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Abstract A relevant problem regarding entanglement mea-
sures is the following: Given an arbitrary mixed state, how
does a measure for multipartite entanglement change if gen-
eral local operations are applied to the state? This ques-
tion is nontrivial as the normalization of the states has to
be taken into account. Here we answer it for pure-state en-
tanglement measures which are invariant under determinant-
one local operations and homogeneous in the state coef-
ficients, and their convex-roof extension which quantifies
mixed-state entanglement. Our analysis allows us to enlarge
the set of mixed states for which these important measures
can be calculated exactly. In particular, our results hint at
a distinguished role of entanglement measures which have
homogeneous degree 2 in the state coefficients.

1 Introduction

In recent years, there has been astounding experimental
progress in preparing and operating multiqubit entangle-

O. Viehmann
Physics Department, Arnold Sommerfeld Center for Theoretical
Physics, and Center for NanoScience,
Ludwig-Maximilians-Universität, Theresienstraße 37, 80333
München, Germany

C. Eltschka
Institut für Theoretische Physik, Universität Regensburg, 93040
Regensburg, Germany

J. Siewert (�)
Departamento de Química Física, Universidad del País Vasco,
Apdo. 644, 48080 Bilbao, Spain
e-mail: jens_siewert@ehu.es

J. Siewert
IKERBASQUE, Basque Foundation for Science,
Alameda Urquijo 36, 48011 Bilbao, Spain

ment, e.g., with trapped ions [1, 2], photons [3, 4], and su-
perconducting circuits [5, 6]. On the other hand, entangle-
ment theory is lagging behind this advancement. To date, it
is not possible to adequately characterize the entanglement
of an experimentally prepared multipartite quantum state,
that is, to quantify how much of a certain type of entangle-
ment is contained in that state.

One difficulty here is that it is not enough to just decide
“how much entanglement is present.” Entanglement is re-
garded as a resource for quantum information tasks, and
different tasks require different resources, that is, inequiv-
alent types of entanglement. The criterion whether or not
two states can be considered equivalent with respect to their
entanglement is whether they can be transformed into one
another by means of stochastic local operations and classi-
cal communication (SLOCC) [7, 8]. The consequence is that
different equivalence classes of entanglement need to be dis-
tinguished [8–11].

Entanglement witnesses provide a tool to distinguish
SLOCC classes of multipartite states and to experimentally
detect them [12]. There are attempts to make witnesses more
quantitative [13, 14] which have not found widespread ap-
plication in practice yet.

So far there are only few practically relevant tools for
measuring the entanglement of general (mixed) quantum
states. Negativity-related entanglement monotones [15, 16]
represent one of them. They are applied only to bipartite
systems, and it is not clear if they can be used to distin-
guish different types of entanglement. Therefore we do not
further investigate them here. The second well-established
tool is Wootters’ approach to compute mixed state entangle-
ment for two qubits [17]. It is based on the concurrence, a
pure-state entanglement measure which is generalizable to
pure states of systems larger than two qubits. The kind of
pure-state entanglement measures the concurrence belongs
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to has several interesting properties (see below). In particu-
lar, entanglement measures of this kind can distinguish and
quantify specific types of multipartite entanglement. Recent-
ly there has been progress regarding the question how to
obtain SLOCC classifications using them [24–26]. An ap-
plication of these quantities to mixed states in analogy to
Wootters’ method is therefore highly desirable.

The concurrence is an example of a polynomial invariant,
i.e., a polynomial function of the coefficients (and not their
complex conjugates) of a quantum state, where the function
is invariant under determinant-one local operations, that is,
under the transformations

A = A1 ⊗ · · · ⊗ AN

≡ F1

(detF1)1/d1
⊗ · · · ⊗ FN

(detFN)1/dN
. (1)

Here the operators Fk ∈ GL(dk,C)⊗N represent general
(invertible) local operations on the N -qubit Hilbert space
H = ⊗N

k=1 C
dk . Obviously, Ak have determinants equal to

1, i.e., Ak ∈ SL(dk,C).
The peculiarity of polynomial invariants is that a power

of them which has homogeneous degree 2 in the state co-
efficients is automatically an entanglement monotone [18].
The generalizations of the concurrence, that is, polynomial
invariants for pure states of three and more qubits are well
known [19–23].

Hence, pure-state entanglement measures are known in
principle at least for multiqubit systems. It is straightforward
to generalize them to mixed states via the convex-roof ex-
tension [27] (for details, see below). The problem of quan-
titative entanglement theory is that it is not known how to
compute the convex roof of an invariant in general (or even
a nontrivial lower bound of it) for any multipartite system,
except for the concurrence of two qubits and its straight-
forward generalization to an even number of qubits, the N-
concurrence [28, 29].

