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Abstract

We study transport in interacting one-dimensional systems with a scattering
object. In particular we are interested in inelastic scattering processes. Very
recent theoretical [3] and experimental [54] research points toward a strong
influence of incoherent scattering on the low-temperature transport features of
one-dimensional systems with extended scatterers.

Furthermore, if inelastic processes are strong a straightforward application
of the renormalization group (RG) approach is not possible. In the field of
transport in one-dimensional weakly interacting electron systems, this procedure
is the state-of-the art method to extend results for weak interaction to the low
temperature regime [18,27,43, 47, 52,57, 62, 67,74]. The underlying assumption,
namely that the first-order correction in interaction incorporates all effects of
the interaction and reproduces itself in higher orders, is widely accepted as a
valid “educated guess” disregarding the fact that inelastic processes, if present,
arise in subleading orders.

Indeed, for the simple case of a single impurity in an infinite wire it is common
believe that the approach is valid [6,74]. Having this in mind, systems with a
great variety of additional degrees of freedom were treated in the same fashion:
Junctions of wires [43] and more complex geometries [18], anti-resonant [47]
and resonant [57, 62] scatterers, just to name a few. A careful examination of
the interplay between the renormalization and possible inelastic processes or
dephasing in these cases is missing.

Our strategy is to calculate the second order in interaction for the single
impurity situation, thereby establishing a framework with a real-space diagram-
matic technique, and to apply this tool to more complex situations, i.e., a finite
interacting region and an additional impurity. The diagrammatic technique
enables us to identify specific diagrams where the particle number at a given
energy is not conserved or the interaction can lead to dephasing in the system.

In particular, by modelling the compound scatterer by an energy dependent
S-matrix of the Breit-Wigner type, we are able to find a fingerprint of weak
dephasing which carries some features of its counterpart in disordered Luttinger
liquids [32].
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Chapter 1

Introduction

One-dimensional systems were originally recognized by chemists who noticed
a strongly anisotropic behavior of many organic crystals [67]. The ratio of
parallel to perpendicular conductivities in this structures reaches up to 103. This
behavior can be understood partly by rather basic considerations: The building
blocks of these crystals are shaped cone-like, thus forming chains in one direction
perpendicular to the plane of molecules. Weakly coupled neighboring molecules
overlap their outer electron wave functions and allow the electrons to move easily
along the chain. Hopping from one chain to another is mainly suppressed due to
larger distances.

In physics, the examination of the outstanding features of 1d systems started
(on a noticeable scale) in the 80s [67]. It soon became apparent that the
magnitudes of some effects, present but negligible in two and more dimensions,
disagrees drastically with the picture of the well-known Fermi liquid in one
dimension.

In these days, insights on these systems were gained by investigating two
classes of quasi-1d materials: mixed-valence complexes and charge-transfer
compounds. The former contain an-isotropically oriented orbitals which allow
electron proliferation in one dimension.

A famous example is KCP (K2Pt(CN)4Br0.3 · 3H2O) which is studied in-
tensely for almost half a century [58,75]. The d orbitals of Pt in this complex are
responsible for a very large ratio of along-chain conductivity to perpendicular
directions.

In organic charge-transfer compounds two different kinds of molecules, donors
and acceptors, are separated into spatially disjoint chains. Once charge is
transferred along such a chain, other ways of electron transport are effectively
suppressed. Because there is a large number of molecules which can be donors,
there are many interesting compounds with largely different behavior.

Still in the 80s the first truly one-dimensional “wires” were fabricated by gated
2D electron gases in GaAs inversion layers [53]. The properties of the 2DEG,
especially the carrier concentration, could be controlled and it was possible to
confine the conducting electrons to one transverse channel.

In 1991, Sumio Iijima first created multi-walled carbon nanotubes in the
insoluble material of arc-burned graphite rods and soon it was predicted that
a single-walled tube would exhibit outstanding conducting features [8]. The
growing interest in the community led to independent discoveries by Bethune at
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IBM [9] and Iijima at NEC [34] of single-walled carbon nanotubes and methods to
specifically produce them. Besides the exploitation of semi- and super-conducting
features of some types of nanotubes they soon got utilized to study 1d transport
features [12].

The outstanding feature observed throughout all those measurements was
the power-law temperature and bias-voltage dependence of the current [10,11].
This remarkable result led to intense theoretical investigation of one-dimensional
quantum wires in parallel to the experiments.

On the theoretical side it became apparent in the 60s that a theory describing
density waves as the basic boson excitations of the system was able to predict
the observed behavior [51].

Figure 1.0.1: TEM micrography of a
bare section of a single-walled nanotube
[9]. The round objects adhering to the
tube have diameters corresponding to
fullerenes with 60-100 carbons.

The most popular model of one
dimensional systems, the Tomonaga-
Luttinger model, could be rewritten
in terms of free boson excitations by
means of exact operator identities.
Among the pioneers in this field, Mat-
tis and Lieb [51], Haldane [33] and
Kane and Fisher [37] stand out: The
former derived carefully the opera-
tor identities, the latter explored the
physics in the presence of both very
weak and strong structure-less or res-
onant scatterers.

Albeit thoroughly elegant and suc-
cessful, the bosonized field-theoretical
approach has its share of complica-
tions when translational symmetry is
broken by a barrier or an impurity
which can not be considered as a small
perturbation to a transparent or a split
wire. This was the motivation to at-
tack the problem with a renormalization group procedure extending perturbation
theory for weak interactions to the low-temperature regime; an approach pio-
neered by Matveev, Yue and Glazman in the 90s [74].

These two theoretical approaches are of fundamental importance for the
theory of one-dimensional transport. In the last decade, a great variety of
subjects have been investigated in one dimensional wires, e.g., disorder [32],
complex geometries [18, 43], the Coulomb blockade [56], phonons [26, 27] or
localization [30], just to name a few.

In the following sections, we will introduce basic theoretical concepts and
present some of the recent applications in this active field of research.

1.1 The Luttinger liquid

1.1.1 Landau’s Fermi liquid theory and peculiarities in 1D
In solids, the Coulomb interaction is of the same order of magnitude than the
kinetic energy. Thus it is not, at least not on a quantitative level, possible to apply
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perturbative methods. Yet remarkably, Fermi liquids seem to be very robust
against perturbations. The non-interacting model of the Fermi gas reproduces
many qualitative features of interacting electrons in metals, such as a well-defined
Fermi surface, a linear specific heat capacity, and a temperature-independent
paramagnetic susceptibility [17].

In the 50s, Lev Landau related the robustness of the Fermi liquid to the Pauli
exclusion principle and the idea of adiabaticity [44]. He realized that a moving
fermion can not decay by emitting arbitrary numbers of low-energy particle-hole
pairs if it is close to the Fermi level because the phase space for creating particles
in narrowed as a direct consequence of the Pauli principle. This leads to the
inverse-proportional relation between lifetime and energy of the excitation above
the Fermi sea,

τ−1(ε) ∝ (ε2 + π2T 2),

where the particle energy ε is measured from the Fermi level. These long-lived
excitations were labeled quasi-particles by Landau, and the collective physics of
quasi-particles is therefore named “Landau Fermi liquid theory”(FL) [66].

Basic elements and results

Landau’s theory is based on the idea of a continuous and one-to-one correspon-
dence between the eigenstates (ground state and excited states) of the free and
the interacting system. To check its applicability it is thus essential that the
interactions do not lead to a change in the low-energy physics governing long
distance correlations, in other words, no phase transition or instability is allowed
to occur.

Let us consider a basic excitation of the non-interacting system: We add
a particle or a hole with |k| ≷ kF to the ground state. After switching on the
interaction, the total momentum will still be conserved but the interaction of the
particle with the Fermi sea electrons will change their momentum distribution.
The excitation and the interaction-induced response of the background form
what is called a Landau quasi-particle. Momentum conservation requires that
the quasi-particle still has total momentum k. Furthermore, the continuity
hypothesis formulated above demands that |k| ≷ kF and in particular that kF
remains unchanged.

Assuming that the chemical potential is included in the Hamiltonian, the
energy of the quasi-particle vanishes on the Fermi surface and can be expanded
to first order in the difference |k − kF| in its vicinity,

ε0k = kF~
m∗

(|k − kF|),

wherein m∗ is the effective mass. We account for interactions between quasi-
particles by a change in energy of

δE =
∑
k

ε0kδn(k) + 1
2Ω
∑
kk′

f(k, k′) δn(k) δn(k′),

where δn(k) is the change in the quasi-particle occupation number and f is the
matrix element describing the interaction. From this starting point one can
derive thermodynamic properties: Especially the prediction of a linear specific
heat at low temperatures greatly supported the acceptance of FL theory. Since
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~k, ε ~k − ~q, ε− ω ~k, ε

~q, ω

Figure 1.1.1: Self-energy to first order in the interaction for a particle with
energy ε and momentum ~k.

the theory contains essentially ballistic quasi-particles, it is possible to apply
the Landauer-Büttiker formalism which provides a conceptually clear view on
transport phenomena. We will provide more details on this issue in section 1.3.

The initial hypothesis of a continuous correspondence is not true in 1d
systems. The restriction of the system to one dimension greatly enhances terms
that were present but sub-leading in higher dimensions, resulting in a non FL-like
structure. We will explain this statement in more detail below.

Applicability of the FL theory

In this section we will briefly outline very general assumptions that have to be
made in the derivation of the FL theory. See Ref. [49] for more details. We start
with the observation that the imaginary part of the self-energy in the Green’s
function is inversely proportional to the lifetime of a particle [2],

GR(p, t− t′) ∼ e(−i Re(ΣR)−Im(ΣR(p))(t−t′),

and that it is small with respect to the typical quasi-particle energy in the FL
theory,

Im(ΣR) ∝ max(ε2, T 2)� ε, T.

The 1/ε2 dependence of the lifetime is a typical feature of Landau’s theory.
Let’s try to recapitulate this result while making as few assumptions as possible.
To this end, we calculate the imaginary part of the self-energy to first order in
the interaction at T = 0, ε = ξk (see Feynman diagram in figure 1.1.1),

Im ΣR(ε) = − 2
(2π)D+1

ε∫
0

dω
∫

d~q ImGR(ε− ω,~k − ~q) ImV R(ω, ~q),

where GR is the retarded free fermion propagator and V R is a retarded boson
field which is real in the coordinate-time representation and therefore an odd
function of ω. We replace V R = ωW (ω, ~q) to reflect this choice. The energy
integration is limited by the Pauli principle. This integration can readily be
performed if the result of the ~q integration is ω-independent, namely

− Im ΣR(ε) ∼ A
ε∫

0

dω ω ∼ Aε2,

where we used

ImGR(ε− ω,~k − ~q) ∼ δ(ω − ~vk~q + q2/2m).
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~k

~q

|~q| ∼ |ω|/vF

~k

~q

|~q| � |ω|/vF

Figure 1.1.2: Small angle scattering event (left) and a process with arbitrary
angle. The energy transfer in both processes is of the order of the particle energy
ε. The momentum transfer q in the small angle process is bound to be of the
same order, while q may be large depending on the angle in the second process.

With this assumption, we restore the FL result. We can thus reformulate
the requirement for the applicability of the FL theory: Momentum and energy
integrals, i.e., transfers, have to be independent. In one dimension, this is clearly
violated: Fixing the amount of transferred energy, the momentum transfer is
specified (apart from the sign) and vice versa, what is illustrated in figure 1.1.2.
If the physical situation only allows forward-scattering1, the mapping between
energy and momentum is exact and we can no longer expect the ε2 behavior.

Isotropic scattering is thus a sufficient but not necessary condition for the
FL to exist. Consequently, if we confine the scattering of a 3D FL to small
angles, we have to expect a departure from the FL comportment. How strong is
the violation? Indeed, it can be shown that even for a contact interaction, this
modification triggers a logarithmic divergence of the self-energy,

Re ΣR ∝ ε2 log |ε|,

in the vicinity of the Fermi level [49]. The non-analytic input can be traced to a
subleading contribution to the specific heat in three dimensions,

C(T ) = γ3T + β3T
3 log T,

a result observed experimentally in He3 and metals. This effect is even more
pronounced in two dimensions. Recent works using Matsubara Green’s [16]
confirm this result. Efetov et al. [21] report a non-analytic correction

δC(T ) ∝ T

log3(εF/T )

using a supersymmetric low energy theory in one dimension.
We can thus conclude that the processes leading to a breakdown of the FL

theory in one dimension, namely small-angle scattering processes, are present
but subleading in higher dimensions when the scattering is isotropic. The physics
we describe in the following sections, summarized under the term “Luttinger
liquid”, can hence provide insights on 2+ dimensional systems if scattering is
restricted to small angles.

1This assumption is met in the presence of long-range interaction. We will discuss this issue
later in more detail.
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q

E

ε(q) ∼ q2

ε(q) ∼ q

ε(q) ∼ −q

εF

Figure 1.1.3: Dispersion relation in the Luttinger model for right-(solid) and left-
moving(dashed) particles compared to the non-linear quadratic dispersion(red).
The gray area represents the extended artificial state space of the model.

1.1.2 The Tomonaga-Luttinger model

The first prominent model for electrons in one dimension was the Tomonaga
model [69] which intended to describe “sound waves” in a interacting many-
fermion problem. The term refers to multi-fermion excitations whose many-body
wave function has boson properties. The bosonization procedure, i.e., a procedure
based on an identity between fermion and boson operators, can be carried out
for this model with the help of some approximations. They are necessary due
to the fact that in the Tomonaga model, the spectrum of particles below the
Fermi sea is not extending infinitely. Thirteen years after the Tomonaga model
was introduced, Luttinger therefore proposed a model with infinite phase space
and claimed it “exactly solvable” [48]. It soon turned out that it indeed was,
but the results in his pioneering work “fell prey to a subtle paradox inherent in
quantum field theory” [51]. A very careful derivation of the operator identities
and a discussion of all subtleties was done by Haldane [33].

Notwithstanding, Dzyaloshinskii and Larkin calculated exact propagators for
this model in a fermionic language [46] in the 70s. In their pioneering work, the
authors found a way to sum up all terms of the self-energy expansion using a
special Ward identity. For the sake of brevity, we shall not discuss the solution
in more detail, but it should be noted that both approaches are fully consistent
with each other.

Instead, we present the bosonization solution to the one-dimensional system
to pave the way for a review of results obtained by Kane and Fisher [37] in this
language for the single-impurity problem. The complete Hamiltonian in the
Tomonaga-Luttinger model consists of three parts, namely

H = H0 + V1 + V2, (1.1.1)
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wherein the components read

H0 =
L/2∫
−L/2

dx
2π :(ψ†L(x)i∂xψL(x) + ψ†R(x)i∂xψR(x)):, (1.1.2)

V1 =
L/2∫
−L/2

dx
2π g2:ρL(x)ρR(x):, V2 =

L/2∫
−L/2

dx
2π g4:(ρ2

L(x) + ρ2
R(x)):. (1.1.3)

In the potentials, ρη(x) = :ψ†η(x)ψη(x): denotes a normal-ordered pair of fermion
operators.2 The fermion fields are separated by chirality. Furthermore, we will
neglect the spin degrees of freedom and focus on spinless fermions.

V1 describes interaction between right- and left-moving density fluctuations or
particle-hole pairs. The second part V2 connects electron-hole pairs on the same
branches. The strength of the interaction is parameterized by the dimensionless
couplings g2 and g4 (compare to the descriptive figure 3.1.1). It should be
emphasized that this model neglects umklapp or backscattering processes.3
This last assumption means that the interaction potential is short-ranged on
the scale of the inverse Fermi momentum, but sufficiently long-ranged that
U(2kF)� U(0).4 We will come back to this point in section 3.1.2.

The Hilbert space of the Luttinger-Tomonaga model is extended into the
whole lower k-space (see figure 1.1.3). This modification does not change the
low-energy physics of the system. As long as all energies involved are small with
respect to εF, an excitation of the unphysical high energy states is not possible.
The point can be subtle when treating high electric fields or impurity potentials
in a Luttinger liquid, therefore we will choose εF or a smaller energy5 as the
ultraviolet cutoff. For this Hamiltonian we will present a recipe to identify the
fermion fields with boson operators in the next section.

1.1.3 A short introduction to bosonization
The term bosonization refers to the reformulation of a fermionic model in the
language of boson operators and fields. Those can be used to calculate the
correlation functions. The requirements for this recipe are met by fermions in
the vicinity of the Fermi level in one dimension as shown below.

The approach allows one to handle, to a certain extend, strong-interaction
problems. The formalism relies on a bosonization procedure, pioneered by Mattis
and Lieb [51] and first done discretely by Haldane [33]. The form of the resulting
action was proposed earlier by Efetov and Larkin [22]. Instead of introducing
the boson fields and showing their correspondence to the fermion operators
afterwards, the authors of the former works followed a so-called constructive
bosonization approach where a chain of operator identities in Fock space leads

2We recall that a product :AB: is sorted in the way that destruction operators acting on
an empty state and creation operators acting on filled states appear to the right.

3These processes are labeled g1 and g3 in the literature. We will provide more details in
section 3.1.2.

4This is not just a convenient choice. The Coulomb potential can be screened for example
by mirror charges in a nearby metallic gate [49].

5The inverse interaction length vF/d can play this role.
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to the final form of the boson fields. This procedure clarifies the role of the
Klein-factors Fη in the relation of the fermion and boson fields Ψη ∼ Fηe−iφη [70].

This introduction follows a detailed bosonization review by von Delft and
Schoeller [70]. Three prerequisites are to be met for the bosonization method
to work. The fermion creation and annihilation operators have to fulfill the
commutation relations for each species η (η distinguishes different spins or right
and left movers, for example),

{ckη, c†k′η′} = δη,η′δkk′ .

Furthermore, the momentum index k should be unbounded and take discrete
values. Introducing a finite size of the system L, the latter requirement is easily
met,

k = 2π
L
nk,

where nk are integers. The vacuum ground state is chosen so that the first empty
level above the Fermi sea is denoted nk = 1.

Let us consider free right and left-moving fermions. We immediately realize,
that the separation of the species induces lower boundaries for k. Explicitly, for
the fermion field Ψ we get

Ψ(x) =
√

2π
L

∞∑
p=−∞

eipxcp

=
√

2π
L

∞∑
k=−kF

(e−i(kF+k)xc−k−kF) + ei(kF+k)xck+kF),
(1.1.4)

where the k-space of the fermion fields is not extending infinitely. The question
arises, if it is at all necessary to require k to be unbounded for all species. This
will be clarified in the following.

To satisfy all three conditions, we introduce two types of fermions with
different energy spectra, εk = kvF and εk = −kvF and k ranging from negative
to positive infinity. They are shown by the solid and dashed lines in figure 1.1.3.
There is an infinite number of each kind of particles in the occupied states below
the Fermi level. The artificial part of the spectrum is indicated in the figure by
the gray area. The unphysical extension of the spectrum is not expected to alter
the physics of a weak interacting system whose energies are bound close to the
Fermi level.

The two kinds of fermions in the Luttinger model (denoted aη,k,s and a†η,k,s)
are independent in the sense that the operators commute. Operators of the
same species obey the required fermion commutation relation. We are now set
to introduce boson particle-hole operators bq,η(p) and b†q,η,

b†qη = i
√
nq

∞∑
k=−∞

c†k+q,ηck,η bqη = −i
√
nq

∞∑
k=−∞

c†k−q,ηck,η,

with q = 2π
L nq > 0. The operator b†1,q annihilates particles in in all k-states

and creates them in q + k-states. This is possible if k < 0 and k + p > 0. The
sum thus shifts all momenta by q with respect to the state acted upon, thereby
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generating particle hole pairs. To see if we create and annihilate “real” bosons,
we compute the commutation relations

[bqη, bq′η′ ] = [b†qη, b
†
q′η′ ] = 0, (1.1.5)

[bqη, b†q′η′ ] = δηη′
∑
k

1
nk

(
:c†k−q,ηck−q′η:− :c†k+q′−q,ηck,η:

)
. (1.1.6)

If q 6= q′, we can just shift k → k− q′ in the second term and the normal ordered
products cancel out. Note that the subtraction of the sums is only possible due
to the normal ordering. It guarantees that no intermediate particle-hole pairs
are generated in the infinite sums. For equal momenta q and q′ this requirement
is not a priori fulfilled. Therefore we normal-order the products according to the
definition :AB: = AB − 〈AB〉,

[bqη, b†q′η′ ] = δηη′δqq′
∑
k

1
nq

(
:c†kηckη:− :c†k+q,ηck+q,η:

+ 〈c†kηckη〉 − 〈c
†
k+q,ηck+q,η〉

)
= δηη′δqq′

1
nq

( 0∑
k=−∞

−
−nq∑
k=−∞

)
= δηη′δqq′ .

In the last step, the requirement of an unbounded k-space is used. Note that a
sum over the particles in a finite number of states is always finite and equal to
the sum over the states shifted by a constant. The difference would thus yield
zero.

One can show [33] that the states b†, acting on the ground state of N particles,
span the complete Hilbert space of the N particles. However, we still lack the
possibility to add a particle and explore the full Hilbert space of arbitrary particle
number. To accomplish this, we introduce operators F †η to create electrons of
species η in the lowest possible (empty) state. Let |N〉 be a state with N particles
and arbitrary particle-hole excitations, then the completeness ensures that it
can be constructed out of the ground state |N〉 = f(b†)|N〉0. The action of the
creation operator is then defined as

F †η |N〉 = f(b†)T̂η|N + 1η〉0,

with a phase counting operator T̂ used to insert the fermion creation operator
at the right place.

We are now in the position to define boson fields φ with the aid of the Fourier
sums ϕη and ϕ†η over the b’s and b†’s respectively:

φη(x) = ϕη(x) + ϕ†η(x), where

ϕη(x) = −
∑
q>0

1
√
nq

e−iqxbqηe−aq/2, ϕ†η(x) = −
∑
q>0

1
√
nq

eiqxb†qηe−aq/2,

and wherein a is introduced to regularize the limit q → ∞. Intuitively ,the
boson field can be understood by using its relation to the normal-ordered particle
density,

ρη(x) = :ψ†η(x)ψη(x): = ∂xφη(x) + 2π
L
N̂η. (1.1.7)
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We can identify the second term as the density of a perfect electron crystal ∼ N/L.
Deviations from the crystalline equidistant electron spacing are described by
the change of φη(x). Integrating the equality over x we see that the boson field
accounts for the difference in particle number with respect to the perfect lattice.

To write down the exact bosonization identity relating the fermion and
boson operators, we have to express the action of the fermion operator on an
arbitrary state in terms of the boson ones. To this end, we note that ψη|N〉0 is
an eigenstate of bqη with eigenvalue αq. This allows us to write a coherent-state
representation of ψη using the field ϕη:

ψη(x)|N〉0 = exp
(∑
q>0

αq(x)b†qη

)
Fηλη|N〉0 = eiϕ†η(x)Fηλη(x)|N〉0.

The phase operator λ can be identified by comparing expectation values of F †ηψη
in the representation given above and in its original form.

Finally, the stage is set for the exact operator identity. ψη(x)|N〉 can be
calculated, and, using the ingredients above, written down in a closed form,
namely

ψη(x) = Fηλη(x)e−iϕ†η(x)eiϕη(x) (normal ordered), (1.1.8)

= Fηa
−1/2ei 2π

L (N̂η− 1
2 δb)xeiφη(x) (not normal ordered). (1.1.9)

In the second line the phase operator is written explicitly and the exponentials
are combined using a Hausdorff identity. To achieve the compact representation,
we have to add a regularizer in the denominator in front. On the downside, we
can no longer guarantee normal ordering of the operators.

1.1.4 Application to the model
We can now use the results of the previous section and write down the Hamiltonian
in the boson fields straightforwardly. For the following discussion, it is convenient
to adopt the notation used by Kane and Fisher [37] which emerge from a
fieldtheoretical approach. The “dual fields” θKF and φKF shall be defined as
difference and sum of left- and right-moving fields φ respectively,

θKF(x) = 1
2
√
π
{φL(x)− φR(x)} , thus ∂xθKF(x) = 1

2
√
π
{ρL(x) + ρR(x)} ,

(1.1.10)

φKF(x) = 1
2
√
π
{φL(x) + φR(x)} , thus ∂xφKF(x) = 1

2
√
π
{ρL(x)− ρR(x)} .

(1.1.11)
We rewrite the Hamiltonian in terms of these boson fields, neglecting the KF-
indices:

H = v

L/2∫
−L/2

dx :
[
g

2(∇φ)2 + 1
2g (∇θ)2

]
: ,

where the interaction parameters g2 and g4 are contained in the sound velocity
v = [(1 + g4)2 − g2

2 ]1/2 and in the dimensionless interaction parameter

g =
√

1 + g4 − g2

1 + g4 + g2
,
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Figure 1.1.4: Phonon propagation in a one-dimensional crystal. The physical
picture is in good agreement with collective density fluctuations in the Luttinger
liquid.

which is also frequently referred to as Luttinger parameter K. This represen-
tation is valid at long wavelengths and short-range interactions (neglecting the
momentum dependence of g). It is obviously just the Hamiltonian of an elastic
string. The dynamics can be understood by a very simple physical picture: We
insert a particle in one end of the wire. Soon it will hit its next neighbor and
transfer its momentum. This procedure is repeated at the site of the next neigh-
bor and so on. The resulting motion is a collective one that spreads coherently
through the whole system [66], visualized in figure 1.1.4.

