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The number of entanglement classes in stochastic local operations and classical communication (SLOCC)
classifications increases with the number of qubits and is already infinite for four qubits. Criteria for explicitly
discriminating and classifying pure states of four and more qubits are highly desirable and therefore at the focus
of intense theoretical research. We develop a general criterion for the discrimination of pure N -partite entangled
states in terms of polynomial SL(d,C)⊗N invariants. By means of this criterion, existing SLOCC classifications of
four-qubit entanglement are reproduced. Based on this we propose a polynomial classification scheme in which
entanglement types are identified through “tangle patterns.” This scheme provides a practicable way to classify
states of arbitrary multipartite systems. Moreover, the use of polynomials induces a corresponding quantification
of the different types of entanglement.
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I. INTRODUCTION

In essence, entanglement comprises the nonlocal correla-
tions in a multiparty system, i.e., the ones which cannot be
enhanced on average by applying stochastic local operations
and classical communication (SLOCC) to the quantum state.
Properties of the state that remain unchanged under SLOCC
may serve to characterize the entanglement type and, thus, to
build an SLOCC classification for the states of a multipartite
quantum system, e.g., Refs. [1–14].

On the other hand, there are well-known polynomial
functions of the coefficients of pure quantum states which
play an important role as entanglement measures [1,5,15–21].
Such measures have to be homogeneous and invariant under
local special linear transformations [1,16]. For pure two-qubit
and three-qubit states, concurrence [17] and three-tangle [18]
are the unique polynomials of this kind [22].

Presumably the most interesting consequence deriving from
the properties of invariant polynomials in the cases of two and
three qubits is that they impose an SLOCC classification of
entangled states [1]. There is only one type of entanglement
for two qubits and the concurrence is nonvanishing exactly
for the entangled states. In multipartite system, different types
of entanglement may occur. For example, pure three-qubit
entangled states may belong to the class of GHZ-type states or
to the class of W -type states, where the three-tangle is nonzero
exactly for the Greenberger-Horne-Zeilinger (GHZ) class [1].
That is, concurrence and three-tangle quantify class-specific
entanglement.

For four and more qubits the number of SLOCC classes
is infinite [1]. Therefore, the general idea of any SLOCC
classification is to arrange the representatives of the infinitely
many classes into a finite number of sets according to some
SLOCC-invariant criterion, such as the Schmidt measure
[1,23], the degeneracy configuration [11], or the structure

of the right singular subspace of the state coefficient matrix
[8]. Obviously, all classifications comprise exactly the same
classes—merely the arrangement into sets (which, henceforth,
we call families) is different. The families are defined by
the representative states they contain, thus providing a coarse
graining to the SLOCC classes. At least one family comprises
an infinite number of them.

In the existing classifications of pure four-qubit states it
is not easy to determine to which class or family a given
arbitrary state belongs, nor are they readily generalized to more
complicated Hilbert spaces. Whether there exists a general
relation between polynomial invariants and SLOCC classifi-
cation analogous to the cases of two and three qubits is also
still unknown. The only efforts touching upon this question
were made in Refs. [9,10,13], however without a compelling
answer. The aim of this paper is to fill these gaps and to bring
qualitative and quantitative aspects of entanglement theory in
line. To begin, we introduce a strong sufficient criterion for
distinguishing SLOCC classes of arbitrary multipartite states
based on polynomial invariants. We illustrate its application
by extending earlier findings by Li et al. [13]. Subsequently,
we show that certain sets of four-qubit polynomial invariants
generate families of states which match the classifications of
symmetric and of general four-qubit states due to Bastin et al.
[11] and Lamata et al. [8], respectively. As our main result,
we then propose a polynomial-based SLOCC classification
which we exemplify explicitly for four qubits, but whose
generalization to other multipartite systems is straightforward.

II. POLYNOMIAL DISCRIMINATION CRITERION FOR
PURE MULTIPARTITE STATES

Two pure quantum states ψ (N) and ψ̃ (N) of an N -partite
Hilbert space H(N) = H1 ⊗ · · · ⊗ HN are interconvertible
with a nonzero chance by means of SLOCC if and only if
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there exist invertible operators J1, . . . ,JN with Jk ∈ GL(dk,C)
acting on the local Hilbert spaces Hk (of dimension dk) such
that [1]

|ψ̃ (N)〉 = J1 ⊗ · · · ⊗ JN |ψ (N)〉. (1)

Throughout this paper we consider unnormalized vectors ψ (N).
By means of Eq. (1) SLOCC interconvertibility imposes an
equivalence relation on the set of all vectors of H(N). The
SLOCC equivalence classes (also called orbits) are sets of
(SLOCC-interconvertible, i.e., SLOCC-equivalent) states with
equivalent multipartite entanglement in the sense that, under
SLOCC, the same tasks can be performed with them.