At least there exist a few exact solutions for three-qubit
states of low rank and high symmetry [30–33]. To study
how to extend these solutions to a larger family of states
is part of the quest for a better understanding of the con-
vex roof and multipartite entanglement in mixed states. An
important question in this context is how an entanglement
measure behaves under general local operations. While lo-
cal unitary operations represent mere basis changes and do
not change entanglement, general local operations require
subsequent normalization of the state and thus a conversion
of the amount of entanglement.

In this work we investigate how multipartite entangle-
ment needs to be rescaled if it is quantified by functions
which are homogeneous and invariant under determinant-
one SLOCC operations. It will turn out that in the case of
mixed states this is easily done only for the convex roof of

pure-state measures with homogeneous degree 2. That is,
from the point of view of mixed-state entanglement rescal-
ing, one can conclude that there is a preferred homogeneity
degree of pure-state entanglement measures.

The outline of this article is as follows. First we analyze
the rescaling properties of the convex-roof extension. Then
we illustrate their application (and also their failure for the
“wrong” homogeneity degree) by reconsidering some of the
known exact solutions. Finally, we mention also some ways
to extend the number of exactly solvable three-qubit prob-
lems.

2 The rescaling method

This section provides the theoretical concepts on which this
article is based. They are formulated for general homoge-
neous invariants, but we interpret them with regard to the
physically relevant polynomial SL(dk,C)⊗N -invariants. To
begin with, we introduce our notation and explain how a ho-
mogeneous invariant of pure states needs to be rescaled un-
der a symmetry transformation if one exclusively focuses on
normalized states. Then we explain the convex-roof exten-
sion. Finally, we state, derive, and discuss our main results.
They describe the scaling of the convex-roof extension of
a homogeneous invariant under a symmetry transformation
for normalized mixed states.

2.1 Rescaling of homogeneous invariants for normalized
pure states

We consider a real function τ on some finite-dimensional
Hilbert space H that is invariant with respect to some invert-
ible linear operator L acting on H. In formulas, τ(Lψ) =
τ(ψ) for all ψ ∈ H. This implies τ(L−1ψ) = τ(ψ). We as-
sume further that τ is homogeneous of degree η. That is,
for positive α, τ(αψ) = αητ(ψ). If we focus on normal-
ized states φ and φ′ which are related by L according to
φ′ = Lφ/‖Lφ‖, it follows that

τ(φ′) = τ(φ)

‖Lφ‖η
. (2)

Note that τ could be one of the polynomial invariants dis-
cussed in the introduction (or a function thereof) if H =⊗N

k=1 C
dk and L ≡ A ∈ SL(dk,C)⊗N . Note further that (2)

has the same form for all η, so that there is no preferred
homogeneity degree for the polynomial invariant.

2.2 The convex roof extension

Let H be a finite-dimensional Hilbert space, and ΩH the
convex set of (normalized) density operators acting on H.
All ρ ∈ ΩH can be written as convex sums ρ = ∑

i piπi .
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That is, pi ≥ 0,
∑

i pi = 1, and πi is an extreme point
of ΩH. An extreme point π of ΩH is given by π =
|ψ〉〈ψ |/‖ψ‖2, where ψ ∈ H ( 
= 0), and is usually referred
to as a pure state. A mixed state ρ has rank > 1, and its
decomposition {pi,πi} into pure states is not unique [34].

A real continuous function f on H can be extended to
ΩH via convex-roof extension [27]:

f (ρ) = min
∑

i

pif (πi). (3)

The minimum runs over all possible decompositions of ρ

into pure states, and f (πi) ≡ f (ψi/‖ψi‖). A decomposi-
tion {p̃i , π̃i} of ρ for which f (ρ) = ∑

p̃if (π̃i) is called
optimal. The minimal length of an optimal decomposition
(the minimal number of pure states in the decomposition)
is ≤ (rankρ)2 (this is a consequence of Carathéodory’s the-
orem, see Ref. [27], Lemma 1). Since f (ρ) is an entangle-
ment monotone on ΩH if f is an entanglement monotone on
H [35, 36], the convex-roof extension is the standard way of
applying a pure-state entanglement measure to mixed states.
For further properties of the convex-roof extension, see [27,
28, 36]. However, as mentioned, finding the minimum in (3)
is difficult in general.

