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Microscopic origin of; the ‘0.7-anomaly’ in quantum
point contacts
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Werner Wegscheider4, Jan von Delft1,2 & Stefan Ludwig1

Quantum point contacts are narrow, one-dimensional constric-
tions usually patterned in a two-dimensional electron system, for
example by applying voltages to local gates. The linear conductance
of a point contact, when measured as function of its channel width,
is quantized1–3 in units of GQ 5 2e2/h, where e is the electron charge
and h is Planck’s constant. However, the conductance also has an
unexpected shoulder at 0.7GQ, known as the ‘0.7-anomaly’4–12,
whose origin is still subject to debate11–21. Proposed theoretical
explanations have invoked spontaneous spin polarization4,17, fer-
romagnetic spin coupling19, the formation of a quasi-bound state
leading to the Kondo effect13,14, Wigner crystallization16,20 and vari-
ous treatments of inelastic scattering18,21. However, explicit calcu-
lations that fully reproduce the various experimental observations
in the regime of the 0.7-anomaly, including the zero-bias peak that
typically accompanies it6,9–11, are still lacking. Here we offer a detailed
microscopic explanation for both the 0.7-anomaly and the zero-bias
peak: their common origin is a smeared van Hove singularity in the
local density of states at the bottom of the lowest one-dimensional
subband of the point contact, which causes an anomalous enhance-
ment in the Hartree potential barrier, the magnetic spin susceptibility
and the inelastic scattering rate. We find good qualitative agreement
between theoretical calculations and experimental results on the
dependence of the conductance on gate voltage, magnetic field, tem-
perature, source–drain voltage (including the zero-bias peak) and
interaction strength. We also clarify how the low-energy scale govern-
ing the 0.7-anomaly depends on gate voltage and interactions. For
low energies, we predict and observe Fermi-liquid behaviour similar
to that associated with the Kondo effect in quantum dots22. At high
energies, however, the similarities between the 0.7-anomaly and the
Kondo effect end.

In our measurements, we use the multigate layout on the surface of a
GaAs/AlGaAs heterostructure shown in Fig. 1a. By suitably tuning the
central- and side-gate voltages, Vc and Vs, at a fixed top-gate voltage, Vt,
we can use the device to define a short, one-dimensional (1D) channel,
containing a smooth, symmetric barrier, in the two-dimensional elec-
tron system (2DES) buried in the heterostructure. To describe such a
quantum point contact (QPC), we adopt a 1D model with local inter-
actions and a smooth potential barrier. We treat interactions perturba-
tively, using either second-order perturbation theory23 (SOPT) or the
functional renormalization group24–26 (FRG) approach (Supplementary
Information, sections 7 and 6, respectively). The lowest 1D subband of
the device is modelled by
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Here n̂js~d{
jsdjs counts the number of electrons with spin s (spin up,

s 5 " or 1; spin down, s 5 # or 2) at site j of an infinite, tight-binding
chain with hopping amplitude tj, on-site interaction Uj and potential

energy Ejs~Ej{s~B=2 (Supplementary Fig. 8), and ‘h.c.’ denotes
Hermitian conjugate. The Zeeman energy, ~B~ gelj jmBB, describes the
effect of a uniform external parallel magnetic field B, where mB is the
Bohr magneton and gel is the effective g factor (,0 in GaAs). (When
similar symbols are used for model parameters and experimental para-
meters, we add tildes to the former to distinguish them from the latter.)
We neglect spin–orbit interactions and other orbital effects. The para-
meters Ej, Uj and tj vary smoothly with j and differ from their bulk
values, Ebulk 5 Ubulk 5 0 and tbulk 5 t (taken as the unit of energy), only
within a central constriction region (CCR) of N sites around j 5 0,
representing the QPC. Sites j , 2N/2 and j . N/2 represent two
non-interacting leads, each with bandwidth 4t, chemical potential m
and bulk Fermi energy eF 5 2t 1 m; we choose m 5 0, implying half-
filled leads (Fig. 1b). We set Uj to a fixed value, U, for all but the
outermost sites of the CCR, where it drops smoothly to zero.

