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For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical

correspondence has been discussed extensively. We introduce a variational matrix product state approach

involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire

phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum / !s, we confirm

classical mean-field behavior for s < 1=2, correcting earlier numerical renormalization-group results. We

also provide the first results for an XY-symmetric model of a spin coupled to two competing bosonic

baths, where we find a rich phase diagram, including both critical and strong-coupling phases for s < 1,

different from that of classical spin chains. This illustrates that symmetries are decisive for whether or not

a quantum-to-classical correspondence exists.
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Quantum spins in a bosonic environment are model
systems in diverse areas of physics, ranging from dissipa-
tive quantum mechanics to impurities in magnets and
biological systems [1]. In this Letter we consider the
spin-boson model and a generalization thereof to two

baths, described by H sb ¼ � ~h � ~�=2þH bath, with

H bath ¼
X
i¼x;y

X
q

�
!qB̂

y
qiB̂qi þ �qi

�i

2
ðB̂qi þ B̂y

qiÞ
�
: (1)

The two-level system (or quantum spin, with �x;y;z being

the vector of Pauli matrices) is coupled both to an external

field ~h and, via �x and �y, to two independent bosonic

baths, whose spectral densities Jið!Þ¼�
P

q�
2
qi�ð!�!qÞ

are assumed to be of power-law form:

Jið!Þ ¼ 2��i!
1�s
c !s; 0<!<!c ¼ 1: (2)

Such models are governed by the competition between the

local field, which tends to point the spin in the ~h direction,
and the dissipative effects of the bosonic baths.

Indeed, the standard one-bath spin-boson model (SBM1),
obtained for�y ¼ hy ¼ 0, exhibits an interesting andmuch-

studied [1–7] quantum phase transition (QPT) from a
delocalized to a localized phase, with h�xi ¼ 0 or � 0,
respectively, as �x is increased past a critical coupling
�x;c. According to statistical-mechanics arguments, this

transition is in the same universality class as the thermal
phase transition of the one-dimensional (1D) Ising model
with 1=r1þs interactions. This quantum-to-classical corre-
spondence (QCC) predicts mean-field exponents for
s < 1=2, where the Ising model is above its upper-critical
dimension [8,9].

Checking this prediction numerically turned out to be
challenging. Numerical renormalization-group (NRG)
studies of SBM1 yielded non-mean-field exponents for
s < 1=2 [4], thereby seemingly negating the validity of

the QCC. However, the authors of Ref. [4] subsequently
concluded [10] that those results were not reliable, due to
two inherent limitations of the NRG method, which they
termed (i) Hilbert-space truncation and (ii) mass flow.
Problem (i) causes errors for critical exponents that char-
acterize the flow into the localized phase at zero tempera-
ture, since h�xi � 0 induces shifts in the bosonic

displacements X̂q ¼ ðB̂q þ B̂y
q Þ=

ffiffiffi
2

p
of the bath oscillators

which diverge in the low-energy limit for s < 1 and hence
cannot be adequately described in the truncated boson
Hilbert space used by the NRG method [11]. Problem (ii)
arises for nonzero temperatures, due to the NRG’s neglect
of low-lying bath modes with energy smaller than tem-
perature [12]. In contrast to the NRG results, two recent
numerical studies of SBM1, using Monte Carlo methods
[6] or a sparse polynomial basis [5], found mean-field
exponents in agreement with the QCC. Nevertheless,
other recent works continue to advocate the failure of the
QCC [13].
The purpose of this Letter is twofold. First, we show how

the problem (i) of Hilbert-space truncation can be con-
trolled systematically by using a variational matrix-
product state (VMPS) approach formulated on a Wilson
chain. The key idea is to variationally construct an opti-
mized boson basis (OBB) that captures the bosonic shifts
induced by h�xi � 0. The VMPS results confirm the pre-
dictions of the QCC for the QPT of SBM1 at T ¼ 0.
(Problem (ii) is beyond the scope of this work.) Second,
we use the VMPS approach to study an XY-symmetric
version of the two-bath spin-boson model (SBM2), with
�x ¼ �y. This model arises, e.g., in the contexts of impu-

rities in quantum magnets [14,15] and of noisy qubits
[14,16], and displays the phenomenon of ‘‘frustration of
decoherence’’ [14]: the two baths compete (rather than
cooperate), each tending to localize a different component
of the spin. As a result, a nontrivial intermediate-coupling
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(i.e., critical) phase has been proposed to emerge for s < 1
[15], which has no classical analogue. To date, the exis-
tence of this phase could only be established in an expan-
sion in (1� s), and no numerical results are available.
Here we numerically investigate the phase diagram, and,
surprisingly, find that the perturbative predictions are valid
for a small range of s and � only. We conclusively dem-
onstrate the absence of a QCC for this model.