2.3 The convex-roof extension of homogeneous invariants

Let us now investigate how the convex-roof extension of τ

transforms under the action of L, that is, how τ(ρ) and
τ(ρ′) are related if ρ′ = LρL†/trLρL† (ρ,ρ′ ∈ ΩH). In-
terestingly, it turns out that the convex-roof extension does
not lead to a simple generalization of (2) for all η. Rather,
the convex-roof extension singles out invariants of homoge-
neous degree η = 2. Only in that case the convex-roof ex-
tension of τ generally can be rescaled as for pure states,

τ(ρ′) = τ(ρ)

trLρL†
. (4)

This formula represents the case η = 2 of a naive general-

ization of (2) to τ(ρ′) ?= τ(ρ)/(trLρL†)η/2 which, however,
is not correct in general. The main conclusions of this article
are based on formula (4). We will see that it can be under-
stood as a consequence of the fact that L maps an optimal
decomposition of ρ onto an optimal decomposition of ρ′ if
η = 2. For η 
= 2, the invariance of τ under L still guarantees
that τ(ρ) and τ(ρ′) are either both zero or both nonzero if
τ(ψ) ≥ 0. These results give information about the convex
roof of τ for ρ′ if it is known for ρ. Applying them to the
polynomial invariants allows us to extend (previous) results
for the entanglement of a mixed state as measured by the
polynomial invariants to all states that can be obtained from
this state via general invertible local operations F (ILOs): If

F = F1 ⊗ · · · ⊗ FN ∈ GL(dk,C)⊗N , then

ρ′ = FρF †

trFρF †
= AρA†

trAρA†
, (5)

where A ∈ SL(dk,C)⊗N is defined as in (1). An example
that illustrates how (4) can be utilized to calculate the three-
tangle of mixed states will be presented in the next section.

In order to see how (4) is obtained, suppose that {pi,πi}
and {qj ,
j } are optimal decompositions of ρ and ρ′ of
lengths m and n, respectively. In other words, τ(ρ) =∑m

i=1 piτ(πi) and τ(ρ′) = ∑n
j=1 qj τ (
j ). We express ρ′

in terms of the {pi,πi} and ρ in terms of the {qj ,
j },

ρ =
m∑

i=1

piπi =
n∑

j=1

q ′
j


′
j , (6)

ρ′ =
n∑

j=1

qj
j =
m∑

i=1

p′
iπ

′
i , (7)

where

p′
i = piT

−1trLπiL
†, q ′

j = qjT tr
[
L−1
j

(
L−1)†]

,

(8)

π ′
i = LπiL

†

trLπiL†
, 
 ′

j = L−1
j(L
−1)†

tr [L−1
j(L−1)†] . (9)

We have used the abbreviation T = trLρL†. It is easy to
see that

∑
i p

′
i = ∑

j q ′
j = 1 and that π ′

i and 
 ′
j are pure

states. Since LπiL
†(= Lπiπ

†
i L†) is a positive operator and

L is invertible, trLπiL
† > 0. Consequently, T > 0. A sim-

ilar argument ensures that tr[L−1
j(L
−1)†] > 0. Starting

from (6) and (7), one can estimate

τ(ρ) ≤ T

n∑

j=1

qj

[
trL−1
j

(
L−1)†] 2−η

2 τ(
j ), (10)

τ(ρ′) ≤ T −1
m∑

i=1

pi

[
trLπiL

†]
2−η

2 τ(πi). (11)

If η = 2, (4) follows. Moreover, one sees that {p′
i , π

′
i } is

an optimal decomposition of ρ′ because
∑

i p
′
iτ (π ′

i ) =∑
i piτ (πi)/T = τ(ρ)/T . Further, {q ′

j ,

′
j } is an opti-

mal decomposition of ρ. Hence, an optimal decomposition
{pi,πi} ({qj ,
j }) of ρ (ρ′) is mapped by L (L−1) onto an
optimal decomposition of ρ′ (ρ) which is given by {p′

i , π
′
i }

({q ′
j ,


′
j }) in (8) and (9).