Another model with comparable behavior is that of phonons in a one di-
mensional Wigner crystal [37]. Let θa/

√
π be the displacement of the electrons

from their lattice positions. The Hamiltonian (1.1.1) then describes the long-
wavelength phonon fluctuations. These Goldstone modes destroy the long-ranged
crystalline order even at T = 0 and lead to algebraic decay of the spatial correla-
tions.

The Landauer conductance in a clean Luttinger liquid is calculated via the
current-current correlation function [23],

G = lim
ω→0

1
~Lω

∫
dx dτ eiωτ 〈TτJ(x, τ)J(0, 0)〉 = g

e2

h
.

We note that g can be understood as a dimensionless measure of conductance of
the pure Luttinger liquid. However, the derivation of the Landauer conductance
from the transmission amplitudes in the presence of strong interaction is a subtle
point. We will discuss the issue in section 1.3.6.

Impurity in a Luttinger Liquid

A Luttinger liquid with an impurity is no longer exactly solvable. In this section,
results of Ref. [37] obtained by a perturbative renormalization-group approach are
presented. We can approach the problem of scattering in a strongly interacting
one-dimensional wire in two limiting cases: A very weak barrier and a weak link
or strong barrier.
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A weak structureless barrier is represented in real space by a potential
V (x) which is nonzero only in the close proximity of x = 0. The magnitude is
chosen small with respect to the Fermi level. The correction to the Hamiltonian
reads

δH =
∫

dx V (x)Ψ†(x)Ψ(x).

This equation can be translated to a correction in the action of the boson field
where only the most important terms of a gradient expansion around x = 0 are
kept,

δS ≈
∞∑

n=−∞

1
2νn

∫
dτ ei2n

√
πθ(x=0,τ),

where the coefficients νn are proportional to the backscattering component of
the momentum representation of V (x), namely νn = Ṽ (n2kF). n counts the
backscattered particles.

One can further compute the effective action of the system. This serves
as starting point for a perturbative calculation or a renormalization group
transformation. To implement the latter, we introduce a high-frequency cutoff
Λ of the order of the Fermi-energy and integrate over energies between Λ and
Λ/b with b > 1. The final step is the rescaling of the parameter τ ′ = τ/b. After
this procedure we identify the renormalized coefficients6 νn and, by choosing
b = 1 + dl , extract the differential RG flow

dνn
dl = (1− n2g)νn. (1.1.12)

From this, we can deduce the following behavior:

• For g > 1, renormalization weakens the Fourier component of the backscat-
tering potential for any n.

• If g = 1, there is no flow for the 2kF component. A flow parameter with
such a behavior is called marginal. The other parameters with n > 1 scale
to zero.

• A repulsive interaction (g < 1) enforces the first Fourier coefficient of the
barrier and therefore ν1 is labeled a relevant flow parameter.

Following this observations we can expect that attractive interactions lead to a
vanishing reflection in the limit of energies very close to the Fermi surface. In
the opposite case, repulsive interactions strengthen an initially weak barrier and,
in the same limit, pin the Luttinger liquid completely.

It is illuminating to integrate the RG flow down to a cut-off energy scale of
the order of the temperature, the frequency or the bias (the biggest of these will
confine the energy of a particle entering the system from below). Separating
variables in equation (1.1.12) and computing the integral yields an effective
barrier

vn,E ∝ vnEn
2g−1.

We can relate the barrier strength to the transmission probability and hence to
the conductance [23]. Thus we expect G(T ) ∝ |νn|2Tn

2g−1. This result can be
6This is the most trivial case. Additional couplings can appear due to the rescaling. The

procedure is done more carefully in section 1.2.3.
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confirmed by a perturbative calculation in the backscattering potential [37]. To
leading order the result reads

G(T ) = e2/h

[
g −

∞∑
n=1

anT |νn|2T 2(n2g−1)

]
.

Let us repeat the previous discussion for this expression. Attractive interaction
yields a positive exponent for the temperature and the correction to the conduc-
tance will vanish as we approach zero temperature. On the other hand, choosing
the interaction to be repulsive, the second term will diverge in the proximity
of zero temperature and we can expect the conductance to vanish. This is a
reasonable assumption. However, perturbative calculations do not hold in this
region and this statement needs further verification.

Similarly we can treat the conductance at finite frequency. The result is the
same apart from the coefficient anV which replaces the non-universal constant
for non-zero temperature anT : Repulsive interaction leads to a divergence of the
correction to the conductance in the low-frequency limit. It should be noted
that although the coefficients are not universal, their ratios are [37].

A weak link is built up between two wires in the other limiting case. The
unperturbed system is consisting of two separate wires. In the course of pertur-
bation theory a weak link is established between them which allows tunneling
into the other wire via a hopping matrix element t. To model this setup in
the Hamiltonian, we introduce fields on the left ΨL and on the right ΨR of the
barrier.7 The initial Hamiltonian divides into two parts with the left and right
fields respectively. The hopping is achieved by an overlap matrix element

δH ≈ −t[Ψ†R(x = 0)ΨL(x = 0) + H.c.].

Along the lines of the previous calculation, we can transform to boson fields
and apply a perturbative renormalization-group treatment on the effective action.
The latter results in a RG flow equation analogue to the case of a weak barrier,
namely

dtn
dl = (1− n2/g)tn.

This flow equation is the counterpart of the one discussed in the previous
paragraph. Remember that we noticed a growing scattering potential for repulsive
interaction in the former case. This time the hopping element t is weakened for
all values of n ultimately resulting in full decoupling of the wires. Furthermore,
fully consistent with the earlier discussion, attractive interaction enforce the
matrix element for one single hopping t1 and thus connects to the former case of
a vanishing barrier.

Phase diagram In this paragraph we sum up the results of the energy-shell
RG analysis. To this end, we combine the results of the two limiting cases to a
single phase diagram in figure 1.1.5. The diagram is divided into a weak barrier
(upper) part and a weak link (lower) part. The axis to the right is labeled by
the interaction parameter or, equivalently, the dimensionless conductance in the

7To be distinguished from right- and left-moving fields.
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is weakened is enhanced

is enhanced is weakened

G = 0 G = g e
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weak link

weak barrier

Figure 1.1.5: Phase diagram of the Luttinger liquid in the presence of a weak
link or a weak barrier. In the presence of repulsive interactions on the left the
the barrier is enhanced and suppresses conductance, ultimately disconnecting
the wires. Attractive interactions weaken the barrier to the limiting case of a
clean wire. The perturbative regimes are colored, the RG technique is used to
bridge the white area in-between.

clean Luttinger liquid g. In the direct proximity of the vertical boundaries we
can directly apply the results from the perturbative calculations: For repulsive
interactions, a small scattering potential ν1 is enhanced and the hopping matrix
element t is downsized. Both comportments reduce the initial conductance G.
On the right side of the diagram, attractive interactions weaken the small barrier
and grow the link between the wires in their respective regimes. Close to the
Fermi surface Kane and Fisher find a conductance close to the value ge2/h for a
clean wire.

It should be noted that the Landauer conductance in the limiting case
of a clean wire is subject to ongoing discussion. While approaches in the
fermion language predict a ballistic clean conductance of e2/h in the presence of
interaction [6, 50, 60], a characteristic feature of results obtained by bosonization
is the aforementioned interaction-dependent conductance. We will, however,
postpone this discussion to section 1.3.6 and proceed with the analysis of the
phase diagram.

It is a plausible assumption that the connection in the non-perturbative
regime in-between is smooth. Indeed it can be shown for the special case g = 1/2
that even the smallest obstacle in the wire causes total reflection [37].

Temperature dependence of the conductance Let us stop the renormal-
ization of the impurity at a scale where the temperature is of the order of the
momentum cutoff a. This scale is given by [29]

el
∗

= v

aT
.

Starting with a weak impurity we can distinguish three regimes for the tem-
perature dependence of the conductance in the case g < 1, as can be seen in
figure 1.1.6:
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Figure 1.1.6: The temperature dependence of the conductance in the three
regimes. The smooth connection in the vicinity of T ∗ is estimated.

• For high temperatures the conductance is given by a power law with the
exponent 2g − 2. The renormalization of the barrier is initially weak and
grows while the temperature is lowered.

• In the intermediate regime the temperature is of the order of the renor-
malized impurity. The connection in this regime is anticipated to be
smooth.

• At low temperatures the weak barrier has grown strong and can be modeled
by a weak link between two decoupled wires. The conductance is governed
by temperature to the power of 2/g − 2 .

At zero temperature the Luttinger liquid is completely pinned by the initially
small impurity.

We thereby provided a qualitative picture of the physics in a one-dimensional
system perturbed by a single barrier in two limits. Kane and Fisher continue
with an analysis of a resonant structure. We will, however, save this part for
later (section 1.4.1) and introduce an approach for weak interactions which is
non-perturbative in the impurity strength.

1.2 Weak interactions in a Luttinger liquid with
impurity

In the early 90’s a new approach to the field of interacting fermions in one dimen-
sion was pioneered by Matveev, Glazman and Yue (MGY) [52,74] and applied
more recently to a great variety of problems, e.g., an impurity with resonant
level [62] or a Y-junction [43]. The main reasons for the ongoing interest in this
approach is the successful qualitative description of effects present also in systems
with stronger interaction and the close integration to the Landauer-Büttiker for-
malism, in contrast to the bosonized theory, as discussed in section 1.3.6. Starting
point is the spinless Tomonaga-Luttinger model described in the previous section
with a single impurity.
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Figure 1.2.1: On the left: energy scales in the weakly perturbed Luttinger liquid.
High energy scales in the system are the bandwidth εF or the energy related to
the inverse interaction length vF/d. On the other end of the scale we find the
temperature T and the Thouless energy of the system, related to the system size
by vF/L. εp denotes the breakdown of perturbation theory in interaction. To
the right: scopes of theoretical approaches in the area spanned by strength of
impurity(vertical axis) and interaction(horizontal axis). The colored areas are
expanded perturbatively towards the center of the figure. In the overlapping
regions, the theories are bound to coincide.

Bosonization allows to investigate both the regime of a very strong impurity
(weak link) and a small barrier for arbitrary strength of interaction. Since the
extrapolation done between these two regimes heavily relies on a perturbative
approach, it is a natural question to ask what is happening in between. The idea
of MGY is to treat the interaction as a small parameter and explore the physics
for arbitrary impurity strength and temperature. As one can see on the map
to the right in figure 1.2, the theories are expected to coincide for the strong
impurity and the weak link case.

Recent attempts to close the gap were made by Aristov et al. [6]. The group
managed to derive universal parts of the RG flow equation valid in the presence
of arbitrary interactions.

The assumption of weak repulsive interactions, parameterized by i.e., α =
1− g � 1, restricts the applicability of the model. Experimentally, α is found
to be close to one in carbon nanotubes [72]. On the other hand, single-mode
semiconductor quantum wires reach down to α ∼ 0.2 to 0.3 [7] and can be
screened further by metallic gates. In this regime, the results obtained in this
framework should be applicable directly. However, some of the physics of strongly
interacting systems can be deduced successfully from the weak interacting regime,
e.g., the resonance peak for sequential tunneling through a double barrier is
reported to be in good agreement [62].

On the left panel of figure 1.2, we qualitatively compare the important energy
scales of the system. As we will see below, even the first order correction to the
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scattering amplitudes due to the interaction is logarithmically divergent,

δS ∝ α log(∆/ε) where ∆ = min
(vF

d
, εF

)
,

where α is a measure for the strength of interaction, d is the interaction length
and ε is the energy of the incoming particles. For a perturbative theory to remain
valid we require a small correction δt. If the interaction strength α is fixed the
requirement defines an energy scale εp below which the correction is not small
anymore. In order to explore the low-T regime we must find a way to sum up
all leading orders of the perturbation theory. We will see in the following that
this is possible via a renormalization group approach.

1.2.1 Scattering states and chiral fields
We consider a 1D system of spinless fermions with a scatterer of arbitrary
strength located at x = 0. Furthermore, far away from the barrier, the electrons
do not interact. In a range L around the impurity, the wave-function is altered
in a non-trivial way by the interaction: Incoming waves encounter a barrier
dressed by density fluctuation. In the following we will send L to infinity.8 The
asymptotic incoming wave-functions far left from the barrier have the form [74]

ψk(x) = e−i(k+kF)x + rei(k+kF)x. (1.2.1)

The wave vector k � kF lies in the vicinity of kF and the barrier is assumed to
be symmetric for simplicity. In the ground state of the non-interacting system
we can write the local density as

〈ρ(x)〉 = 1
2π

0∫
−∞

dk ψ∗k(x)ψk(x) = i
4πx (r∗e−i2kFx − rei2kFx) + const.

= 1
2πx |r| sin(2kFx+ arg(r)) + const.,

(1.2.2)

where the lower limit is extended to −∞, making use of the extended state space
of the Tomonaga-Luttinger model. The density oscillations in equation (1.2.2)
(commonly referred to as Friedel oscillations) grow asymptotically in the vicinity
of the impurity and decay as 1/x away from the origin.9 This feature results in
the logarithmic divergence of the reflection amplitude at k → kF [74].

We further define field components by separating right- and left-moving field
operators (compare equation (1.1.4) in the previous section),

Ψ(x) = ΨR(x)eikFx + ΨL(x)e−ikFx.

The fields ΨR/L are slowly varying on the scale of the inverse Fermi momentum
k−1

F .
For the interaction we use the same model as in the previous section, hence

the density-density interaction can be written as

Hint = 1
2

∫∫
dx dy ρ(x)V (x− y)ρ(y), (1.2.3)

8We will clarify this assumption in the next chapter.
9The decay is remarkably slow compared to counterparts in higher dimensions.
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where the density at a point x, expressed in terms of the chiral fields, reads

ρ(x) = Ψ†RΨR + Ψ†LΨL + Ψ†RΨLe−i2kFx + Ψ†LΨRei2kFx. (1.2.4)

We combine the two expression and reformulate the interacting part of the
Hamiltonian,

Hint = g2

∞∫
0

dxΨ†RΨRΨ†LΨL, (1.2.5)

neglecting the fast oscillating parts and assuming that the interaction range
is short (with respect to k−1

F ) but finite. Thus we can set the arguments of
the density fields, x and y, equal to each other. Furthermore, the interactions
between fields of the same chirality g4 is neglected. This can be justified in a
spinless model because the distinction between g2 and g4 leads to unphysical
current-current interactions [49] (see section 3.1.2 for a detailed discussion of
this subject).

1.2.2 First order in interaction: Hartree-Fock corrections
We want to study the influence of the interaction on the reflection and transmis-
sion amplitudes of the electrons. To this end, we can either calculate the Green’s
functions of higher orders or the correction to the wave function. Both can then
be compared to the “clean” case to extract the effect of the interactions on the
amplitudes. While in the latter of the thesis, the Green’s function formalism
will be employed, the authors of the seminal paper [74] used the first order
Born approximation to calculate the corrected wave function and we shall briefly
outline their approach, although not in every detail.

We want to calculate the scattering matrix elements to first order in interac-
tion. To this end, equation (1.2.5) is decomposed in a Hartree and a Fock part.
It can be shown, that the Hartree part yields a constant (we show this explicitly
in section 3.2.1). We compute the Fock part explicitly:

Hint = −g2

∞∫
0

dx
(
〈Ψ†RΨL〉Ψ

†
LΨR + 〈Ψ†LΨR〉Ψ

†
RΨL

)

= − ig2

4π

∞∫
0

dx
x

(
r∗Ψ†LΨR + rΨ†RΨL

)
.

In the second line we used equation (1.2.2) and equation (1.2.4) to identify
the expectation values. Let us further define the incoming and outgoing wave-
functions

|i, k〉 =
{

ei(k+kF)x (x < 0)
e−i(k+kF)x (x > 0)

, and |o, k〉 =
{

e−i(k+kF)x (x < 0)
ei(k+kF)x (x > 0)

.

The scattering amplitude from a given incoming wave to an outgoing one to
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Figure 1.2.2: Real space diagrams (g2) for reflection. The particle is incident
from the bottom left of the diagram, the dotted line represents the impurity.

first order in e−iHintt reads

− i
∫ dk

2π 2π δ(Ek − Ek′)|o, k′〉〈o, k′|Hint|i, k〉

= ig2r

4πvF

∞∫
d

dx
x

e−i2kx|o, k〉

= −αr2 log(kd)|o, k〉.

To compute the first integral, we used the linear dispersion relation Ek = vFk
and neglected fast oscillating parts ∼ exp(2kF). The second integral is divergent
for short distances, therefore we introduce a cutoff d.10 The result is valid with
leading logarithmic accuracy. Analogously, the amplitude for the scattering from
an outgoing to an incoming wave (by Friedel oscillations) is given by

αr∗

2 log(kd).

We are now in the position to compute the first order corrections in interac-
tions. An incident wave that has been reflected by the barrier has undergone
one of the following processes in figure 1.2.2:

• The wave was reflected by the barrier (b),

• was reflected by the barrier, scattered back to an incoming wave due to
Friedel oscillations and reflected once again by the barrier (c), or

• penetrated the barrier, reflected by the Friedel oscillations on the other
side and transmitted back (a).

The sum of these contributions,

δr = 1
2
[
−αr + α|r|2r + αtr∗t

]
log(kd) = −α|t|2r log(kd),

yields the total first order correction to the reflection amplitude. Performing the
summation for the transmission amplitude, we find

δt = 1
2
[
αt|r|2 + α|r|2t

]
log(kd) = α|r|2t log(kd).

10The role of d as a finite range of interaction will become clearer in section 3.2.1
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Figure 1.2.3: The impurity potential dressed by Friedel oscillations in a wire of
length L. The strength of the effective barrier is measured on the vertical axis.
The perturbative result is valid for interaction confined to the region [−l1, l1].
Interaction in the extended region [−l2, l2] requires summation of divergent terms
of all orders.

The logarithmic divergence of the first-order result at k → 0 is a typical
infrared divergence in 1D. As long as the correction, namely α log(kd), is small,
this result is a leading correction. However, for smaller energy or momentum, a
perturbative calculation is not sufficient: The nth order is expected to diverge
as αn logn. In this case, it is necessary to sum up the most divergent terms of
all orders.

To accomplish this task, we will apply a renormalization group approach
in the spirit of MGY. Alternatively, one could apply a parquet summation
technique used originally for singularities in X-ray spectra by Abrikosov [1] and
Nozières [59].

Real-space interpretation and RG

One way to illustrate the physical meaning of the renormalization group procedure
(in real space) is presented in [74]: When we restrict the interaction to the very
vicinity of the impurity, e.g., a range l ∼ d, an electron encounters the slightly
modified bare barrier and the first order correction in interaction is leading and
proportional to α log(l/d).

Beyond this scale, the effects of the interaction modify the barrier. It is
not sufficient anymore to do perturbation theory with the bare impurity. If we
choose l � d so that α log(l/d) is not small anymore, an incident particle will
be scattered by an order-of-magnitude stronger effective barrier.

The idea of the real-space renormalization group is thus to extend the region
of interaction stepwise, ensuring the validity of a perturbative calculation at
every step. The essence of this procedure is shown in figure 1.2.3. After the nth
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step, the transmission amplitude reads

tn+1 = tn − αtn|r|2 log(l/d).

Shrinking the step size we can approach the continuous limit and replace this
recursive equation by

dt
d log (L/d) = −αt|r|2. (1.2.6)

Finally we can integrate equation (1.2.6) from L = d to L = 1/(k− kF) with the
boundary condition t|L=d = t0 to find the renormalized transmission amplitude
[74]

tk = t0|(k − kF)d|α√
|r0|2 + |t0|2|(k − kF)d|2α

. (1.2.7)

An equivalent way to sum up the leading terms is given by a scaling procedure
in the energy variables. We can rewrite first order corrections in terms of particle
energy and UV cutoff,

δt ∼ log(∆/ε),
where the ultraviolet cutoff ∆ is equivalent to d and of the order of the Fermi
energy or the energy associated with the interaction length vF/d. This procedure
is outlined in more detail in the next section, including a more careful derivation
of the flow equations on the level of the Hamiltonian.

1.2.3 A simple renormalization group approach
“Poor man” scaling

The result of the perturbative treatment of the single impurity is applicable as
long as the corrections remain small, i.e.,

α log
(vF

dε

)
� 1.

At smaller values of ε the corrections of sub-leading order and beyond dominate
the transmission as the nth-order correction diverges as αn logn(vF/(dε)). Thus,
to extend the result towards εF we have to take into account all terms of higher
order in α. To achieve this goal, we apply a simple renormalization group
approach first applied by Anderson to the Kondo problem [4]. It was successfully
adopted to the fermionic 1d problem shortly afterwards in the 70s by Solyom [67].

We noted in the previous section that the bandwidth for the interaction with
the Fermi sea electrons ∆ is determined by the spatial scale of the interaction,
vF/d. Electrons with energies outside this strip of width 2vF/d will be neglected.
Now we transform the problem to one with smaller bandwidth D = ∆/Λ where
Λ > 1. The problem is similar to our problem if we modify the bare transmission
to a transmission which accounts for the electrons excluded by this step. Thus
we arrive at an effective barrier with renormalized amplitudes r and t. This
procedure seems plausible. However, it is not clear whether a perturbative
calculation in interaction with leading logarithmic accuracy really captures
the correct scaling behavior. Additionally, one has to take into account the
renormalization of the interaction parameters.



26 1. Introduction

Energy space RG

Anderson suggested that equivalent problems can be formulated by requiring
that the scattering matrix is invariant under the RG transformation. This can be
used to calculate both the renormalized transport coefficients and the interaction
parameters. It can be shown [67] that for this requirement to be fulfilled, the
transformed Hamiltonian has to obey the relation

H ′int = P

[
Hint +Hint(1− P ) 1

ω −H0
Hint + O(H3)

]
P, (1.2.8)

where the projection operator P is such that a state acted upon contains no
particle in the range excluded by the RG. The renormalization of the bare
transmission amplitude due to this transformation is found using perturbation
theory. Alternatively, this can be done on a microscopic level which includes
averaging out the fast modes in the Hamiltonian. This approach is also shown
in [74] for the case of electrons with spin. The outline of this procedure is as
follows:

• The generic Hamiltonian with interaction is transformed to a basis of
scattering wave functions with included barrier potential.

• The requirement equation (1.2.8) is used to calculate a renormalized
Hamiltonian with different couplings.

• The new coupling constants are found by comparing Hint and H ′int.

• Integration over infinitesimal RG steps to a arbitrary cutoff D yields the
renormalized couplings.

Starting point is the Hamiltonian of the interacting system

Hint =
∑

k1,k2,p

g1 a
†
k1
b†k2
ak2+2kF+pbk1−2kF−p (1.2.9)

+
∑

k1,k2,p

g2 a
†
k1
b†k2
bk2+pak1−p (1.2.10)

+ 1
2
∑

k1,k2,p

g3 a
†
k1
a†k2

bk2−2kF+pbk1+2kF−p−G (1.2.11)

+ b†k1
b†k2
ak2+2kF+pak1−2kF−p+G, (1.2.12)

where the coupling constants are, in general, momentum dependent. a†k and b†k
create right- and left-moving electrons with momentum k, respectively. G in the
third term is a reciprocal lattice vector (in the half-filled band G = 4kF). g4 is
in the present spinless case not distinguishable from g2. Note that we have not
excluded backscattering, g3, in the Hamiltonian since it will be responsible for
the renormalization of the interaction. The basis of free fermion wavefunctions of
this Hamiltonian is now transformed by a unitary transformation to incorporate
the effect of scattering at the impurity,

ak =
∫

dq [Aqkcq +Bqkdq] and bk =
∫

dq [Cqkdq +Dq
kcq], (1.2.13)
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where A,B,C,D include the reflection and transmission amplitudes (see [74] for
details). With these transformations, new non-diagonal quadratic terms appear
in Hint.

The elimination of the degrees of freedom in the energy range [D0 − δD0,D0]
is done by replacing any product of two fermion operators in H ′int that does not
belong to the inner band by its average value. So every pair of operators (with
same spin) is replaced by A†A+〈A†A〉 where the average is over [D0−δD0, D0].11

The Hamiltonian of the system after the RG step, H ′int, can contain couplings
between more than two particles. It is thus necessary to make sure that after
infinitely many transformations the number of couplings is still finite or the
additional couplings are invariant under scaling or scale to zero (and therefore
can be neglected). Applying the transformation to Hint, the quadratic part of
the full Hamiltonian (which originally consisted of H0) is replaced by

H ′0 =
∫

dk ε′(k)(c†kck + d†ddk)

− i
8π (g1 − g2)

∫
dk dp

[
(t∗kr′q − t′kr∗q )c+k dp −H.c.