Suppose P[i] and P ′
[j ] are homogeneous functions of

degrees i and j of the states in a Hilbert space H(N) that
are invariant under SL(dk,C)⊗N transformations, where dk =
dim {Hk}. Then, for integers m,n with im = jn, and a fixed
state ψ (N), a complex number η exists such that

[P[i](ψ
(N))]m = η [P ′

[j ](ψ
(N))]n. (2)

Here η is unique and invariant under SLOCC transformations
on ψ (N) as long as P ′

[j ] is different from zero. That is, for
ψ̃ (N) = J1 ⊗ · · · ⊗ JN ψ (N) we have also [P[i](ψ̃ (N))]m =
η [P ′

[j ](ψ̃
(N))]n. The ratio of homogeneous SL(dk,C)⊗N invari-

ants of the same degree is invariant under SLOCC. Therefore,
for two SLOCC-equivalent states the ratio of two arbitrary
invariants must be the same. The spirit of this criterion has
been applied before [13,15], however without emphasizing its
generality.

An important consequence is that from two independent
invariants (which for more than three qubits can always be
found [5,24]) one can construct an invariant that vanishes for
a given SLOCC class due to

Pm
[i] − ηP ′ n

[j ] = 0. (3)

In the following, we will focus exclusively on polynomial
invariants and the four-qubit Hilbert space, since in that case
all generators of the algebra of polynomial invariants [15,24]
are known. Following the notation of Ref. [24] we define

((A1 • · · · • AN )) = 〈ψ∗|A1ψ〉 · · · 〈ψ∗|ANψ〉, (4)

σµ • σµ =
3∑

µ=0

gµ · σµ • σµ (5)

for operators Ai that act on the Hilbert space of ψ , the Pauli
matrices (σ0,σ1,σ2,σ3) = (1l2,σx,σy,σz), and (g0,g1,g2,g3) :=
(−1,1,0,1). The • symbol denotes a tensor product that refers
to copies of the same state whereas we do not specify tensor
products between the parties: · · · σµσν · · · ≡ · · · σµ ⊗ σν · · · .
As generators for the SL(2,C)⊗4-invariant polynomials we
may choose, e.g.,

A[2] = ((σ2σ2σ2σ2)), (6a)

BI
[4] = ((σµσνσ2σ2 • σµσ νσ2σ2)), (6b)

BII
[4] = ((σµσ2σνσ2 • σµσ2σ

νσ2)), (6c)

C[6] = ((σµσνσ2σ2 • σµσ2σλσ2 • σ2σ
νσ λσ2)). (6d)

This set is complete. The generatorA[2] is the well-known four-
concurrence [19] and C[6] was introduced in Ref. [5]. We define

BIII
[4] via the sum rule [24] BI + BII + BIII = 3A2 (where

we omit the subscript indicating the homogeneous degree).
Note that the polynomials Bj are not invariant under qubit
permutation.

The knowledge of all generators allows us to exhaustively
exploit our criterion to distinguish the SLOCC classes of two
four-qubit states ψ (4) and ψ̃ (4). We introduce the abbreviations
A(ψ (4)) = α, A(ψ̃ (4)) = α̃, BI (ψ (4)) = β1, . . . ,C(ψ̃ (4)) = γ̃ .
Our criterion leads to the following equations that can be
checked in order to decide whether the states ψ (4) and ψ̃ (4)

may belong to the same SLOCC class:(
α

α̃

)2

= β1

β̃1
= β2

β̃2
,

(
α

α̃

)3

= γ

γ̃
. (7)

If, e.g., α̃ is zero, its counterpart α must be zero as well;
otherwise ψ (4) and ψ̃ (4) cannot be SLOCC equivalent. In
contrast, if all equations in (7) hold, the states are not
necessarily SLOCC interconvertible.

For example, Li et al. [13] studied states of the Gabcd family
from Ref. [3] with b = c = 0 and a, d �= 0. They concluded
that this family can be split into three subfamilies, two of
which contain only a single SLOCC class. Whether this is also
the case for the third subfamily (A1.3) in Ref. [13] remained
an open question. We can easily negate it by means of our
criterion as formulated in equations (7). The representative of
Gabcd for b = c = 0 is

|ψabcd〉 = (a + d)

2
(|0000〉 + |1111〉)

+ (a − d)

2
(|0011〉 + |1100〉)

and the generators in Eq. (6) yield

α = a2 + d2, β1 = 3a4 − 2a2d2 + 3d4,
(8)

β2 = 4a2d2, γ = −4a2d2(a2 + d2).