If η 
= 2, but τ ≥ 0, one can still conclude from (10) and
(11) that either both τ(ρ) and τ(ρ′) are zero or both are
nonzero. The assumption τ(ρ) = 0 implies τ(πi) = 0 for
all πi and, due to (11), τ(ρ′) = 0. On the other hand, the
assumption τ(ρ) > 0 implies that τ(
j ) > 0 for at least one

j because of (10). The converse follows analogously.
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Let us briefly discuss these results with regard to the
polynomial invariants and their application as entanglement
measures. As already indicated, our results, in particular (4),
provide a useful tool for learning about the convex-roof ex-
tension of a polynomial invariant for a mixed state ρ′ if it is
already known for a state ρ that can be transformed into ρ′
via SLOCC. However, we have also gained another impor-
tant insight about the convex-roof extension of polynomial
invariants: It has peculiar properties for polynomial entan-
glement measures of homogeneity degree 2 (or, of linear de-
gree if the pure-state measures are regarded as functions of
rank-one density operators) and therefore indicates a special
significance of the latter. Only for entanglement measures of
this type, the invariance property for normalized pure states
generalizes to normalized mixed states and the entanglement
both of pure and mixed SLOCC-equivalent states is related
by a simple analytical formula, (4).

3 Examples

Now we consider several examples to illustrate how the
rescaling method from Sect. 2 can be applied to generalize
existing results for mixed-state entanglement. We will also
demonstrate what happens if one tries to apply it to mono-
tones of degree 
= 2.

The examples we consider are mixed states of three
qubits. For three-qubit systems, there is only one polyno-
mial SL(2,C)⊗3 invariant, the three-tangle [19]. For |ψ〉 =
∑1

i,j,k=0 ψijk|ijk〉, it is given by

τ3(ψ) = 4|d1 − 2d2 + 4d3|,
d1 = ψ2

000ψ
2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

011ψ
2
100,

d2 = ψ000ψ001ψ110ψ111 + ψ000ψ010ψ101ψ111

+ ψ000ψ011ψ100ψ111 + ψ001ψ010ψ101ψ110

+ ψ001ψ011ψ100ψ110 + ψ010ψ011ψ100ψ101,

d3 = ψ000ψ110ψ101ψ011 + ψ100ψ010ψ001ψ111

(12)

and distinguishes Greenberger–Horne–Zeilinger (GHZ) en-
tanglement from W -type entanglement. For mixed states, it
is defined by convex-roof extension.

The three-tangle has homogeneous degree 4. However,
to apply the rescaling method (4) as described above, degree
2 is required. Therefore on pure states we have to use the
square root of the three-tangle, τ(ψ) = √

τ3(ψ), which is an
entanglement monotone as well [37]. For mixed states, we
again define τ(ρ) through the convex-roof extension. Note
that this is not the same as taking the square root of τ3(ρ).
However τ(ρ) = 0 iff τ3(ρ) = 0; therefore both are equally
suitable to distinguish GHZ-type and W -type entanglement.

3.1 Mixtures of generalized GHZ and W states

We consider τ(ρ) for rank-2 mixtures

ρ(p) = p|gGHZ〉〈gGHZ| + (1 − p)|gW 〉〈gW | (13)

of a generalized GHZ and generalized W state (both nor-
malized)

|gGHZ〉 = a|000〉 + b|111〉,
|gW 〉 = c|100〉 + d|010〉 + e|001〉. (14)

The three-tangle of those states has been calculated in [31].
We will be able to reuse pure-state results from that paper.

We begin by solving the problem using the characteristic
curve method [38] and then demonstrate how those solu-
tions can be mapped to each other by means of the rescaling
method.

The characteristic curve is defined as the minimum tangle
of the states at the same “height” in the Bloch sphere as the
corresponding mixed state,

τ̃ (p) = min
φ

(
τ
(√

p|gGHZ〉 + √
1 − peiφ |gW 〉

))
. (15)

Since we are dealing with pure states at this point, and
the square root is monotonic, we can reuse the results of
Ref. [31] and get

τ̃ (p) = 2|ab|
√

|p2 − |s|
√

p(1 − p)3|, (16)

where we have used the definition

s = 4cdf

a2b
. (17)

The convex characteristic curve τ ∗
s (p) is the function

convex hull of τ̃ (p), i.e., the largest convex function which
is nowhere larger than τ̃ (p). As shown in Ref. [38], the con-
vex characteristic curve is always a lower limit to τ(p). Us-
ing the results in [31], we find that τ̃ (p) has zeros at p = 0
and at p = p0 with

p0 = |s| 2
3

1 + |s| 2
3

. (18)

It is easy to check that for p > p0, τ̃ (p) is concave (note
that this is different from the three-tangle itself where τ̃3(p)

is convex right above p0 for s < 2
√

2). Therefore, in this
region, the convex characteristic curve is a straight line. We
thus get

τ ∗(p) =
{

0 for 0 ≤ p ≤ p0,

2|ab|(p − (1 − p)|s| 2
3
)

for p0 ≤ p ≤ 1.
(19)
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In the current case, the convex characteristic curve actu-
ally gives the correct value of τ(p). This can be seen from
the symmetry of the problem: Applying the local unitary
transformation

