%g, r_2=%g, M=%g, \\Gamma /\\ Delta =%0.2g, %g Realizations ' , r (1 )←↩

, r (2 ) ,M , gamma/delta , nall ) ) ;
75 xlabel ( '\gamma sorted by size' ) ;
76 ylabel ( '\gamma/\Delta ' ) ;
77 set ( gca , 'XTickLabelMode ' , 'manual ' , 'XTickLabel ' , [ ] ) ;
78
79 hold all

80
81 for zall=1:nall
82 pic = sort ( data_mls ( M∗rall ( zall )−M+1:M∗rall ( zall ) ) ) ;
83 stem ( pic ) ;
84 end



C. Code for the constant level
spacing Hamiltonian

1 %number o f channe l s in the dot
2 M = 50 ;
3
4 %l e v e l s p a c i n g in the dot
5 delta = 0 . 5 3 2 2 ;
6
7 %r e f e l c t i o n ampl itudes o f the QPC
8 r = [−0.7 −0 .9 ] ;
9

10 %orthogona l matrix
11 V = gallery ( 'orthog ' ,M , 1 ) ;
12
13 %diagona l hami l tonian f o r the dot
14 H = zeros ( M ) ;
15 for q=1:M
16 H (q , q ) = q∗delta ;
17 end

18
19 %s e l f e n e r g y part
20 t2 = zeros (M , M ) ;
21 gamma=0;
22 d = size ( r ) ;
23 for m=1:d (2 )
24 t2 (m , m ) = (1+r ( m ) ) /(1−r ( m ) ) ;
25 gamma = gamma + t2 (m , m ) ;
26 end

27 gamma = gamma/M ;
28
29 E = 1i∗V∗t2 ∗( V . ' ) ;
30
31 %e i g e n v a l u e s
32 Heff = H + E ;
33 lambda = eig ( Heff ) ;
34
35 %plo t l e v e l widths
36 figure

37 stem ( sort ( imag ( lambda ) /delta ) ) ;
38 title ( sprintf ( 'r_1=%g, r_2=%g, M=%g, \\Gamma /\\ Delta =%0.2g' , r (1 ) , r (2 ) ,M , gamma/←↩

delta ) , 'FontSize ' , 30) ;
39 xlabel ( '\gamma_i sorted by size' , 'FontSize ' , 30) ;
40 ylabel ( '\gamma_i /\ delta' , 'FontSize ' , 30) ;
41 set ( gca , 'XTickLabelMode ' , 'manual ' , 'XTickLabel ' , [ ] ) ;
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