Within the CCR, we define the QPC barrier by specifying the shape
of the ‘band bottom’ as vmin

j ~Ej{ tj{1ztj
� �

{m (Fig. 1b, solid
black line). We choose vmin

j to define a smooth, symmetric barrier
within the CCR, parabolic near the top3, where we parameterize it as
vmin

j <~Vc{V2
xj2
�

4t0 (Supplementary Information, section 4D). Here
~Vc sets the barrier height with respect to m (Fig. 1b, dashed black line),
and Vx=t characterizes its curvature. We first consider the theoretical
case of zero temperature, ~T~kBT (kB, Boltzmann’s constant), source–
drain voltage, ~Vsd~ ej jVsd, and field, ~B: ~T~~Vsd~~B~0. As ~Vc is
decreased below 0, the conductance, g 5 G/GQ, increases from 0 to
1, showing a step of width ,Vx (about 1.5 meV in our experiment),
whose shape depends on U (Fig. 1k). In the upper part of the step, say
0:5= g = 0:9, we say that the QPC is ‘sub-open’; the sub-open regime
is of special interest because for measured g(Vc) curves it contains the
0.7-anomaly.

The bare local density of states (LDOS), A0
j vð Þ, for equation (1)

has a strong maximum just above the band bottom18, seen as a
yellow–red ridge-like structure in Fig. 1b. In a semiclassical picture,
A0

j vð Þ!1
�

vj vð Þ, where vj(v) is the velocity at site j of an electron with
energy v with respect to m. The ridge-like maximum of A0

j vð Þ above
the barrier reflects the fact that electrons move slowest there. In the
CCR’s outer flanks, this ridge develops smoothly into the van Hove

singularity, A0
bulk! v{vmin

bulk

� �
t

� �{1=2
, in the bulk LDOS at the bulk

band bottom in the leads, vmin
bulk~{eF. We therefore call this LDOS

structure a ‘van Hove ridge’. Near the barrier’s centre, its curvature causes
the singularity to be smeared out on a scale set by Vx. This limits the
amplitude of the van Hove ridge to max A0

j vð Þ
h i

!O Vxt0ð Þ{1=2 and

shifts it upwards in frequency relative to the band byO Vxð Þ (Fig. 1f–h).
The van Hove ridge has a strong, ~Vc-dependent effect on numerous

QPC properties. Near those spatial locations where the ridge intersects
the chemical potential (v 5 0), the LDOS is enhanced, thus amplifying
the effects of interactions by O Vxt0ð Þ{1=2 (which grows with QPC
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length). In semiclassical terms, slow electrons feel interactions parti-
cularly strongly. When lowering the barrier top, ~Vc, to open the QPC,
the van Hove ridge sweeps downwards (Fig. 1f–h); its interaction-
amplifying effects are strongest in the ~Vc regime where its apex, which
has most weight, crosses m. This happens for 0> ~Vc >{O Vxð Þ
(Fig. 1g), which, very importantly, encompasses the sub-open regime
containing the 0.7-anomaly. Below, we show that the 0.7-anomaly and
the zero-bias peak (ZBP) stem precisely from the amplification of
interaction effects where the van Hove ridge intersects m. The relevant
implications are enhancements in the effective Hartree barrier governing
elastic transmission, the spin susceptibility and the inelastic scattering
rate, all of which lead to an anomalous reduction of g in the sub-open
regime, especially for T, B, Vsd . 0.

Figure 1c–e illustrates several local properties, calculated at ~T~0
using FRG, for the sub-open QPC barrier shown in Fig. 1b. We note
four salient features, all intuitively expected. First, the local density,
nj~ n̂j:zn̂j;

	 

, is minimal at the barrier centre (Fig. 1c). Second, the

local magnetization, mj~ n̂j:{n̂j;
	 
�

2, vanishes at ~B~0 (Fig. 1d, blue
line); this reflects a physical assumption entailed in our calculations
(Supplementary Information, section 6), namely that no spontaneous

magnetization occurs, in contrast to the spontaneous spin splitting
scenario advocated in refs 4, 8, 17. Third, mj increases without satura-
tion when ~B becomes large (Fig. 1d, inset), indicating a smooth redis-
tribution of spin, as expected for an open structure. Fourth, the local
spin susceptibility, xj~ Lmj

�
L~B

� �
~B~0, is strongly enhanced with

increasing U (Fig. 1e), because interactions amplify any field-induced
spin imbalance.