] δD0

D0 + ε(k) + ε(p) .

(1.2.14)

In the next step, the Hamiltonian is diagonalized. This can be done as follows:
We take the initial an final states of the bare Hamiltonian

|i〉 = a†k|0〉 and |f〉 = a†k|0〉,

and transform them to scattering states with equation (1.2.13). Comparing
the matrix element 〈i|H ′0|f〉 with 〈i|H0|f〉, the corrections t − t0 = δt can be
identified. In the case of the correction to the transmission t(ε) the algebra yields

δtε =
[
g2 − 2g1

2πvF
t|r|2

]
δD0

D0 + ε
. (1.2.15)

The second term in equation (1.2.8) generates the renormalization of the
interaction constants. For the clean case (without impurity), they are calculated
in [67]:

g1(ξ) = V (2kF)
1 + V (2kF)

πvF

(1.2.16)

g2(ξ) = V (0)− 1
2V (2kF) + 1

2
V (2kF)

1 + V (2kF)
πvF

, (1.2.17)

wherein ξ = log(D0
D ). Corrections due to the impurity are considered small as

1/L and can therefore be neglected in the limit of a long wire [74]. We note
further, that the solution includes the renormalization of the interaction constants
caused by backscattering. Note that since we can neglect backscattering if
V (2kF)� V (0), this result allows us to keep the interaction parameters constant
in the course of renormalization.

Plugging the interaction constants in equation (1.2.15) and applying a differ-
ential form yields

11Details of this rather lengthy calculation can be found in [74].
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dt
dξ = −g2(ξ)− 2g1(ξ)

2πvF
t(1− |t|2). (1.2.18)

Non-renormalized interaction

If we neglect the cutoff dependence of g1 and g2 and apply the RG equation
D → D/Λ repeatedly we can reduce the bandwidth until we arrive at a value
of the order of the incoming particle energy ε. Beyond this energy scale, the
corrections due to interactions are not logarithmic. Each step of this procedure
affects the transmission amplitude in the way given above.

Integrating this equation from D = D0 to D = |ε| using the boundary
condition t(ε)|D=∆ = t0 we obtain

tε =
t0| dεvF

|α√
|r0|2 + |t0|2| dεvF

|2α
, (1.2.19)

where

α = g2 − 2g1

2πvF
.

Perturbative expansion of this expression to second order in α yields

t(ε) = t√
|r|2 + |t|2

−
αt|r|2 log( dεvF

)
2(|r|2 + |t|2)3/2

+
α2t|r|2[|r|2 − 2|t|2] log2( dεvF

)
2(r2 + t2)5/2 + O(α3)

(1.2.20)

For the sake of completeness we do the same expansion for the reflection coefficient
which is calculated from the transmission simply by using the unitary condition
r =

√
1− |t|2,

r(ε) = r√
|r|2 + |t|2

+
αr|t|2 log( dεvF

)
2(|r|2 + |t|2)3/2

+
α2r|t|2[|t|2 − 2|r|2] log2( dεvF

)
2(r2 + t2)5/2 +O(α3).

(1.2.21)

We will show in section 3.3 that these expressions are identical to those
calculated with perturbation theory up to the second order. Indeed, a Taylor
expansion of this result has to coincide with perturbative calculations of all orders.
We arrived thus at the point to formulate one of the aims of the project for the
first time: The consistency of the RG approach with perturbative calculations
to subleading order was never checked carefully for systems of finite size or with
a energy-dependent S-matrix. To clarify this point further, we will consistently
connect the perturbative approach with the scaling form of the S-matrix elements
in the next section.
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Check of validity for the RG approach

The test of the RG can be done by comparing the Taylor expansion in α to the
perturbative expansion. A mismatch in the coefficients of the logarithms tells us
that the theory is non-renormalizable in the S-matrix language, i.e., the notion
of a S-matrix becomes invalid when unitarity is broken.

In this section we present a self-consistent way to check the validity of the
“Poor-man” scaling without knowing the explicit differential form of the RG
equations for perturbative next-to leading order calculations. The technique was
presented recently in the context of random matrices to the community [40, 41].
We assume the energy dependence of the S-matrix of the system is governed by
a power law

r(ε) = A
( ε

∆

)α
, (1.2.22)

where ∆ is the ultraviolet cutoff, A and α are constants.12 If we take the
logarithms of both sides and derive with respect to log(ε/∆) we get for α

α = ∂

∂ log(ε/∆) log(r(ε)). (1.2.23)

Now let us assume we computed perturbative corrections to the S-matrix in
interaction. We sort the corrections in powers of logarithms, namely

r(n)(ε) = r0(ε) + δr1(ε) + · · ·+ δrn(ε).

This expansion can be substituted into equation (1.2.23) and we find, factoring
out r0,

α = ∂

∂ log(ε/∆)

(
log(r0) + log

(
1 + δr1

r0
+ · · ·+ δrn

r0

))
.

We are now in the position to Taylor-expand the logarithm,

α = ∂

∂ log(ε/∆)

[(
δr1

r0
+ δr2

r0
+ ...

)
− 1

2

(
δr1

r0
+ δr2

r0
+ . . .

)2
+ . . .

]
.

(1.2.24)

From this equation, exploiting the fact that α is constant, we can deduce the
following requirements for the perturbative corrections:

α = δr1

r0
, (1.2.25)

0 = δr2

r0
− 1

2

(
δr1

r0

)2
, (1.2.26)

0 = δr3

r0
−
(
δr1δr2

r2
0

)
+ δr3

1
3 . (1.2.27)

Note that we used no additional assumptions. If these requirements are not met,
the ansatz in equation (1.2.22) is not valid.

12We can identify the parameters with the known coefficients (bandwidth, interaction
strength), but for the sake of the argument this is not necessary.
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µ1 µ2T

Figure 1.3.1: Simple model of a mesoscopic setup with a wire connecting leads.
A scattering black box (dashed rectangle) is transcended by a fraction T of the
electrons following a chemical.

We conclude that, first, our simple perturbative scaling method outlined in
the previous section is equal to a more careful derivation on a Hamiltonian level
and, second, that it can be validated by comparing higher orders of the Taylor
expansion in the weak interaction parameter α to perturbative results. The
latter point should be kept in mind during section 1.4, where the procedure shall
be applied to resonant levels and Y-junctions.

1.3 Conductance from transmission
The transmission coefficients, subject to the discussion in the last two sections,
cannot be probed directly. Instead, one has to deploy transport measurements
and measure the conductance or conductivity. An approach to calculate the
conductivity from the transmission probability in mesoscopic systems is the
Landauer-Büttiker formalism. Preceding the Landauer formalism, the conven-
tional quantum theory of electrical transport employed current-current correlation
functions to calculate the conductance. The framework, called Kubo formalism,
allows to study linear response of the current to an applied uniform electric field.
This view stands in contrast to the Landauer approach using static scattering
properties and quantum mechanics to derive the transmission probabilities of
incident electrons in a mesoscopic system. It thereby appoints the “flux incident
on the boundaries of a conductor as the causative agent” [45].

To introduce basic concepts, we consider two reservoirs with chemical poten-
tials µi connected by a conductor (see figure 1.3.1). From the reservoirs, electrons
diffuse into the wire following a chemical potential difference and encounter a
scattering “black-box” with a transmission probability T .

The notion of an asymptotically free incident electron wave requires a coher-
ent propagation through the device. At finite temperature, inelastic scattering
processes are unavoidable. We can, however, neglect them, if the inelastic scat-
tering length is by far larger than the thermal length vF/T , which is guaranteed
for weak interaction [32]. We will come back to the issue of applicability later in
this chapter.

1.3.1 Resistance at reflectionless leads
The electrons in the reservoirs are considered free, whereas in the conductor, the
spacial confinements restrict the wave functions to quantum mechanical levels.
We construct the tube narrow enough so that onlyM transverse states in the wire
are below the Fermi level, thereby constraining the electrons to these transverse
modes. For the contacts, we choose a geometry to reduce backscattering of
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the single mode into the wire. In the picture, this requirement is reflected by
adiabatic contacts.13

The electrons originate from reservoirs where they can occupy infinitely many
transverse modes. Following the potential difference, the electrons move into
the wire where they are only allowed to exist in M transverse modes. Since the
Pauli-principle restricts the occupation number, a finite conductance (at zero
temperature) of [19]

Gc = Ie

µ1 − µ2
= Me2

π

is found. It can be seen from this equation that the conductance is proportional
to the number of modes in the wire. If we further introduce a “black box” inside
the conductor with a transmission probability of T we arrive at the Landauer
conductance formula for zero temperature and bias,

G = Me2

π
T .

1.3.2 Energy dissipation at the scatterer
Following Landauer’s argumentation, the observed resistance is a result of elastic
scattering at the “black box” [45]. However, this statement was revised by a
result which identified inelastic processes as sources for a finite resistance at an
impurity [28]. A phenomenological view is presented by Datta [19]: Clearly there
is a potential drop at a scatterer in a conductor of the order I/Gs where G−1

s
is the scatterer’s resistance. If we construct a simple scatterer with no internal
degrees of freedom the energy has to be dissipated somewhere in the wire. This
can be achieved via inelastic electron-phonon scattering for example, and we can
associate a energy relaxation range DER over which we expect this to happen.

The possible sources of the dissipation are still subject to discussion. Later
in this thesis, we will test the conservation of probability at a finite wire with a
resonant scatterer by perturbation theory for weak interaction. We will examine
if higher(second) order processes can lead to a violation of unitarity and thus to
possible energy dissipation.

Inelastic processes inside a scatterer with finite size can enhance transmission
significantly. An electron, incident from the left, that looses its phase memory
inside a symmetric resonant structure escapes with a total probability T /2 to
the right instead of T 2 [45].

1.3.3 Non-zero temperature
At zero temperature the sharp energy distributions in contacts on both sides of
the scatterer effectively restricts transport to one direction (from the contact
with higher chemical potential to the lower one) and only along the channels
below the Fermi level. With increasing temperature, however, the distributions
flatten and transport takes place through multiple channels in the energy range

µ1 + a > E > µ2 − b,

13Acoustic horns serve as non-reflecting contacts over a wide range of wave-lengths.
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where a and b are of the order of a few kBT and each channel can have a different
transmission probability T . The influx of electrons per unit energy from the left
contact into the left lead (assuming reflection-less contacts) is given by

j+
l (E) = 2e

h
Mfl(E),

and a similar expression for the right contact. The outflux from the left lead
into the contact consists of transmitted electrons from the right contact and
reflected ones from the left,

j−l (E) = 2e
h

(T fr(E) + (1− T )fl(E)),

assuming that the transmission probabilities on both sides are equal. This is the
case when the scatterer is symmetric and no inelastic processes occur. The total
flux reads

I =
∫

dE j(E) where j(E) = j+
l + j−l = 2e

h
T (E)(fl(E)− fr(E)).

If the reaction of the system to the perturbation is linear , the current is
proportional to the difference of the chemical potentials in the contacts, namely

δI = 2e
h

∫
dE T (E)[µl − µr]

(
−∂f0(E)

∂E

)
.

The assumption of linearity is discussed in the next section in more detail. From
this the linear response coefficient, the conductance,

G = e
δI

µl − µr
= 2e2

h

∫
dE T (E)

(
−∂f0(E)

∂E

)
, (1.3.1)

can be derived.
We see that the applicability of the Landauer-Büttiker formula relies on

the knowledge of the energy distribution of the incoming particles [45]. At low
temperatures, the requirement is met: Electrons are bound to the vicinity of
the Fermi surface (points, in one dimension). We formulated basic assumptions
that have to be made to relate transmission and conductance. It remains to be
shown that we can connect them linearly as in equation (1.3.1).

1.3.4 Criterions for linear response
From the formulas above one criterion can immediately be deduced: If the
applied bias is much smaller than kBT the Taylor expansion in equation (1.3.1)
is a valid approximation. The transmission probability in the coherent regime
may vary rapidly due to interference effects at low temperatures, but if we
increase temperature, the thermal broadening of the transmission peaks leads
to a smooth conductance as a function of the bias in the region of interest
µl < E < µr � kBT .

On the other hand, if the transmission probability itself varies smoothly over
the conducting energy range, thermal broadening is not needed to justify a linear
approximation. This is the case for the single structureless impurity in the clean
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one-dimensional wire. Indeed, the Landauer conductance formula is applied
frequently in this regime to connect theoretical results to experiments [43,57,62].

The applicability of the Landauer-Büttiker formalism is limited by the break-
down of phase coherence in the wires. Collisions with phonons and with electrons
with enough energy to reach a free state destroy the phase relations between
electrons in solids. The scattering with phonons is governed by a scattering
length Lph. Therefore, we assume Lph � vF/T . In this regime, phase coherence
allows the use of scattering states, wave functions which extend over the system
into the strongly coupled contacts.

1.3.5 Resonant tunneling of non-interacting electrons
The most prominent example of resonant tunneling is a single-particle transition
through a double barrier. Given that the two barriers separated by a distance L
have transparencies Di � 1, the electron states in the quantum form a discrete
set of broadened levels En = εn − iΓ̄. The width of the levels for rectangular
barriers reads

Γ̄ = ΓL + ΓR = 2~ L

v(εR) (DL +DR),

where v(εR) is the electron velocity at the resonant level [42]. The transmission
probability can then be approximated by a Breit-Wigner formula,

T = ΓLΓR

(ε− εR)2 + (Γ̄/2)2
.

If the level width is energy-independent, equation (1.3.1) can be evaluated exactly.
However, we are only interested in the asymptotics of the peak conductance: In
experimental setups, the gate voltage is used to tune the energy of the resonance
εR(Vg) to the energy of the incoming particles.

From equation (1.3.1) we find [42]

Gp(T ) =


4G0

Γ
Γ̄
, T � Γ̄

π

2G0
Γ
T
, T > Γ̄

,

where Γ = ΓLΓR
Γ̄ . We can see from these expressions that the resonance is either

of Lorentzian shape with a T -independent height at low temperatures or the
peak conductance varies linearly with T−1 in the high-temperature regime.

1.3.6 Conductance of strongly interacting electrons in one
dimension

The problem in the presence of interaction is much more complicated. We recall
the results from section 1.1.4: The conductance in the limiting case of a clean
wire is found to depend on the strength of interaction [5, 37],

G0 = K
e2

h
,

where the dimensionless parameter K describes interactions. However, this
assumption contradicted with early experiments by Tarucha et al. [68], where
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the authors found a non-renormalized conduction of e2/h in the presence of
interaction.

Following the experimental results, a prediction for the non-renormalized ver-
sion was made by Maslov and Stone [50] using the Kubo formula. Irrespectively,
further experiments reported a great variety of results: In Ref. [71], significant
deviations from the quantized value were measured in GaAs-AlGaAs quantum
wires, more recent experiments on nanotubes by Kong et al. [39] observed the
quantized value in the low-T regime and Kasumov et al. [38] reported saturation
at 1/4 of the non-interacting conductance.

The variety of results presented a puzzle to the community. Pham et al. [61],
e.g.,, question the validity of the Landauer-Büttiker formalism in the presence
of strong interactions. It is argued that a single electron is no longer a valid
excitation and a new framework to determine the transport of the system is
outlined. We will present another attempt to explain the different results: We
relate them to variable boundary conditions constituted by the experimental
setup following Ref. [49]. This view was also adopted more recently by Imura et
al. [35].

First of all, we note that in a ballistic wire without leads, the motion of
charges in an electric field can not depend on the interaction between the charges
as required by Galilean invariance. This can be confirmed by applying the
continuity equation to the density in terms of the boson fields (equation (1.1.7)).
We add reflectionless leads and recall that a finite quantized resistance originates
from the contacts. The scattering processes at the contacts (back into the
reservoirs) are independent of interactions in the wire, even if they are strongly
inhomogeneous [49]. However, in experiments at low temperatures, the effect of
impurities is pronounced and dominates over the resistance at the leads. Since
the source of the scattering is now situated in the wire, the strength of interaction
will affect the conductance.

The one-dimensional wire with a small but finite barrier is correctly described
by Kane and Fisher and related approaches [25,37], while the limiting case of
a clean wire is not. The problem inherent in the description via bosons is the
connection to asymptotically free states, as required by the Landauer-Büttiker
formalism.

Alternatively, Maslov [49] suggests to measure the heat dissipation at an
external resistor connected to a one dimensional (contactless) wire of length L.
An AC field over a range LE is applied parallel to the wire, driven at a frequency
u/L � ω � u/LE. Under these condition, the author expects a renormalized
conductance, omitting the subtle question of connecting Fermi-liquid reservoirs
to Luttinger-liquid wires.

To our knowledge, this question is not solved yet. For weak interactions in
a wire of finite length L, however, the notion of asymptotically free states is a
priori well-defined. Therefore, at least on a perturbative level14, we can safely
assume that the language of the S-matrix, i.e., the Landauer-Büttiker formalism,
remains valid [18,32,74].

14The validity of the RG approach for finite interacting regions is subject to calculations
later in the thesis.
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Figure 1.4.1: Top view layout of a cleaved-edge quantum wire. The 2DEG is
confined to the surface states at the edge by the bias VS. By tuning the top gate
voltage VT the part below the gate can be depleted.

1.4 Applications and recent research

1.4.1 Energy dependent S-matrix
A structureless impurity of arbitrary strength is the simplest case of a scatterer
in the one-dimensional wire. The energy dependence of the scattering matrix
in this case is supposed to be analytic and slowly varying on the scale of the
Fermi energy. This allows us to neglect the energy dependence in perturbative
calculations.

As soon as we consider a second impurity, quantum levels form between
them and allow for resonant transmission or reflection (if all reachable levels are
occupied). This case is rather generic. The ends of single-wall carbon nanotubes,
e.g., can also serve as barriers. Therefore, the analysis of such scatterers is a
nearby generalization of the structureless impurity.

Experimental results were obtained for instance from measurements on single-
wall carbon nanotubes (SWNT) with kinks [63] or in GaAs quantum wires with
gating [7] to model the resonance. Each of the experimental realizations has its
share of complications: Carbon nanotubes have a high contact resistance which
renders measurements insensible to small obstacles in the wire. Measurements
on quantum wires on the other hand are always influenced by the adjacent 2DEG
and the other close-by 1d energy sub-bands [42].

The resonant level in the GaAs wire is realized by a high negative voltage at
a gate which pinches-off the wire. A simplified layout of such a setup is drawn
in figure 1.4.1. Nevertheless, one can observe conductance peaks attributed to
the formation of small 1d islands under the gate where electrons can tunnel to
and from [42] if they can overcome the Coulomb blockade due to charges on
the island. Furthermore, Carbon nanotubes can be deformed with the aid of a
electronic force microscope. A double-kink structure is used to define pairs of
quantum wells in the wire [14].

On theoretical grounds, resonant structures can be analyzed qualitatively in
the bosonized language. One can obtain the RG flow for different barrier strength
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and interaction [37]. Pushing forward to quantitative agreement was one of the
goals of recent theoretical work. Namely, researchers wanted to account for the
exponent found in the experiments for the power law governing the temperature
dependence of the height Gp ∼ Γ/T and the width Γ ∝ Tαe of the conductance
peak in different regimes.

Using a four channel Luttinger liquid model for the Carbon nanotube(CNT),
the exponent can be related to the interaction strength via [36]

αbulk = (g−1 + g − 2)/8 and αedge = (g−1 − 1)/4

for tunneling into the bulk and the edge of a long tube respectively. These
exponents are found to be in good qualitative agreement with the experiment [73].
Measurements on carbon nanotube junctions showed Luttinger liquid behavior
e.g., by Yao et al., who observed an exponent for the temperature dependence
of αend-to-end = 2αend = 2.2 at junctions of CNTs, slightly above the predicted
value of 1.8 for strong interaction in CNTs (g ∼ 0.2). In quantum wires, LL
behavior with a power-law scaling of the resonance width (g = 0.6 − 0.8) [7]
completed the picture.

Notwithstanding, very recent measurements reported a non-monotonic depen-
dence of the conductance in the low-temperature regime [13]. The unexpected
experimental results may reflect the fact that even the “clean” ballistic case is
not fully understood in the presence of strong interaction (in Carbon nanotubes
g ∼ 0.2− 0.3) as discussed in section 1.3.6. A recent attempt to account for the
strong temperature dependence includes the concept of correlated sequential
tunneling [20].

Other attempts to theoretically examine the features of resonant tunneling
and side attached impurities in fermionic one dimensional transport were made
for example in the works by Nazarov and Glazman (NG) [57] and Polyakov and
Gornyi (PG) [62] on resonant scattering, by Lerner, Yudson and Yurkevich [47]
on anti-resonant levels attached to a 1d wire, and, very recently by Altland et
al. [3] on incoherent scattering. In the following sections we want to give a short
review about this contributions to the research in this field.15

Electron transport through a double barrier

The formation of a resonant scatterer formed by two barriers of arbitrary strength
inside a one-dimensional wire is subject to a study conducted by Polyakov/Gornyi
(PG) and Nazarov/Glazman (NG) in parallel. The issue was discussed earlier in
a bosonized language by Furusaki [25] and we will compare the results whenever
it seems plausible.

We study a system with a one-dimensional wire and two impurities at
separated by distance x0. The barriers are strong enough to form a system of
well defined resonant quantum-levels separated by an energy ∆ = πvF/x0. The
basic ideas are taken from the work by MGY: A free electron gas is perturbed
by weak interaction and the result is extended to the low temperature regime by
means of a renormalization group procedure. The amplitudes of the waves inside
the resonant structure are renormalized together with the S-matrix elements.

15Of course, this choice is by no means complete but one to prepare the grounds for the
motivation of the thesis.
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Scale Description
ε Particle energy, of the order of max(T, V ), where V is the bias.
∆ Level spacing of the scatterer.
D,D0 The running/initial energy scale of the RG. The bandwidth D0 is

of the order of min(εF, vF/d).
Dp For energies above this scale, first order corrections in interaction

are supposed to be leading: log(Dp/D0) = −1/α
Dr Above this scale, an initially weak barrier remains weak.
Drmin The minimal Dr scale of the two barriers. If they are different,

there is an intermediate regime with one weak and one strong
barrier.

DS The width of the resonant level when the running cutoff is of the
same order as the width, DS = Γ(DS)

D− A measure for the symmetry of the double barrier. D− ∼ Γ1−Γ2
Γ1+Γ2

.

Table 1.1: Important energy scales in the discussion of 1d transport through a
resonant structure as introduced by PG.

The boundary conditions for the energy space RG used by PG are given by
the bare amplitudes

t0 = t1t2
S(ε) and rL0(ε) = r1 + r1t

2
1

S(ε)e2πiε/∆,

where S(ε) = 1− r2r
′
1e2πiε/∆, and ri(r′i) are the reflection amplitudes for barrier

i from the left (right). These amplitudes allow multiple resonant levels. Close to
a resonance with large level spacing ∆, the amplitudes stated above reduce to a
Breit-Wigner type resonance for a single level (as the one used by NG),

t(ε) = i
√

ΓLΓR

(ΓL + ΓR)/2− i(ε−∆) , rL(ε) = (ΓR − ΓL)/2− (ε−∆)
(ΓL + ΓR)/2− i(ε−∆) .

The analysis of the corrections is based on different relations of the energy
scales of the system. To this end, additional scales are defined to mark the
breakdown of perturbative corrections. To provide a clearer view, we present all
important energy scales introduced by PG in table 1.1, together with a short
summary of the PG analysis below.

Separate renormalization of two impurities: D � ∆. In this limit, the
fine structure of the resonances is not resolved by the renormalization. In the
language of the real-space RG, we only account for interacting regions around
the scatterer which do not overlap. The complexity of the PG calculation is
enhanced by a renormalization of the amplitudes between the two barriers.

In the most trivial case, D � Drmin , the scatterer consists of one strong and
one weak or two weak barriers and the flow equations for each barrier coincide
with the single-impurity situation with separately renormalized resonance widths,

ΓR,L(ε) = ΓR,L(ε/D0)α.

This result is confirmed by both PG and NG. If ∆� D � Drmin , both barriers
are strongly reflecting and the integration turns into a sum over resonance poles.
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ε

1

T (ε)

Γ(∆)

Figure 1.4.2: Transmission for different temperatures in the regime DS � T � ∆
(a single symmetric resonance) [62]. Lower temperature (solid line) leads to a
reduction of the peak width. The height remains unchanged.

PG find a different scaling exponent, α/2, in this case. Since NG only consider
one resonant level, this result can not be found in their analysis.

A single resonance: D � ∆. In the opposite case, the amplitudes inside
the wells are not renormalized. The double-barrier structure is replaced by a
single scatterer with an energy dependent S-matrix. The boundary conditions
are chosen D = ∆ instead of D = D0 and the position of the resonance level
is εR = 0. If both amplitudes are strong initially or get strong in course of the
renormalization and the initial resonance width is small, D � Γ(∆), both PG
and NG find an energy dependent resonance width,

Γ(T ) = (Γ1(∆) + Γ2(∆))(T/∆)α,

while the peak transmission does not renormalize (see figure 1.4.2). These findings
are in agreement with earlier results [37]. In this limit, the approximation of
a single resonant level is valid, additional resonances just give a irrelevant
perturbative correction.