One sees that Eqs. (7) can be violated (e.g., a = d = ã =
1, d̃ = √

2). Consequently, subfamily A1.3 contains more than
one SLOCC class.

III. POLYNOMIAL CLASSIFICATION OF SYMMETRIC
FOUR-QUBIT STATES

Now we turn to a classification of symmetric four-qubit
states ψ

(4)
S which was presented by Bastin et al. [11]. Five so-

called degeneracy configurations D{ni } define the five families
of the SLOCC classification (see Table I).

The families D4 and D3,1 contain separable and W states,
respectively. All polynomial invariants vanish on those states,
in analogy to the three-qubit case. For the representatives of
the one-class families D2,2 and D2,1,1 all polynomials have
identical values. That is, they cannot be distinguished by
invariant polynomials alone although they are not SLOCC
interconvertible. For the states in these families the invariant C
depends onA. According to Eq. (3) we can define a polynomial
that vanishes for these families:

D = C + 5
9 A3. (9)

The family D1,1,1,1 contains a continuous parameter and thus
infinitely many classes. It can be seen from Table I that
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TABLE I. Comparison of the polynomial characterization and the
SLOCC classification of symmetric four-qubit states [11]. Note that
for symmetric states the sum rule for the generators implies Bj = A2.
The representatives are given in the basis of the symmetric four-qubit
Dicke states D

(k)
4 with k |1〉 components. For the continuous parameter

in the X family we have µ2 �= 2/3 and a(µ) = 2 + µ2, c(µ) = −8 +
4µ2 − (102µ4 + 5µ6)/9, and d(µ) = −8/9(2 − 3µ2)2.

D{ni } Representative A C D Type

D4 D
(0)
4 0 0 0 separable

D3,1 D
(1)
4 0 0 0 W

D2,2 D
(2)
4 1 −5/9 0 D

(2)
4

D2,1,1 D
(0)
4 + D

(2)
4 1 −5/9 0 D

(2)
4

D1,1,1,1 |0000〉 + |1111〉 + µD
(2)
4 a(µ) c(µ) d(µ) X

D(ψ (4)
S ) �= 0 if and only if ψ

(4)
S ∈ D1,1,1,1. We term this X

type of entanglement after the X state [5,25]

|X4〉 = |0001〉 + |0010〉 + |0100〉 + |1000〉 +
√

2|1111〉.
(10)

Consequently, for symmetric four-qubit states there is a
hierarchy of SLOCC families which can be labeled by a “pat-
tern” [A(ψ (4)

S ),D(ψ (4)
S )] that is obtained from two polynomial

invariants. It is tempting to call these invariants “tangles.”
There are three levels in the hierarchy: [A = 0,D = 0], [A �=
0,D = 0], and [A,D �= 0]. We conclude the discussion of
four-qubit symmetric states by noting that a hierarchy as in
Table I is essential also for a classification of the corresponding
mixed states. An example for symmetric N -qubit states (based
on a different criterion) was given recently in Ref. [26].

IV. POLYNOMIALS AND GENERAL FOUR-QUBIT STATES

These results raise the question whether the polynomial
classification scheme can be extended beyond symmetric

TABLE III. The four-qubit SLOCC families defined via the
tangle patterns of the invariants in Eq. (11). The invariant of highest
nonvanishing degree determines the family to which a state belongs.
We have named its entanglement type after a well-known state in the
family.

Type A L M N X

W 0 0 0 0 0
GHZ A �= 0 0 0 0 0
cluster A L �= 0 or M �= 0 −L − M 0
X A L M −L − M X �= 0

states. Therefore, we inspect the SLOCC families in the classi-
fication due to Lamata et al. [8] (LLSS). In Table II we have
listed all eleven representatives and corresponding tangle pat-
terns for the eight LLSS families. Intriguingly, just as in the
symmetric case, states from the same LLSS family show the
same functional dependence between the polynomials, even
for families containing infinitely many SLOCC classes. Those
functional dependencies suggest a new grouping of the states
according to the tangle pattern using the invariants [15]

L = 1
48 (BII − BIII ), M = 1

48 (BIII − BI ),

N = 1
48 (BI − BII ), (11)

X = (C + A3)2 − 128A2(L2 + M2 + N 2),

which remove the redundant functional dependencies. With
these invariants we define a hierarchical ordering into four
families according to the tangle pattern displayed in Table III.
The choice of polymials (here A,L,M,N ,X ) determines the
classification one obtains. Each state ψ (4) is characterized by
the numbers [A(ψ (4)),L(ψ (4)),M(ψ (4)),X (ψ (4))] where the
nonvanishing polynomial of highest degree yields the family
of the state. This is our central result.