The j dependence of xj is governed by that of A0
j 0ð Þ (in fact,

xU~0
j ~A0

j (0)=2), which is maximal near those sites where the van
Hove ridge intersects m. When ~Vc is decreased through 0 (Figs 1f–h),
these intersection points sweep out a parabolic arch in the ~Vc�j plane,
along which xj

~Vc
� �

(Fig. 1i, colour scale) is peaked, with most weight
near the arch’s apex. This leads to a corresponding peak in the total spin
susceptibility, xtot~

PCCR
j xj, as a function of ~Vc (Fig. 1j). This peak

is strongly enhanced by increasing U (in accordance with the fourth
feature above) and is located near the ~Vc value where g < 0.7 (Fig. 1k).
We will see further below that this peak strongly affects the ~B depend-
ence of the conductance (Fig. 1l).

Note that the spatial structure for xj
~Vc
� �

in Fig. 1i, namely two
peaks merging into one as ~Vc is lowered, is consistent with that, shown
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Figure 1 | Experimental set-up and model. a, Scanning electron microscope
picture of the gate layout, featuring a top gate (t) at voltage Vt, two central gates
(c) at voltage Vc and four side gates (s) at voltage Vs. Negative voltages Vc and Vs

locally deplete the 2DES, which is 85 nm beneath the sample surface. Together
with Vt, they induce a tunable electrostatic potential landscape in the 2DES.
b, Barrier shape and LDOS. The bare (Uj 5 0, ~B~0) 1D LDOS per spin species,
A0

j vð Þ (colour scale), as a function of energy, v, and site index, j, for
~Vc~{0:28Vx . The barrier shape is defined by the solid black line, showing the
band bottom, vmin

j . The LDOS vanishes exponentially rapidly below vmin
j

(Supplementary Fig. 11), and has a van Hove ridge (yellow–red) just above it,
followed by Friedel oscillations (white fringes) at higher energies (up to
v= ~Vc). c–e, Local properties of a sub-open QPC: FRG results for the sub-
open barrier shown in b. c, d, The local density, nj (c), and the magnetization, mj

(d), for several values of magnetic field, ~B. Inset of d, mS~
X
jjjƒ10

mj as a

function of ~B. e, The local spin susceptibility, xj, for several values of interaction

strength, U. The shapes of mj and xj are modulated by Friedel oscillations
inherited from the bare LDOS (b), with locally varying wavelength, l < 1/nj.
f–l, Changing barrier height. f–h, The bare LDOS, A0

j vð Þ, for three successively
lower barrier heights, ~Vc

�
Vx~1 (f), 20.28 (g) and 22 (h). The LDOS pattern

is fixed with respect to ~Vc (grey dashed lines) but shifts with respect to m (black
dashed lines). i–l, FRG results for the ~Vc dependence of the local spin
susceptibility, xj (colour scale), at fixed U 5 0.5t (i); the total spin susceptibility,
xtot~

PCCR
j xj, for several U values (solid lines), and the inverse low-energy

scale, 1
�

~B�, for U 5 0.5t (dashed line) (j); the zero-temperature linear-response
(Vsd 5 0) conductance, g 5 G/GQ, for several U values (at fixed ~B~0) (k) and
for several ~B values (at fixed U 5 0.5t) (l). For a large enough interaction,
U 5 0.5t, even for ~B~~T~~Vsd~0 (blue lines in k and l), g ~Vc

� �
has a shoulder

(red arrow) at g < 0.7, the 0.7-anomaly. Three vertical dashed lines in i–l mark
the three ~Vc values used in f–h, as indicated by dots of matching colours.
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in fig. 2b of ref. 14, for the density of spin-up electrons calculated using
spin-density-functional theory, initialized in a small applied field to
break spin symmetry. In ref. 14, the local maximum in the spin-up
density was interpreted as evidence for a ‘quasi-bound state’ that was
argued to host a spin-1/2 local moment; in contrast, features one and,
especially, three above imply that our model yields no local moment.