Furthermore, inside a resonant energy level, D � DS, the result are equal
to those obtained for a structure-less single scatterer, with the replacement of
the lower cutoff ε by DS. The lineshape in the symmetric case is then given
by a Breit-Wigner formula. In the strongly asymmetric case, D− � T , the
transmission function adopts a double-peak structure, yielding zero transmission
at ε = 0. This feature remains if εR 6= 0, additionally developing an interesting
asymmetric double peak structure for T (ε).

Weak barriers Previously, the barriers were always either initially strong, or
they got enhanced by renormalization in the regime D ∼ ∆. It is possible though,
that one or both barriers remain weak during this procedure. The reflection of
two symmetric barriers with this feature is small (εR = 0),

R(ε,∆) = 2[1− cos(2πε/∆)](Dr/D)2α,
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and remains small. The oscillating behavior stems from a renormalization of the
amplitudes inside the “dot”. Like in the previous setup, an asymmetric barrier
leads to a dip in the transmission at ε = 0. As soon as we shift εR away from
zero, the situation is reversed: A symmetric barrier leads to a dip, while in the
asymmetric case the transmission is not affected by the renormalization (apart
from weak oscillations).

Linear conductance To connect the results for the transmission and reflection
probabilities in Ref. [62] to the experiment, the authors relate them to the linear
conductance in the Landauer-Büttiker formalism. The issue was discussed earlier
in section 1.3. In this section, we confine ourselves to results for the case of
symmetric, strong barriers. The transmission amplitudes can be related to the
conductance using the formula

G(ε0, T ) =
∫

dε T (ε)(−∂nF/∂ε),

if both temperature and bias are small enough to assume a linear response.
In the temperature range εF � T ∼ ∆� Γ, sequential tunneling dominates

the physical picture and the temperature dependence of the peak conductance,

Gp ∼ T α−1,

is smoothly connected to the peak conductance of non-interacting electrons
(see section 1.3.5). The peak width, on the other hand, is renormalized due to
interactions in contrast to the non-interacting situation, w(T ) ∼ T . The scaling
of Gp is thereby governed by the single-particle density of states in the contacts
at the edge of the Luttinger liquid. Note that this behavior smoothly connects
to the non-interacting picture.

For smaller temperatures the lineshape of the conductance as a function of
bias is altered significantly. While the peak height saturates at Gp = 1 at an
intermediate temperature, the width behaves as

w ∼ Tα,

narrowing the peak to a finite value cut by DS for zero temperature. The
estimated scaling of the conductance peak width and height is seen to agree
with Furusaki’s [25] for symmetric barriers. To complete the picture, it should
be noted that the asymmetric barriers lead to a reduction of the saturated
maximum peak height in both PG’s and NG’s work.

Conclusion The authors thoroughfully examined the scattering at a structure
with resonant transmission for energies far from and inside the resonance. To
this end, they calculated the RG equations from the first order perturbation
theory. This is only sufficient if unitarity and thus renormalizability is proven to
hold for subsequent orders of perturbation theory. We will discuss this point in
more detail in chapter 3.

1.4.2 A side attached impurity
The transmission of a discrete localized level with a small capacitance is domi-
nated by the Coulomb repulsion if all reachable levels are occupied as long as no
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bias is applied to lift the energy of the electron in the leads. This effect is called
Coulomb-blockade and leads to an anti-resonant structure of the transmission
coefficient. Lerner, Yudson and Yurkevich [47] examined this situation, assuming
one level to be close to the Fermi level and a large level-spacing δ � Γ0, T .

Like in the previous section, the authors used functional bosonization and
the Keldysh technique to extract the corrections leading in a high-energy limit
ε ∼ Γ0 and extend them to the low-energy regime by means of a RG procedure.
The renormalization in this case broadens the Breit-Wigner form of the reflection
coefficient,

Γ(ε) = Γ0

√
Γ2

0 + ε20
|ε|α

,

starting from Γ0 at max(ε0,Γ0). The divergence is cut by temperature.
In a weakly interacting wire, the local density of states follows the resonance

width for |ε−ε0| � Γ(ε), while in the opposite limit it vanishes. The authors argue
that the behavior can be mapped to a potential impurity in this regime, triggering
the depletion of the wire at the Fermi level. This stands in contrast to the low-
energy behavior in the strongly interacting regime, where the characteristic
effective interaction α is of the order one. In this range, the transmission is not
affected by the hybridization with the impurity [50].

1.4.3 Junctions of one-dimensional wires
Another interesting problem arising in the context of one-dimensional wires is the
physics of more complicated geometrical structures consisting of single junctions
or networks of such. The question was addressed in the presence of a spin at the
junction in a Kondo-model related setup [55] and later by Lal et al. [18,43] in
the framework developed by MGY and presented earlier in section 1.2.1.

The authors of Ref. [43] assume that the electrons in the wire interact weakly
by a short-range density-density interaction and scatter at the junction in one
of the three available wires. Instead of right- and left-moving electrons, they
discern in- and outgoing single particle wave functions with a label for the wire
ψI/O,i. Then a three-by-three matrix S can be defined by

ψO(0) = SψI(0).

This matrix is unitary if no inelastic scattering is present. The wires are
constructed on a lattice with position indices ranging from 1 to ∞.16 The
hopping constants at the junction are real numbers −ui which are related to the
S-matrix elements

rii = 2u2
i

P
− 1 (on the diagonal), and tij = 2uiuj

P
(off diagonal),

where

P =
3∑
k=1

u2
k + iλ,

and λ denotes the potential at the junction. The details of the perturbative
calculation are given in section 1.2.2. The amplitude to first order perturbation

16The lattice is used in Ref. [43] to simulate the junction.
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Figure 1.4.3: Possible scattering processes at a junction of three wires to first
order in interaction. Additional diagrams can be constructed by permuting the
wires.

theory in interaction for the scattering from an incoming to an outgoing wave
and vice versa is given by

−αr2 log(kd), and αr∗

2 log(kd).

With these building blocks we can construct all possible first-order scattering
events. A transmitted wave (from wire i to j) has one of the following histories
(see figure 1.4.3):

• It was reflected from the barrier into the same wire, reflected back by
Friedel oscillations and transmitted into wire j,

• transmitted into wire j, reflected back by a Friedel oscillation and eventually
reflected back or

• transmitted into wire j where it was reflected by a Friedel oscillation and
transmitted into wire k.

The authors then collect these contributions into a matrix A,

δtji = −Aji log(kd),

whose off-diagonal elements are defined as

Aji = −1
2

−αi|rii|2tji + αj |rjj |2tji +
∑
k 6=i,j

αktjkr
∗
kktki

 log(kd).

Analogously, the correction to the reflection in first order in interaction is
derived:

δrii = −Aii log(kd), (1.4.1)
where

Aii = −1
2

−αirii + αi|rii|2ri +
∑
j 6=i

αjtijr
∗
jjtji

 log(kd).

This form is convenient to write down the real-space flow equations for an
interacting region of width L centered around the junction,

drii
d log(L/d) = Aii and dtij

d log(L/d) = Aij .
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Label Fixed point description stable with
respect to

unstable with
respect to

I The junction is fully reflecting all none
II-IV One wire is cut off the others V-VII I
V-VI The junction is transparent none all
VII The junction has equal reflection at

each wire
V-VI I-IV

Table 1.2: Fixed points and stabilities for the RG flow of a three-wire junction

Lal et al. have rewritten the RG equations using

Fii = −1
2αirii

as follows:

dS
d log(L/d) = SF †S − F. (1.4.2)

This general result (the choice of dimensionality of the matrix is arbitrary) is
used to analyze the fixed points of the RG flow.

Results The fixed points and their stability can be derived in a rigorous fashion
by analyzing the flow of a matrix in the close vicinity of a fixed point. This
analysis is done in detail in [43]. It turns out, however, that the phase diagram
can be drawn from the knowledge of the trivial case of a two-wire junction. In
table 1.4.3 we present the fixed points and their flow as well as the label used in
the paper.

We know from our previous considerations in section 1.2.2 that for repulsive
interaction the renormalization tends to enhance the obstacle in a wire. Therefore,
if we modify the reflection of one wire at an otherwise fully transparent junction,
the renormalization will drive the barrier towards complete reflection. It follows
immediately that case I with a fully reflecting junction is the most stable fixed
point while case V-VI is unstable towards all deviations. All other fixed points
can be treated in the same manner.

Conductance From the S-matrix, the conductance in the linear response
regime can be obtained by the Landauer-Büttiker formalism described in sec-
tion 1.3. Scattering at the contacts between wires and leads are neglected
(“reflection-less contacts”) and the resistance at the interface is taken to be e2/h.
The discussion is restricted to one transverse channel in the wire, the net current
in the absence of applied voltage is zero. With these assumptions, we obtain the
net current out of wire i via the linear relationship [15]

Ii = e2

h

3∑
j=1
TijVj .
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To derive the conductance, the authors single out a potential probe, e.g., I3 = 0,
and compute the three-terminal conductance,

G12,13 = I1
V1 − V3

= e2

h

[
T12 + T13 + T12T13

T32

]
,

where the first pair of indices denotes the direction of the current flow, between
wire label three and four we apply the voltage. G12,23 is derived in the same
way.

With these results, temperature and conductance can be related. We stop
the RG flow of, say VII to I, at the scale of the temperature LT = vF/T . If
the deviation from the fixed point is not too large, the correction with respect
to the fixed point can be written as an Taylor expansion. We end up with an
approximation for the exponent of the power-law dependence of the conductance
on temperature,

GVII
12,13 = e2

h

[
4
3 − 27c1T−2α

]
,

where c1 is a constant. We will stop the discussion here. Additional results and
more details are provided in [43]. The generalization to the case of four wires
meeting at a junction is straightforward.

1.4.4 Incoherent scattering
In a recent work, Altland et al. [3] examine the transport through a scattering
“black box” connected to two incoming and two outgoing leads. Both coherent
and incoherent transport is allowed through the structure. The authors argue
that “low-dimensional electronic systems containing spatially extended scatter-
ing regions rather generically support both coherent and incoherent transport
channels.” [3] The statement is supported by experimental measurements on
quantum dots [64] and along graphene pn-junctions [54], where the interplay
between mode interaction and single-particle scattering can lead to incoherence.

The “black box” can be understood in terms of a quantum dot with general
features, namely a finite electrostatic capacitance, coherent scattering at the dot
and a non-vanishing incoherent transmission probability. In such a setup (shown
in figure 1.4.4), the authors find low energy properties significantly different from
those obtained by Kane and Fisher [37]. While the temperature scaling of the
conductance,

G ∝ T 2/g−2,

coincides with the KF approach, the incoherent feature supports a gapless
excitation at zero temperature leading to an even split of the current at the
scatterer. The result is obtained using Keldysh technique on the bosonized action
of the system. It is shown that the gapless mode is not affected by non-thermal
noise in the system. The low-energy mode is seen to be a result of symmetries
present in the system.

From the asymptotic behavior of the system at low temperatures, a new
paradigmatic picture of the Luttinger liquid with impurity is derived, alternative
to the Kane-Fisher picture.
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Figure 1.4.4: Two incoming and two outgoing half-infinite chiral leads connected
to each side of a scattering “black box”. Both coherent (rectangle) and incoherent
(“zigzag”-lines) scattering is allowed between the channels.



Chapter 2

Statement of the problem

In the thesis we study transport in interacting one-dimensional systems with a
single scatterer. We consider a setup which is similar to a source-drain setup at
equilibrium. A single (spinless) electron with an energy ε above the Fermi level
is injected into the equilibrium wire.

We are interested in inelastic processes in the system, i.e., in processes where
the electron leaves the system at another energy or with a modified phase. The
problem attracted our attention due to various reasons. The transport through
extended structures at low temperatures has been shown to be dominated by
incoherent scattering in very recent works by Altland et al. [3](see section 1.4.4).1
On the experimental side, incoherent scattering in one-dimensional transport
was reported very recently in a Graphene quantum point-contact in a quantum
Hall regime [54].

Previous results suggest that there is neither inelastic channel nor dephasing in
the leading contribution to the RG in the case of a pointlike scatterer [6]. However,
these effects can appear in the case of a compound scatterer. This prediction
can be obtained based on an analogy with dephasing in disordered Luttinger
liquids: A Cooperon is not effected by dephasing if clean plasmon propagators
are used. Nevertheless, accounting for disorder in the plasmon propagator,i.e.,
taking into account “additional” impurities beyond the ladder diagrams, one
arrives at a finite dephasing time [31,32]. Therefore an interesting problem is
to investigate the effect of an “additional impurity” on the dephasing or the
inelastic channel in the low-temperature regime. We consider strong impurities
and model the resulting resonant structure by a Breit-Wigner scatterer.

The renormalization group approach is only valid in the absence of inelastic
processes. This approach has been applied frequently in the last two decades
to examine systems with a great variety of degrees of freedom, e.g., junctions
of wires [43] and more complex geometries [18], anti-resonant [47] and resonant
[57,62] scattering. It is common believe that the procedure is valid for a single
pointlike impurity but its validity was never checked carefully in more complex
cases. Ab initio, inelastic processes can not be recognized by this approach since
it is based on first order perturbative expansion in interaction.

1They consider a scattering black box with very general features.
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Setup

S

The electrons are non-interacting in the far distance
from the scatterer. Since the system size is extending
infinitely this statement needs further examination.
We shall explain this point below. Inside the wire, we
introduce right- and left-moving particles and describe
reflection and transmission in the two channels in terms of a two-by-two scattering
matrix S.

The S-matrix is a unitary matrix that relates in- and outgoing states. More
specifically, in our case it relates the asymptotically free propagators of different
chirality:

(
G+

0 (x, xf → +∞, ε)
G−0 (x, xf → −∞, ε)

)
=
(
tlr(ε) rll(ε)
rrr(ε) trl(ε)

)(
G+

0 (xi → −∞, x, ε)
G−0 (xi → +∞, x, ε)

)
, S†S = 1

where xi and xf are the initial and final scattering states. The unitarity require-
ment can be rewritten as two equations, namely

|tlr|2 + |rll|2 = |trl|2 + |rrr|2 = 1 and tlrr
∗
rr + rllt

∗
rl = rrrt

∗
lr + trlr

∗
ll = 0.
(2.0.1)

The first expression is related to the conservation of the particle number at
energy ε, the second equation is sensitive to coherence.

The interaction in the system is considered repulsive and short-ranged with
respect to the system size but sufficiently long-ranged so that forward scattering
dominates over backscattering. We consider spin-less fermions, only g2 and g4
interactions are present in the system. We will neglect g4 processes, because
the phase space for this type of interaction is small and we can expect only
sub-leading corrections.

Ansatz
The problem can be treated by bosonization for arbitrary interactions. A weak
barrier or a weak link between two half-wires can be treated perturbatively in this
language and the two limiting cases can be connected with an renormalization-
group approach [37]. Alternatively, one can treat the interaction as a perturbative
parameter and include barriers of arbitrary size in the system [74]. We will apply
the second ansatz. The first-order correction in interaction to the scattering
amplitudes diverges as

δt/r ∼ α log
(

∆
ε

)
,

for a point-like scatterer, where ∆ = min(εF, vF/d), ε & T and α measures the
weak repulsive interaction. For very high energies, ε ∼ εF, the transport through
the system will be almost ballistic and the energy dependence of the scattering
amplitudes is logarithmic in leading order.

When the temperature is lowered, higher order corrections, of the order
αn logn(∆/ε), will dominate the perturbative expansion. It is thus necessary to
sum up such contributions of all orders.
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min(εF,
vF
d

)

εp

max(T, vF
L

)
0

RG

The renormalization group procedure is the
most common way to accomplish this task.2 We pick
an energy Λ, so that α log(∆/Λ) � 1 and calculate
the corrected reflection and transmission amplitudes.
In the next step, we replace the cutoff ∆ by Λ and
the original S-matrix elements by the corrected ver-
sions. This procedure is repeated until the desired
energy scale, e.g., the temperature in an experiment,
is reached. It is clear from this summary that the first
order correction has to reproduce in higher orders. If
it does, the theory is renormalizable.

For our analysis, we calculate the second order in interaction using a real-space
diagrammatic technique suggested by Polyakov and Gornyi.

e

h

e

We chose this approach because, in principle, there
is no possibility for inelastic or incoherent processes
to arise in the first order (which the RG approach is
based on) since there is only one intermediate energy
state. On the contrary, starting from the second order
we have to account for complex diagrams containing
electron hole pairs. The interplay of the different
energy scales of the system in these diagrams can not
be determined a priori and can cause problems for the RG scheme.

Besides, we can identify these deviations from unitarity with specific scattering
processes with the help of the diagrammatic technique.

With the results of this approach we are able to distinguish two possible
unitarity-violating processes using equation (2.0.1), namely

• the conservation of a particle at a given energy may be violated. In that
case we need to account for additional physical processes to restore the
energy conservation in the system.

• A deviation from the second requirement in equation (2.0.1) is a sign for
dephasing in the system.

Steps of calculations
We will first calculate the second order correction for the simple system with
an infinitely extended wire and a single structureless impurity as considered by
Matveev and Glazman to illustrate our method and to check its usability. With
the results for the trivial case at hand, the generalization to more complex cases
can be done.

2We omitted the parquet summation technique here. This more careful approach is applied
less frequently. See Ref. [59] for details.
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G0
+

G0
−

G0
+

L
The confinement of the interaction to
a finite length L is necessary to cleanly
define asymptotic scattering states. The con-
straint is accompanied by a new scale, the
Thouless energy of the system, Eth = vF/L.
It is known that in the first order in interaction,
the infrared cutoff ε is replaced by max(ε, Eth),
whereas in the second order, the complexity
in the interplay of the energy scales is increased and both scales might appear
simultaneously in a diagram. We will prove that Eth plays the same role in the
second order.

ε ∆0 εR

Γ

A resonant structure brings two more en-
ergy scales, namely the position of the resonant
level, εR, and its width Γ. Therefore, we have
to deal with too many scales to determine the
energy cutoffs a priori. As already mentioned
in the beginning of this section, an extended
structure can provide dephasing. A resonant
structure formed by two barriers is the sim-
plest case of such a structure. In the weak localization regime, the addition of an
impurity to the wire triggers dephasing [32]. Furthermore, there is considerable
interest in system with resonant scattering [24, 26, 37, 47, 57, 62], and the RG ap-
proach outlined above has been applied frequently without verification [47,57,62].
We are going to analyze both the limiting on- and off-resonant cases as well as
the intermediate regime.

Outline

In the next section, we will introduce chiral scattering Green’s functions, present
the pictorial representation of the leading logarithmic diagrams in real-space and
give some example calculations. The results for the first and second order for a
setup with a featureless impurity are presented briefly. To complete the results
for the simple case, we prove the unitarity of the S-matrix. In the remaining
two sections, we will apply the obtained framework to the non-trivial cases of a
finite region of interaction and a resonant scatter of the Breit-Wigner type.



Chapter 3

Perturbative calculations
for the S-matrix

3.1 Chiral Green’s function of particles
We separate the right- and left moving fields and extend the phase space below
the Fermi level to infinity. The free chiral propagators can then be written as

Gα(q, ω) = 1
ω − αvFq + α i δ sgn(q) ; α = ±1, δ → +0,

where the chirality index α labels right(left) moving particles. Energy and
momentum are measured from the Fermi level. As a first step, we Fourier-
transform from momentum to coordinate representation:

G+(x, ω) =
∞∫
−∞

dq
2π

eiqx

ω − vFq + iδ sgn(q)

=
∞∫

0

dq
2π

eiqx

ω − vFq + iδ +
∞∫

0

dq
2π

e−iqx

ω + vFq − iδ

We can close the two contours over the upper right half-planes,

<(q)

=(q)

ω
vF

+ iδ, ω > 0

−ω
vF

+ iδ, ω < 0
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and the integration along the contour yields zero. We are left with

G+(x, ω) = Θ(x)Θ(ω)i Res
(

eiqx

ω − vFq + iδ

)
−

0∫
i∞

dq eiqx

ω − vFq

+ Θ(−x)Θ(−ω)i Res
(

e−iqx

ω + vFq − iδ

)
−

0∫
i∞

dq e−iqx

ω + vFq

= Θ(x)Θ(ω)i Res
(

eiqx

ω − vFq + iδ

)
−

0∫
i∞

dq eiqx

ω − vFq

= Θ(x)Θ(ω) 1
ivF

ei( ωvF +iδ)x + Θ(−x)Θ(−ω)−1
ivF

e−i(−ωvF +iδ)x
.

The remaining vertical parts cancel out, since the regularizer is much smaller
than the involved energy. A similar calculation yields the left-moving Green’s
function and we can summarize:

Gα(x, ω) = Θ(αxω) sgn(ω)
ivF

ei(|ω|+iη)|x|/vF . (3.1.1)

3.1.1 Dyson Equations

We write down the Dyson Equations for scattering at an impurity of size d� L
(L is the system size) located at the origin. For such a case, the impurity can
be modelled in terms of a external perturbation of the form V (x) = γiδ(x).
The index i distinguishes the different sides of the impurity. Later we will
assume a symmetric barrier and let γ1 = γ2. We denote electrons moving
to the right (ω > 0, x > 0) and left (ω > 0, x < 0) by indices + and −,
respectively. For example, ++ can stand either for free propagation (xx′ > 0)
or for transmission (xx′ < 0), −+ labels a reflection. The Dyson equation for
the electrons (x < 0 < y) read

G++(x, y) = G0
+(y − x) +G0

+(−x)γ1(G++(0, y) +G−+(0, y)), (3.1.2)
G++(0, y) = G0

+(y) +G0
+(0)γ1(G++(0, y) +G−+(0, y)), (3.1.3)

+

x

+

y
=

+ +
+

+ + +

V (q = 0)

+
+

+ + −

V (q = 2kF)

+

and

G−+(x, y) = G0
−(−x)γ2G++(0, y) +G0

−(−x)γ2G−+(0, y), (3.1.4)
G−+(0, y) = G0

−(0)γ2G++(0, y) +G0
−(0)γ2G−+(0, y). (3.1.5)

−

x

+

y
=

− − +

V (q = 2kF)

+
+
− − −

V (q = 0)

+
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Solving equation 3.1.3 and 3.1.5, we find

G−+(0, y) =
G0

+(y)γ2G
0
−(0)

1−G0
+(0)γ1 −G0

−(0)γ2
, (3.1.6)

G++(0, y) =
G0

+(y)(1− γ2G
0
−(0))

1−G0
+(0)γ1 −G0

−(0)γ2
. (3.1.7)

Inserting equation (3.1.6) and equation (3.1.7) in equation (3.1.2) and equa-
tion (3.1.4) yields the full propagators,

G++(x, y) = G0
+(y − x) +

G0
+(−x)γ1G

0
+(y)

1−G0
+(0)γ1 −G0

−(0)γ2
, (3.1.8)

G−+(x, y) =
G0
−(−x)γ2G

0
+(y)

1−G0
+(0)γ1 −G0

−(0)γ2
. (3.1.9)

These equations can be written in a more compact form for further calculations.
To this end we introduce electron reflection and transmission amplitudes:

re
R = γ2

ivF[1−G0
+(0)γ1 −G0

−(0)γ2] = γ2

ivF − (γ1 + γ2)/2

teL = 1 + γ1

ivF − (γ1 + γ2)/2

The remaining amplitudes for electrons, namely G−− and G+−, can be
calculated straightforwardly. Also, we don’t have to repeat this exercise for holes
(ε < 0). As can be seen in equation (3.1.1), holes move always in the opposite
direction as electrons with the same chiral indices. Thus, instead of G++ and
G−+ for electrons, one writes the same set of equations for holes in terms of
operators of the opposite chirality: G−− and G+−. Furthermore, we can identify
rh
R = (re

R)∗. For the remainder this substitution will always be made rendering e
and h superfluous.

We end up with a set of Green’s functions which include the scattering at a
single impurity. Including the Green’s functions we did not calculate explicitly,
the formulas can be cast in a shorter form. We consider a symmetric barrier,
i.e., rL = rR and write:

G0
αα(x, y, ε) ={
sgn(ε) tε

ivF
exp{ipε|y − x|} xy < 0 ∧ sgn(ε) sgn(y) = α

sgn(ε) 1
ivF

exp{ipε|y − x|} xy > 0 ∧ sgn(ε) sgn(y − x) = α
,

(3.1.10)

G0
−αα(x, y, ε) ={
sgn(ε) rεivF

exp{ipε(x+ y)} x, y > 0 ∧ sgn(ε) = α

sgn(ε) rεivF
exp{−ipε(x+ y)} x, y < 0 ∧ sgn(ε) = −α

,
(3.1.11)

where

tε =
{
t ε > 0
t∗ ε < 0

and pε = |ε|
vF

+ iη.