U3 = exp

[
iπ

3
σ (1)

z

]

exp

[
iπ

3
σ (2)

z

]

exp

[
iπ

3
σ (3)

z

]

(20)

changes neither the GHZ nor the W state (and thus also
not their mixtures) and, of course, nor the three-tangle. But
it changes the relative phase between the GHZ and the W

state in the superpositions of (15), thus rotating the Bloch
sphere spanned by these superpositions by 2π/3. Thus each
state gives rise under this symmetry U3 to three locally SU
equivalent states whose equal mixture gives exactly ρ(p)

(see (13)). This is especially true for the minimum τ state
defining the characteristic curve. Thus, due to the symme-
try, the characteristic curve gives an upper limit to τ .

Since the convex characteristic curve always provides a
lower limit, wherever both agree, the unconvexified curve
gives the correct tangle, and therefore in those points the
above decomposition is an optimal one.

While the above argument applies only to the points
p = 0, p = p0, and p = 1, it is obvious that for the linear
sections of the convex characteristic curves, the value τ ∗(p)

can be achieved by appropriately combining the optimal de-
compositions of the corresponding end points, which proves
that indeed τ(ρ(p)) = τ ∗(p).

After deriving the solution of the problem, we now show
that different states (13) are SLOCC equivalent and, hence,
that the solutions τ for different values of a, . . . , f can be
obtained from each other via the rescaling method. To this
end, we apply a diagonal invertible local operation of deter-
minant one,

A =
(

α 0
0 1/α

)

⊗
(

β 0
0 1/β

)

⊗
(

γ 0
0 1/γ

)

, (21)

which transforms |gGHZ〉 to N1|GHZ〉 and |gW 〉 to N2|W 〉.
An easy calculation shows that this is achieved for

α =
(

bc2

adf

) 1
6

, β =
(

bd2

acf

) 1
6

, γ =
(

bf 2

acd

) 1
6

. (22)

This transforms |gGHZ〉 into
√

2ab|GHZ〉 and |gW 〉 into√
3(

√
b
a
cdf )

1
3 |W 〉 =

√
3
8 ·√2ab · (2s)

1
3 |W 〉 and therefore ρ

into

AρA† = 2|ab|
(

p|GHZ〉〈GHZ| + 3(1 − p)

8
|2s| 2

3 |W 〉〈W |
)

.

(23)

Since the trace of this operator is

T ≡ tr(AρA†) = 2|ab|
(

p + 3(1 − p)

8
|2s|2/3

)

, (24)

Fig. 1 Illustration of the rescaling method for the square root of the
three-tangle τ of mixtures of standard (left) and generalized (right)
GHZ and W states. The two orthogonal eigenstates (g)GHZ and (g)W
are located at the north and south poles of the Bloch spheres, respec-
tively, and the mixing parameters p′, p vary along the lines connect-
ing the two poles. The symmetric GHZ/W problem (left) can be trans-
formed into the generalized GHZ/W problem (right) and vice versa
by an invertible local operation. The corners of the tetrahedra show
the pure states of the optimal decomposition of the states inside those
tetrahedra. In the lower (blue) tetrahedron, τ = 0, while in the upper
(green) tetrahedron, it grows linearly with p′ (p). If the convex-roof
extension is known for one of the problems, it can be calculated for the
other by virtue of the rescaling method

we have to divide ρ′ by this expression and find

ρ′ = AρA†

T
= p′|GHZ〉〈GHZ| + (1 − p′)|W 〉〈W | (25)

with

p′ = p

p + 3(1−p)
8 |2s|2/3

(26)

or, solving for p,

p = 3p′|2s|2/3

3p′|2s|2/3 + 8(1 − p′)
. (27)

Note that this is an increasing function of p′.
Now we can apply the rescaling method described in the

previous section to this problem. By using (4) we obtain

τ(ρ(p)) = T τ(ρ′(p′)), (28)

where T is taken from (24), and p′ from (26).
For the standard GHZ/W problem, that is, a = b and c =

d = f , we have s = 27/2/33/2 and 2|ab| = 1, and therefore,

τ(ρ′(p′)) =
{

0 for 0 ≤ p′ ≤ p′
0 = 27/3

3+27/3 ,

p′ − (1 − p′) 27/3

3 for p′
0 ≤ p′ ≤ 1.