Wilson chain.—Following Refs. [3,11], which adapted
Wilson’s NRG to a bosonic bath, we discretize the latter
using a logarithmic grid of frequencies !ki / ��k (with
�> 1 and k a positive integer) and map H bath onto a so-
called Wilson chain of (L� 1) bosonic sites:

H ðL�1Þ
bath ¼ X

i¼x;y

� ffiffiffiffiffi
�i

�

r
�i

2
ðb̂1i þ b̂y1iÞ

þ XL�2

k¼1

tkiðb̂ykib̂kþ1;i þ H:c:Þ þ �kin̂ki

�
: (3)

Here n̂ki ¼ b̂ykib̂ki, with eigenvalue nki, counts the bosons

of type i on chain site k; the detailed form of the hopping
parameters tki, on-site energies �ki (both / ��k), and the
coupling �i between spin component �i and site 1, are
obtained following Refs. [17,18]. To render a numerical
treatment feasible, the infinite-dimensional bosonic Hilbert
space at each site k is truncated by restricting the boson
number to 0 � nki < dk (dk � 14 in Refs. [3,11]).

The standard NRG strategy for finding the ground state

of H ðLÞ
sb ¼ � ~h � ~�=2þH ðL�1Þ

bath is to iteratively diagonal-

ize it one site at a time, keeping only the lowest-lying D
energy eigenstates at each iteration. This yields an L-site
matrix-product state (MPS) [19–21] of the following form
(depicted in Fig. 1, dashed boxes):

jGi ¼ X
�¼";#

X
f ~ng

A0½��A1½n1� � � �AL�1½nL�1�j�ij ~ni: (4)

Here j�i ¼ j "i, j #i are eigenstates of �x; the states j ~ni ¼
jn1; . . . ; nL�1i form a basis of boson-number eigenstates
within the truncated Fock space, with n̂kij ~ni ¼ nkij ~ni and
0 � nki < dk. For SBM2, nk ¼ ðnkx; nkyÞ labels the states

of supersite k representing both chains. Each Ak½nk� is a
matrix (not necessarily square, but of maximal dimension
D�D, with A0 a row matrix and AL�1 a column matrix),
with matrix elements ðAk½nk�Þ��.

The need for Hilbert-space truncation with small dk
prevents the NRG method from accurately representing

the shifts in the displacements x̂ki ¼ ðb̂ki þ b̂ykiÞ=
ffiffiffi
2

p
that

occur in the localized phase. This problem can be avoided,
in principle, by using an OBB, chosen such that it opti-
mally represents the quantum fluctuations of shifted oscil-
lators, x̂0ki ¼ x̂ki � hx̂kii. While attempts to accommodate

this strategy within the standard NRG approach were un-
successful [11], it was shown to work well [5] using an
alternative representation of SBM1 using a sparse poly-
nomial basis.
VMPS method.—We now show that an OBB can also be

constructed on a Wilson chain. To this end, view the state
jGi of Eq. (4) as a MPS ansatz for the ground state of

H ðLÞ
sb , that is to be optimized variationally using standard

MPS methods [19–21]. To allow the possibility of
large bosonic shifts, we represent the A-matrix elements
as [22–24] (Fig. 1, solid lines)

ðAk½nk�Þ�� ¼ Xdopt�1

~nk¼0

ð ~Ak½~nk�Þ��Vk
~nknk

ðk � 1Þ: (5)

Here Vk in effect implements a transformation to a new

boson basis on site k, the OBB, of the form j~nki ¼Pdk�1
nk¼0 V

k
~nknk

jnki with 0 � ~nk < dopt. (For SBM2, Vk is a

rank-3 tensor.) This ansatz has the advantage that the
size of the OBB, dopt, can be chosen to be much smaller

(dopt & 50) than dk. Following standard VMPS strategy,

we optimize the ~Ak and Vk matrices one site at a time
through a series of variational sweeps through the Wilson
chain. As further possible improvement before optimizing
a given site, the requisite boson shift can be implemented
by hand in the Hamiltonian itself: we first determine the
‘‘current’’ value of the bosonic shift hx̂kii using the current
variational state jGi, then use it as a starting point to
variationally optimize a new jG0iwith respect to the shifted
Hamiltonian H 0ðLÞ

sb ðb̂ki; b̂ykiÞ ¼ H ðLÞ
sb ðb̂0ki; b̂0yki Þ, with b̂0ki ¼

b̂ki � hx̂kii=
ffiffiffi
2

p
. The shifted OBB protocol, described in

detail in Ref. [18], allows shifts that would have required
deffk � 1010 states in the original boson basis to be treated

using rather small dk (we used dk ¼ 100).
Spin-boson model.—We applied the VMPS method to