Next we discuss the effect of the van Hove ridge on the conductance,
g ~Vc
� �

, starting with its U dependence at ~B~~T~0 (Fig. 1k). Increasing
U skews the shape of the step in g ~Vc

� �
, which eventually develops a

shoulder near g<0:7 (red arrow). This shoulder develops because the
increase in local density with decreasing ~Vc is slightly nonlinear when
the apex of the van Hove ridge drops past m, causing a corresponding
nonlinear upward shift in the effective Hartree barrier. For a parabolic
barrier top, this occurs for g<0:7. If the shape of the barrier top is
changed to be non-parabolic, both the shape of the bare conductance
step and the energy distance between the van Hove ridge apex and m
will change, which can cause the interaction-induced shoulder in g to
shift away from 0.7. This explains the experimentally observed
spread6,12 of shoulders (that is, plateau values of the 0.7-anomaly) for
0:5= g = 1.

On increasing ~B for fixed U and ~T~0 (Figs 1l and 2a), the shoulder
in g ~Vc

� �
becomes more pronounced, eventually developing into a

spin-split plateau. Comparison of Fig. 2a with Fig. 2e shows that this
development qualitatively agrees with experiment; the agreement was
optimized by using U as fit parameter. Inspecting how the corresponding

spin-resolved conductances, g" and g#, change with ~B (Fig. 2b), we note a
strong asymmetry: although the bare barrier heights for spins " and # are
shifted symmetrically by {~B

�
2 and ~B

�
2, respectively, g# is decreased

much more strongly than g" is increased. This is due to exchange inter-
actions: increasing the spin-up density near the CCR centre (Fig. 1d)
strongly raises the Hartree barrier, and more so for spin-down electrons
than spin-up, owing to Pauli’s exclusion principle. The consequences are
most pronounced in the sub-open regime, owing to the van-Hove-ridge-
induced peak in xtot there (Fig. 1j). We note, however, that g"5 g# at
~B~0, reflecting our above-mentioned assumption that no spontaneous
spin splitting occurs.

Our FRG approach is limited to the case of zero temperature and
zero source–drain voltage, for which no inelastic scattering occurs. To
access qualitatively the effects of the latter at fixed U, we have instead
used SOPT (Supplementary Information, section 7). Figure 2c–h
shows a comparison of our SOPT results for the linear conductance,
g ~Vc
� �

, calculated for several values of magnetic field, ~B, and temper-
ature, ~T~kBT , and our experimental data for g(Vc). The measured
conductance step shows a shoulder (Fig. 2e, f, red arrows) that
becomes increasingly more pronounced with both increasing field, B
(Fig. 2e), and increasing temperature, T (Fig. 2f), which is the hallmark
of the 0.7-anomaly. Our perturbative calculations qualitatively repro-
duce both trends remarkably well. The only caveat is that the experi-
mental curves in Fig. 2e, f show more pronounced shoulders than do
the respective SOPT curves in Fig. 2c, d. This failure of SOPT to
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Figure 2 | Conductance: theory versus experiment. a, b, FRG results: the
linear response conductance, g ~Vc, ~B

� �
, of a QPC (a), and its spin-resolved

components, g" and g# (b), plotted as functions of ~Vc

�
Vx for several values of ~B

at ~T~0 (but finite interaction U). The grey dashed and solid lines in a show the
low-energy scale ~B� ~Vc

� �
for U 5 0 and U 5 0.5, respectively, plotted on the log-

linear scale indicated on the right-hand axis (as also done in c–f). The small-
field magnetoresponse in a is strongest when ~B� takes its smallest value,
~Bmin
� (vertical dashed lines). Inset of b, the shot noise factor,

Nshot~
P

s gs 1{gsð Þ=2, plotted as function of g. Its asymmetric development
with ~B, which reflects that of g" and g#, agrees qualitatively with experiment (see
fig. 4d of ref. 7). c, d, SOPT results: g ~Vc, ~B