(29)

By inserting all values one indeed recovers (19) with the cor-
rect value of p0, (18), see Fig. 1. This means in turn that, by
virtue of the rescaling method, the knowledge of the solu-
tion of the standard problem with symmetric GHZ and W

states in (29) is sufficient to obtain the solution of the more
general states in (13). This is achieved simply by applying
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Fig. 2 Illustration of the three-tangle τ3 of mixtures of standard GHZ
and W states and generalized GHZ and W states. As in Fig. 1, the
(g)GHZ and (g)W states are at the north and south poles of the Bloch
spheres, respectively, and the corners of the tetrahedra and triangles
give the elements of the optimal decompositions. In each red triangle,
τ3 = const. In the blue tetrahedra, τ3 = 0, and in the green tetrahedra,
τ3 depends linearly on the mixing parameter. Here, the sphere in the
center represents the standard GHZ/W case. The transformation to the
generalized problem leads to two different cases: For s < 2

√
2 (left

sphere), the structure of the symmetric case is preserved. However, for
s > 2

√
2, the two tetrahedra sit directly on top of each other. As states

equivalent under ILOs can have optimal decompositions for τ3 with
different lengths, the figure indicates that the rescaling method cannot
be applied to calculate τ3

ILOs according to (21) and appropriate rescaling following
equation (4).

Note that while we have considered only diagonal trans-
formations, the method is of course valid for general invert-
ible local operations. Those break the symmetry noted above
and therefore lead to cases which cannot be solved using the
convex characteristic curve method. For those problems, no
general method is yet known.

3.2 Using the rescaling method for degrees other than 2

As mentioned before, the rescaling method is not fully appli-
cable to entanglement measures with homogeneous degree
η 
= 2. However, by considering the three-tangle (η = 4) of
GHZ/W mixtures we will see that if the problem has cer-
tain symmetries, the rescaling method can still be useful for
calculating entanglement measures with η 
= 2.

The three-tangle of the mixtures in (13) has already been
calculated in [31] and, for the special case of mixing stan-
dard GHZ and standard W , in [30] (see also Fig. 2). For the
mixtures of standard GHZ and standard W , the three-tangle
has the form

τ3(p
′) =

⎧
⎪⎨

⎪⎩

0, 0 ≤ p′ ≤ p′
0,

p′2 − 27/2

33/2

√
p′(1 − p′)3, p′

0 ≤ p′ ≤ p′
1,

1 − (1 − p′)( 3
2 + 1

18

√
465), p′

1 ≤ p′ ≤ 1,

(30)

where p′
0 = 27/3

3+27/3 and p′
1 = 1

2 + 1
18

√
465. We now derive

the results of a simple-minded application of the rescaling
method to the three-tangle which is based on the naive gen-
eralization of (2) (below (4)) with η = 4. That is, we cal-
culate p′ from p using (26), apply the function above, and

then multiply with T 2 from (24). It will turn out that this
procedure indeed leads to incorrect results in general. This is
also suggested by Fig. 2: Optimal decompositions of states
which can be transformed into one another by means of op-
erations (21) can have different lengths. Hence, the ILOs
in general do not map optimal decompositions onto opti-
mal decompositions, and one would therefore not expect
that the three-tangle of a mixed state can be traced back
to the (known) three-tangle of an SLOCC-equivalent state
via the rescaling method. However, we will also see that in
some cases the correct three-tangle of mixtures of general-
ized GHZ and W states can be obtained from (30) by means
of this method due to the particular symmetries of this prob-
lem.

To identify the range of p where the three-tangle van-
ishes, we insert p′

0 into (27) and get (18) in agreement
with Ref. [31]. Indeed this was to be expected, because the
method allows us to reliably distinguish between zero and
nonzero values of the polynomial even for homogeneity de-
grees other than 2.

Next, we calculate the tangle for p0 ≤ p ≤ p1 using the
method above, where p1 is the p value beyond that τ3(ρ(p))

increases linearly [31]. From

τ3(ρ(p)) = T 2τ3(ρ
′(p′)) (31)

we get

τ3(p) = 4|ab|2(p2 − |s|
√

p(1 − p)3
)
, (32)

which again agrees exactly with the result in Ref. [31]. This
comes somewhat as a surprise, because the method should
not be applicable here. However, it is easily explained by
considering the symmetry of the problem.

Let us consider the special case that both {pi,πi} and
{pi,AπiA

†/T } are optimal decompositions of ρ and ρ′ in
normalized pure states. This implies tr(AπiA

†) = T for all
i. One easily sees from (10) and (11) that, under these condi-
tions, τ(ρ) = T η/2τ(ρ′) if τ is an arbitrary homogeneous in-
variant, or, in the case of the three-tangle, τ3(ρ) = T 2τ3(ρ

′).
The specific mixed states and ILOs of our example satisfy
these conditions for p0 ≤ p ≤ p1, as we now explain.