SBM1 (�y ¼ hy ¼ 0), with dissipation strength � � �x

and fixed transverse field hz ¼ 0:1, at T ¼ 0. We focussed
on the QPT between the delocalized and localized
phases in the sub-Ohmic case, s < 1. Here, the controversy
[4–6,10,13] concerns the order-parameter exponents � and

�, defined via h�xi / ð�� �cÞ� at hx ¼ 0 and h�xi / h1=�x

at � ¼ �c, respectively. QCC predicts mean-field values
�MF ¼ 1=2, �MF ¼ 3 for s < 1=2 [8], whereas initial NRG
results [4] showed s-dependent non-mean-field exponents.
In Fig. 2(a), we show sample VMPS results for h�xi vs

(�� �c) for s ¼ 0:3 at hx ¼ 0, where �c was tuned to
yield the best straight line on a log-log plot. The results

FIG. 1. Depiction of the MPS Eq. (4), with each A-matrix
expressed in an optimal boson basis via A ¼ ~AV [Eq. (5)].
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display power-law behavior over more than 3 decades,
with an exponent � ¼ 0:50	 0:03. Deviations at small
(�� �c) can be attributed to a combination of finite
chain length and numerical errors of the VMPS method.
Figure 2(b) shows h�xi vs hx at � ¼ �c, and a power-law
fit over 6 decades results in � ¼ 2:9	 0:2. Power laws
of similar quality can be obtained for all s * 0:2 [18,25]
(see [18], Fig. S7).

The exponents � and � obtained from such fits are
summarized in Figs. 2(c) and 2(d). For s < 1=2 they are
consistent with the mean-field values predicted by QCC,
also found in Monte Carlo [6] and exact-diagonalization
studies [5], but are at variance with the NRG data of
Ref. [4]. Since both the NRG and VMPS methods handle

the same microscopic model H ðLÞ
sb defined on the Wilson

chain, but the VMPSmethod can deal with much larger deffk

values (& 1010 in Fig. 2) than the NRG method, the in-
correct NRG results must originate from Hilbert-space
truncation, as anticipated in Ref. [10]. Indeed,
artificially restricting dk to small values in the VMPS
approach reproduces the incorrect NRG exponents (see
[18], Fig. S6).

Two-bath model.—We now turn to SBM2, a general-
ization of the spin-boson model. Here, the two baths may
represent distinct noise sources [14,16] or XY-symmetric
magnetic fluctuations [14,15,26]. Perturbation theory
shows that the two baths compete: A straightforward ex-
pansion around the free-spin fixed point (� ¼ h ¼ 0) re-
sults in the following one-loop renormalization-group

(RG) equations at ~h ¼ 0:

�ð�xÞ ¼ ð1� sÞ�x � �x�y;

�ð�yÞ ¼ ð1� sÞ�y � �x�y:
(6)

For � � �x ¼ �y, these equations predict a stable

intermediate-coupling fixed point at �
 ¼ 1� s, describ-
ing a critical phase. It is characterized by h ~�i ¼ 0, a non-

linear response of h ~�i to an applied field ~h, and a finite
ground-state entropy smaller than ln2, all corresponding to
a fluctuating fractional spin [15,27]. This phase is unstable
with respect to finite bath asymmetry (�x � �y) and finite

field. It had been assumed [15] that this critical phase exists
for all 0< s < 1 and is reached for any �.
We have extensively studied SBM2 using the VMPS

method; the results are summarized in the ~h ¼ 0 phase
diagram in Fig. 3(a) and the flow diagrams in Fig. 4. Most
importantly, we find that the critical phase (CR) indeed
exists, but only for s
 < s < 1, with a universal s
 ¼
0:75	 0:01. Even in this s range, the critical phase is
left once � is increased beyond a critical value �cðsÞ,
which marks the location of a continuous QPT into a
localized phase (L) with spontaneously broken XY sym-
metry and finite h�x;yi. This localized phase exists down to
s ¼ 0, Fig. 3(a). It can be destabilized by applying a
transverse field hz beyond a critical value hczð�Þ, marking
the location of a continuous QPT into a delocalized phase
(D) with a unique ground state (see Ref. [18], Fig. S9).
Finally, for s � 1 we only find weak-coupling behavior;
i.e., the impurity behaves as a free (F) spin .
In Fig. 3(b) (and Ref. [18], Fig. S10) we show results for

the transverse-field response, h�zi / h1=�
0

z , which can be
used to characterize the different zero-field phases. h�zi is
linear in hz in L (�0 ¼ 1), sublinear in CR (�0 > 1), and
extrapolates to a finite value in F. For CR, a perturbative
calculation gives 1=�0 ¼ ð1� sÞ þOð½1� s�2Þ [15] (con-
firmed numerically in Ref. [18], Fig. S11b), while the

FIG. 2 (color online). VMPS results for the order parameter of
SBM1 near criticality. (a) h�xi vs (�� �c) at hx ¼ 0, and
(b) h�xi vs hx at � ¼ �c, on linear plots (insets) or log-log plots
(main panels). Dashed lines are power-law fits in the ranges
between the vertical marks. (c),(d) Comparison of the exponents
� and � for different s obtained from the VMPS method, NRG
studies [4], mean-field theory, and, in (d), the exact hyperscaling
result � ¼ ð1þ sÞ=ð1� sÞ which applies for s > 1=2. (See also
[18], Fig. S7).