For a detailed list of all cases, please refer to section A.2. We have thus obtained
a set of propagators in energy and real-space representation which include
scattering at the impurity.
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Figure 3.1.1: Different types of interaction in one-dimensional systems. Above,
the effect of the interaction is presented with the help of points in the linear
dispersion relations, for right-moving particles on the right and left-moving
particles on the left, close to the Fermi points. Black dots above the Fermi points
represent electrons, white dots stand for holes. The arrow points from the state
prior to the interaction to the point after the scattering. The same processes are
shown below where α denotes the chirality.

3.1.2 Different types of interaction
In the next section we calculate leading logarithmic corrections due to the first
order in interaction in the T = 0 Green’s function formalism. This is justified
provided that T � ε. This is (to first order) equivalent to the approach by
Matveev and Glazman discussed in section 1.2. To list the terms appearing
in the perturbation theory we use standard notation and label the processes
according to the interactions taking place (see e.g., [67] chapter 2). The different
types (see 3.1.1) are:

• forward scattering

– electrons or holes with the same chirality interact and chirality is
conserved: This process is labeled g4

– electrons or holes interact with particles of opposite chirality and the
chirality is conserved: g2

• backscattering

– interaction between particles and holes of same chirality, the interac-
tion inverses the chirality: g3. For momentum conservation, a wave
vector 4kF is required.

– particles or holes interact with those of opposite chirality and are
backscattered: g1

In the following we focus on g2, arguing that the other types of interactions are
either negligible or bound to be of the same magnitude. Namely,

• g3 processes are Umklapp processes whose contribution is only important
in a half filled band, where 4kF is a reciprocal lattice vector [67].
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e h e h

Figure 3.1.2: build-blocks: electron moving to the right, hole moving to the right,
electron moving to the left, hole moving to the left

• For short ranged interaction, g1 and g2 should be of equal magnitude and
opposite sign, since the Pauli principle requires exact cancellation for a
point-like interaction [74]. If the interaction is long-ranged, one can argue
that U(2kF)� U(0) and neglect backscattering.

• The interaction between particles of same chirality g4 and g2 are considered
to be of the same magnitude. This is a correct assumption if the original
Hamiltonian only contains density-density interaction [49]. In the spin-less
(or spin-polarized) case g2 scattering can not be distinguished from the
g4-type.1 However, there are physical situations where g2 6= g4.2 The
phase space for g4 interaction is small compared to g2 and we expect only
subleading corrections from this type of interaction. It will therefore be
neglected in the following.

The formulation of the problem with only interaction of type (g2) significantly
reduces the number of diagrams especially in the second order in interaction.

3.1.3 Feynman and real space diagrammatics
It is convenient to construct a pictorial language representing different terms is
perturbation theory. Standard recipes to construct the Feynman-diagrams are
found in most text books on quantum field theory, e.g., the classic by Abrikosov,
Gorkov and Dzyaloshinski [2].

In the thesis, aside Feynman diagrams, we use a real space representation
originally suggested by Polyakov and Gornyi from Karlsruhe. The real space
diagrams provide a tool to discern the different possibilities to represent a
Feynman diagram as a scattering process in real space. The possible build-blocks
that form a typical scattering event are shown in figure 3.1.2. Each line with
arrows represents a Green’s function in coordinate (right and left arrows to
indicate positive or negative direction of motion) and energy representation.3

We present examples of both diagram types (the classical Feynman diagram
above, real space representation below) together with the labels in figure 3.1.3.
Note that in the Feynman or skeleton diagram, solid and dashed lines connecting
the vertices represent right- and left-moving particles respectively. The second
picture is a representation in real space. It depicts the path of the electron, the
arrow indicating the direction in space: The electron in the picture above is
incident from the left (solid line in the left lower corner with label e), interacts
(wavy line) and thereby loses enough energy to turn to a right moving hole (label
h below the line), gains energy through a second interaction. The particle is

1The situations both before and after the scattering event in the different channels can not
be told apart.

2At the edges of a finite-width Hall bar, electrons of the same chirality are situated on the
same edge, while those of different chirality are separated.

3a particle is described by a Green’s function with positive energy, a hole’s energy level is
negative with respect to the Fermi energy
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1-II-A
ε ε− ω ε− ω − ν ε− ν ε

1-II-A
e

e
h

e
e
e

e
e

Figure 3.1.3: Feynman (skeleton) diagram (above) and real-space diagram. Both
diagrams describe the same process, but multiple real-space diagrams can be
drawn for a single skeleton diagram. In the Feynman diagram, the vertices
are connected either by right-moving propagators (solid line) or left-moving
propagators (dotted line) with the energy given below the line. A black dot
labels a reflection at the impurity. In the real-space diagram, electrons(e) and
holes(h) can be told apart. Solid and dashed lines stand for right and left movers.
The dotted line represents the barrier.
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reflected by the impurity. Finally it collects both energies on the way out to
the left (dashed line indicates a left moving particle or hole). This pictorial
representation can be compared to the formula (for simplicity we omit constant
prefactors)

0∫
−∆

dν
ε−ν∫
ε

dω
∫

dxi G0
++(x, x1, ε)G0

++(x1, x2, ε− ω)G0
+−(x2, x3, ε− ω − ν)

G0
−−(x3, x4, ε− ν)G0

−−(x4, y, ε)V (x1 − x3)V (x2 − x4).

The choice of the integral limits in that case is non-trivial and depends on
the energy conservation at the vertices. Again, the coordinates increase in the
direction on the arrow from 1 to 2 in the first or 4 in the second order. The
labels for these diagrams are constructed as follows:

1. The first number accounts for the number of impurity reflections.

2. The second (roman) number denotes one of the different skeleton diagrams.
In the first order in interaction this number is not important. In the second
order there are three different skeleton diagrams.

We can call them

(I) “Rainbow” diagrams

(II) Diagrams with crossed interaction lines

(III) “Double Fock” diagrams

3. The big letters distinguish the different real space diagrams which are
possible for the given structure.

Additionally, we apply the following rules to construct diagrams:

• The interaction does not connect points on different sides of the impurity
because short ranged interaction cannot yield logs in this case (the phase
space is too small).

• As we will see, the Hartree diagram for g2 is not of logarithmic order
and can therefore be neglected in higher order calculations, as well as all
combinations of Hartree-type diagrams.4

3.2 First order in interactions
We calculate the first order corrections in interaction and thereby show that first
order in g2 is correctly reproduced by our approach. All results are accurate
with respect to the leading logarithmic terms.

4Diagrams with a Hartree “bubble” in second order are at most single logarithmic and
therefore sub-leading.
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Figure 3.2.1: Hartree and Fock diagrams

e
e

e

e
e

e

Figure 3.2.2: First order real-space diagrams for the Hartree correction. The
“bubble” represents the local electron or hole density.

3.2.1 First order corrections to the S-matrix
The diagrams of first order in interaction are shown in figure figure 3.2.1. There
are two different Feynman diagrams in first order, the Hartree diagram to the
left in figure 3.2.1 and the Fock diagram. We will see in the following that the
contribution due to the former is not logarithmic and can therefore be neglected
within our accuracy.

Hartree diagram

Diagrams containing a “bubble” like the one shown in figure 3.2.1 on the left
are always sub-leading corrections. Let us illustrate this property. We can draw
two real-space diagrams of the Hartree type shown in figure 3.2.2. To calculate
the contribution of the Hartree diagrams in g2 it turns out that it is sufficient
to focus on the “bubble”,e.g., in figure 3.2.2 to the right. The interaction in
our case does not depend on the energy difference (it is instantaneous) and the
integral over ω contains only the Green’s function, namely

lim
x→x′

∆∫
−∆

dω G0
++(x, x′, ω) = lim

x′→x+0

∆∫
0

dω eipω(x′−x)

ivF
− lim
x′→x−0

0∫
−∆

dω eipω(x−x′)

ivF

= lim
δ→+0

∆∫
0

dω eipωδ − e−ipωδ

ivF

=
∆∫

0

dω lim
δ→+0

sin(ωδ/vF)
ivF

= 0.

Note that we introduced a finite bandwidth ∆ from the beginning to regularize
the integral. The calculation for the second diagram is equivalent. We conclude
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Figure 3.2.3: First order Fock corrections (in g2) to the transmission coefficient
drawn in real space.

that diagrams of the Hartree type are not of logarithmic order in g2.

(Fock-)Corrections to the transmission

What remains in the first order, are the so-called Fock diagrams. We start with
all processes that result in a transmission of the particle. The interaction V (x)
used in the following calculations will be a decaying exponential with a given
interaction radius d,

V (x) = V0

2de−|x|/d.

The simple case of a pointlike interaction leads to cancellation of first order
Hartree and Fock terms as requested by the Pauli principle. This can easily be
seen following a pictographic argument: If one collapses the wavy lines in both
diagrams to a point, they cancel due to the different signs.5 In our calculations,
we also use the momentum representation with a smooth Lorentzian type function
V (q)

V (x) =
∞∫
−∞

dq V (q)
2π eiqx,

where
V (q) = V0

(qd+ i)(qd− i) .

We make the observation, that in the momentum representation we don’t
have to decide on the sign of the coordinate difference.6 We can write

V (x) = V (−x)⇒
∞∫
−∞

dq V (q)
2π eiqx =

∞∫
−∞

dq V (q)
2π e−iqx.

Thus, the momentum representation exploits the symmetry in the interaction
and simplifies calculus. Figure 3.2.3 shows the processes which are responsible
for the logarithmic first order correction in g2 to the transmission. We calculate
these diagrams below.

5The minus stems from the “bubble”.
6The correct sign is chosen by pole integration
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2-I-A The following expression is equivalent to the left picture in figure 3.2.3:

G
(1)
++(x, y, ε) = i

∞∫
0

dx1

∞∫
0

dx2

∞∫
−∞

dq
0∫

−∆

dω G0
++(x, x1, ε)G0

+−(x1, x2, ω)

×G0
−+(x2, y, ε)

V (q)eiq(x1−x2)

2π

= −i( 1
−v2

F
)tr∗r eipε(y−x)

ivF

∞∫
0

dx1

∞∫
0

dx2

∞∫
−∞

dq
0∫

−∆

dω

× exp[i(pε + pω + q)x1 + i(pω + pε − q)x2]

In most of the calculations, the prefactor of the integral is always calculated
separately and prior to the integrals to keep track of the signs and the S-matrix
elements t and r (compare equation (A.2.1)). Together with a global i in front
we get

−itr∗r = −it|r|2.

Additionally, we define

A(x, y, ε) = V0

vF

1
ivF

eipε(y−x), (3.2.1)

and

I(ε, d) =
∞∫

0

dx1

∞∫
0

dx2

∞∫
−∞

dω
∞∫
−∞

dq

×Θ(−ω)V (q)
2π exp[i(pε + pω + q)x1 + i(pω + pε − q)x2]

We have to calculate the coordinate, Fourier and interaction energy integrals.
Keeping the prefactors aside, the coordinate integrals yields

I(ε, d) = −
∞∫
−∞

dω
∞∫
−∞

dq Θ(−ω)V (q)
2π

1
(pε + pω + q)(pω + pε − q)

Note that for the coordinate integrals to converge the sign of the regularizer
plays a crucial role. This necessity arises due to the infinite system size. In the
present case, the regularizer in pε + pω has a positive sign and e−ηx, (x→∞) is
zero. We can use the Sokhatsky-Weierstrass theorem or do contour integration
to arrive at7

I(ε, d) = −V0

∆∫
0

dω 1
2(pε + pω)

1
[(dpε + dpω)2 + 1] , (3.2.2)

7convergence is guaranteed by V (q)
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Figure 3.2.4: Real-space Fock diagrams (g2) for reflection.

where ∆ denotes a ultraviolet bandwidth cutoff of the order of the Fermi energy.
Now we change variables to d(ω+ε)

vF
and we get

I(ε, d) = −v2
FV0

d∆
vF∫
dε
vF

dΩ 1
2Ω(Ω2 + 1) .

The logarithmic ultraviolet divergence in this expression is cut by min(vF/d, εF)
and the result reads

I(ε, d) = −v2
FV0

1
2 log

(vF

dε

)
.

Note how the maximum energy transfer in a scattering event is determined by
the spacial scale of the interaction [52] or the Fermi energy. In the following, we
will simply use ∆ = min(vF/d, εF) for the cutoff. We reinsert the prefactor and
we find

G
(1)
++(x, y, ε)2−I−A = i( 1

−vF
)t(−r∗)r eipε(y−x)

ivF
× iV0

1
2 log

(vF

dε

)
= −A(x, y, ε)1

2 t|r|
2 log

(vF

dε

)
.

(3.2.3)

2-I-B The second diagram is of the same structure and it can easily be seen
that it leads to the same equation so the total contribution simply doubles. The
transmission coefficient in first order in interaction reads

t(1) = t− V0

vF
t|r|2 log(vF

dε
). (3.2.4)

3.2.2 Corrections to the reflection coefficient
The processes responsible for a correction to the reflection r are evaluated in the
same fashion. We start with the prefactor of the process 1-I-A in figure 3.2.4,

it(−r∗)t = i|t|2r,

where we used the unitarity condition for bare S-matrix elements, tr∗ = −rt∗.
We define further

B(x, y, ε) = V0

vF

1
ivF

e−ipε(y+x).
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We realize, that the arguments in the exponentials are the same as in 2-I-A and
the integrals have the same limits. Thus, there is no need to calculate again, we
just have to account for the change in the prefactor. The result reads

G
(1)
++(x, y, ε)1−I−A = −i( 1

v2
F

)|t|2r e−ipε(y+x)

ivF
× ivF

1
2 log

(vF

dε

)
= B(x, y, ε)1

2 |t|
2r log

(vF

dε

)
.

(3.2.5)

Diagrams 1-I-B and 3-I-A can be calculated similar to 1-I-A, so we proceed and
sum up all first order contributions.

3.2.3 Summary
We calculated the first order correction to the reflection

r(1) = r

[
1 + V0

vF
|t|2 log

(vF

dε

)]
, (3.2.6)

and the transmission coefficient

t(1) = t− V0

vF
t|r|2 log

(vF

dε

)
. (3.2.7)

The results agree with those in the literature [43, 47, 62, 74] presented in sec-
tion 1.2.2. It can easily be verified that the first order corrections satisfy the
unitarity condition for the S-matrix, namely

|r|2 + |t|2 = 1 and tr∗ + rt∗ = 0. (3.2.8)

The first order correction is leading if log(∆/ε) � 1. When the energy of
the incoming particle ε approaches the Fermi level, the result is logarithmically
divergent and sub-leading orders are even stronger divergent. If we are able
to confirm the unitarity of the S-matrix in the second order calculations, we
can sum up the perturbative corrections in the RG procedure shown earlier in
section 1.2.3.

3.3 Second order in interaction
To calculate the second-order correction we have to account for ten nonequivalent,
connected Feynman diagrams shown in figure 3.3.1.

3.3.1 Sub-leading diagrams
Diagrams (a) and (c) to (g) all contain a Hartree “bubble” and can therefore
only lead to a logarithm to the power of one or none at all. Diagram (j) is
also not double logarithmic. To see this, it is sufficient to analyze the available
phase space for the interaction. Given that the propagator between x1 and x3
in figure 3.3.2 propagates an electron, we can decide on all signs of the energies
in the remaining propagators. Namely,

ν > 0 ∧ ε− ω > 0 ∧ ν − ω < 0 ⇒ ν < ω < ε ∧ ν > 0.
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Figure 3.3.1: Second order Feynman diagrams [2].

x x1ε x3ε− ω yε

x2 x4

ν − ω
e

ν
h

Figure 3.3.2: Energy transfer in diagram (j). Solid lines represent right moving
particles, dashed lines stand for left-movers.

We note that the range for ω is limited from above by the particle energy ε which
is a small parameter and below from ν > 0. A single logarithmic contribution
containing the upper cutoff ∆ can thus only be provided by the integral over ν.
This contribution is bound to be subleading with respect to the diagrams (b),
(h) and (i), being of the order log2(∆/ε) as we will see below.

3.3.2 “Double-Fock”, “rainbow” and “crossed” diagrams
The remaining terms (b) (“double-Fock”), (h) (“rainbow”) and (i) (“crossed”)
are subject of this section. Due to the broken translational symmetry, a lot of
different diagrams can be drawn in real space. Sorting the processes according
to the number of reflections at the impurity is a plausible way to organize the
calculation, exploiting the reuseability of some parts of the calculation. For
details about the labels, please refer to section 3.1.3.
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1-I 1-II

1-III

ε ω ν ω ε ε ε− ω ε− ω − ν ε− ν ε

ε ω ε ν ε

Figure 3.3.3: Skeleton diagrams for “rainbow” (I), “crossed lines” (II) and “double
Fock” (III) diagrams.

Example calculations

For the sake of brevity, we present one example calculation for each of the three
skeleton diagrams. All other diagrams can be calculated analogously.

Double Fock diagram 2-III-A In the first example diagrams below in
figure 3.3.2 (skeleton diagram) and left in figure 3.3.4 (real space diagram)
the situation is trivial: The diagram is made up of two parts P and Q,

G
(2)
++(x, y, ε)2-III-A = PQ,

which can be taken directly from the first order (see section 3.2.2 for the detailed
calculations). The first building block is evaluated as follows:

P = −
∞∫

0

dx1

∞∫
0

dx2

0∫
−∞

dω
∞∫
−∞

dq G0
++(x, x1, ε)G0

+−(x1, x2, ω)

× t

ivF
eipεx2V (q)eiq(x1−x2)

= −r|t|
2

v2
F

1
ivF

e−ipεx
∞∫

0

dx1

∞∫
0

dx2

∞∫
−∞

dω
∞∫
−∞

dq

× exp[ipε(x1 + x2) + ipω(x1 + x2) + iq(x1 − x2)]V (q)
2π

= −iV0

vF
r|t|2 1

2 log
(vF

dε

)e−ipεx

ivF
.



3.3 Second order in interaction 63

2-III-A
e

e
h

h

e
e
h

h

e
e

1-II-A
e

e
h

e
e
e

e
e

1-I-C
e

e
e
h

h

e
e

e

Figure 3.3.4: Real space representations of specific double Fock, rainbow and
crossed line diagrams.

In the same fashion we compute the second part,

Q =
0∫

−∞

dx3

0∫
−∞

dx4

0∫
−∞

dν
∞∫
−∞

dq G0
−+(x3, x4, ν)G0

++(x4, y, ε)

× e−ipεx3V (q)eiq(x1−x2)

= −iV0

vF
r∗t

1
2 log

(vF

dε

)
eipεy.

Finally, both parts are combined and yield

G
(2)
++(x, y, ε)2-III-A = −1

4 t|t|
2|r|2V

2
0
v2

F

eipε(y−x)

ivF
log2(vF

dε
).

Rainbow diagram 1-I-C We proceed to the next class of diagrams. The
expression we need to evaluate reads

∞∫
0

dω
0∫

−∞

dν
0∫

−∞

dx1

∞∫
0

dx2

∞∫
0

dx3

0∫
−∞

dx4 G
0
++(x, x1, ε)G0

++(x1, x2, ω)

×G0
+−(x2, x3, ν)G0

−−(x3, x4, ω)G0
−−(x4, y, ε)V (x1 − x4)V (x2 − x3).

It is convenient to separate the S-matrix elements and the global minus sign
from the rest,

−t(−r∗)t = −r|t|2.

In the next step, we focus on the integrals,

I(ε, d) :=
∫

d[. . . ] exp[i(pε − pω + q)x1 + i(pω + pν +Q)x2]

× exp[i(pν + pω −Q)x3 + i(pε − pω − q)x4].
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We first compute the coordinate integrals. The regularizers have to cut the
infinities (Im(pε − pω) = −η and Im(pω + pν) = η).8 Thus the coordinate
integrals can be evaluated safely. The result of the integration (neglecting the
energy-integrals for a second) reads

I(ε, d) =
∞∫
−∞

dq
∞∫
−∞

dQ V (q)V (Q)
(pε − pω + q)(pε − pω − q)(pν + pω +Q)(pν + pω −Q) ,

where the integrand has one pole in each half-plane for both q and Q.

<(q)

=(q)

(1)

(4)

(1) q = pω − pε + iη

(2) q = −pω + pε − iη

We close both contours in the upper half-plane (the integration along the contours
yields zero due to V ) and end up with the remaining two energy integrals,

I(ε, d) = V 2
0
4

∞∫
0

dω
0∫

−∞

dν V ((ε− ω)/vF)V ((ω + ν)/vF)
(pε − pω)(pω + pν) .

The two fractions both contain ω, so we choose to integrate over ν first and we
end up with

I(ε, d) = V 2
0
4

∆∫
0

dω 1
(ω − ε) log( ω

ω + ∆) = 1
4

∆∫
ε

dω ′ 1
ω′

log(ω
′

∆ )

= V 2
0
4

[
1
2 log2(∆

ε
)− log(∆) log

(
∆
ε

)]
= −V

2
0
8 log2(∆

ε
).

The interaction potentials V provide a possible finite cutoff max(εF, vF/d) = ∆.
Collecting all prefactors, we find the result

G
(2)
+−(x, y, ε)1-I-C = 1

8r|t|
2
[
V 2

0
v2

F

e−ipε(x+y)

ivF

]
log2(∆

ε
). (3.3.1)

Diagram with crossed interaction lines 1-II-A When we look at the
structure in figure 3.3.2 we can identify a diagram containing both a particle

8Note that the regularizer in this calculation is necessary to mimic a finite system size.
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and a hole with an entangled energy structure. If we expect a breakdown of the
unitarity conditions in second order in interaction, it is supposed to stem from
this type of diagrams. The corresponding equation reads

G
(2)
+−(x, y, ε)1-II-A =

0∫
−∞

dν
ε−ν∫
ε

dω
0∫

−∞

dx2

0∫
x2

dx1

0∫
−∞

dx4

0∫
x4

dx3 G
0
++(x, x1, ε)

×G0
++(x1, x2, ε− ω)G0

+−(x2, x3, ε− ω − ν)
×G0

−−(x3, x4, ε− ν)G0
−−(x4, y, ε)V (x1 − x3)V (x2 − x4),

where the limits for the energy integrals are derived from the relations

ε− ω < 0 ∧ ε− ω − ν > 0 =⇒ ε < ω < ε− ν
ε− ν > 0 =⇒ ε > 0 > ν,

which reflects the particle or hole nature of the propagators.9 Again, we separate
the S-matrix elements and the external variables first,

r,

wherein we note one minus due to the single hole propagating Green which
cancels the global minus (from i2) in front. Like in the previous diagram, we
proceed with the integrals,

I(ε, d) :=
∫

d[. . . ] V (q)V (Q)

× exp[i(pε + pε−ω + q)x1 + i(−pε−ω − pε−ω−ν +Q)x2]
× exp[i(−pε−ω−ν + pε−ν − q)x3 + i(−pε−ν + pε −Q)x4].

The integrals over the coordinates (regularizers: Im(pε − pε−ω−ν) = −η and
Im(pε − pε−ν) = −η) yield

I(ε, d) =
∫

d[. . . ] V (Q)V (q′ −Q)
(pε − pε−ω−ν + q′)(pε − pε−ω−ν − q′)

(3.3.2)

× 1
(−pε−ω − pε−ω−ν +Q)(pε − pε−ν −Q) , (3.3.3)

where we changed the variable q → q′ = q +Q. q′ and Q integrals are evaluated
by pole-integration. Again the integration along the contours yield zero and we
are left with

I(ε, d) = −V
2
0 v

2
F

4

0∫
−∞

dν
ε−ν∫
ε

dω 1
(ω + ν)ν .

9See figure 3.3.4, a hole propagator has a negative energy argument, an electron propagator
a positive one.
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In the last step, we need to integrate over the internal energies ω and ν,

I(ε, d) = −V
2
0 v

2
F

4

∆∫
0

dν
ε∫

ε+ν

dω 1
ν(ω − ν)

= −V
2
0 v

2
F

4 PV

 ∆∫
0

dν
log
(
|ε−ν|
ε

)
ν


= −V

2
0 v

2
F

8 log2(∆
ε

).

We took the principal value of the integral in the second line. Combining the
result with the prefactor we obtain

G
(2)
+−(x, y, ε)1-II-A = −1

8r
[
V 2

0
v2

F

e−ipε(x+y)

ivF

]
log2(∆/ε). (3.3.4)

Note that we can construct a similar diagram by inverting the path of the
particle, thus the result should be doubled. For a complete record of all possible
diagrams, symmetries play a crucial role in determining the correct prefactors.

Results

The result of these calculations are presented in table 3.1. See section A.3 for
additional details on the calculations to all 28 diagrams including their real-space
pictorial representation.