TABLE II. Tangle patterns for the representatives of the SLOCC classification of Lamata et al. (cf. Table I in Ref. [8]). Here, |ϕ〉, . . ., are
single-qubit vectors with components (ϕ0,ϕ1), . . . . The vectors |ϕ〉 and |ϕ̄〉, . . . , are linearly independent. Note that the representative in line 8
coincides with a cluster state for λ1 = 1, λ2 = −1. The X state is an element of the family in the last line. For brevity, the explicit expressions
for A6,A7,B

I
4 ,BII

4 , . . . ,BIII
7 ,C7 are omitted. Remarkably, we obtain precise functional dependencies between the polynomials for many of the

LLSS families.

LLSS family Representative A BI BII BIII C

W000,0k
 (b) |0000〉 + |1101〉 + |1110〉 0 0 0 0 0
W000,W |0001〉 + |0010〉 + |0100〉 + |1000〉 0 0 0 0 0

W000,000 |0000〉 + |1111〉 2 4 4 4 −8
W000,0k
 (a) |0000〉 + |1100〉 + |1111〉 2 4 4 4 −8
W000,GHZ |0ϕφψ〉 + |1000〉 + |1111〉 2(ϕ0φ0ψ0 − ϕ1φ1ψ1) ≡ A1 A2

1 A2
1 A2

1 −A3
1

W0k
,0j 
 (a) |0φ00〉 + |0φ1ψ〉 + |1000〉 + |1101〉 −2(φ0ψ0 + φ1ψ1) ≡ A2 A2
2 A2

2 A2
2 −A3

2

W0k
,0j 
 (b) |0φ0ψ〉 + |0φ10〉 + |1000〉 + |1101〉 −2φ0 ≡ A3 A2
3 A2

3 A2
3 −A3

3

W0k
,0k
 (a) |0000〉 + |1100〉 + λ1|0011〉 + λ2|1111〉 2(λ1 + λ2) ≡ A4 BI
4 BII

4 �= BI
4 BII

4 −A4B
II
4

W0k
,0k
 (b) |0000〉 + |1100〉 + λ1(|0001〉 + |0010〉)
+λ2(|1101〉 + |1110〉) −4λ1λ2 ≡ A5 3A2

5 0 0 0
W0k
,GHZ |0ϕ〉 ⊗ (|φψ〉 + |φ̄ψ̄〉) + |1000〉 + |1111〉 A6 BI

6 BII
6 �= BI

6 BII
6 −A6B

II
6

WGHZ,W |0001〉 + |0010〉 + |0100〉 + |1ϕφψ〉 + |1ϕ̄φ̄ψ̄〉 A7 BI
7 BII

7 BIII
7 C7
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Notice the apparent analogy between this hierarchy and
the one for the symmetric states using the invariants A and
D, although the corresponding families certainly differ. This
illustrates how the choice of the polynomials affects the
grouping into families.

V. DISCUSSION

The analysis of the tangle patterns for two different SLOCC
classifications has led us to a new SLOCC classification of
four-qubit states based on polynomial invariants. It represents
an independent classification method in its own right with
several evident advantages.

(i) In contrast to all known SLOCC classifications it is
straightforward to decide to which family a given arbitrary
state belongs.

(ii) The tangle patterns characterize types of entanglement.
Most strikingly, they provide not just a qualitative but even a
quantitative description. According to Ref. [16], the modulus
of any degree-2 invariant is an entanglement monotone [27,28].
That is, by choosing the absolute value of the appropri-
ate power for each polynomial, the tangles of the pattern

characterize quantitatively the types of multipartite entangle-
ment contained in a given state.

(iii) Note that any (even incomplete) set of polynomials
[5,24] generates a corresponding classification. Our scheme
displays a flexibility toward distinguishing certain desired
properties: By comparing the classifications considered above
one sees that an appropriate choice of polynomials can em-
phasize certain properties of the states in the families. It is par-
ticularly interesting that the polynomials of lowest degrees 2
and 4 separate peculiar states like GHZ and cluster states.

(iv) All these considerations can be extended to arbitrary
multipartite systems with finite local dimensions.
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