In this region characteristic curve and convex character-
istic curve agree with each other. As described above, this
is because there is an optimal decomposition which consists
purely of states related by the local symmetry (20) which
rotates the Bloch sphere by 2π/3.

Arbitrary rotations of the Bloch sphere about the GHZ/W
axis cannot be achieved by local operations; however, they
can be realized by nonlocal diagonal unitary transforma-
tions, e.g., U(ϕ) = diag(1, eiϕ, eiϕ, e−iϕ , eiϕ, e−iϕ, e−iϕ,1).
Note that the local operations (20) are a subset of these.
Now the ILOs (21) are also diagonal and therefore com-
mute with those transformations. This means especially that
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if two vectors are equivalent under this symmetry U(ϕ), the
transformed vectors are also equivalent under this symmetry,
which means that horizontal planes in the Bloch sphere are
just moved vertically by the transformation. Moreover, it is
easy to verify that if two pure states can be transformed into
each other by U(ϕ), i.e., share the same latitude, their norms
are also multiplied by the same factor. This implies that for
those states, the transformed state has minimal three-tangle
iff the original state had minimal three-tangle. Of course, all
convex combinations of those states are also multiplied with
the same factor. Especially, the characteristic curve of the
original problem is mapped onto the characteristic curve of
the transformed problem.

However, to get the correct three-tangle, one needs the
convex characteristic curve, which does not agree with the
characteristic curve above p1. Now we cannot expect that
the transform of the latter gives the same result as the con-
vexification of the transformed curve and that optimal de-
compositions are mapped to optimal decompositions in gen-
eral. Indeed, trying a straightforward calculation of p1 us-
ing (27), we obtain

p
(27)
1 = 24|2s| 2

3

91 − 3
√

465 + 24|2s| 2
3

, (33)

which not only does not agree with the correct p1 from [31],
but even has a wrong behavior. While the correct p1 de-
creases from 1 to 1/2 on increasing s (actually, only until
it hits p0), p

(27)
1 instead increases from 0 to 1.

As the unconvexified characteristic curve is mapped onto
the unconvexified characteristic curve of the transformed
problem, the correct three-tangle can be obtained by using
the former to calculate the convex characteristic curve di-
rectly. However, we emphasize again that this is only due
to the high symmetry of the problem and the fact that the
symmetry operations commute with the diagonal ILOs.

As in the case of degree 2 (Sect. 3.1), one might consider
to further extend the range of solutions derived from the
standard GHZ/W case by applying arbitrary (i.e., not only
diagonal ones) local SL transformations. However, general
transformations modify the unitary symmetry of the prob-
lem into one which is nonunitary, AU(ϕ)A−1. Such a trans-
formation in general does not map the characteristic curve
(and the optimal decompositions) of the standard GHZ/W
mixtures onto the characteristic curve (and the optimal de-
compositions) of the transformed mixed states. Therefore,
in general the rescaling method is not useful for finding
new solutions for the convex roofs of entanglement mea-
sures with homogeneity degree η 
= 2. However, note that
the zero polytope of the original problem will be mapped
exactly onto the zero polytope of the transformed problem,
irrespective of η (see Sect. 2).

3.3 Using the rescaling method for mixed states of rank
greater than 2

If the degree of homogeneity of the polynomial invariant is
2, the rescaling method is fully applicable. We show now by
discussing further examples that it can be also successfully
employed for calculating the entanglement of mixed states
with rank > 2. Consider, for instance, rank-3 mixtures of
|GHZ〉, |W 〉 and |W̄ 〉 = (|011〉 + |101〉 + |110〉)/√3. The
three-tangle for such mixtures has been found by Jung et
al. [32]. We illustrate the application of the rescaling method
for states of rank > 2 by briefly sketching how the square
root of the three-tangle can be obtained for those states and
all SLOCC equivalent states. Adopting the parameterization
from Ref. [32], we have

ρ(p,q) = p|GHZ〉〈GHZ|+q|W 〉〈W |+(1−p−q)
∣
∣W̄

〉〈
W̄

∣
∣.