Diagram log2(∆/ε) Diagram log2(∆/ε)
1-I-A 1/4r 3-I-A −1/4r|r|2
1-I-B 1/4r|t|2 3-I-B −1/8r|r|2
1-I-C 1/8r|t|2 3-I-C −1/8r|r|2|t|2
1-I-D 1/8r|t|2 3-I-D −1/8r|t|2|r|2
1-I-E 1/8r|t|4 3-I-E −1/8r|r|2
1-I-F 1/8r 3-II-A 1/4r|r|2
1-II-A −1/4r 3-III-A −1/4r|r|2|t|2
1-II-B −1/4r|t|2 3-III-B −1/4r|r|2
2-I-A −1/2t|r|2 3-III-C −1/2r|r|2|t|2
2-I-B −1/4t|r|2 4-I-A 1/4t|r|4
2-I-C −1/4t|r|2|t|2 4-III-A 1/2t|r|4
2-II-A 1/2t|r|2 4-III-B 1/4t|r|4
2-III-A −1/4t|t|2|r|2 5-I-A 1/8r|r|4
2-III-B −1/4t|r|2 5-III-A 1/4r|r|4

Table 3.1: Second order corrections in interaction to the S-matrix of a featureless
scatterer.
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3.3.3 Corrections to transmission, reflection and checking
of unitarity

Diagrams with one, three and five reflections at the impurity contribute to the
total correction to the reflection coefficient,10

r(2) = r

[
1 + V

2 log
(vF

dε

) [
1 + (|t|2 − |r|2)

]
(3.3.5)

+ V 2

8 log2(vF

dε
)
[
1 + |t|4 + 2|t|2 − 4|r|2 − 8|t|2|r|2 + 3|r|4

] ]
(3.3.6)

= r

[
1 + V log

(vF

dε

)
|t|2 + V 2

2 log2(vF

dε
)
[
|t|2
(
|t|2 − 2|r|2

)]]
, (3.3.7)

whereas the remaining diagrams with two and four reflections sum up to give
the correction to the transmission amplitude,

t(2) = t

[
1− V log

(vF

dε

)
|r|2 + V 2

2 log2(vF

dε
)[2|r|4 − |t|2|r|2 − |r|2]

]
(3.3.8)

= t

[
1− V log

(vF

dε

)
|r|2 + V 2

2 log2(vF

dε
)
[
|r|2

(
|r|2 − 2|t|2

)]]
. (3.3.9)

As can easily be checked, these expression are identical to those calculated by
expanding the RG result in section 1.2.3 up to the second order.

Unitarity

The coefficients can both be decomposed into a real prefactor (Rr and Rt) and
r or t. Thus, the first unitarity condition,

(r(2))∗t(2) − (t(2))∗r(2) = r∗RrtRt − t∗RtrRr = 0, (3.3.10)

is fulfilled just as the second condition, namely

|r(2)|2 + |t(2)|2 = |r|2R2
r + (1− |r|2)R2

t = 1 +O(V 4). (3.3.11)

We conclude that the results of the second order perturbation theory are valid
corrections in the S-matrix language and coincide with the results from the RG
analysis. We will stop our perturbative expansion at second order in interaction
and use the framework established in this and the previous sections to look for
traces of inelastic scattering in more complex systems, where additional energy
scales enter the system. Namely we have to take into account the Thouless
energy Eth when we confine the interaction to an arbitrary region around the
origin in the next section.

3.4 A second scale
3.4.1 Interaction in a box
In this second step we will introduce an additional lengthscale L to confine the
interaction to a finite region (see figure 3.4.1). This picture corresponds to a
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G0
+

G0
−

G0
+

L

Figure 3.4.1: Interaction over a finite range

single channel 1d wire which is connected to reservoirs by smooth (reflection-
less) contacts. Not only is this model a more realistic description of a possible
experimental setup, it also justifies the use of free electron propagators in the
asymptotic states. In the preceding section the length of the box was infinite
and therefore the notion of asymptotic Green’s was not well defined.

Together with the new lengthscale there comes an energy scale ETh = vF
L ,

the Thouless energy of the system with a finite interaction range. Depending
on the size of the box this energy can be bigger or smaller then the particle
energy, temperature or bias. In the latter case the lower cutoff for the logarithmic
integrals will still be ε, the particle energy, and in the limit of infinitely large
systems we expect to restore the results of the previous chapters. In the case
ETh > ε, the new energy scale will enter most of the logs, replacing ε. There are
two possible outcomes of this analysis:

• ETh can be found in all logarithmic contributions replacing ε as the infrared
cutoff. The basic structure of the second order calculation is not changed
and the unitarity of the S-matrix is conserved.

• Different combinations of logarithmic contributions arise in second order.
If the contributions do not cancel, unitarity can not be restored. This can
be understood, for example, as a failure of the method.

Center of mass dependent interaction

The potential used in the following captures all essential features of the system.
For simplicity, the (short-ranged) interaction is replaced by a point-like interaction

V (x1, x2) = V0δ(x1 − x2)e−|x1+x2|/L. (3.4.1)

This analysis can equally be done with a potential with sharp cutoff or a finite
range of interaction (see section A.4) but since it is rather lengthy and does not
bring any new physics we use this simple potential.

3.4.2 First order in interaction
Let us see how the additional scale enters the calculations. For example, we
consider diagram 2-I-A in the first order in interactions. The expression reads

G
(1)
++(x, y, ε)2-I-A = i

∞∫
0

dω
∞∫

0

dx1

∞∫
0

dx2 G0
++(x, x1, ε)

×G0
+−(x1, x2, ω)G0

−+(x2, y, ε)V (x1, x2).
10The first label of a diagram counts the number of reflections.
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We extract the prefactor
it|r|2A(x, y, ε),

where we can identify A from equation (3.2.1), put vF = 1 and proceed with the
integrals,

I(ε,∆, ETh) :=
∞∫

0

dω
∞∫

0

dx1 2i(pε + pω + iETh)x1,

where we used δ(x1 − x2) to calculate the integral over x2. After x1 integration,
we get (omitting the prefactor)

I(ε,∆, ETh) =
∆∫

0

dω −1
2i(ε+ ω + iETh) = −vF

2i log
(

∆
ε+ iETh

)

= − 1
2i log

(
∆√

ε2 + E2
Th

)
,

where we neglected a subleading phase factor. We analyze this integral in
two different regimes, namely a very large system, ETh � ε and a small one,
∆� ETh � ε. As expected, in the limit of infinite system size, we restore our
previous result

I(ε,∆) = − 1
2i log(∆/ε),

while in the opposite limit, the Thouless energy provides the infrared cutoff:

I(Eth,∆) = − 1
2i log

(
∆
Eth

)
.

The total contribution due to this diagram reads

G
(1)
++(x, y, ε)2-I-A = − V0

2vF
t|r|2 log

(
∆

max(Eth, ε)

)
G0

++(x, y, ε).

Since all diagrams in the first order share the same essentials, we do not expect
the logarithmic structure to change for other diagrams.

3.4.3 Second order in interaction for a finite system

In the following we analyze both “rainbow” and “crossed-lines” diagrams to see
if a change in the logarithmic structure appears. “Double Fock” diagrams can
be directly deduced from the first order calculus.

“Rainbow” diagrams

We follow the same step-by-step procedure in calculating the Diagram 1-I-B
(second order in interaction) as in section 3.3. The complete expression for the
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propagator reads

G
(2)
+−(x, y, ε)1-I-B = −

∆∫
0

dω
∆∫

0

dν
L∫

0

dx1

x1∫
0

dx2

L∫
0

dx4

x4∫
0

dx3 G
0
++(x, x1, ε)

×G0
++(x1, x2,−ω)G0

+−(x2, x3,−ν)G0
−−(x3, x4,−ω)

×G0
−−(x4, y, ε)V (x1, x4)V (x2, x3)

= −V
2
0
v4

F
r|t|2G0

+−(x, y, ε)
∆∫

0

dω
∆∫

0

dν
L∫

0

dx1

x1∫
0

dx2

× exp(2i(ε+ ω + ivF/L)x1/vF + 2i(ν − ω + ivF/L)x2/vF).

We put the prefactor aside and calculate the integrals over the coordinates x2
and x1:

I(ε,∆, ETh) :=
∆∫

0

dω
∆∫

0

dν
[

1
4(ν − ω + iETh)(ε+ ν + 2iETh)

− 1
4(ε+ ω + iETh)(ν − ω + iETh)

]

= v2
F

∆∫
0

dω
∆∫

0

dν −1
4(ε+ ω + iETh)(ε+ ν + 2iETh) .

Like in the previous section, the integrals are computed in the two regimes of
infinitely large and small system size.

ε � vF/L (The limit of the infinite system): In the leading logarithmic
approximation we neglect the Thouless energy and arrive at

I(ε,∆) = −1
4

∆∫
0

dω
∆∫

0

dν 1
(ε+ ν)(ε+ ω) = −1

4 log2(∆/ε).

ε � vF/L (Small system): Following the same arguments as before we
identify the integral in the regime ε < ν, ω < vF/L as small correction and only
account for contributions ω, ω � vF/L. In doing so, we obtain

I(∆, ETh) = −1
4 log2

(
∆
ETh

)
.

Finally, we account for both parameter ranges in the single expression

G
(2)
+−(x, y, ε)1-I-B = V 2

0
4v2

F
r|t|2 log2

(
∆

max(ε, ETh)

)
G0

+−(x, y, ε).

We conclude that we can’t expect any non-trivial behavior from the “rainbow”
diagrams. The infrared cutoff of the corrections is replaced by max(ε, ETh).
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1-II-A
e

e
h

e
e
e

e
e

“Crossed-lines” diagrams

In this section we discuss the influence of a finite system size on the diagram
1-II-A with crossed interaction lines. This diagram has an entangled structure
with electrons and holes, providing the most non-trivial structure at second order.
We proceed in the same manner as in the previous section. The full expression
for this diagram reads (compare section A.3.1),

G
(2)
+−(x, y, ε)1-II-B = −

0∫
−∆

dν
ε−ν∫
ε

dω
0∫

−∞

dx2

0∫
x2

dx1

0∫
−∞

dx4

0∫
x4

dx3 G
0
++(x, x1, ε)

×G0
++(x1, x2, ε− ω)G0

+−(x2, x3, ε− ω − ν)G0
−−(x3, x4, ε− ν)

×G0
−−(x4, y, ε)V (x1, x4)V (x2, x3)

= r
V 2

0
v4

F
G0

+−(x, y, ε)
0∫

−∆

dν
ε−ν∫
ε

dω
0∫

−∞

dx2

0∫
x2

dx1

× exp(2i(ν − ivF/L)x1/vF + 2i(ω − ivF/L)x2/vF),

is first integrated over x1 and x2 (we put the prefactor aside):

I(ε,∆, ETh) :=
0∫

−∆

dν
ε−ν∫
ε

dω −1
4(ν − iETh)(ω + ν − 2iETh)

=
0∫

−∆

dν 1
4(ν − iETh) log

(
|ε+ ν| − 2iETh

ε− 2iETh

)
.

ε� ETh (Large system): In this limit,

I(ε,∆, ETh) = −
∆∫

0

dν 1
4(ν + iETh) log

(
ε+ ν

ε

)
.

As long as ν < ε the contribution is not log2 (the logarithm in the integral
behaves like log(1)). As soon as we replace the infrared cutoff in the integral by
ε, vF/L in the denominator inside the integral can be neglected and we restore
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the previous result (compare equation (A.3.8))

I(ε,∆) = −1
8 log2(∆

ε
).

ε� ETh (Small system): With logarithmic accuracy, we can write

I(ε,∆, ETh) = −
∆∫

0

dν 1
4(ν + iETh) log

(
ETh + ν

ETh

)
.

Again, the leading log2 contribution can be found for ν > ETh (for 0 < ν < ETh
there is only a single log). Finally, we restore the same result as in the previous
calculations with the infrared cutoff replaced by ETh, namely

I(∆, ETh) = −1
8 log2

(
∆
E Th

)
.

Accounting for both regimes and reinserting the prefactor we get

G
(2)
+−(x, y, ε)1-II-A = −1

8r log2
(

∆
max(ETh, ε)

)
C+−(x, y, ε). (3.4.2)

When we compare this result to equation (3.3.4) we see that we can expect
that the infrared cutoff is replaced in all diagrams with crossed interaction lines
as soon as the system size is reduced sufficiently. Ultimately we state that in all
three different types of diagrams, the finite size does not change the logarithmic
structure of the perturbative corrections in the second order. According to the
calculations in section 3.3, the S-matrix, apart from a replacement in the UV
cutoff, remains unchanged.

3.5 Energy dependent scattering matrix
We replace the simple structureless scatterer of the previous sections by a
scattering structure with a resonant level.

3.5.1 Resonant scattering in a one-dimensional system at
first order in interaction

We model the resonance by a compound scatterer made of two tunnel barriers
with equal tunnel amplitudes t separated by a distance πvF/δ. This gives rise
to a system of resonances separated by energy δ. The magnitude of δ is of the
order of the cutoff ∆, so that the distance between the barriers is small (of the
order of d, the range of interaction). In this limit the model of a single resonant
level of the Breit-Wigner type is valid [62] (see also section 1.4.1). We start with
the bare amplitudes of the Breit-Wigner type,

t(ε) = Γ
Γ− i(ε− εR) = iΓ

(ε− εR) + iΓ = i
ξ + i , (3.5.1)

r(ε) = i(ε− εR)
Γ− i(ε− εR) = −(ε− εR)

(ε− εR) + iΓ = −ξ
ξ + i , (3.5.2)
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where εR is the position of the resonant level measured from the Fermi surface,
Γ denotes the width of the resonance and ξ = ε−εR

Γ . In this limit, we can safely
neglect the renormalization of amplitudes between the barriers (see section 1.4.1),
and treat the whole structure as a point-like scatterer with energy dependent
scattering matrix S. The width Γ is related to the strength of the barriers
by Γ = |t|2δ/2π. Furthermore, we assume that the interaction corrections to
both quantities are included in the definition, i.e., changes to those parameters
come from energy scales of the order of the Fermi energy. The bare scattering
amplitudes given above obey the unitarity conditions |t|2+|r|2 = 1 and tr∗+t∗r =
0, and the special relation for a delta-function type impurity r = t− 1.

3.5.2 Relations of the energy scales
Before we start calculating, it is useful to discuss the possible relations of the
energy scales that will appear in the course of calculus. Two of them have been
introduced in previous sections, namely the particle energy ε, which is of the
order of the applied bias or the temperature, and the cutoff ∆, the smaller of
either the Fermi energy or the inverse interaction length. With the addition of a
resonant scatterer, we have to introduce two new energy scales: The width of
the resonant level Γ and the position εR. We will label the different situations
so that we can easily refer to them in the discussion of the results.

a: Off resonance The resonant level is either far above or below the particle
energy and the width is small on the scale of the difference of ε and εR.

1. High energy particle, sharp resonance close to Fermi energy.

ε ∆0 εR

• ∆� ε� εR,Γ
• t� r

2. Resonance at high energies.

ε ∆0 εR

• ∆� εR � Γ, ε
• t� r

b: In the vicinity of the resonant level

1. Resonance close to the Fermi level.

ε ∆0 εR

• ∆� ε
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• ε ∼ εR ∼ Γ

• r ∼ t

2. Resonance at high energies.

ε ∆0 εR

• ∆� εR, ε� Γ

• r ∼ t

c: Inside the resonant level

1. Resonance and particle energy close to the Fermi level.

ε ∆0 εR

• Γ� ε

• ε− εR � 1

• t� r

2. Resonance at high energies.

ε ∆0 εR

• εR, ε� Γ

• ε− εR � 1

• t� r

A Broad resonant level with a width orders of magnitude larger than the
particle energy is not validly described by a Breit-Wigner type resonance.

3.5.3 First order in interactions
To demonstrate the influence of energy dependent scattering on the calculations
we start with the first order diagram 2-I-A. The prefactor of this process reads

it(ε)r(ε),

where in contrast to case of a structureless impurity the reflection of the hole is
energy dependent and can not be added to the prefactor. The integration of the
coordinates and Fourier components of the interaction are untouched by this
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modification. The energy integrals calculate as follows (see equation (3.2.2) on
page 58):

I(ε,∆, εR,Γ) :=
∆∫

0

dω r∗(−ω)
ε+ ω

= −
∆∫

0

dω (ω + εR)
(ε+ ω)(iΓ + (ω + εR))

= −

∆
Γ∫

εR
Γ

dy y

(ξε + y)(y + i)

= −ξ
ξ − i

∆
Γ∫

εR
Γ

dy 1
ξ + y

+ i
ξ − i

∆
Γ∫

εR
Γ

dy 1
i + y

= r∗(ε) log
(

∆
ε

)
− t∗(ε) log

(
∆
Γ + i
εR
Γ + i

)

= r∗(ε) log
(

∆
ε

)
− t∗(ε)

[
log
(

∆√
ε2R + Γ2

)

+ i arctan(Γ/εR)
]
.

The phase factor does not affect the unitarity of the S-matrix since it is not
of leading logarithmic order. This is important because the calculation for the
electron reflection in 1-I-B yields a different sign, namely

G
(1)
+−(x, y, ε)1−I−B ∝

∆∫
0

dω r(ω)
ω − ε

= r(ε) log
(

∆
ε

)
− t(ε)

[
log
(

∆√
ε2R + Γ2

)

− i arctan(Γ/εR)
]
.

We will neglect this correction in the following and define

L1 := log
(

∆
ε

)
and L2 := log

(
∆√

ε2R + Γ2

)
. (3.5.3)

Other first order diagrams

In an analogous manner, the other diagrams of first order (see section 3.2.1) can
be calculated. The results are presented in table 3.2.

Unitarity of the resonant transmission amplitudes in first order

The perturbative corrections read

δt(ε) = V0

vF

[
−t(ε)|r(ε)|2L1 + r(ε)|t(ε)|2L2

]
, (3.5.4)

δr(ε) = V0

vF

[
r(ε)|t(ε)|2L1 −

t(ε)
2
(
|r(ε)|2 − |t(ε)|2 + 1

)
L2

]
. (3.5.5)
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diagram correction

1-I-A V0
2vF

(
r|t|2L1 + t|t|2L2

)
1-I-B V0

2vF
(r(ε)L1 − t(ε)L2)

2-I-(A+B) V0
vF

(
−t(ε)|r(ε)|2L1 + r(ε)|t(ε)|2L2

)
3-I-A − V0

2vF

(
r(ε)|r(ε)|2L1 + t(ε)|r(ε)|2L2

)
Table 3.2: First order diagrams in interaction and the logarithmic corrections.
The definition of L1 and L2 can be found in equation (3.5.3).

The first contribution reproduces the results for the structure-less impurity (see
section 3.2.3). This is what we expect far from the resonance. It can be verified
that the unitarity conditions for L2 ∼ L1 (the resonant case) are met in the first
order (compare with section 3.2.3).

Anti-resonant scattering

Alternatively to the resonant scattering discussed above we can model an anti-
resonant level as in section 1.4.2(for example an occupied quantum dot) by
exchanging the expressions for t and r in equation (3.5.1) and changing the sign
of the nominators (so that r = t− 1). This results in a change of the logarithmic
cutoff in both the resonant and the off-resonant case. To see this, we analyze
an electron (e.g., diagram 1-I-B) and a hole (e.g., diagram 1-I-A) reflection and
compute the integral over the internal energy ω,

I1(ε,∆, εR,Γ) :=
∆∫

0

dω r(ω)
ω − ε

=
∆∫

0

dω −iΓ
(ω − ε)[ω + iΓ− εR)]

= r(ε)
[
log
(

∆
ε

)
− log

(
∆

|iΓ− εR|

)]
= r(ε) log

(
|iΓ− εR|

ε

)
= r(ε) log

(√
Γ2 + ε2R
ε

)

I2(ε,∆, εR,Γ) :=
∆∫

0

dω r∗(−ω)
ε+ ω

= r∗(ε) log
(√

Γ2 + ε2R
ε

)

We see that max(Γ, εR) replaces the infrared cutoff in the logarithm. This result
coincides with Ref. [47]. The unitarity of the S-matrix is not violated in first
order because there are no additional logarithms, i.e., the structure remains
unaltered.

Resonant scattering at a non-symmetric impurity

In the general case, a resonant scatterer set up by two barriers is not symmetric
in space. In section 3.1.1 we derived scattering amplitudes for a small asymmetric
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scatterer without a resonant level. In this section, we consider the case presented
in section 1.4.1, namely using the same amplitudes as in Ref. [57]:

t(ε) =
√

ΓLΓR

(ΓL + ΓR)/2− i(ε− εR) (3.5.6)

rL(ε) = (ΓR − ΓL)/2 + i(ε− εR)
(ΓL + ΓR)/2− i(ε− εR) . (3.5.7)

The amplitude rR can be derived from the unitarity condition for the asymmetric
system tr∗R + rLt

∗ = 0. The second condition |rl|2 = |rR|2 = 1− |t|2 holds true,
too, and the unitarity of the initial scattering matrix is ensured. We use
equation (3.5.6) and equation (3.5.7) to calculate the corrections to transmission
and reflection on the left and right,

δt(ε) = −t(ε)|rL(ε)|2 log
(

∆
ε

)
+ |t(ε)|2

2
√

ΓRΓL
(ΓLrR(ε) + ΓRrL(ε)) log

(
∆
Γm

)
= (...) log

(
∆
Γm

)
− t(ε)|rL(ε)|2 log

(
Γm
ε

)
,

(3.5.8)

δrL(ε) = rL(ε)|t(ε)|2 log(∆/ε)− t(ε)
2
√

ΓRΓL

(
ΓR(1 + rLr

∗
R)− ΓL|t|2

)
log
(

∆
Γm

)
= (...) log

(
∆
Γm

)
+ rL(ε)|t(ε)|2 log

(
Γm

ε

)
,

,

(3.5.9)

where Γm = max(ΓR,ΓL, εR). The two logarithms belong to the different regimes
of ε on (∆/Γm � Γm/ε) and off-resonance. It is straightforward to prove unitarity
in both the resonant and the off-resonant regime. For details please refer to
section A.5.2 of the appendix.

3.5.4 Second order for a symmetric resonant scatterer
In the first order in interaction, unitarity is a property of the S-matrix in all
regimes. In this section, the second order correction are evaluated in the different
regimes in section 3.5.2. To this end, we repeat all calculations for the second
order with an energy dependent scattering matrix. Examples for calculations of
this type can be found in section A.3.

Let us briefly motivate our calculations before presenting the results. In the
second order diagrams, e.g., in 1-I-C in figure 3.3.4 on page 63, we also find
transmission amplitudes depending on the internal energy variables. We note
that the integrals over internal energy variables yield different cutoffs in the
logarithms for reflection and transmission, namely

∆∫
0

dω r(ω)
ω − ε

∝ log
(

∆
Γ̄

)
, (3.5.10)

∆∫
0

dω t(ω)
ω − ε

∝ log
(

Γ̄
ε

)
, (3.5.11)
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where Γ̄ =
√

Γ2 + ε2R.11 We can therefore expect a non-trivial interplay of the
different cutoffs in the system.

The results of our calculation is presented in table 3.3. Note that the first

Diagr. L2
1 L2

2 L2(L1 − L2) L1L2 P

1-I-A 2r −2t
1-I-B 2r|t|2 2t|t|2
1-I-C r|t|2 −r|t|2 2t|t|2
1-I-D r|t|2 t|t|2
1-I-E r|t|4 −r|t|4 −2t|t|4
1-I-F r −t
1-II-A −2r 2t
1-II-B −2r|t|2 −2t|t|2 −4t|t|2
2-I-A −4t|r|2 4r|t|2
2-I-B −2t|r|2 2r|t|2
2-I-C −2t|r|2|t|2 2t|r|2|t|2 −4r|t|4
2-II-A 4t|r|2 −4r|t|2 −8r|t|2
2-III-A −2t|t|2|r|2 2t|t|4 4r|t|4
2-III-B −2t|r|2 −2t|t|2 −4r|t|2
3-I-A −2r|r|2 −2t|r|2
3-I-B −r|r|2 −t|r|2
3-I-C −r|r|2|t|2 r|r|2|t|2 2t|r|2|t|2
3-I-D −r|t|2|r|2 [r|r|2|t|2 − t2] 2t|t|2|r|2
3-I-E −r|r|2 [r|r|2 + 1] −2t|r|2
3-II-A 2r|r|2 2t|r|2 4t|r|2
3-III-A −2r|r|2|t|2 2r|t|4 −4t|t|2|r|2
3-III-B −2r|r|2 −2r|t|2 4t|r|2
3-III-C −4r|r|2|t|2 4r|t|4 −8t|t|2|r|2
4-I-A 2t|r|4 −2[t|r|4 + rt] 4r|t|2|r|2
4-III-A 4t|r|4 −4t|r|2|t|2 −8r|r|2|t|2
4-III-B 2t|r|4 −2t|r|2|t|2 −4r|r|2|t|2
5-I-A r|r|4 −[r|r|4 + r2] −2t|r|4
5-III-A 2r|r|4 −2r|t|2|r|2 4t|r|4

Table 3.3: Corrections to an energy dependent S-matrix in second order in
interaction where L1 = log(∆/ε)/8, L2 = log(∆/Γ̄)/8 and P = Li2(−ε/Γ̄)/8.

column correctly reproduces the results for the featureless scatterer. Additionally
to combinations of the logarithmic contributions L1 and L2 known from first
order, a third, poly-logarithmic, correction P appears in table 3.3. It is defined
as follows:

P = Li2(−ε/Γ̄) =


const. when Γ̄ ≥ ε,

−1
2 log2

(
ε

Γ̄

)
when ε� Γ̄.