FIG. 3 (color online). (a) Phase diagram of SBM2 in the s-�

plane for ~h ¼ 0, with dissipation strength � � �x ¼ �y. The

critical phase only exists for s
 < s < 1, and its boundary
�c ! 1 for s ! 1�. (Ref. [18] describes the determination of
the phase boundary and gives a 3D sketch of the s-�-hz phase
diagram, see Fig. S8.) (b) Tranverse-field response of SBM2,

h�zi / h1=�
0

z , for four choices of s and �, showing free (dia-
monds), critical (squares) and localized (triangles, circles) be-
havior.
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linear response in L corresponds to that of an ordered XY
magnet to a field perpendicular to the easy plane.

From the VMPS results, we can schematically construct
the RG flow, Fig. 4. There are three stable RG fixed points
for s
 < s < 1, corresponding to the L, D, and CR phases.
From this we deduce the existence of two unstable
critical fixed points, QC1 and QC2, controlling the QPTs
[Fig. 4(a)]. Equation (6) predicts that, as s ! 1�, CR
merges with F; this is consistent with our results for �0
which indicate �0 ! 1 as s ! 1� (Ref. [18], Fig. S11b).
The behavior of the phase boundary �c in Fig. 3(a) sug-
gests that QC1 moves towards � ¼ 1 for s ! 1�. Thus,
for s � 1 only F is stable on the ~h ¼ 0 axis. Conversely,
from Eq. (6) and Fig. 3(a) we extract that, upon lowering
s, CR (QC1) moves to larger (smaller) �. From the
absence of CR for small s we then conclude that
CR and QC1 merge and disappear as s ! s
þ.
Consequently, for s < s
 we have only D and L as stable
phases, separated by a transition controlled by QC2,
Fig. 4(b). The merger of CR and QC1 at s ¼ s
 also
implies that the phase boundary between CR and L in
Fig. 3(b) at s
 is vertical at small � (Ref. [18], Sec. V.C),
because the merging point on the � axis defines the finite
value of �c at s ! s
þ.

Taken together, the physics of SBM2 is much richer than
that of a classical XY-symmetric spin chain with long-
range interactions, which only shows a single thermal
phase transition [28]. Given this apparent failure of the
QCC for SBM2, it is useful to recall the arguments for
QCC for SBM1: A Feynman path-integral representation
of Eq. (1), with nonzero hz, can be written down using
eigenstates of both �x and �z. Integrating out the bath
generates a long-range (in time) interaction for �x.
Subsequently, the �z degrees of freedom can be integrated
out as well, leaving a model formulated in �x only.
Reinterpreting the �x values for the individual time slices

in terms of Ising spins, one arrives at a 1D Ising chain with
both short-range and 1=r1þs interactions, with the thermo-
dynamic limit corresponding to the T ! 0 limit of the
quantum model. Repeating this procedure for SBM2 with
~h ¼ 0, one obtains a Feynman path integral in terms of
eigenstates of �x and �y. Importantly, both experience

long-range interactions and hence neither can be integrated
out. This leads to a representation in terms of two coupled
Ising chains. However, upon reexponentiating the matrix
elements, the coupling between the two chains turns out to
be imaginary, such that a classical interpretation is not
possible [29]. In other words, a Feynman path-integral
representation of SBM2 leads to negative Boltzmann
weights, i.e., a sign problem.
Conclusion.—Our implementation of the OBB-VMPS

method on the Wilson chain brings the Hilbert-space trun-
cation problem of the bosonic NRG method under control
and allows for efficient ground-state computations of bo-
sonic impurity models. We have used this to verify the
QCC in SBM1 and to determine the phase diagram of
SBM2, which is shown to violate QCC. This underlines
that symmetries are decisive for whether or not a QCC
exists. A detailed study of the QPTs of SBM2 is left for
future work.
The results for SBM2 also show that the predictions

from a weak-coupling RG calculation are not valid for all
parameters and bath exponents, in contrast to expectations.
This implies that studying a three-bath version of the spin-
boson model, which is related to the physics of a magnetic
impurity in a quantum-critical magnet [15,27], is an inter-
esting future subject.
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