� �
at ~T~0 for several values of ~B

(c) and g ~Vc, ~T
� �

at ~B~0 for several values of ~T (d), both plotted as functions of
~Vc
�

Vx . The low-energy scale ~B� ~Vc
� �

is shown as a thin grey line in c and
repeated in d; ~T� ~Vc

� �
and ~Vsd� ~Vc

� �
are respectively shown as thin black and

brown lines in d. The vertical dashed line indicates where ~B� takes its minimal
value, ~Bmin

� . For ~Vc values below this dashed line, the lines for ~B�, ~T� and ~Vsd� in
d are nearly straight on the log-linear scale, implying the behaviour
summarized by equation (3), and are nearly parallel to each other, implying that
the ratios ~B�

�
~T� and ~Vsd�

�
~T� are essentially independent of ~Vc there.

e, f, Experiments—pinch-off curves. e, g(Vc) measured at a low 2DES

temperature, T0, for various magnetic fields parallel to the 2DES, plotted as a
function of DVc 5 Vc 2 V0.5, where V0.5 is the gate voltage for which the
conductance at B 5 0 and T 5 T0 is g(V0.5) 5 0.5. f, Analogous to e, but for
B 5 0 and various temperatures T. Colours in e and f are chosen to provide
comparability with theory curves in a, c and d (with the correspondence
ej jDVc!{~Vc). g, h, Experiments—Fermi-liquid behaviour: g(B)/g(0) as

function of B at temperature T0 (g), and g(T)/g(T0) as function of T at B 5 0
(h), shown on log-linear scales (insets show their differences from unity on log-
log scales) to emphasize small values of B and T. Coloured symbols distinguish
data taken at different fixed Vc values, indicated by dashed lines of
corresponding colour in e and f. The quadratic B and T dependences observed
in g and h for each fixed Vc value confirm equation (2) and were used to
determine the corresponding scales B�(Vc) and T�(Vc). (Black lines in g and
h show 1 2 (B/B�)

2 and 1 2 (T/T�)
2, respectively.) The resulting energies,

E�5 mBB�(Vc) and E�5 kBT�(Vc), are shown as functions of Vc in e (for B�)
and f (for both B� and T�) on a log-linear scale. The shape of these measured
functions agrees qualitatively with the SOPT predictions in c and d, confirming
the nearly exponential ~Vc dependences and the nearly Vc-independent B�=T�
ratio, discussed above. (For additional data, similar to that in g and h, see
Supplementary Information, section 2B.)

LETTER RESEARCH

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 3

Macmillan Publishers Limited. All rights reserved©2013



produce real shoulders is present both in the low-field dependence
at low temperature (compare Fig. 2e with Fig. 2c; the former, but
not the latter, shows a weak shoulder even at zero field) and in the
temperature dependence at zero field (compare Fig. 2f and Fig. 2d). In
contrast, the more powerful FRG approach does reproduce the weak
shoulder even for ~B~~T~0, as discussed above; compare the black
g ~Vc
� �

curves in Fig. 2a (FRG) and Fig. 2c (SOPT). (That the latter
curve, in contrast to the former, lies above its non-interacting version,
g0 ~Vc
� �

, is an artefact of SOPT; see Supplementary Information,
section 7D.)

We next focus on the limit of small energies ~B, ~T and ~Vsd. Here our
SOPT calculations yield three predictions, enumerated below, that are
all consistent with our measurements. First, for fixed ~Vc, the leading
dependence of the nonlinear conductance, gnl~ dI

�
d ~Vsd

� ��
GQ, on ~B,

~T and ~Vsd is predicted to be quadratic, as confirmed by the measured
data in Figs 2g, h and 3a. This implies an expansion of the form

gnl ~B, ~T, ~Vsd
� �

gnl 0, 0, 0ð Þ <1{
~B2

~B2
�
{

~T2

~T2
�
{

~V2
sd

~V2
sd�

ð2Þ

for ~B
�

~B�, ~T
�

~T�, ~Vsd

�
~Vsd�=1, where ~B�, ~T� and ~Vsd� are ~Vc-dependent

crossover scales that govern the ‘strength’ of the 0.7-anomaly for U ? 0:
the smaller these scales, the stronger the dependence on ~B, ~T and ~Vsd

for a given ~Vc. Our SOPT results for these crossover scales are shown as
thin lines on log-linear scales in Fig. 2c and Fig. 2d, respectively.
Second, in that part of the sub-open regime where gnl 0, 0, 0ð Þ<1, they
all depend exponentially on ~Vc:

~B�, ~T�, ~Vsd�!exp {p~Vc
�

Vx
� �

ð3Þ

Third, and again for gnl 0, 0, 0ð Þ<1, the ratios ~B�=~T� and ~Vsd�=~T� are
essentially independent of ~Vc (Supplementary Fig. 4). Remarkably,
both the second and third predictions are confirmed by our experi-
mental results (Fig. 2e for B*, Fig. 2f for T* and Supplementary Fig. 3 for
Vsd*). The behaviour predicted by equation (3) for ~T� is also in accord
with previous experiments6 and with a perturbative treatment of inter-
actions using Wentzel–Kramers–Brillouin wavefunctions21. Remarkably,
the exponential ~Vc dependence of the crossover scales stated in equa-
tion (3) can be understood from a non-interacting (U 5 0) theory, by
using the bare transmission probability3

T0
s vð Þ~ e{2p v{~Vczs~B=2ð Þ=Vx z1

h i{1
ð4Þ

in the Landauer–Büttiker formula. A detailed analysis (Supplementary
Information, section 5) shows that the crossover scales experience a fur-
ther exponential reduction with increasing effective interaction strength,
U
� ffiffiffiffiffiffiffiffiffiffi

Vxt0
p

.
When plotted as a function of ~Vc, 1

�
~B� has a peak in the sub-open

regime just before the onset of the exponential dependence of equa-
tion (3) (Fig. 1j). This peak is roughly similar in shape and position to
that in xtot

~Vc
� �

(compare dashed and solid blue lines in Fig. 1j), except
that the latter has a finite offset, reflecting the non-zero spin suscept-
ibility of an open QPC. Thus, we predict, fourth, that 1

�
~B�, which

characterizes the strength of the low-field magnetoconductance, is
roughly proportional to the spin susceptibility, xtot, of the CCR.

Next we address the remarkable experimental fact6 that many low-
energy properties of the 0.7-anomaly (including our first and third
predictions) are similar to those seen in transport through a Kondo
quantum dot (KQD). This led to the proposal13,14 that a QPC harbours
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Figure 3 | Finite excitation energies. a–f, Zero-bias peak. a, Experimental
data for the nonlinear conductance, gnl, as a function of source–drain voltage,
measured for several Vc values at a fixed low temperature and zero field.
b, Keldysh SOPT results for gnl ~Vsd

� �
for several ~Vc values at ~T~~B~0, showing

qualitative agreement with a. c, The linear-response conductance,
g~gnl ~Vsd~0

� �
, as a function of ~Vc. d–f, gnl ~Vsd

� �
as in b, but for three different

~Vc values (compare colour-matched dots in c and b) and five different magnetic
field values in each panel. Increasing ~B causes the ZBP to split into two subpeaks
once ~B> ~B�; the splitting is therefore most pronounced in e, for which ~B� is
smallest. A detailed discussion of the ZBP, including its T dependence, will be
published elsewhere. Here we would like to point out the qualitative agreement
of d–f with published data; see, for example, fig. 2d of ref. 6. g, h, Interacting
LDOS: Aj vð Þ, calculated using SOPT, shown for two fixed gate voltage values,
~Vc
�

Vx~0 (g) and 20.75 (h) (red dashed lines). i–n, Equilibrium transmission

probabilities: the corresponding elastic, inelastic and total transmission
probabilities, Tel

s (i, j), T in
s (k, l) and Ts (m, n), calculated using SOPT and

shown as functions of energy, v, for three different temperatures. At ~T~0
(black curves) T in

s vð Þ vanishes at v 5 0, where there is no phase space for
inelastic scattering. However, it increases as v changes from zero, causing a
corresponding reduction in the elastic transmission for v ? 0, such that Tel

s vð Þ
has a narrow ‘low-energy peak’ around v 5 0. On increasing the temperature,
the probability of inelastic scattering increases, causing the minimum in T in

s vð Þ
and the peak in Tel

s vð Þ to be smeared out. This leads to a net ~T-induced
reduction in the total transmission, Ts vð Þ near v 5 0, causing a corresponding
reduction in the conductance (Fig. 2d, f). This reduction is stronger for
~Vc
�

Vx~0 (m) than for ~Vc
�

Vx~{0:75 (n), because the probability of
electron–hole pair creation during inelastic scattering is largest when apex of
the van Hove ridge lies closest to m (compare g and h).
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a quasi-bound state, whose local moment gives rise to the Kondo effect.
In contrast, our van-Hove-ridge scenario fully explains the 0.7-anomaly
without invoking the Kondo effect. In particular, we find no indications
that a smooth parabolic barrier hosts a discrete, localized spin (com-
pare with the third feature above), and no Kondo effect/0.7-anomaly
similarities (experimentally or theoretically) at high energies (> ~B�),
where the Kondo effect is governed by an unscreened local moment.
Nevertheless, the two phenomena do have similar low-energy beha-
viour. This is because both involve a spin-singlet ground state featuring
spatially confined spin fluctuations. For a KQD they result from screen-
ing of the localized spin, whereas for a QPC they result from the
extended structure of the van Hove ridge (Fig. 1i); but this distinction,
which is important on short length scales (high energies), does not
matter on long ones (low energies). These spin fluctuations are char-
acterized by exponentially small energy scales, the Kondo temperature
for a KQD, and ~T� for a QPC, both scaling inversely with the local spin
susceptibility (for a QPC, this follows from prediction four). For a KQD,
the local spin fluctuations can be described by Nozières–Fermi-liquid
theory27,28 in terms of scattering phase shifts, which determine its low-
energy properties. Because a QPC, like a KQD, harbours spatially con-
fined spin fluctuations, a similar Nozières–Fermi-liquid framework
applies, explaining why its low-energy transport properties are similar
to those of a KQD.

We next study finite excitation energies (~T , ~Vsdw0), where inelastic
scattering becomes important (Fig. 3). We begin by considering the
nonlinear differential conductance, gnl, as a function of source–drain
voltage, Vsd. Experimentally, gnl shows a narrow peak at Vsd 5 0 (Fig. 3a;
see also refs 6, 9, 10). This ZBP appears strongest in the sub-open
regime, but remains visible even very close to pinch off10 (g R 0). It
splits with increasing field once B exceeds a Vc-dependent crossover
value that is smallest when g<0:7 (see fig. 2d of ref. 6). Remarkably, our
model, treated using Keldysh SOPT (Supplementary Information,
section 7B), yields a ZBP (Fig. 3b, d–f) that qualitatively reproduces this
behaviour. In the sub-open regime (0:5= g = 0:9), a ZBP arises even
without interaction (this follows from equation (4)), but interactions
modify it in two ways (Supplementary Information, section 7C): a finite
Vsd causes a net charge enhancement at the barrier, resulting in a reduc-
tion of transmission due to Coulomb repulsion; and opens up a finite
phase space for inelastic backscattering. Both effects strongly depend on
the LDOS near m (Fig. 3g, h), and are thus strongest when the apex of the
van Hove ridge lies near m (as in Figs 3g and 1g). However, the van Hove
ridge intersects m also for g , 0.5 (as in Fig. 1f), which explains why a
ZBP is experimentally observed even close to pinch off10.