(3.5.12)

For convenience, we sum up the different logarithmic contributions to reflection
and transmission in another table, table 3.4. We proceed by an analysis of the

11See section 3.5.3 for the second integral over t(ω) (the expressions for t and r are exchanged
in the anti-resonant case).
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Reflection Transmission

L1 r|t|2 −t|r|2
L2 −t|r|2 r|t|2
L2

1 1/2r[|t|2(|t|2 − 2|r|2)] 1/2t[|r|2(|r|2 − 2|t|2)]
L2

2 1/4
(
t|r|2−r[t+ |t|2(1− 2|t|2)]

)
−1/4

(
r|t|2+t[t+ |t|2(1− 2|t|2)]

)
L2(L1 − L2) t|r|2|t|2 −r|t|4

L1L2 −2t|r|2|t|2 −r|t|2(1− 2|t|2)
P 1/2t(1− 2|t|2) −r|t|2

Table 3.4: Logarithmic corrections to the S-matrix in the second order in
interaction. The variable L1 and L2 are defined in equation (3.5.3).

corrections. The unitarity conditions up to second order in interaction read

|t|2 + |r|2 = 1 + t∗0δt
(1) + c.c.+ |δt(1)|2 + t∗0δt

(2) + c.c
+ r∗0δr

(1) + c.c.+ |δr(1)|2 + r∗0δr
(2) + c.c.+ O(α3),

(3.5.13)

t∗r − r∗t = t∗0δr
(1) − c.c.+ r0(δt(1))∗ − c.c + (δt(1))∗δr(1) − c.c

+ t∗0δr
(2) − c.c.+ (δt(2))∗r0 − c.c.+ O(α3),

(3.5.14)

where α = V0/vF. The calculation is straightforward using table 3.4. We present
the result with leading logarithmic accuracy, namely

|t|2 + |r|2 = 1 + O(α3), (3.5.15)
t∗r − r∗t = −α2|t|2P. (3.5.16)

In the cases a.2, b and c in section 3.5.2, equation (3.5.16) is reduced to
the unitary result,

t∗r − r∗t = 0,

with logarithmic accuracy.

In case a.1, the contribution P is of order log2 and equation (3.5.16) yields

tr∗ − rt∗ = −α2|t|2P = α2|t|2 log
(
ε

Γ̄

)
6= 0.

The unitarity of the scattering matrix is violated and points towards dephasing
in the system. However, this contribution is small due to the prefactor: The log-
arithmic contribution grows as ε/max(εR,Γ) but at the same time the prefactor
is of the order Γ/max(ε− εR,Γ)� 1. These non-unitary corrections are small
with respect to the leading contributions. Nevertheless, this last result shows a
trace of dephasing in the system.





Chapter 4

Conclusions

We have studied transport of weakly interacting electrons in a one-dimensional
system with a scatterer. The strength of the scatterer in the wire is arbitrary
whereas the weak repulsive interaction in the system is treated perturbatively
using T = 0 Green’s functions and a real-space diagrammatic technique. The
perturbative corrections modify the two-by-two scattering (S-)matrix of the
system connecting asymptotically free incoming and outgoing electrons of right-
or left-moving chirality.

The main focus of our analysis was on processes violating the unitarity of the
scattering matrix. Such processes, if present, can reflect dephasing or a deviation
from the particle conservation for a given energy and can lead to a failure of the
RG approach for the system.

We calculated the second order in interaction for a system of infinite and
finite size with a simple structureless and a resonant scatterer. In the former
case, the infrared energy cutoff is replaced by the Thouless energy of the system
in the limit of a small system, but no traces of unitarity-violating processes could
be found. In our analysis of the resonant scatterer we saw traces of dephasing
in second order in the resonant case. The deviations are of order log2(ε/Γ̄) but
with a small prefactor. Thus we have found only a small dephasing and the
RG procedure is valid for a compound scatterer in the case of finite and infinite
systems. The other leading logarithmic corrections coincide with those found in
the literature for the different regimes.

Possible continuations of the project could involve an analysis of the sub-
leading logarithmic or non-logarithmic corrections, the second RG loop or the
third order in interaction at a finite temperature. This will allow to perform a
systematic study of dephasing in such systems. Phonons can also contribute to
the RG [26] and dephasing.

Alternatively, the diagrammatic approach we used can be applied straightfor-
wardly to the investigation of various other cases, e.g., Junctions of four wires,
disorder or extended scattering structures. The investigation of the latter would
be an promising project better understand the recent results by Altland and
Gefen [3]. For this task, the diagrammatic language can be used with other
Green’s function techniques, such as the Matsubara or Keldysh technique.





Appendix A

Details of calculations

A.1 The scattering matrix
The scattering matrix relates initial and final states of a scattering event [65].
Let ajo and aji be final and initial states of N different kinds (i.e. particle nature
or chirality): j ∈ {1, ..., N}. Then we define:

~ao = S · ~ai

In order to conserve the probability measure we require the matrix to be
unitary:

SS† = 1

The S-matrix is therefore a member of the special unitary group of degree N ,
SU(N).

A.1.1 Application to the one-dimensional wire with an ar-
bitrary impurity

For the Luttinger liquid model, we distinguish particles of different chirality:
Right- and left-moving fermions. The asymptotic initial (i) and final (f) states
are “free” states, since they are taken long before the scattering event (t→ −∞)
and far away from the interacting region (xi/f → −∞). Thus we can write down
the scattering matrix for our purpose in terms of Green’s functions:

(
G+

0 (x, xf → +∞, ε)
G−0 (x, xf → −∞, ε)

)
=
(
tlr(ε) rll(ε)
rrr(ε) trl(ε)

)(
G+

0 (xi → −∞, x, ε)
G−0 (xi → +∞, x, ε)

)
The unitarity condition for such a matrix can be reformulated in terms of the
matrix elements, namely

|tlr|2 + |rll|2 = |trl|2 + |rrr|2 = 1 and tlrr
∗
rr + rllt

∗
rl = rrrt

∗
lr + trlr

∗
ll = 0.

Note that we can use the two conditions to choose one of the elements. Through-
out this thesis, trl is always chosen equal to tlr.
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A.2 Chiral Green’s functions in coordinate and
energy representation

Below we give expressions for the chiral Green’s functions for all different cases:

G0
++(x, y, ε) =
tR
ivF exp{ipε(y − x)} x < 0 ∧ y > 0 ∧ ε > 0 (electron transmission)
1

ivF exp{ipε(y − x)} xy > 0 ∧ y > x ∧ ε > 0 (electron propagation)
−t∗L
ivF exp{ipε(x− y)} y < 0 ∧ x > 0 ∧ ε < 0 (hole transmission)
−1
ivF exp{ipε(x− y)} xy > 0 ∧ x > y ∧ ε < 0 (hole propagation)

(A.2.1)
G0
−−(x, y, ε) =
tL
ivF exp{ipε(x− y)} y < 0 ∧ x > 0 ∧ ε > 0 (electron transmission)
1

ivF exp{ipε(x− y)} xy > 0 ∧ x > y ∧ ε > 0 (electron propagation)
−t∗R
ivF exp{ipε(y − x)} y < 0 ∧ x > 0 ∧ ε < 0 (hole transmission)
−1
ivF exp{ipε(y − x)} xy > 0 ∧ y > x ∧ ε < 0 (hole propagation)

(A.2.2)
G0
−+(x, y, ε) ={
rR
ivF exp{ipε(x+ y)} y > 0 ∧ x > 0 ∧ ε > 0 (electron reflection)
−r∗L
ivF exp{−ipε(x+ y)} y < 0 ∧ x < 0 ∧ ε < 0 (hole reflection)

(A.2.3)
G0

+−(x, y, ε) ={
rL
ivF exp{−ipε(x+ y)} y < 0 ∧ x < 0 ∧ ε > 0 (electron reflection)
−r∗R
ivF exp{ipε(x+ y)} y > 0 ∧ x > 0 ∧ ε < 0 (hole reflection)

(A.2.4)

where we used the following abbreviations:

pε = |ε|
vF

+ iη.

A.3 Detailed calculation of the S-matrix in sec-
ond order in interaction

We present the calculations for second orded in interaction in a one-dimensional
system with a structureless impurity in detail. Throughout the calculations,
~ = 1 and factors of vF are only mentioned in the final answers. The calculation
is sorted by ascending number of impurity reflections. We further define

C+−(x, y, ε) = V 2
0
v2

F

1
ivF

e−ipε(x+y), (A.3.1)

C++(x, y, ε) = V 2
0
v2

F

1
ivF

eipε(y−x). (A.3.2)
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I

II

ε ω ν ω ε

ε ε− ω ε− ω − ν ε− ν ε

Figure A.3.1: Structure of first order diagrams

and
L1 := log2

(
∆
ε

)
. (A.3.3)

A.3.1 1 impurity reflection
The basic structure of all leading logarithmic diagrams with a single impurity
reflection is shown in figure A.3.1. In figure A.3.2 all real-space scattering events
of the first (“Rainbow”) type are shown.

“Rainbow diagrams”

1-I-A The first diagram in figure A.3.2 is calculated in the following. The
complete expression for the correction is

G
(2)
+−(x, y, ε)1−I−A = −

∆∫
0

dω
∆∫

0

dν
0∫

−∞

dx1

0∫
x1

dx 2

0∫
−∞

dx4

0∫
x4

dx 3

×G0
++(x, x1, ε)G0

++(x1, x2, ω)G0
+−(x2, x3, ν)G0

−−(x3, x4, ω)

×G0
−−(x4, y, ε)

∞∫
−∞

dq
∞∫
−∞

dQ V (q)
2π ei(x1−x4)q V (Q)

2π ei(x2−x3)Q

Let us start with the prefactor. There is one reflection in this case so we get

−r

Then we collect all exponentials,

I(ε,∆) :=
∫

d[. . . ] exp(i(pε − pω + q)x1 + i(pω − pν +Q)x2)

× exp(i(−pν + pω −Q)x3 + i(pε − pω − q)x4),

wherein every p depends on the absolute value of the energy and contains a
regularizer ±iη. After integrating over all xi, i ∈ {1, . . . , 4} (which are convergent
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Figure A.3.2: Real-space “rainbow” diagrams with a single reflection dressed by
two interactions.
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integrals due to the afore mentioned regularizers) we arrive at

I(ε,∆) =
∫

d[. . . ] [(pε − pω + q)(pε − pν + q +Q)]−1

× [(pε − pω − q)(pε − pν − q −Q)]−1
.

We change the variable Q to Q′ = Q+ q. The interaction V (Q) now depends on
V (Q′ − q). The contour over the upper half plane is zero, because 1/q2 → 0 at
infinity, and we end up with

I(ε,∆) =
∫∫

dω dν −V (pω − pε)V (pν − pω)
4(pε − pω)(pε − pν) .

Energy integration in accordance with the first order calculations leads to the
log2 result,

G
(2)
+−(x, y, ε)1−I−A = 1

4rL1C+−(x, y, ε). (A.3.4)

The label of the Green’s function identifies the corresponding diagram. The
calculation for diagram B in figure A.3.2 is equal to diagram A.

1-I-C Let’s proceed to diagram 1-I-C. We take into account two electron
transmissions and one hole reflection processes. Hence the prefactor reads

−t(−r∗)t = −|t|2r.

The exponentials sum up to

I(ε,∆) :=
∫

d[. . . ] exp(i(pε − pω + q)x1 + i(pω + pν +Q)x2)

× exp(i(pν + pω −Q)x3 + i(pε − pω − q)x4)

The regularizers cut the infinities (Im(pε − pω) = −η and Im(pω + pν) = η).
Thus the coordinate integrals are written down at once,

I(ε,∆) =
∫

d[. . . ] [(pε − pω + q)(pε − pω − q)(pν + pω +Q)(pν + pω −Q)]−1
.

The q integration over the upper half-plane gives a prefactor i. Integrating Q
yields −i and there are only the energy integrals remaining, namely

I(ε,∆) = 1
4

∆∫
0

dω
∆∫

0

dν 1
(pε − pω)(pω + pν)

Both fractions contain ω, the integrals are entangled. After computing the inner
integral we get

I(ε,∆) = 1
4PV

∆∫
0

dω 1
(ω − ε) log

(
ω

ω + ∆

)

= 1
4PV

∆∫
−ε

dω ′ 1
ω′

log
(
ω′ + ε

ω′ + ∆

)

= −1
8 log2

(
∆
ε

)
.
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Note that the interaction potentials are not considered explicitly in this calcula-
tion. They enter the equations when we identify the upper cutoff ∆ with vF

d . As
ε is the small parameter, the integral behaves like

−1
8

1
v2

F
L1.

We end up with the result

G
(2)
+−(x, y, ε)1-I-C = 1

8r|t|
2 log2 L1C+−(x, y, ε). (A.3.5)

Note that diagram 1-I-E has a similar structure and a different prefactor.

1-I-D The prefactor reads

−t(−r∗)t = −|t|2r.

The exponentials in this expression are

I(ε,∆) :=
∫

d[. . . ] exp(i(pε − pω + q)x1 + i(pω + pν +Q)x2)

× exp(i(pω + pν −Q)x3 + i(pε − pω − q)x4)

Coordinate integration is done in two steps because we need to make sure that
x2 > x1 and x3 > x4. We end up with

I(ε,∆) =
∫

d[. . . ] V (q)V (Q)
[(pω + p2

ν −Q2)][(pε + pν)2 − (q +Q)2]

The integration over Q and q′ = q +Q gives

I(ε,∆) =
∆∫

0

dω dν −1
4(pε + qν)(pω + pν)

The integration over the internal energies ω and ν is similar to 1-I-C, hence

G
(2)
+−(x, y, ε)ID = 1

8r|t|
2L1C+−(x, y, ε). (A.3.6)

Diagram 1-I-F is similar to this diagram and the calcuation is not done explicitly.
Summing all rainbow diagrams with a single impurity reflection:

GI = r

8(3 + 4|t|2 + |t|4) log2(.)C+−(x, y, ε) (A.3.7)

“Crossed diagrams”

Let us consider the second group of diagrams (with “crossed lines”) shown in
figure A.3.3. The first two diagrams have symmetric counterparts, so their
contribution doubles. This time we will outline only the important steps, as the
method of choice remains the same. One important thing in this case are the
borders of the energy integrals and the signs of the arguments.
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Figure A.3.3: Real-space diagrams of the “crossed lines” type with a single
impurity reflection.
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1-II-A The prefactor reads
r.

Note that there is one minus due to the single hole propagation Green which
cancels the global minus (from i2) in front. Diagram 1-II-A is calculated with
the following integrals:

I(ε,∆) =
0∫

−∆

dν
ε−ν∫
ε

dω
0∫

−∞

dx1

x1∫
−∞

dx 2

0∫
−∞

dx3

x3∫
−∞

dx 4

× exp[i(pε + pε−ω + q)x1 + i(−pε−ω − pε−ω−ν +Q)x2]
exp[i(−pε−ω−ν + pε−ν − q)x3 + i(−pε−ν + pε −Q)x4]

where the borders are derived from the relations

ε− ω < 0 ∧ ε− ω − ν > 0 =⇒ ε < ω < ε− ν
ε− ν > 0 =⇒ ε > 0 > ν

After coordinate integrations we arrive at

I(ε,∆) =
∫

d[. . . ] [(pε − pε−ω−ν + q′)(pε − pε−ω−ν − q′)]
−1

× [(−pε−ω − pε−ω−ν +Q)(pε − pε−ν −Q)]−1
,

wherein q′ and Q integration yield

I(ε,∆) =
∆∫

0

dν
ε∫

ε+ν

dω 1
ν(ω − ν) =

∆∫
0

dν
log
(
|ε−ν|
ε

)
ω

=

∆
ε∫

1

dy log(1 + y)
y

= 1
2 log2

(
∆
ε

)

We arrive at the following result:

G
(2)
+−(x, y, ε)1-II-A = −1

4rL1C+−(x, y, ε) (A.3.8)

We accounted for the second similar diagram in figure A.3.3 with a factor of two.

1-II-B The prefactor reads

−t(−1)(−r∗)t = r|t|2.

We evaluate the following integrals:

I(ε,∆) :=
∫

d[. . . ] exp(i[pε + pε−ω + q]x1 + i[−pε−ω + pε−ω−ν +Q]x2)

× exp(i[pε−ω−ν + pε−ν − q]x3 + i[−pε−ν + pε −Q]x4)
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We derive the limits of the energy integration from the relations

ε− ω − ν < 0 ∧ ε− ν > 0 =⇒ ε− ω < ν < ε,

ε− ω < 0 =⇒ ω > ε.

We integrate over q and Q and end up with

I(ε,∆) = −
∆∫
ε

dω
ε∫

ε−ω

dν 1
4

1
ω(ω + ν)

The energy integration is identical to the previous paragraph.

G
(2)
+−(x, y, ε)1-II-B = −1

4r|t|
2L1C+−(x, y, ε) (A.3.9)

The factor 2 arises due to the second, similar diagram in figure A.3.3.

1-II-C Diagram 1-II-C in figure A.3.3 is subleading. One can explain this
result by the fact that there is no Friedel reflection taking place in this process.
The integrals we need to solve read

I(ε,∆) :=
∫

d[. . . ] exp(i[pε − pε−ω + q]x1 + i[pε−ω − pε−ω−ν +Q]x2)

× exp(i[−pε−ω−ν + pε−ν − q]x3 + i[−pε−ν + pε −Q]x4).

After coordinate integration we get

I(ε,∆) =
∫

d[. . . ] [(pε − pε−ω + q)(pε − pε−ω−ν +Q+ q)]−1

× [(pε − pε−ν −Q)(pε − pε−ω−ν −Q− q)]−1
,

and the integration over Q′ = Q+ q gives

I(ε,∆) = i
∫

d[. . . ] [2(pε − pε−ω−ν)(2pε − pε−ω−ν − pε−ν + q)(pε − pε−ω + q)]−1

Now all poles are in the lower half plane, so the contour over the upper half-plane
contains only the pole i/d originating from the interaction potential V . The
result is not double logarithmic. The diagram 1-II-D has a similar structure as
1-II-C.

Summary (1) We sum up all contributions with a single impurity reflection
in table A.1

A.3.2 2 reflections
The structure of processes with two impurity reflections is shown infigure A.3.2.
Processes of “rainbow” type I are equal to their single reflection counterparts
with a slightly modified prefactor: In diagrams 1-I-B,1-I-D and 1-I-E the last
transmission is changed to a reflection. Additionally there is a factor of two
because of the time-reversal symmetry. We identify the diagrams as follows:
• 1-I-B is similar to 2-I-A

• 1-I-D is similar to 2-I-B

• 1-I-E is similar to 2-I-C
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I

II-A

III

II-B,C

ε ω ν ω ε

ε ε− ω ε− ω − ν ε− ν ε

ε ω ε ν ε

ε ε− ω ε− ω − ν ε− ν ε

Figure A.3.4: Structure of processes with two impurity reflections.
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Diagram Prefactor Antisym. Result
1-I-A −r no 1

4r
1-I-B −r|t|2 no 1

4 |t|
2r

1-I-C −r|t|2 no 1
8r|t|

2

1-I-D −r|t|2 no 1
8 |t|

2r
1-I-E −r|t|4 no 1

8 |t|
4r

1-I-F −r no 1
8r

1-II-A r yes − 1
4r

1-II-B r|t|2 yes − 1
4 |t|

2r
1-II-C – no 0
1-II-D – no 0
Total 1

8r(|t|
4 + 2|t|2 + 1)

Table A.1: Second order perturbative corrections in L1. The table contains all
processes with a single reflection at the impurity. Antisym. labels diagrams
that are not symmetric under time reversal. A second diagram can thus be
drawn by inverting the arrows. The resulting diagrams are similar and double
the contribution of the original diagram.

2-I Let us examine the prefactor for 2-I diagrams in figure A.3.2, namely

− t(−r∗)r = t|r|2

− t(−t∗)r(−t∗)r = t|r|2|t|2

The sign of the prefactor is reversed for all geologies in 2-I. Additionally, all
second order diagrams have a time-reversed “twin”, thus we multiply these
diagrams by a factor of two.

2-II-A This diagram, too, can be derived from first order in reflection (diagram
1-II-B times two) with a different prefactor,

−t(−1)(−r∗)r = −t|r|2.

2-II-B The processes shown in figure A.3.5 are not of leading, log2, order. To
see this we calculate the integrals for 2-II-B explicitly. The integrals we need to
evaluate read

I(ε,∆) :=
∫

d[. . . ] exp(i(pε − pω′ + q)x1 + i(−pω′ + pΩ +Q)x2)

× exp(i(−pΩ − pν′ − q)x3 + i(−pν′ − pε −Q)x4).

We perform the coordinate integration,

I(ε,∆) = −
∫

d[. . . ] [(−pω′ − pν′ − q +Q)(pε − pω + q)]−1
.

Closing the contours for Q and q in the upper half-plane, we end up with

I(ε,∆) = −
0∫

−∆

dω
ε−ω∫
ε

dν 1
4

1
ω(ω − ν) ,
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2-II-B
e

e
e
e

e
h

h

h

e
e

2-II-C
e

e
e
e

e
h

h

h

h

e
e

e

Figure A.3.5: Second order diagrams with crossed interaction lines

where we derived the borders for the energy integration using

ε− ω − ν > 0 ∧ ε− ν < 0 ∧ ω < ε =⇒ ε < ν < ε− ω,
=⇒ ω < 0.

Integrating over ν yields

I(ε,∆) = −
∆∫

0

dω 1
ω

log
(
ε+ 2ω
ε+ ω

)
.

This contribution is of order log(∆/ε) and not log2(∆/ε). The calculation for
diagram 2-II-C is similar and the result is not double-logarithmic.

2-III There are three possibilities place the two interactions and the two
impurity reflections if we allow only diagrams of the “double Fock” type (see
figure A.3.6).

2-III-A The prefactor reads

−t3(−r∗)2 = t|r|2|t|2.

The two parts of the diagram can be taken from the first order. We split the
independent integrals in two parts,

G
(2)
++(x, y, ε)2-III-A = t|r|2|t|2C++(x, y, ε)I1(ε,∆)I2(ε,∆).
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2-III-A
e

e
h

h

e
e
h

h

e
e

2-III-B
e

e
e
e

e
h

h

h

h

e
e

e

Figure A.3.6: Two interactions in a row dressing two impurity reflections

Compare section 3.2.2 for the detailed calculations. The first part is evaluated
as follows:

I1(ε,∆) =
∞∫

0

dx1

∞∫
0

dx2

∞∫
−∞

dω
∞∫
−∞

dq V (q)
2π

× exp[ipε(x1 − x) + ipω(x1 + x2) + ipε(x2 − x3) + iq(x1 − x2)]

= iV0vF
1
2 log

(vF

dε

)e−ipε(x3+x)

ivF
,

and the second part reads

I2(ε,∆) =
0∫

−∞

dx3

0∫
−∞

dx4

∞∫
−∞

dν
∞∫
−∞

dQ V (q)
2π

× exp[−ipε(x3 + x)− ipν(x3 + x4) + ipε(y − x4) + iq(x3 − x4)]

= iV0vF
1
2 log

(vF

dε

)eipε(y−x)

ivF
.

Together with the prefactor, we arrive at the expression

G
(2)
++(x, y, ε)2-III-A = −1

4 t|t|
2|r|2L1C++(x, y, ε). (A.3.10)

2-III-B The prefactor is evaluated from figure A.3.6:

−r(−r∗)t = |r|2t.

We identify the exponential contributions in the integral, namely

I(ε,∆) :=
∫

d[. . . ] exp(i(pε − pω + q)x1 + i(−pω + pε − q)x2)

× exp(i(−pε − pν +Q)x3 + i(−pν − pε −Q)x4.
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Diagram similar to Prefactor Antisym. Result
2-I-A 1-I-B t|r|2 yes − 1

2 |r|
2t

2-I-B 1-I-D t|r|2 yes − 1
4 |r|

2t
2-I-C 1-I-E t|r|2|t|2 yes − 1

4 t|r|
2|t|2

2-II-A 1-II-B −t|r|2 twice 1
2 |r|

2t

2-II-B – – yes not log2

2-II-C – – yes not log2

2-III-A – t|r|2|t|2 no − 1
4 |r|

2|t|2t
2-III-B – t|r|2 yes − 1

4 |r|
2t

Total − 1
2 t|r|

2(1 + |t|2)

Table A.2: Corrections in second order in interaction, L1. In the table, processes
with two reflections at the impurity are listed.

We integrate over the coordinates x1 to x4,

I(ε,∆) =
∫

d[. . . ] [(−pε − pν +Q)(−pε − pν −Q)]−1

× [(−pω − pν +Q− q)(pε − pω + q)]−1
.