(34)

The analog of the characteristic curve is now the two-
dimensional “characteristic surface”

τ̃ (p, q) = min
φ1,φ2

τ
[√

p|GHZ〉 − √
qeiφ1 |W 〉

− √
1 − p − qeiφ2

∣
∣W̄

〉]
, (35)

where τ = √
τ3. We have again adopted the parameteriza-

tion of the states used in [32]. As before, the problem has
the symmetry (20), and an equal mixture of a set of states
equivalent to a given state under this symmetry states gives
ρ(p,q). It is easy to see that τ takes its minimal value for
φ1 = φ2 = 0, which results in

τ̃ (p, q) =
√∣

∣
∣
∣p

2 − 4p
√

qr − 4

3
qr − 8

√
6

9

(√

pq3 +
√

pr3
)∣
∣
∣
∣,

(36)

where we have defined r = 1 − p − q . The decompositions
of ρ(p,q) leading to those values (note that in general they
do not represent the optimal decompositions because the
surface is not convex) are the ones given in (11) of [32].

When plotting this function (see Fig. 3), one easily sees
that there is a curved line of zeros. All states between that
line and the connecting line between |W 〉 and |W̄ 〉 are W -
type states with τ = τ3 = 0. One also sees in the graph in
Fig. 3 that beyond this line of zeros, one can convexify the
surface by just connecting the points of the zero line with
the GHZ state using straight lines. Calculating the exact val-
ues lies beyond the scope of the present paper as our aim
merely is to illustrate the potential of the application of the
rescaling method. We note, however, that several points on
the line of zeros are given in Table I of Ref. [32]. Once the
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Fig. 3 Characteristic surface τ̃ (p, q) (see (36)) for mixtures of stan-
dard GHZ, standard W and flipped W state. As described in the text,
due to the symmetry of the problem, the convex hull of this function
gives the correct value of τ(ρ). The zeros of τ are found for the W

state (p = 0, q = 1), the flipped W state (p = 0, q = 0), and for a con-
tinuous curve starting at p = q = p′

0 (see (27)) and ending at p = p′
0,

q = 0, where the characteristic surface has a kink. The convex hull of
this function is zero between the line connecting W /flipped W and the
curved line of zeros described before. From the graph it is also easy to
see that between that curve and the GHZ state, the convex hull consists
of the straight line segments which connect the individual points of the
curve with the point corresponding to the GHZ state

solution for the convex roof of τ = √
τ3 is obtained, it is

straightforward to apply the criterion (4). This allows us to
calculate the square root of the three-tangle for a larger set
of states.

We conclude this section by noting that also in the case
of these rank-3 mixtures even the three-tangle τ3 (degree 4)
could be extended by a modified application of rescaling.
This is (in complete analogy with the previous section) be-
cause the states in (35) whose τ3 is minimized for the char-
acteristic surface are equivalent under a diagonal (nonlocal)
unitary symmetry. Therefore, by considering only diagonal
ILOs, the characteristic surface of the three-tangle (without
square root) is again mapped to the characteristic surface of
the transformed problem. Thus, in analogy to the preceding
section, we can calculate the three-tangle “after ILOs” also
for this case from the three-tangle of the original problem,
by convexifying the transformed surface.

Finally, we remark that there are cases of even higher
rank where the entanglement of classes of SLOCC-equi-
valent states can be obtained via the rescaling method. The
three-tangle of certain mixtures of three-qubit GHZ states
of high rank has been calculated by Shu-Juan et al. [33].
It should be straightforward to carry out also those calcula-
tions for the square root of the three-tangle. Then the rescal-
ing method can be used to extend the scope of those results.
Since Shu-Juan et al. used the convex characteristic curve
method, it should also be possible to calculate, for a suit-
able restriction of the local transformations, the characteris-
tic surface of the transformed problem for the three-tangle.
Its convexification should yield the three-tangle of the trans-
formed problem.

4 Conclusion

We have developed a rescaling method to calculate poly-
nomial-based entanglement monotones of homogeneous de-
gree 2 (in the coefficients of a pure quantum state) in mixed
states. The method is based on transforming the mixed state
under consideration into one of an already solved problem
by using invertible local operations. We have further demon-
strated that rescaling is not generally applicable to functions
of homogeneous degrees other than 2. Therefore, from the
point of view of the convex-roof construction, there is a
clear preference for entanglement monotones of homoge-
neous degree 2 (and correspondingly, of homogeneous de-
gree 1 in the coefficients of the density matrix). This is very
much in line with some conclusions by Verstraete et al. [18].

The application of the rescaling method has been illus-
trated by means of several examples. We have found that the
presence of a certain symmetry in some cases even allows us
to calculate the convex roof of entanglement measures with
homogeneous degrees other than two. Moreover, the ques-
tion whether the monotone is zero or nonzero, which is im-
portant for SLOCC classification, can be reliably answered
with this method independent of the homogeneous degree.
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