The two modification mechanisms just discussed also apply to the
case of increasing temperature. To highlight the role of inelastic scat-
tering, we now discuss (for ~B~~Vsd~0) the transmission probability
Ts vð Þ~Tel

s vð ÞzT in
s vð Þ, written as the sum of elastic and inelastic

contributions corresponding respectively to transmission without or
with the creation of electron–hole pairs (see Supplementary Informa-
tion, section 7A, for their precise definition). Figure 3i–n shows exam-
ples of these quantities. With increasing temperature, the probability
for inelastic scattering increases, causing T in

s vð Þ to increase (Fig. 3k, l)
and Tel

s vð Þ to decrease (Fig. 3i, j). This leads to a net temperature-
induced reduction in the total transmission, Ts vð Þ (Fig. 3m, n), near
v 5 0, causing a corresponding reduction in the conductance (Fig. 2d, f).
Importantly, this reduction is ~Vc dependent: it is strongest when the apex
of the van Hove ridge lies near m (as in Fig. 3m) and decreases away from
this point (as in Fig. 3n), because the probability for electron–hole pair
creation during inelastic scattering increases with the LDOS near m. The
fact that Ts vð Þ acquires a non-trivial, interaction-induced dependence
on ~T in the sub-open regime is consistent with the fact that near g < 0.7
the measured thermopower violates the Mott relation5, which is based
on the assumption of non-interacting electrons.

Finally, we note that we have studied the magnetic field dependence
of the transconductance, dG/dVc, both experimentally and by using
FRG. We obtain excellent qualitative agreement between experiment

and theory, showing that such measurements can be understood with-
out invoking spontaneous spin polarization, as is often advocated to
explain them4,8,17. A detailed analysis (Supplementary Information,
section 2C, and Supplementary Fig. 5) establishes that the g factor is
enhanced significantly by interactions, and that interaction strength
can be tuned experimentally using a top gate.

We have presented detailed microscopic calculations that qualita-
tively reproduce the full phenomenology of the 0.7-anomaly. We
argued that a van Hove ridge in the LDOS, combined with interactions,
provides a natural explanation for the anomalous behaviour of the
conductance of a sub-open (g > 0:5) QPC. The experimentally
observed6 similarities between the 0.7-anomaly and the Kondo effect
at low energies arise because both phenomena involve spatially loca-
lized spin fluctuations; at high energies, the similarities cease. We
verified our Fermi-liquid predictions for the QPC conductance by
systematic measurement of the conductance as a function of Vc, B
and T. Strikingly, we demonstrated that the zero-bias peak in a QPC
arises from the interplay of interactions and geometry. By implication,
anomalous zero-bias behaviour might also arise in other systems
involving interacting electrons traversing 1D low-density regions with
slowly varying spatial inhomogeneities, such as the gated nanowires
being studied in the search for Majorana fermions29.

METHODS SUMMARY
The nanostructure is laterally defined in a 2DES located 85 nm beneath the surface
of a GaAs/AlGaAs heterostructure. The low-temperature carrier density and
mobility are 1.9 3 1011 cm22 and 1.2 3 106 cm2 V21 s21, respectively. Electron-
beam lithography was used to create the Ti/Au gates. The top gate is electrically
insulated from the others by cross-linked poly(methyl methacrylate). Perfect
alignment of magnetic fields parallel to the 2DES and the 1D channel defining
the QPC was ensured by using a two-axis magnet and was controlled by magne-
totransport measurements. We used a dilution refrigerator and reached electron
temperatures as low as T2DES < 30 mK.

Our most accurate theoretical results were obtained by using FRG24–26 to calculate
T 5 0 properties. FRG amounts to doing renormalization-group-enhanced per-
turbation theory in the interaction U. In setting up our FRG flow equations, we
made two approximations, both exact to second order in U: we truncated the infinite
hierarchy of flow equations by neglecting the flow of the three-particle vertex; and we
set to zero all components of the two-particle vertex that are not already generated to
second order in the interaction (coupled-ladder approximation).

To access the effects of inelastic scattering for ~Tw0 or ~Vsdw0 at fixed U, we
used SOPT: we dressed bare Green’s functions by evaluating the self-energy per-
turbatively to second order in the interaction. For ~Vsd~0, we calculated the linear
conductance following the strategy in ref. 23, generalized to ~B=0 and broken
electron–hole symmetry. For ~Vsdw0, we calculated the nonlinear conductance,
gnl~ dI

�
d ~Vsd

� ��
GQ, using the Meir–Wingreen formula for the current (equa-

tion (6) of ref. 30).
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