After Q and q integration only the integrals over the energy variables are
remaining and we get

I(ε,∆) =
∆∫

0

dω dν −1
4(pε + pν)(pω + pν) .

The result reads

G
(2)
++(x, y, ε)2-III-B = −1

4 t|r|
2L1C++(x, y, ε). (A.3.11)

The factor of two is used to account for a second, similar diagram that can be
constructed by inverting the direction of the particles and holes.

Summary(2) All contributions of second order in reflection are collected in
table A.2.

A.3.3 3 reflections
The processes with 3 reflections have the structure shown in figure A.3.3.

3-I-A,B,C Compared to 2-I-A to C there is just one transmission replaced
by a reflection. The diagram is invariant under time-inversion, therefore do not
need the factor of two from the previous section.

3-I-D The calculation is very similar to the previous cases. We identify the
prefactor from figure A.3.8,

−r(r∗)2t2 = r|t|2|r|2,
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I-A,B,C

I-D,E

II-A

II-B

III-A,B III-C

ε ω ν ω ε

ε ω ν ω ε

ε ε− ω ε− ω − ν ε− ν ε

ε ε− ω ε− ω − ν ε− ν ε

ε ω ε ν ε ε ω ε ν ε

Figure A.3.7: Structure of processes with three impurity reflections.
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3-I-D
e

e
e
h

h

h

e
e
h

h

h

e
e

e

3-I-E
e

e
e
e
h

h

e
e

e
e

Figure A.3.8: Processes of third order in reflection with parallel interaction lines.

and perform all but the energy integrals at once, being left with

I(ε,∆) =
∆∫

0

dω
∆∫

0

dν −1
4(ε+ ω)(ν + ω)

= −1
8 log2

(
∆
ε

)
.

The result reads

G
(2)
+−(x, y, ε)3-I-D = −1

8r|t|
2|r|2L1C+−(x, y, ε). (A.3.12)

Diagram 3-I-E is similar to 3-I-D.

3-II These, too, can be derived from first or second order. See 2-II.

3-III Considering all restrictions, there are three diagrams (figure A.3.9) with
the interactions one after another.

3-III All diagrams in 3-III are, except for the prefactor, equal to 2-III.

Summary(3) All contributions of third order in reflection are listed in ta-
ble A.3.

A.3.4 4 reflections
For the case of four impurity reflections, we can identify all diagram classes from
the previous order. Because there is no new calculation involved 1, we present

1Note that there is just a reflection added on one of two sides.
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3-III-A
e

e
h

h

e
e
h

h

e
e

3-III-B
e

e
e
e

e
h

h

h

h

e
e
e

3-III-C
e

e
h

h

e
e
h

h

e
e

Figure A.3.9: Processes of third order in impurity reflection

Diagram similar to Prefactor Antisym.? Result
3-I-A 2-I-A r|r|2 no − 1

4 |r|
2r

3-I-B 2-I-B r|r|2 no − 1
8 |r|

2r
3-I-C 2-I-C r|r|2|t|2 no − 1

8r|r|
2|t|2

3-I-D – r|t|2|r|2 no − 1
8r|t|

2|r|2
3-I-E – r|r|2 no − 1

8r|r|
2

3-II-A 1-II-B −r|r|2 no 1
4 |r|

2r

3-II-B – – no not log2

3-III-A 2-III-A r|r|2|t|2 no − 1
4 |r|

2|t|2r
3-III-B 2-III-B r|r|2 yes − 1

4 |r|
2r

3-III-C 2-III-A r|r|2|t|2 yes − 1
2 |r|

2|t|2r
Total − 1

2r|r|
2(1 + 2|t|2)

Table A.3: Diagrams in the second order (L1) with three reflections at the
impurity.
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Diagram similar to Prefactor Antisym.? Result
4-I-A 3-I-D −t|r|4 yes 1

4 |r|
4t

4-III-A 3-III-A −t|r|4 yes 1
2 |r|

4t
4-III-B 3-III-C −t|r|4 no 1

4 t|r|
4

Total |r|4t

Table A.4: Results for diagrams in L1 with four impurity reflections.

Diagram similar to Prefactor Antisym.? Result
5-I-A 3-I-D −r|r|4 no 1

8 |r|
4r

5-II-A 3-II-B – – no log2

5-III-A 3-III-A −r|r|4 no 1
4 |r|

4r

Total 3
8 |r|

4r

Table A.5: Results for diagrams in L1 with five impurity reflections.

the contribution of the fourth order in table A.4. There is no diagram with
crossed interaction lines and four reflections.

A.3.5 5 reflections
The results for the perturbative corrections in interaction with five reflections at
the impurity are presented in table A.5.

A.4 Second scale calculation using pole integra-
tions methods

In this section we revisit the case of a finite interacting region of width L in an
one-dimensional wire with a single pointlike scatterer.

Center of mass dependent interaction with smooth cutoff

The potential used in the following depends on both the difference and the sum
of the coordinates. The potential reads

V (x1, x2) = V0

4dLe−
|x1−x2|

d e−
|x1+x2|

L , (A.4.1)

V (q, q′) = V0

L2d2
1

(q′2 + 1/L2)(q2 + 1/d2) , (A.4.2)

V (x2, x2) =
∞∫
−∞

dq
∞∫
−∞

dq′ 1
4π2V (q, q′)eiq(x1−x2)eiq′(x1+x2), (A.4.3)

where we use the latter in the calculations. V (q, q′) has two poles in each
half-plane and for q, q′ →∞ it behaves like q−2q′−2 → 0.
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A.4.1 First order in interaction
Let’s see how the additional scale enters the calculations. For diagram 2-I-A
(see figure 3.2.3 on page 57) we evaluate,

G
(1)
++(x, y, ε)2-I-A = i

∞∫
0

dω
∞∫

0

dx1

∞∫
0

dx2 G
0
++(x, x1, ε)

×G0
+−(x1, x2, ω)G0

−+(x2, y, ε)V (x1, x2),

where the prefactors
it|r|2A(x, y, ε),

remain unaltered (compare with section 3.2.1) and

A(x, y, ε) = V0

vF

1
ivF

eipε(y−x),

as defined previously. The integrals become

I(ε,∆, ETh) :=
∫

d[. . . ] exp[i(pε + pω + q + q′)x1 + i(pε + pω − q + q′)x2].

Thus we get after coordinate integration

I(ε,∆, ETh) =
∆∫

0

dω
∞∫
−∞

dq
∞∫
−∞

dq′ −V (q, q′)
(pε + pω + q + q′)(pε + pω − q + q′) .

We encounter the following pole structure for q:

Re(q)

Im(q)

(1)

(2)

(3)

(4)

(1) pω + pε + q′ + iη

(2) i
d

(3) − i
d

(4) −pω − pε − q′ − iη

Closing the contour over the upper half q-plane yields

I(ε,∆, ETh) =
∆∫

0

dω
∞∫
−∞

dq′ i
2(pω + pε + q′)

1
[(pε + pω + q′)2 + 1/d2]

1
[q′2 + 1/L2]

− i
[(pε + pω + q′)2 + 1/d2]

1
2i/d[q′2 + 1/L2]

The terms in the sum have the following pole structure in the upper half q′-plane:
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Re(q′)

Im(q′)

(1)
(2)

(1) −pω − pε + i/d

(2) i
L

We have to discuss each resulting integral concerning its log behavior. Inserting
the −pε − pω + i/d pole in the first term the length scale of the interaction will
cut the integral from below because 1

d �
1
L . The same situation occurs for

the contributions coming from both the −pε − pω + i/d and the i/L pole of the
second term. The i/L pole of the first term yields

I(ε,∆, ETh) =
∆∫

0

dω −L
4i(pω + pε + i/L)[(pω + pε + i/L)2 + 1/d2)]

=
∆∫

0

dω −L4

4i(LωvF
+ Lε

vF
+ i)[(LωvF

+ Lε
vF

+ i)2 + L2/d2)]
.

After a substitution the integral reads

I(ε,∆, ETh) = −L
4

4i

L∆
vF∫
Lε
vF

dΩ 1
(Ω + i)2 + L2

d2 (Ω + i)

≈ −L
4

4i

L∆
vF∫
Lε
vF

dΩ 1
L2

d2 (Ω + i)

=


i
4 log( ∆

ETh
) if Lε

vF
� 1

i
4 log(∆

ε
) if Lε

vF
� 1

.

Including the prefactor we get for 2-I-A

G
(1)
++(x, y, ε)2-I-A = −t|r|2 1

4A(x, y, ε) log
(

∆
ETh, ε

)
The same procedure can be repeated for all first order calculations.

A.4.2 Second order
Calculations for the second order get much more involved due to the greater
number of poles in the propagators. Nevertheless the same techniques can be
applied to single out the logarithmic contributions. We define

C+−(x, y, ε) = 1
v4

F
eipε(x+y) V 2

0
d4L4 . (A.4.4)
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Example: Diagram 1-I-B

We follow the same step-by-step procedure in calculating the Diagram 1-I-B
(compare section A.3). The complete expression for the propagator reads

G
(2)
+−(x, y, ε)1−I−B = −

∞∫
0

dω
∞∫

0

dν
∞∫

0

dx1

∞∫
0

dx2

∞∫
0

dx3

∞∫
0

dx4 G
0
++(x, x1, ε)

×G0
++(x1, x2, ω)G0

+−(x2, x3, ν)G0
−−(x3, x4, ω)G0

−−(x4, y, ε)
× V (x1, x4)V (x2, x3),

where the momentum representations for the interaction potentials V are not
yet included. Note furthermore that there is an overall minus in front due to the
expansion of the S-Matrix (see [2]). The prefactor

−t2(−r∗)C+−(x, y, ε)

is kept aside and added to the final expression. The argument of the exponential
reads

I(ε,∆, ETh) :=
∫

d[. . . ] exp[i(pε + pω + q + q′)x1 + i(−pω + pν +Q+Q′)x2]

× exp[i(pν − pω +Q′ −Q)x3 + i(pε + pω + q′ − q)x4]

We have chosen q, q′ as arguments of the first potential and Q,Q′ of the second
respectively. The coordinate integration is straightforward and we are left with:

I(ε,∆, ETh) =
∞∫
−∞

dq′
∞∫
−∞

dq
∞∫
−∞

dQ′
∞∫
−∞

dQ

× V (q, q′)V (Q− q,Q′ − q′)
[(pε + pν +Q′)2 −Q2][(pε + pω + q′)2 − q2]

without the energy integrals and with Q shifted to Q+ q and Q′ to Q′ + q′. The
integrals will be computed in the given order. The pole structure with respect
to Q reads:

Re(Q)

Im(Q)

(II)

(I)

(III)

(IV)

(I) q + i
d

(II) pω + pε +Q′ + iη

(III) q − i
d

(IV) −pω − pε −Q′ − iη

Integrating over Q and closing the contour in the upper half plane leads to two
terms II and III , one for each pole.
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(I): Q = q + i/d

II :=
∫

d[. . . ] iV (q, q′)
[(pε + pω +Q′)2 − (q + i/d)2]2(q + i/d)[(Q′ − q′)2 + 1/L2]

In the following, integration will be done always over the upper half-plane,
therefore the poles in the lower plane will not be mentioned explicitly. Integrating
over Q′ will involve the following poles:

Re(q′)

Im(q′)

(2)
(1)

(2) q − pω − pε + i/d

(1) q′ + i
L

Pole (1) yields

II.1 =
∫

d[. . . ] −V (q, q′)
[(pε + pν + q′ + i/L)2 + (q + i/d)2]2(q + i/d)2(q′ + i/L) .

The only upper half-plane pole for q of this term is i/d. If we perform this
integration, the result is clearly non-logarithmic because every term in the
denominator contains i/d with the only exception of the denominator of the
interaction potential V (q, q′) for q′. But inserting the i/L pole for q′ we are left
with terms all containing i/d. Pole (2) yields

II.2 =
∫

d[. . . ] −V (q, q′)
4(q + i/d)2[(q − q′ − pε − pν + i/d)2 + 1/L2] .

There is only one pole in the upper half-plane for q: q = i/d. The argument is
the same as in the previous case: The resulting energy integral is not logarithmic,
because every term in the denominator contains the inverse interaction length d
which is related to an energy exceeding the integration variables ν and ω by far.

(II):Q = pε + pν +Q′ The second pole in the Q plane is evaluated as

III.1 = −
∫

[. . . ]iV (q, q′)
[
2(pε + pν +Q′)[(pε + pω + q′)2 − q2]−1

× [(pε + pν +Q′ − q)2 + 1/d2][(Q′ − q′)2 + 1/L2]−1

We encounter the following pole structure for Q′ in the upper half-plane:

Re(Q′)

Im(Q′)

(2)
(1)

(2) q − pν − pε + i/d

(1) q′ + i
L
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We can now repeat the arguments used above and find that pole (1) yields only
contributions of sub-leading order. Let us have a look at the (2) pole in the
Q′ = q′ + i/L plane. We end up with the following expression

III.2 =
∫

[. . . ] V (q, q′)
2(pε + pν + q′ + i/L)[(pε + pν + q′ − q + i/L)2 + 1/d2]

× 1
2i/L[(pε + pω + q′)2 − q2] .

This results in three poles in the upper q half-plane:

Re(q)

Im(q)
(2.1)(2.2)

(2.3)

(2.1) pν + pε + q′ + i/L+ i/d

(2.2) i
d

(2.3) pε + pω + q′

The first two poles (2.1) and (2.2) are not of leading logarithmic order while the
third one yields

III.2.3 =
∫

d[. . . ] −i
8i/L(pε + pν + q′ + i/L)[(pν − pω + i/L)2 + 1/d2]

× 1
(pε + pω + q′) [(pε + pω + q′)2 + 1/d2]︸ ︷︷ ︸

q′=−pε−pω+i/d

(q′2 + 1/L2)︸ ︷︷ ︸
q′=i/L

The first pole is not logarithmic. The second pole in the upper half-plane
(q′ = i/L) yields:

Ilead. = −
∫∫

dω dν
[
16/L2(pε + pν + 2i/L)(pε + pω + i/L)

× [(pε − pω + i/L)2 + 1/d2][(pε + pω + i/L)2 + 1/d2]−1

≈
∫∫

dω dν −d4L4

16[ LvF
(ε+ ν) + 2i][ LvF

(ε+ ω) + i]

The last result is clearly of order log2 and repeating the reasoning for the first
order we arrive at

G
(2)
+−(x, y, ε)2-I-B = r|t|2

16 C+− log2
(

∆
max(ETh, ε)

)
(A.4.5)

Comparing this result to the calculation done before with infinite range of
interaction, we see that apart from the prefactor the result is the same.

A.5 Check of the unitarity of the S-matrix in
various cases

A.5.1 Inside a symmetric resonant level
The perturbative corrections read
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δt(ε) = V0

vF

[
−t(ε)|r(ε)|2 + r(ε)|t(ε)|2

]
log
(

∆
max(Γ, εR)

)
(A.5.1)

δr(ε) = V0

vF

[
r(ε)|t(ε)|2 − t(ε)|r(ε)|2

]
log
(

∆
max(Γ, εR)

)
(A.5.2)

We already calculated the transmission probability |t(1)|2:

|t1(ε)|2 = |t|2 + t∗(ε)δt+ t(ε)δt∗

= |t|2 − 2|t|2|r|2 + 2|t|2<(r∗t)

The absolute value of the reflection amplitude reads:

|r1(ε)|2 = |r|2 + r∗(ε)δr + r(ε)δr∗

= |r|2 + 2|t|2|r|2 − 2|r|2<(r∗t)

where
<(r∗t) = <

(
−iΓ(ε− εR)

Γ2 + (ε− εR)2

)
= 0

We conclude that the condition

|t(1)|2 + |r(1)|2 = 1

is satisfied.
The second condition reads

t(1)(r(1))∗ + (t(1))∗r(1) = tr∗ + rt∗ + <(tδr∗) + <(rδt∗) = 0

The first two summands cancel by construction. The remainings yield:

<(tδr∗) + <(rδt∗) = <(−|t|2|r|2 + tr∗|t|2) + <(|t|2|r|2 − rt∗|r|2) = 0

A.5.2 Resonant scatterer with broken spacial symmetry
In this section we consider the more complex case where the energy of the
external particle is in the range of the resonant level (log(∆/Γ) � log(Γ/ε)).
The corrections due to interaction read:

δt(ε) = −t(ε)|rL(ε)|2 + |t(ε)|2

2
√

ΓRΓL
(ΓLrR(ε) + ΓRrL(ε)) log

(
∆
Γm

)
δrL(ε) =

[
rL(ε)|t(ε)|2 − t(ε)

2
√

ΓRΓL
(
ΓR(1 + rLr

∗
R)− ΓL|t|2

)]
log
(

∆
Γm

)
δrR(ε) =

[
rR(ε)|t(ε)|2 − t(ε)

2
√

ΓRΓL
(
ΓL(1 + rRr

∗
L)− ΓR|t|2

)]
log
(

∆
Γm

)
We start with the condition |t|2 + |rL|2 = 1. In the following we write all

amplitudes without the explicit energy dependence:
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|t(1)|2 = |t|2 + δt∗t+ δtt∗

= |t|2 +
(
−2|t|2|rL|2 + |t|2√

ΓLΓR
[ΓL Re(r∗Rt) + ΓR Re(r∗Lt)]

)
|r(1)
L |

2 = |rL|2 + δrLr
∗
L + δr∗LrL

= |rL|2 + 2|t|2|rL|2

+ 1√
ΓLΓR

(
ΓL|t|2 Re(r∗Lt)− ΓR

(
|rL|2 Re(tr∗R) + Re(tr∗L)

))
One can show that <(r∗Lt) = −<(r∗Rt). Using this property we can rewrite

|r(1)
L |2:

= |rL|2 + 2|t|2|rL|2 + 1√
ΓLΓR

(
−ΓL|t|2<(r∗Rt) + ΓR

(
(|rL|2 − 1)<(tr∗L))

))
= |rL|2 + 2|t|2|rL|2 + |t|2√

ΓLΓR
(−ΓL<(r∗Rt)− ΓR<(tr∗L)) q.e.d

The second condition reads:

t(1)(r(1)
L )∗ + r

(1)
R (t(1))∗ = tr∗L + t∗rR︸ ︷︷ ︸

0

+tδr∗L + r∗Lδt+ rRδt
∗ + δrRt

∗ = 0

tδr∗L + r∗Lδt =
(
tr∗L|t|2 −

|t|2√
ΓRΓL

(
ΓR(1 + r∗LrR)− ΓL|t|2

))
+
(
−tr∗L|rL|2 + |t|2√

ΓRΓL
(
ΓR|rL|2 + ΓLr∗LrR

))
= tr∗L(|t|2 − |r2

L|) + |t|2√
ΓRΓL

(
ΓR(−|t|2 − r∗LrR) + ΓL(r∗LrR + |t|2)

)

t∗δrR + rRδt
∗ =

(
−t∗rR|rL|2 + |t|2√

ΓRΓL
(
ΓL|rR|2 + ΓRrRr∗L

))
+
(
t∗rR|t|2 −

|t|2√
ΓRΓL

(
ΓL(1 + rRr

∗
L)− ΓR|t|2

))
= t∗rR(|t|2 − |r2

L|)

+ |t|2√
ΓRΓL

(
ΓR(|t|2 + r∗LrR) + ΓL(−r∗LrR − |t|2)

)
Thus we see that in the first order in interaction for a asymmetric close-to-

resonance setting, the unitarity of the S-matrix is conserved.

A.6 Example calculations for an energy-dependent
S-matrix in second order

We show exemplary calculations for rainbow diagrams and such with crossed
lines. The integration over the internal coordinates remains unaffected by the
modification and we can start directly by calculating the integrals over the
internal energies.
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A.6.1 Rainbow diagram: 1-I-E
1-I-E We seperate the signs and constants in front,

t2(ε)C+−(x, y, ε)
4 ,

The energy integrals derived from the diagram in figure A.3.2 are combined with
the internal, energy-dependent S-matrix elements.

I(ε,∆, εR,Γ) :=
∆∫

0

dω
∆∫

0

dν [t∗(−ω)]2r(ν)
(ω + ν)(ε+ ω)

We integrate first over ν:

I(ε,∆, εR,Γ) =
∆∫

0

dω
∆∫

0

dν [t∗(−ω)]2r(ν)
(ω + ν)(ε+ ω)

= [t∗(−ω)]2

(ε+ ω)
(
r(−ω) log(∆/ω)− t(−ω) log(∆/Γ̄)

)

where we used the results of our previous calculations in section 3.5.3. The
integration over the second internal energy variable yields

I(ε,∆, εR,Γ) =
∆∫

0

dω [t∗(−ω)]2

(ε+ ω)
(
r(−ω) log(∆/ω)− t(−ω) log(∆/Γ̄)

)
,

:= A−B

whereby we split the calculation in two parts A and B:

A =
∆∫

0

dω [t∗(−ω)]2

(ε+ ω) r(−ω) log(∆/ω)

=
∆∫

0

dω [t∗(−ω)]2
(
r(ε)
ε+ ω

− t(ε)
ω + εR − iΓ

)
log(∆/ω)

=
∆∫

0

dω
[
t∗(−ω)t∗(ε)r(ε)

(
1

ω + ε
− 1
ω + εR + iΓ

)

+ Γ2t(ε)
(ω + εR − iΓ)(ω + εR + iΓ)2

]
log(∆/ω).

We analyze the asymptotics of the last fraction: In the range ω � εR,Γ,
the integrand clearly behaves as 1/ω3 log(∆/ω). Thus, the integral is single
logarithmic and small as (Γ̄/∆)2. On the other hand, if ω � εR,Γ, ω can
be neglected in the denominator and the prefactor scales like 1/Γ̄, while the
integrand is single logarithmic with Γ̄ in front.
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The comportment is in both ranges therefore small with respect to the leading
log2 contributions and we can neglect the term. The remaining part reads

A =
∆∫

0

dω
[
(t∗(ε))2r(ε)

(
1

ω + ε
− 1
ω + εR + iΓ

)
− iΓt∗(ε)r(ε)

(ω + εR + iΓ)2

]
log(∆/ω).

We can repeat the argument above for the last fraction in the integrand and end
up with

A = −r(ε)|t(ε)|
2

2
(
log2(∆/ε)− log2(∆/Γ̄)

)
.

There is no essential difference in the arguments for the second part. We cut
this part short:

B = −
∆∫

0

dω t(−ω)(t∗(−ω))2

ω + ε
log(∆/Γ̄)

= −
∆∫

0

dω t(ε)(t∗(ε))2
[

1
ω + ε

− 1
ω + εR − iΓ

]
log(∆/Γ̄)

= −t|t|2 log(∆/Γ̄)
[
log(∆/ε)− log(∆/Γ̄)

]
.

We sum up all contributions and collect the prefactor,

G
(2)
+−(x, y, ε)1-I-E =

[
r|t|4

8 (L2
1 − L2

2)− t|t|4

4 log2(L1 − L2)
]
C+−(x, y, ε).

We showed how the different logarithmic scales emerge in a second order per-
turbative calculation. In the next section, we repeat the exercise for a diagram
with crossed interaction lines and generate a poly-logarithmic contribution.

A.6.2 Diagram with crossed interaction lines: 1-II-B
To calculate diagram 1-II-B (shown in figure A.3.3), we proceed in the same
fashion as above. We put aside the prefactor,

t2(ε)
4 C+−(x, y, ε),

and start with the inner energy integrals:

I(ε,∆, εR,Γ) :=
∆∫
ε

dω
ε∫

ε−ω

dν r
∗(ε− ω − ν)
ω(ω + ν)

=
∆∫
ε

dω
ω

ε∫
ε−ω

dν
[
r∗(ε)
ω + ν

− t∗(ε)
ω + ν − ε+ εR + iΓ

]

=
∆∫
ε

dω
ω

[
r∗(ε) log

(
ε+ ω

ε

)
− t∗(ε) log

(
ω + Γ̄

Γ̄

)]
=: A+B
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The first of the two integrands can be identified with the off-resonant situation,
where the “clean” setup with a structureless impurity is restored,

A = r∗(ε)
2 log(∆/ε).

The second integrand behaves differently, depending whether Γ̄� ε or vice versa.
In the former case, the logarithm in the integrand is cut from below by Γ and
the result is of order log2(∆/Γ̄). In the complementary case, ε/Γ can be found in
a second logarithm, coming from the lower limit of the integral. This behaviour
can be identified as poly-logarithmic contribution, namely

B = −t∗(ε)
[

log2(∆/Γ̄)
2 + Li2(−ε/Γ̄)

]

= −t∗(ε)

 log2(∆/Γ̄)
2 −


const., ε . Γ̄
1
2 log2

(
ε

Γ̄

)
, ε� Γ

 .
We put the prefactor back into place and find the term

G
(2)
+−(x, y, ε)1-II-B = −|t|

2

4

[
r

2 log2(∆/ε) + t

2 log2(∆/Γ̄) + tLi2(−ε/Γ̄)
]
,

aquivalent to the diagram in the leading logarithmic approximation.
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